Compare commits

...

156 Commits

Author SHA1 Message Date
Ryan Dick
6bcf48aa37 WIP - Started working towards MultiDiffusion batching. 2024-06-18 15:44:39 -04:00
Ryan Dick
b1bb1511fe Delete rough notes. 2024-06-18 15:36:36 -04:00
Ryan Dick
99046a8145 Fix advanced scheduler behaviour in MultiDiffusionPipeline. 2024-06-18 15:36:36 -04:00
Ryan Dick
72be7e71e3 Fix handling of stateful schedulers in MultiDiffusionPipeline. 2024-06-18 15:36:36 -04:00
Ryan Dick
35adaf1c17 Connect TiledMultiDiffusionDenoiseLatents to the MultiDiffusionPipeline backend. 2024-06-18 15:36:34 -04:00
Ryan Dick
865c2335de Remove regional conditioning logic from MultiDiffusionPipeline - it is not yet supported. 2024-06-18 15:35:52 -04:00
Ryan Dick
49ca42f84a Initial (untested) implementation of MultiDiffusionPipeline. 2024-06-18 15:35:52 -04:00
Ryan Dick
493fcd8660 Remove inpainting support from MultiDiffusionPipeline. 2024-06-18 15:35:52 -04:00
Ryan Dick
20322d781e Remove IP-Adapter and T2I-Adapter support from MultiDiffusionPipeline. 2024-06-18 15:35:52 -04:00
Ryan Dick
889d13e02a Document plan for the rest of the MultiDiffusion implementation. 2024-06-18 15:35:52 -04:00
Ryan Dick
6ccd2a867b Add detailed docstring to latents_from_embeddings(). 2024-06-18 15:35:52 -04:00
Ryan Dick
5861fa1719 Copy StableDiffusionGeneratorPipeline as a starting point for a new MultiDiffusionPipeline. 2024-06-18 15:35:52 -04:00
Ryan Dick
dfd4beb62b Simplify handling of inpainting models. Improve the in-code documentation around inpainting. 2024-06-18 15:35:52 -04:00
Ryan Dick
83df0c0df5 Minor tidying of latents_from_embeddings(...). 2024-06-18 15:35:52 -04:00
Ryan Dick
c58c4069a7 Consolidate latents_from_embeddings(...) and generate_latents_from_embeddings(...) into a single function. 2024-06-18 15:35:52 -04:00
Ryan Dick
3937fffa94 Fix invocation name of tiled_multi_diffusion_denoise_latents. 2024-06-18 15:35:52 -04:00
Ryan Dick
bbf5f67691 Improve clarity of comments regarded when 'noise' and 'latents' are expected to be set. 2024-06-18 15:35:52 -04:00
Ryan Dick
2f5c147b84 Fix static check errors on imports in diffusers_pipeline.py. 2024-06-18 15:35:52 -04:00
Ryan Dick
bd2839b748 Remove a condition for handling inpainting models that never resolves to True. The same logic is already applied earlier by AddsMaskLatents. 2024-06-18 15:35:52 -04:00
Ryan Dick
4f70dd7ce1 Add clarifying comment to explain why noise might be None in latents_from_embedding(). 2024-06-18 15:35:52 -04:00
Ryan Dick
066672fbfd Remove unused are_like_tensors() function. 2024-06-18 15:35:52 -04:00
Ryan Dick
abefaee4d1 Remove unused StableDiffusionGeneratorPipeline.use_ip_adapter member. 2024-06-18 15:35:52 -04:00
Ryan Dick
3254ba5904 Remove unused StableDiffusionGeneratorPipeline.control_model. 2024-06-18 15:35:52 -04:00
Ryan Dick
73a8c55852 Stricter typing for the is_gradient_mask: bool. 2024-06-18 15:35:52 -04:00
Ryan Dick
f82af7c22d Fix typing of control_data to reflect that it can be None. 2024-06-18 15:35:52 -04:00
Ryan Dick
3aef717ef4 Fix typing of timesteps and init_timestep. 2024-06-18 15:35:52 -04:00
Ryan Dick
c2cf1137e9 Fix typing to reflect that the callback arg to latents_from_embeddings is never None. 2024-06-18 15:35:52 -04:00
Ryan Dick
803a24bc0a Move seed above optional params. 2024-06-18 15:35:52 -04:00
Ryan Dick
7d24ad8ccd Simplify handling of AddsMaskGuidance, and fix some related type errors. 2024-06-18 15:35:52 -04:00
Ryan Dick
cb389063b2 Remove unused num_inference_steps. 2024-06-18 15:35:52 -04:00
Ryan Dick
81b8a69e1a WIP TiledMultiDiffusionDenoiseLatents. Updated parameter list and first half of the logic. 2024-06-18 15:35:50 -04:00
Ryan Dick
7ee5db87ad Tidy DenoiseLatentsInvocation.prep_control_data(...) and fix some type errors. 2024-06-18 15:34:30 -04:00
Ryan Dick
66cf2c59bd Make DenoiseLatentsInvocation.prep_control_data(...) a staticmethod so that it can be called externally. 2024-06-18 15:34:30 -04:00
Ryan Dick
3bad1367e9 Copy TiledStableDiffusionRefineInvocation as a starting point for TiledMultiDiffusionDenoiseLatents.py 2024-06-18 15:34:22 -04:00
Ryan Dick
867a7642a6 Change tiling strategy to make TiledStableDiffusionRefineInvocation work with more tile shapes and overlaps. 2024-06-18 15:31:58 -04:00
Ryan Dick
d9d1c8f9cb Expose a few more params from TiledStableDiffusionRefineInvocation. 2024-06-18 15:31:58 -04:00
Ryan Dick
e03eb7fb45 Add support for LoRA models in TiledStableDiffusionRefineInvocation. 2024-06-18 15:31:58 -04:00
Ryan Dick
85db33bc7e Add naive ControlNet support to TiledStableDiffusionRefineInvocation 2024-06-18 15:31:58 -04:00
Ryan Dick
93e3a2b504 Fix ControlNetModel type hint import source. 2024-06-18 15:31:58 -04:00
Ryan Dick
6a7a26f1bf Rough prototype of TiledStableDiffusionRefineInvocation is working. 2024-06-18 15:31:58 -04:00
Ryan Dick
08ca03ef9f WIP - TiledStableDiffusionRefine 2024-06-18 15:31:54 -04:00
Ryan Dick
ccf90b6bd6 Minor improvements to LatentsToImageInvocation type hints. 2024-06-18 15:31:21 -04:00
Ryan Dick
753239b48d Expose vae_decode(...) as a staticmethod on LatentsToImageInvocation. 2024-06-18 15:31:21 -04:00
Ryan Dick
65fa4664c9 Fix return type of prepare_noise_and_latents(...). 2024-06-18 15:31:21 -04:00
Ryan Dick
297570ded3 Make init_scheduler() a staticmethod on DenoiseLatentsInvocation so that it can be called externally. 2024-06-18 15:31:21 -04:00
Ryan Dick
680fdcf293 Only allow a single positive/negative prompt conditioning input for tiled refine. 2024-06-18 15:31:21 -04:00
Ryan Dick
5ff91f2c44 WIP on TiledStableDiffusionRefine 2024-06-18 15:31:14 -04:00
Ryan Dick
69aa7057e7 Convert several methods in DenoiseLatentsInvocation to staticmethods so that they can be called externally. 2024-06-18 15:25:08 -04:00
Ryan Dick
d3932f40de Simplify the logic in prepare_noise_and_latents(...). 2024-06-18 15:25:08 -04:00
Ryan Dick
ee74cd7fab Split out the prepare_noise_and_latents(...) logic in DenoiseLatentsInvocation so that it can be called from other invocations. 2024-06-18 15:25:08 -04:00
Ryan Dick
bda25b40c9 (minor) Add a TODO note to get_scheduler(...). 2024-06-18 15:25:08 -04:00
Ryan Dick
7e9a89f8c6 Tidy SilenceWarnings context manager (#6493)
## Summary

No functional changes, just cleaning some things up as I touch the code.
This PR cleans up the `SilenceWarnings` context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a
decorator
- Remove duplicate implementation
- Check the initial verbosity on `__enter__()` rather than `__init__()`
- Save an indentation level in DenoiseLatents

## QA Instructions

I generated an image to confirm that warnings are still muted.

## Merge Plan

- [x] ⚠️ Merge https://github.com/invoke-ai/InvokeAI/pull/6492 first,
then change the target branch to `main`.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-18 15:23:32 -04:00
Ryan Dick
79ceac2f82 (minor) Use SilenceWarnings as a decorator rather than a context manager to save an indentation level. 2024-06-18 15:06:22 -04:00
Ryan Dick
8e47e005a7 Tidy SilenceWarnings context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a decorator
- Remove duplicate implementation
- Check the initial verbosity on __enter__() rather than __init__()
2024-06-18 15:06:22 -04:00
Ryan Dick
d13aafb514 Tidy denoise_latents.py imports to all use absolute import paths. 2024-06-18 15:06:22 -04:00
Brandon Rising
63a7e19dbf Run ruff 2024-06-18 10:38:29 -04:00
Brandon Rising
fbc5a8ec65 Ignore validation on improperly formatted hashes (pytest) 2024-06-18 10:38:29 -04:00
Brandon Rising
8ce6e4540e Run ruff 2024-06-18 10:38:29 -04:00
Brandon Rising
f14f377ede Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
1925f83f5e Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
3a5ad6d112 Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
41a6bb45f3 Initial functionality 2024-06-18 10:38:29 -04:00
chainchompa
70e40fa6c1 added route to install huggingface models from model marketplace (#6515)
## Summary
added route to install huggingface models from model marketplace
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
test by going to
http://localhost:5173/api/v2/models/install/huggingface?source=${hfRepo}
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-06-16 21:13:58 -04:00
psychedelicious
e26125b734 tests: fix test_model_install.py 2024-06-17 10:57:11 +10:00
psychedelicious
cd70937b7f feat(api): improved model install confirmation page styling & messaging 2024-06-17 10:51:08 +10:00
psychedelicious
f002bca2fa feat(ui): handle new model_install_download_started event
When a model install is initiated from outside the client, we now trigger the model manager tab's model install list to update.

- Handle new `model_install_download_started` event
- Handle `model_install_download_complete` event (this event is not new but was never handled)
- Update optimistic updates/cache invalidation logic to efficiently update the model install list
2024-06-17 10:07:10 +10:00
psychedelicious
56771de856 feat(ui): add redux actions for model_install_download_started event 2024-06-17 09:52:46 +10:00
psychedelicious
c11478a94a chore(ui): typegen 2024-06-17 09:51:18 +10:00
psychedelicious
fb694b3e17 feat(app): add model_install_download_started event
Previously, we used `model_install_download_progress` for both download starting and progressing. When handling this event, we don't know which actual thing it represents.

Add `model_install_download_started` event to explicitly represent a model download started event.
2024-06-17 09:50:25 +10:00
psychedelicious
1bc98abc76 docs(ui): explain model install events 2024-06-17 09:33:46 +10:00
chainchompa
7f03b04b2f Merge branch 'main' into chainchompa/model-install-deeplink 2024-06-14 17:16:25 -04:00
chainchompa
4029972530 formatting 2024-06-14 17:15:55 -04:00
chainchompa
328f160e88 refetch model installs when a new model install starts 2024-06-14 17:09:07 -04:00
chainchompa
aae318425d added route for installing huggingface model from model marketplace 2024-06-14 17:08:39 -04:00
Ryan Dick
785bb1d9e4 Fix all comparisons against the DEFAULT_PRECISION constant. DEFAULT_PRECISION is a torch.dtype. Previously, it was compared to a str in a number of places where it would always resolve to False. This is a bugfix that results in a change to the default behavior. In practice, this will not change the behavior for many users, because it only causes a change in behavior if a users has configured float32 as their default precision. 2024-06-14 11:26:10 -07:00
Lincoln Stein
a3cb5da130 Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
blessedcoolant
568a4844f7 fix: other recursive imports 2024-06-10 04:12:20 -07:00
blessedcoolant
b1e56e2485 fix: SchedulerOutput not being imported correctly 2024-06-10 04:12:20 -07:00
Kent Keirsey
9432336e2b Add simplified model manager install API to InvocationContext (#6132)
## Summary

This three two model manager-related methods to the InvocationContext
uniform API. They are accessible via `context.models.*`:

1. **`load_local_model(model_path: Path, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated path.*

This will load a local model (.safetensors, .ckpt or diffusers
directory) into the model manager RAM cache and return its
`LoadedModelWithoutConfig`. If the optional loader argument is provided,
the loader will be invoked to load the model into memory. Otherwise the
method will call `safetensors.torch.load_file()` `torch.load()` (with a
pickle scan), or `from_pretrained()` as appropriate to the path type.

Be aware that the `LoadedModelWithoutConfig` object differs from
`LoadedModel` by having no `config` attribute.

Here is an example of usage:

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_path = Path('/opt/models/RealESRGAN_x4plus.pth')
       loadnet = context.models.load_local_model(model_path)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```

---

2. **`load_remote_model(source: str | AnyHttpUrl, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated URL or repo_id.*

This is similar to `load_local_model()` but it accepts either a
HugginFace repo_id (as a string), or a URL. The model's file(s) will be
downloaded to `models/.download_cache` and then loaded, returning a

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
       loadnet = context.models.load_remote_model(model_url)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```
---

3. **`download_and_cache_model( source: str | AnyHttpUrl, access_token:
Optional[str] = None, timeout: Optional[int] = 0) -> Path`**

Download the model file located at source to the models cache and return
its Path. This will check `models/.download_cache` for the desired model
file and download it from the indicated source if not already present.
The local Path to the downloaded file is then returned.

---

## Other Changes

This PR performs a migration, in which it renames `models/.cache` to
`models/.convert_cache`, and migrates previously-downloaded ESRGAN,
openpose, DepthAnything and Lama inpaint models from the `models/core`
directory into `models/.download_cache`.

There are a number of legacy model files in `models/core`, such as
GFPGAN, which are no longer used. This PR deletes them and tidies up the
`models/core` directory.

## Related Issues / Discussions

I have systematically replaced all the calls to
`download_with_progress_bar()`. This function is no longer used
elsewhere and has been removed.

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

I have added unit tests for the three new calls. You may test that the
`load_and_cache_model()` call is working by running the upscaler within
the web app. On first try, you will see the model file being downloaded
into the models `.cache` directory. On subsequent tries, the model will
either load from RAM (if it hasn't been displaced) or will be loaded
from the filesystem.

<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

Squash merge when approved.

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [X] _The PR has a short but descriptive title, suitable for a
changelog_
- [X] _Tests added / updated (if applicable)_
- [X] _Documentation added / updated (if applicable)_
2024-06-08 16:24:31 -07:00
Lincoln Stein
7d19af2caa Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-08 18:55:06 -04:00
Ryan Dick
0dbec3ad8b Split up latent.py (code reorganization, no functional changes) (#6491)
## Summary

I've started working towards a better tiled upscaling implementation. It
is going to require some refactoring of `DenoiseLatentsInvocation`. As a
first step, this PR splits up all of the invocations in latent.py into
their own files. That file had become a bit of a dumping ground - it
should be a bit more manageable to work with now.

This PR just re-organizes the code. There should be no functional
changes.

## QA Instructions

I've done some light smoke testing. I'll do some more before merging.
The main risk is that I missed a broken import, or some other copy-paste
error.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_: N/A
- [x] _Documentation added / updated (if applicable)_: N/A
2024-06-07 12:01:56 -04:00
Ryan Dick
52c0c4a32f Rename latent.py -> denoise_latents.py. 2024-06-07 09:28:42 -04:00
Ryan Dick
8f1afc032a Move SchedulerInvocation to a new file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
854bca668a Move CreateDenoiseMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
fea9013cad Move CreateGradientMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
045caddee1 Move LatentsToImageInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
58697141bf Move ImageToLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
5e419dbb56 Move ScaleLatentsInvocation and ResizeLatentsInvocation to their own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
595096bdcf Move BlendLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
ed03d281e6 Move CropLatentsCoreInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
0b37496c57 Move IdealSizeInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
psychedelicious
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
Lincoln Stein
dc134935c8 replace load_and_cache_model() with load_remote_model() and load_local_odel() 2024-06-07 14:12:16 +10:00
Lincoln Stein
9f9379682e ruff fixes 2024-06-07 13:54:41 +10:00
Lincoln Stein
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
psychedelicious
6d067e56f2 fix(ui): on page load, if CA processed image no longer exists, re-process it 2024-06-07 10:32:28 +10:00
Lincoln Stein
2871676f79 LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
psychedelicious
1c5c3cdbd6 tidy(ui): organize control layers konva logic
- More comments, docstrings
- Move things into saner, less-coupled locations
2024-06-06 07:45:13 +10:00
psychedelicious
3db69af220 refactor(ui): generalize stage event handlers
Create intermediary nanostores for values required by the event handlers. This allows the event handlers to be purely imperative, with no reactivity: instead of recreating/setting the handlers when a dependent piece of state changes, we use nanostores' imperative API to access dependent state.

For example, some handlers depend on brush size. If we used the standard declarative `useSelector` API, we'd need to recreate the event handler callback each time the brush size changed. This can be costly.

An intermediate `$brushSize` nanostore is set in a `useLayoutEffect()`, which responds to changes to the redux store. Then, in the event handler, we use the imperative API to access the brush size: `$brushSize.get()`.

This change allows the event handler logic to be shared with the pending canvas v2, and also more easily tested. It's a noticeable perf improvement, too, especially when changing brush size.
2024-06-06 07:45:13 +10:00
psychedelicious
1823e446ac fix(ui): conditionally render CL preview
This fixes an issue where it sometimes gets out of sync, and fixes some konva errors.
2024-06-06 07:45:13 +10:00
psychedelicious
311e44ad19 tidy(ui): clean up control layers renderers, docstrings 2024-06-06 07:45:13 +10:00
psychedelicious
a9962fd104 chore: ruff 2024-06-03 11:53:20 +10:00
psychedelicious
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00
psychedelicious
c7f22b6a3b tidy(mm): remove extraneous docstring
It's inherited from the ABC.
2024-06-03 10:46:28 +10:00
psychedelicious
99413256ce tidy(mm): pass enum member instead of string 2024-06-03 10:43:09 +10:00
psychedelicious
aa9695e377 tidy(download): _download_job -> _multifile_job 2024-06-03 10:15:53 +10:00
psychedelicious
c58ac1e80d tidy(mm): minor formatting 2024-06-03 10:11:08 +10:00
psychedelicious
6cc6a45274 feat(download): add type for callback_name
Just a bit of typo protection in lieu of full type safety for these methods, which is difficult due to the typing of `DownloadEventHandler`.
2024-06-03 10:05:52 +10:00
psychedelicious
521f907f58 tidy(nodes): infill
- Set `self._context=context` instead of passing it as an arg
2024-06-03 09:43:25 +10:00
psychedelicious
ccdecf21a3 tidy(nodes): cnet processors
- Set `self._context=context` instead of changing the type signature of `run_processor`
- Tidy a few typing things
2024-06-03 09:41:17 +10:00
psychedelicious
b124440023 tidy(mm): move load_model_from_url from mm to invocation context 2024-06-03 08:51:21 +10:00
psychedelicious
e3a70e598e docs(app): simplify docstring in invocation_context 2024-06-03 08:40:29 +10:00
psychedelicious
132bbf330a tidy(app): remove unnecessary changes in invocation_context
- Any mypy issues are a misconfiguration of mypy
- Use simple conditionals instead of ternaries
- Consistent & standards-compliant docstring formatting
- Use `dict` instead of `typing.Dict`
2024-06-03 08:35:23 +10:00
Lincoln Stein
2276f327e5 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-02 09:45:31 -04:00
Lincoln Stein
ead1748c54 issue a download progress event when install download starts 2024-05-28 19:30:42 -04:00
Lincoln Stein
cd12ca6e85 add migration_11; fix typo 2024-05-27 22:40:01 -04:00
Lincoln Stein
34e1eb19f9 merge with main and resolve conflicts 2024-05-27 22:20:34 -04:00
Lincoln Stein
987ee704a1 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-17 22:54:03 -04:00
Lincoln Stein
e77c7e40b7 fix ruff error 2024-05-17 22:53:45 -04:00
Lincoln Stein
8aebc29b91 fix test to run on 32bit cpu 2024-05-17 22:48:54 -04:00
Lincoln Stein
d968c6f379 refactor multifile download code 2024-05-17 22:29:19 -04:00
Lincoln Stein
2dae5eb7ad more refactoring; HF subfolders not working 2024-05-16 22:26:18 -04:00
Lincoln Stein
911a24479b add tests for model install file size reporting 2024-05-16 07:18:33 -04:00
Lincoln Stein
f29c406fed refactor model_install to work with refactored download queue 2024-05-13 22:49:15 -04:00
Lincoln Stein
287c679f7b clean up type checking for single file and multifile download job callbacks 2024-05-13 18:31:40 -04:00
Lincoln Stein
0bf14c2830 add multifile_download() method to download service 2024-05-12 20:14:00 -06:00
Lincoln Stein
b48d4a049d bad implementation of diffusers folder download 2024-05-08 21:21:01 -07:00
Lincoln Stein
f211c95dbc move access token regex matching into download queue 2024-05-05 21:00:31 -04:00
Lincoln Stein
8e5e9b53d6 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-04 17:01:15 -04:00
Lincoln Stein
e9a20051bd refactor DWOpenPose and add type hints 2024-05-03 18:08:53 -04:00
Lincoln Stein
38df6f3702 fix ruff error 2024-05-02 21:22:33 -04:00
Lincoln Stein
3b64e7a1fd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-02 21:20:35 -04:00
Lincoln Stein
49c84cd423 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-30 18:13:42 -04:00
psychedelicious
1fe90c357c feat(backend): lift managed model loading out of depthanything class 2024-04-29 08:56:00 +10:00
psychedelicious
fcb071f30c feat(backend): lift managed model loading out of lama class 2024-04-29 08:12:51 +10:00
Lincoln Stein
57c831442e fix safe_filename() on windows 2024-04-28 14:42:40 -04:00
Lincoln Stein
f65c7e2bfd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 13:42:54 -04:00
Lincoln Stein
7c39929758 support VRAM caching of dict models that lack to() 2024-04-28 13:41:06 -04:00
Lincoln Stein
a26667d3ca make download and convert cache keys safe for filename length 2024-04-28 12:24:36 -04:00
Lincoln Stein
bb04f496e0 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 11:33:26 -04:00
Lincoln Stein
70903ef057 refactor load_ckpt_from_url() 2024-04-28 11:33:23 -04:00
Lincoln Stein
d72f272f16 Address change requests in first round of PR reviews.
Pending:

- Move model install calls into model manager and create passthrus in invocation_context.
- Consider splitting load_model_from_url() into a call to get the path and a call to load the path.
2024-04-24 23:53:30 -04:00
Lincoln Stein
34cdfc61ab Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-17 17:18:13 -04:00
Lincoln Stein
470a39935c fix merge conflicts with main 2024-04-15 09:24:57 -04:00
Lincoln Stein
f1e79d5a8f Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-15 09:14:55 -04:00
Lincoln Stein
f055e1edb6 Merge branch 'lstein/feat/simple-mm2-api' of github.com:invoke-ai/InvokeAI into lstein/feat/simple-mm2-api 2024-04-15 09:14:37 -04:00
Lincoln Stein
fa6efac436 change names of convert and download caches and add migration script 2024-04-14 16:10:24 -04:00
Lincoln Stein
3ead827d61 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 16:10:24 -04:00
Lincoln Stein
c140d3b1df add invocation_context.load_ckpt_from_url() method 2024-04-14 16:10:24 -04:00
Lincoln Stein
34438ce1af add simplified model manager install API to InvocationContext 2024-04-14 16:10:24 -04:00
Lincoln Stein
3ddd7ced49 change names of convert and download caches and add migration script 2024-04-14 15:57:33 -04:00
Lincoln Stein
41b909cbe3 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 15:57:03 -04:00
Lincoln Stein
3a26c7bb9e fix merge conflicts 2024-04-12 00:58:11 -04:00
Lincoln Stein
df5ebdbc4f add invocation_context.load_ckpt_from_url() method 2024-04-12 00:55:21 -04:00
Lincoln Stein
af1b57a01f add simplified model manager install API to InvocationContext 2024-04-11 21:46:00 -04:00
Lincoln Stein
9cc1f20ad5 add simplified model manager install API to InvocationContext 2024-04-03 23:26:48 -04:00
102 changed files with 6059 additions and 3289 deletions

View File

@@ -128,7 +128,8 @@ The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
Two job types are defined. `DownloadJob` and
`MultiFileDownloadJob`. The former is a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
@@ -138,7 +139,7 @@ following fields:
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
@@ -190,6 +191,33 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
The `MultiFileDownloadJob` is used for diffusers model downloads,
which contain multiple files and directories under a common root:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `download_parts` | Set[DownloadJob]| | Component download jobs |
| `dest` | Path | | Where to download to |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the root of the downloaded files |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
Note that the MultiFileDownloadJob does not support the `priority`,
`job_started`, `job_ended` or `content_type` attributes. You can get
these from the individual download jobs in `download_parts`.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
@@ -251,11 +279,40 @@ jobs using `list_jobs()`, fetch a single job by its with
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
This is similar to download(), but instead of taking a single source,
it accepts a `parts` argument consisting of a list of
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
where the URL is the location of the remote file, and the Path is the
destination.
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
consists of a url/path pair. Note that the path *must* be relative.
The method returns a `MultiFileDownloadJob`.
```
from invokeai.backend.model_manager.metadata import RemoteModelFile
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
path='my_model/textencoder/pytorch_model.safetensors'
)
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
path='my_model/vae/diffusers_model.safetensors'
)
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
dest='/tmp/downloads',
on_progress=TqdmProgress().update)
queue.wait_for_job(job)
print(f"The files were downloaded to {job.download_path}")
```
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.

View File

@@ -397,26 +397,25 @@ In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.config import get_config
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config, logger)
db = SqliteDatabase(config.db_path, logger)
record_store = ModelRecordServiceSQL(db)
queue = DownloadQueueService()
queue.start()
installer = ModelInstallService(app_config=config,
installer = ModelInstallService(app_config=config,
record_store=record_store,
download_queue=queue
)
download_queue=queue
)
installer.start()
```
@@ -1367,12 +1366,20 @@ the in-memory loaded model:
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
Because the loader can return multiple model types, it is typed to
return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
### get_model_by_key(key, [submodel]) -> LoadedModel
The `get_model_by_key()` method will retrieve the model using its
unique database key. For example:
loaded_model = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
`get_model_by_key()` may raise any of the following exceptions:
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Using the Loaded Model in Inference
`LoadedModel` acts as a context manager. The context loads the model
into the execution device (e.g. VRAM on CUDA systems), locks the model
@@ -1380,17 +1387,33 @@ in the execution device for the duration of the context, and returns
the model. Use it like this:
```
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with model_info as vae:
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model as vae:
image = vae.decode(latents)[0]
```
`get_model_by_key()` may raise any of the following exceptions:
The object returned by the LoadedModel context manager is an
`AnyModel`, which is a Union of `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
In addition, you may call `LoadedModel.model_on_device()`, a context
manager that returns a tuple of the model's state dict in CPU and the
model itself in VRAM. It is used to optimize the LoRA patching and
unpatching process:
```
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model.model_on_device() as (state_dict, vae):
image = vae.decode(latents)[0]
```
Since not all models have state dicts, the `state_dict` return value
can be None.
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Emitting model loading events
When the `context` argument is passed to `load_model_*()`, it will
@@ -1578,3 +1601,59 @@ This method takes a model key, looks it up using the
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
model configuration to `load_model_by_config()`. It may raise a
`NotImplementedException`.
## Invocation Context Model Manager API
Within invocations, the following methods are available from the
`InvocationContext` object:
### context.download_and_cache_model(source) -> Path
This method accepts a `source` of a remote model, downloads and caches
it locally, and then returns a Path to the local model. The source can
be a direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
### context.load_local_model(model_path, [loader]) -> LoadedModel
This method loads a local model from the indicated path, returning a
`LoadedModel`. The optional loader is a Callable that accepts a Path
to the object, and returns a `AnyModel` object. If no loader is
provided, then the method will use `torch.load()` for a .ckpt or .bin
checkpoint file, `safetensors.torch.load_file()` for a safetensors
checkpoint file, or `cls.from_pretrained()` for a directory that looks
like a diffusers directory.
### context.load_remote_model(source, [loader]) -> LoadedModel
This method accepts a `source` of a remote model, downloads and caches
it locally, loads it, and returns a `LoadedModel`. The source can be a
direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors

View File

@@ -93,7 +93,7 @@ class ApiDependencies:
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,

View File

@@ -9,7 +9,7 @@ from copy import deepcopy
from typing import Any, Dict, List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
@@ -502,6 +502,133 @@ async def install_model(
return result
@model_manager_router.get(
"/install/huggingface",
operation_id="install_hugging_face_model",
responses={
201: {"description": "The model is being installed"},
400: {"description": "Bad request"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_class=HTMLResponse,
)
async def install_hugging_face_model(
source: str = Query(description="HuggingFace repo_id to install"),
) -> HTMLResponse:
"""Install a Hugging Face model using a string identifier."""
def generate_html(title: str, heading: str, repo_id: str, is_error: bool, message: str | None = "") -> str:
if message:
message = f"<p>{message}</p>"
title_class = "error" if is_error else "success"
return f"""
<html>
<head>
<title>{title}</title>
<style>
body {{
text-align: center;
background-color: hsl(220 12% 10% / 1);
font-family: Helvetica, sans-serif;
color: hsl(220 12% 86% / 1);
}}
.repo-id {{
color: hsl(220 12% 68% / 1);
}}
.error {{
color: hsl(0 42% 68% / 1)
}}
.message-box {{
display: inline-block;
border-radius: 5px;
background-color: hsl(220 12% 20% / 1);
padding-inline-end: 30px;
padding: 20px;
padding-inline-start: 30px;
padding-inline-end: 30px;
}}
.container {{
display: flex;
width: 100%;
height: 100%;
align-items: center;
justify-content: center;
}}
a {{
color: inherit
}}
a:visited {{
color: inherit
}}
a:active {{
color: inherit
}}
</style>
</head>
<body style="background-color: hsl(220 12% 10% / 1);">
<div class="container">
<div class="message-box">
<h2 class="{title_class}">{heading}</h2>
{message}
<p class="repo-id">Repo ID: {repo_id}</p>
</div>
</div>
</body>
</html>
"""
try:
metadata = HuggingFaceMetadataFetch().from_id(source)
assert isinstance(metadata, ModelMetadataWithFiles)
except UnknownMetadataException:
title = "Unable to Install Model"
heading = "No HuggingFace repository found with that repo ID."
message = "Ensure the repo ID is correct and try again."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=400)
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
if metadata.is_diffusers:
installer.heuristic_import(
source=source,
inplace=False,
)
elif metadata.ckpt_urls is not None and len(metadata.ckpt_urls) == 1:
installer.heuristic_import(
source=str(metadata.ckpt_urls[0]),
inplace=False,
)
else:
title = "Unable to Install Model"
heading = "This HuggingFace repo has multiple models."
message = "Please use the Model Manager to install this model."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=200)
title = "Model Install Started"
heading = "Your HuggingFace model is installing now."
message = "You can close this tab and check the Model Manager for installation progress."
return HTMLResponse(content=generate_html(title, heading, source, False, message), status_code=201)
except Exception as e:
logger.error(str(e))
title = "Unable to Install Model"
heading = "There was an problem installing this model."
message = 'Please use the Model Manager directly to install this model. If the issue persists, ask for help on <a href="https://discord.gg/ZmtBAhwWhy">discord</a>.'
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=500)
@model_manager_router.get(
"/install",
operation_id="list_model_installs",

View File

@@ -0,0 +1,98 @@
from typing import Any, Union
import numpy as np
import numpy.typing as npt
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.util.devices import TorchDevice
@invocation(
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.3",
)
class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size."""
latents_a: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
latents_b: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents_a = context.tensors.load(self.latents_a.latents_name)
latents_b = context.tensors.load(self.latents_b.latents_name)
if latents_a.shape != latents_b.shape:
raise Exception("Latents to blend must be the same size.")
device = TorchDevice.choose_torch_device()
def slerp(
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
v0: Union[torch.Tensor, npt.NDArray[Any]],
v1: Union[torch.Tensor, npt.NDArray[Any]],
DOT_THRESHOLD: float = 0.9995,
) -> Union[torch.Tensor, npt.NDArray[Any]]:
"""
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
"""
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
return v2_torch
else:
assert isinstance(v2, np.ndarray)
return v2
# blend
bl = slerp(self.alpha, latents_a, latents_b)
assert isinstance(bl, torch.Tensor)
blended_latents: torch.Tensor = bl # for type checking convenience
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
blended_latents = blended_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=blended_latents)
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)

View File

@@ -81,9 +81,13 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
@@ -172,9 +176,14 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (

View File

@@ -1,6 +1,7 @@
from typing import Literal
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.util.devices import TorchDevice
LATENT_SCALE_FACTOR = 8
"""
@@ -15,3 +16,5 @@ SCHEDULER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())]
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
"""A literal type for PIL image modes supported by Invoke"""
DEFAULT_PRECISION = TorchDevice.choose_torch_dtype()

View File

@@ -2,6 +2,7 @@
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
@@ -36,12 +37,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
@@ -139,6 +141,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
@@ -284,7 +287,8 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(
image,
@@ -311,7 +315,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
@@ -330,7 +334,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image,
@@ -353,7 +357,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image,
@@ -381,7 +385,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(
image,
@@ -405,7 +409,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
@@ -426,7 +430,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image,
@@ -454,7 +458,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image,
@@ -496,8 +500,8 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
def run_processor(self, image: Image.Image) -> Image.Image:
np_img = np.array(image, dtype=np.uint8)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
@@ -520,7 +524,7 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints"
@@ -566,7 +570,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image):
def run_processor(self, image: Image.Image) -> Image.Image:
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
@@ -601,12 +605,18 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(
@@ -624,8 +634,11 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
def run_processor(self, image: Image.Image) -> Image.Image:
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
processed_image = dw_openpose(
image,
draw_face=self.draw_face,

View File

@@ -0,0 +1,80 @@
from typing import Optional
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import DenoiseMaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation(
"create_denoise_mask",
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.2",
)
class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0)
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image: Image.Image) -> torch.Tensor:
if mask_image.mode != "L":
mask_image = mask_image.convert("L")
mask_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
if mask_tensor.dim() == 3:
mask_tensor = mask_tensor.unsqueeze(0)
# if shape is not None:
# mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR)
return mask_tensor
@torch.no_grad()
def invoke(self, context: InvocationContext) -> DenoiseMaskOutput:
if self.image is not None:
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
else:
image_tensor = None
mask = self.prep_mask_tensor(
context.images.get_pil(self.mask.image_name),
)
if image_tensor is not None:
vae_info = context.models.load(self.vae.vae)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
# TODO:
masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone())
masked_latents_name = context.tensors.save(tensor=masked_latents)
else:
masked_latents_name = None
mask_name = context.tensors.save(tensor=mask)
return DenoiseMaskOutput.build(
mask_name=mask_name,
masked_latents_name=masked_latents_name,
gradient=False,
)

View File

@@ -0,0 +1,138 @@
from typing import Literal, Optional
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image, ImageFilter
from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
DenoiseMaskField,
FieldDescriptions,
ImageField,
Input,
InputField,
OutputField,
)
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.model import UNetField, VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation_output("gradient_mask_output")
class GradientMaskOutput(BaseInvocationOutput):
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
expanded_mask_area: ImageField = OutputField(
description="Image representing the total gradient area of the mask. For paste-back purposes."
)
@invocation(
"create_gradient_mask",
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.1.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
edge_radius: int = InputField(
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
)
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
minimum_denoise: float = InputField(
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
)
image: Optional[ImageField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] Image",
ui_order=6,
)
unet: Optional[UNetField] = InputField(
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
default=None,
input=Input.Connection,
title="[OPTIONAL] UNet",
ui_order=5,
)
vae: Optional[VAEField] = InputField(
default=None,
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
title="[OPTIONAL] VAE",
input=Input.Connection,
ui_order=7,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32,
description=FieldDescriptions.fp32,
ui_order=9,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
if self.edge_radius > 0:
if self.coherence_mode == "Box Blur":
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
else: # Gaussian Blur OR Staged
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
threshold = 1 - self.minimum_denoise
if self.coherence_mode == "Staged":
# wherever the blur_tensor is less than fully masked, convert it to threshold
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
else:
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
else:
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
# compute a [0, 1] mask from the blur_tensor
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
expanded_image_dto = context.images.save(expanded_mask_image)
masked_latents_name = None
if self.unet is not None and self.vae is not None and self.image is not None:
# all three fields must be present at the same time
main_model_config = context.models.get_config(self.unet.unet.key)
assert isinstance(main_model_config, MainConfigBase)
if main_model_config.variant is ModelVariantType.Inpaint:
mask = blur_tensor
vae_info: LoadedModel = context.models.load(self.vae.vae)
image = context.images.get_pil(self.image.image_name)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
masked_latents = ImageToLatentsInvocation.vae_encode(
vae_info, self.fp32, self.tiled, masked_image.clone()
)
masked_latents_name = context.tensors.save(tensor=masked_latents)
return GradientMaskOutput(
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
)

View File

@@ -0,0 +1,61 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
# The Crop Latents node was copied from @skunkworxdark's implementation here:
# https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80
@invocation(
"crop_latents",
title="Crop Latents",
tags=["latents", "crop"],
category="latents",
version="1.0.2",
)
# TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`.
# Currently, if the class names conflict then 'GET /openapi.json' fails.
class CropLatentsCoreInvocation(BaseInvocation):
"""Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be
divisible by the latent scale factor of 8.
"""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
x: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
y: int = InputField(
ge=0,
multiple_of=LATENT_SCALE_FACTOR,
description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
width: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
height: int = InputField(
ge=1,
multiple_of=LATENT_SCALE_FACTOR,
description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.",
)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
x1 = self.x // LATENT_SCALE_FACTOR
y1 = self.y // LATENT_SCALE_FACTOR
x2 = x1 + (self.width // LATENT_SCALE_FACTOR)
y2 = y1 + (self.height // LATENT_SCALE_FACTOR)
cropped_latents = latents[..., y1:y2, x1:x2]
name = context.tensors.save(tensor=cropped_latents)
return LatentsOutput.build(latents_name=name, latents=cropped_latents)

View File

@@ -0,0 +1,848 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import inspect
from contextlib import ExitStack
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
import torch
import torchvision
import torchvision.transforms as T
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.adapter import T2IAdapter
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
from transformers import CLIPVisionModelWithProjection
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.fields import (
ConditioningField,
DenoiseMaskField,
FieldDescriptions,
Input,
InputField,
LatentsField,
UIType,
)
from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.model import ModelIdentifierField, UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
IPAdapterConditioningInfo,
IPAdapterData,
Range,
SDXLConditioningInfo,
TextConditioningData,
TextConditioningRegions,
)
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
from invokeai.backend.util.mask import to_standard_float_mask
from invokeai.backend.util.silence_warnings import SilenceWarnings
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelIdentifierField,
scheduler_name: str,
seed: int,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {
**scheduler_config,
**scheduler_extra_config, # FIXME
"_backup": scheduler_config,
}
# make dpmpp_sde reproducable(seed can be passed only in initializer)
if scheduler_class is DPMSolverSDEScheduler:
scheduler_config["noise_sampler_seed"] = seed
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler
@invocation(
"denoise_latents",
title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents",
version="1.5.3",
)
class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images"""
positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0
)
negative_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
)
noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None,
input=Input.Connection,
ui_order=5,
)
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter,
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
)
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField(
description=FieldDescriptions.t2i_adapter,
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
ui_order=4,
)
denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None,
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
)
@field_validator("cfg_scale")
def ge_one(cls, v: Union[List[float], float]) -> Union[List[float], float]:
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def _get_text_embeddings_and_masks(
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
dtype: torch.dtype,
) -> tuple[Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]], list[Optional[torch.Tensor]]]:
"""Get the text embeddings and masks from the input conditioning fields."""
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.tensor_name)
text_embeddings_masks.append(mask)
return text_embeddings, text_embeddings_masks
@staticmethod
def _preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
If mask is not None, resizes the mask to the target height and width using 'nearest' interpolation.
Returns:
torch.Tensor: The processed mask. shape: (1, 1, target_height, target_width).
"""
if mask is None:
return torch.ones((1, 1, target_height, target_width), dtype=dtype)
mask = to_standard_float_mask(mask, out_dtype=dtype)
tf = torchvision.transforms.Resize(
(target_height, target_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST
)
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
return resized_mask
@staticmethod
def _concat_regional_text_embeddings(
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> tuple[Union[BasicConditioningInfo, SDXLConditioningInfo], Optional[TextConditioningRegions]]:
"""Concatenate regional text embeddings into a single embedding and track the region masks accordingly."""
if masks is None:
masks = [None] * len(text_conditionings)
assert len(text_conditionings) == len(masks)
is_sdxl = type(text_conditionings[0]) is SDXLConditioningInfo
all_masks_are_none = all(mask is None for mask in masks)
text_embedding = []
pooled_embedding = None
add_time_ids = None
cur_text_embedding_len = 0
processed_masks = []
embedding_ranges = []
for prompt_idx, text_embedding_info in enumerate(text_conditionings):
mask = masks[prompt_idx]
if is_sdxl:
# We choose a random SDXLConditioningInfo's pooled_embeds and add_time_ids here, with a preference for
# prompts without a mask. We prefer prompts without a mask, because they are more likely to contain
# global prompt information. In an ideal case, there should be exactly one global prompt without a
# mask, but we don't enforce this.
# HACK(ryand): The fact that we have to choose a single pooled_embedding and add_time_ids here is a
# fundamental interface issue. The SDXL Compel nodes are not designed to be used in the way that we use
# them for regional prompting. Ideally, the DenoiseLatents invocation should accept a single
# pooled_embeds tensor and a list of standard text embeds with region masks. This change would be a
# pretty major breaking change to a popular node, so for now we use this hack.
if pooled_embedding is None or mask is None:
pooled_embedding = text_embedding_info.pooled_embeds
if add_time_ids is None or mask is None:
add_time_ids = text_embedding_info.add_time_ids
text_embedding.append(text_embedding_info.embeds)
if not all_masks_are_none:
embedding_ranges.append(
Range(
start=cur_text_embedding_len, end=cur_text_embedding_len + text_embedding_info.embeds.shape[1]
)
)
processed_masks.append(
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
mask, latent_height, latent_width, dtype=dtype
)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
text_embedding = torch.cat(text_embedding, dim=1)
assert len(text_embedding.shape) == 3 # batch_size, seq_len, token_len
regions = None
if not all_masks_are_none:
regions = TextConditioningRegions(
masks=torch.cat(processed_masks, dim=1),
ranges=embedding_ranges,
)
if is_sdxl:
return (
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
regions,
)
return BasicConditioningInfo(embeds=text_embedding), regions
@staticmethod
def get_conditioning_data(
context: InvocationContext,
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
cfg_scale: float | list[float],
steps: int,
cfg_rescale_multiplier: float,
) -> TextConditioningData:
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
cond_list = positive_conditioning_field
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = negative_conditioning_field
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
if isinstance(cfg_scale, list):
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=cfg_scale,
guidance_rescale_multiplier=cfg_rescale_multiplier,
)
return conditioning_data
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@staticmethod
def prep_control_data(
context: InvocationContext,
control_input: ControlField | list[ControlField] | None,
latents_shape: List[int],
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> list[ControlNetData] | None:
# Normalize control_input to a list.
control_list: list[ControlField]
if isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list):
control_list = control_input
elif control_input is None:
control_list = []
else:
raise ValueError(f"Unexpected control_input type: {type(control_input)}")
if len(control_list) == 0:
return None
# Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR.
_, _, latent_height, latent_width = latents_shape
control_height_resize = latent_height * LATENT_SCALE_FACTOR
control_width_resize = latent_width * LATENT_SCALE_FACTOR
controlnet_data: list[ControlNetData] = []
for control_info in control_list:
control_model = exit_stack.enter_context(context.models.load(control_info.control_model))
assert isinstance(control_model, ControlNetModel)
control_image_field = control_info.image
input_image = context.images.get_pil(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model,
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,
# any resizing needed should currently be happening in prepare_control_image(),
# but adding resize_mode to ControlNetData in case needed in the future
resize_mode=control_info.resize_mode,
)
controlnet_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return controlnet_data
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
image_prompts = []
for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image
if not isinstance(single_ipa_image_fields, list):
single_ipa_image_fields = [single_ipa_image_fields]
single_ipa_images = [context.images.get_pil(image.image_name) for image in single_ipa_image_fields]
with image_encoder_model_info as image_encoder_model:
assert isinstance(image_encoder_model, CLIPVisionModelWithProjection)
# Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model
)
image_prompts.append((image_prompt_embeds, uncond_image_prompt_embeds))
return image_prompts
def prep_ip_adapter_data(
self,
context: InvocationContext,
ip_adapters: List[IPAdapterField],
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
exit_stack: ExitStack,
latent_height: int,
latent_width: int,
dtype: torch.dtype,
) -> Optional[List[IPAdapterData]]:
"""If IP-Adapter is enabled, then this function loads the requisite models and adds the image prompt conditioning data."""
ip_adapter_data_list = []
for single_ip_adapter, (image_prompt_embeds, uncond_image_prompt_embeds) in zip(
ip_adapters, image_prompts, strict=True
):
ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
mask_field = single_ip_adapter.mask
mask = context.tensors.load(mask_field.tensor_name) if mask_field is not None else None
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
ip_adapter_data_list.append(
IPAdapterData(
ip_adapter_model=ip_adapter_model,
weight=single_ip_adapter.weight,
target_blocks=single_ip_adapter.target_blocks,
begin_step_percent=single_ip_adapter.begin_step_percent,
end_step_percent=single_ip_adapter.end_step_percent,
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
mask=mask,
)
)
return ip_adapter_data_list if len(ip_adapter_data_list) > 0 else None
def run_t2i_adapters(
self,
context: InvocationContext,
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
latents_shape: list[int],
do_classifier_free_guidance: bool,
) -> Optional[list[T2IAdapterData]]:
if t2i_adapter is None:
return None
# Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField.
if isinstance(t2i_adapter, T2IAdapterField):
t2i_adapter = [t2i_adapter]
if len(t2i_adapter) == 0:
return None
t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_config = context.models.get_config(t2i_adapter_field.t2i_adapter_model.key)
t2i_adapter_loaded_model = context.models.load(t2i_adapter_field.t2i_adapter_model)
image = context.images.get_pil(t2i_adapter_field.image.image_name)
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
if t2i_adapter_model_config.base == BaseModelType.StableDiffusion1:
max_unet_downscale = 8
elif t2i_adapter_model_config.base == BaseModelType.StableDiffusionXL:
max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{t2i_adapter_model_config.base}'.")
t2i_adapter_model: T2IAdapter
with t2i_adapter_loaded_model as t2i_adapter_model:
total_downscale_factor = t2i_adapter_model.total_downscale_factor
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor
t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=t2i_input_width,
height=t2i_input_height,
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
device=t2i_adapter_model.device,
dtype=t2i_adapter_model.dtype,
resize_mode=t2i_adapter_field.resize_mode,
)
adapter_state = t2i_adapter_model(t2i_image)
if do_classifier_free_guidance:
for idx, value in enumerate(adapter_state):
adapter_state[idx] = torch.cat([value] * 2, dim=0)
t2i_adapter_data.append(
T2IAdapterData(
adapter_state=adapter_state,
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
)
)
return t2i_adapter_data
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
@staticmethod
def init_scheduler(
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
timesteps = scheduler.timesteps.to(device=device)
else:
scheduler.set_timesteps(steps, device=device)
timesteps = scheduler.timesteps
# skip greater order timesteps
_timesteps = timesteps[:: scheduler.order]
# get start timestep index
t_start_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_start)))
t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps)))
# get end timestep index
t_end_val = int(round(scheduler.config["num_train_timesteps"] * (1 - denoising_end)))
t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:])))
# apply order to indexes
t_start_idx *= scheduler.order
t_end_idx *= scheduler.order
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
scheduler_step_kwargs: Dict[str, Any] = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
#
# These Invoke-supported schedulers accept a generator as of 2024-06-04:
# - DDIMScheduler
# - DDPMScheduler
# - DPMSolverMultistepScheduler
# - EulerAncestralDiscreteScheduler
# - EulerDiscreteScheduler
# - KDPM2AncestralDiscreteScheduler
# - LCMScheduler
# - TCDScheduler
scheduler_step_kwargs.update({"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)})
if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0})
return timesteps, init_timestep, scheduler_step_kwargs
def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], bool]:
if self.denoise_mask is None:
return None, None, False
mask = context.tensors.load(self.denoise_mask.mask_name)
mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
if self.denoise_mask.masked_latents_name is not None:
masked_latents = context.tensors.load(self.denoise_mask.masked_latents_name)
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
"""Depending on the workflow, we expect different combinations of noise and latents to be provided. This
function handles preparing these values accordingly.
Expected workflows:
- Text-to-Image Denoising: `noise` is provided, `latents` is not. `latents` is initialized to zeros.
- Image-to-Image Denoising: `noise` and `latents` are both provided.
- Text-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
- Image-to-Image SDXL Refiner Denoising: `latents` is provided, `noise` is not.
NOTE(ryand): I wrote this docstring, but I am not the original author of this code. There may be other workflows
I haven't considered.
"""
noise = None
if noise_field is not None:
noise = context.tensors.load(noise_field.latents_name)
if latents_field is not None:
latents = context.tensors.load(latents_field.latents_name)
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise ValueError("'latents' or 'noise' must be provided!")
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise ValueError(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
seed = 0
if noise_field is not None and noise_field.seed is not None:
seed = noise_field.seed
elif latents_field is not None and latents_field.seed is not None:
seed = latents_field.seed
else:
seed = 0
return seed, noise, latents
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters(
context,
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
)
ip_adapters: List[IPAdapterField] = []
if self.ip_adapter is not None:
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if isinstance(self.ip_adapter, list):
ip_adapters = self.ip_adapter
else:
ip_adapters = [self.ip_adapter]
# If there are IP adapters, the following line runs the adapters' CLIPVision image encoders to return
# a series of image conditioning embeddings. This is being done here rather than in the
# big model context below in order to use less VRAM on low-VRAM systems.
# The image prompts are then passed to prep_ip_adapter_data().
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress()
unet_config = context.models.get_config(self.unet.unet.key)
def step_callback(state: PipelineIntermediateState) -> None:
context.util.sd_step_callback(state, unet_config.base)
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
return
unet_info = context.models.load(self.unet.unet)
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
if mask is not None:
mask = mask.to(device=unet.device, dtype=unet.dtype)
if masked_latents is not None:
masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet, scheduler)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = self.prep_control_data(
context=context,
control_input=self.control,
latents_shape=latents.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
ip_adapter_data = self.prep_ip_adapter_data(
context=context,
ip_adapters=ip_adapters,
image_prompts=image_prompts,
exit_stack=exit_stack,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
result_latents = pipeline.latents_from_embeddings(
latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
mask=mask,
masked_latents=masked_latents,
is_gradient_mask=gradient_mask,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=controlnet_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@@ -0,0 +1,65 @@
import math
from typing import Tuple
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import FieldDescriptions, InputField, OutputField
from invokeai.app.invocations.model import UNetField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.config import BaseModelType
@invocation_output("ideal_size_output")
class IdealSizeOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
width: int = OutputField(description="The ideal width of the image (in pixels)")
height: int = OutputField(description="The ideal height of the image (in pixels)")
@invocation(
"ideal_size",
title="Ideal Size",
tags=["latents", "math", "ideal_size"],
version="1.0.3",
)
class IdealSizeInvocation(BaseInvocation):
"""Calculates the ideal size for generation to avoid duplication"""
width: int = InputField(default=1024, description="Final image width")
height: int = InputField(default=576, description="Final image height")
unet: UNetField = InputField(default=None, description=FieldDescriptions.unet)
multiplier: float = InputField(
default=1.0,
description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in "
"initial generation artifacts if too large)",
)
def trim_to_multiple_of(self, *args: int, multiple_of: int = LATENT_SCALE_FACTOR) -> Tuple[int, ...]:
return tuple((x - x % multiple_of) for x in args)
def invoke(self, context: InvocationContext) -> IdealSizeOutput:
unet_config = context.models.get_config(self.unet.unet.key)
aspect = self.width / self.height
dimension: float = 512
if unet_config.base == BaseModelType.StableDiffusion2:
dimension = 768
elif unet_config.base == BaseModelType.StableDiffusionXL:
dimension = 1024
dimension = dimension * self.multiplier
min_dimension = math.floor(dimension * 0.5)
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
scaled_width, scaled_height = self.trim_to_multiple_of(
math.floor(init_width),
math.floor(init_height),
)
return IdealSizeOutput(width=scaled_width, height=scaled_height)

View File

@@ -0,0 +1,125 @@
from functools import singledispatchmethod
import einops
import torch
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
Input,
InputField,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
@invocation(
"i2l",
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.2",
)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
image: ImageField = InputField(
description="The image to encode",
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_encode(vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor) -> torch.Tensor:
with vae_info as vae:
assert isinstance(vae, torch.nn.Module)
orig_dtype = vae.dtype
if upcast:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype)
# else:
# latents = latents.float()
else:
vae.to(dtype=torch.float16)
# latents = latents.half()
if tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)
return latents
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor)
latents = latents.to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
@singledispatchmethod
@staticmethod
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents: torch.Tensor = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
return latents
@_encode_to_tensor.register
@staticmethod
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
assert isinstance(vae, torch.nn.Module)
latents: torch.FloatTensor = vae.encode(image_tensor).latents
return latents

View File

@@ -42,15 +42,16 @@ class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infill the image with the specified method"""
pass
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
def load_image(self) -> tuple[Image.Image, bool]:
"""Process the image to have an alpha channel before being infilled"""
image = context.images.get_pil(self.image.image_name)
image = self._context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
# Retrieve and process image to be infilled
input_image, has_alpha = self.load_image(context)
input_image, has_alpha = self.load_image()
# If the input image has no alpha channel, return it
if has_alpha is False:
@@ -133,8 +134,12 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image):
lama = LaMA()
return lama(image)
with self._context.models.load_remote_model(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)
return lama(image)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,127 @@
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.util.devices import TorchDevice
@invocation(
"l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.2.2",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_decode(
context: InvocationContext,
vae_info: LoadedModel,
seamless_axes: list[str],
latents: torch.Tensor,
use_fp32: bool,
use_tiling: bool,
) -> Image.Image:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if use_fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(latents.dtype)
vae.decoder.conv_in.to(latents.dtype)
vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
else:
vae.to(dtype=torch.float16)
latents = latents.half()
if use_tiling or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
TorchDevice.empty_cache()
return image
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
image = self.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=latents,
use_fp32=self.fp32,
use_tiling=self.tiled,
)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,103 @@
from typing import Literal
import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
)
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.util.devices import TorchDevice
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation(
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
width: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
height: int = InputField(
ge=64,
multiple_of=LATENT_SCALE_FACTOR,
description=FieldDescriptions.width,
)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation(
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.2",
)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor)
mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode)
antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias)
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.tensors.load(self.latents.latents_name)
device = TorchDevice.choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
latents.to(device),
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
resized_latents = resized_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=resized_latents)
return LatentsOutput.build(latents_name=name, latents=resized_latents, seed=self.latents.seed)

View File

@@ -0,0 +1,34 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
FieldDescriptions,
InputField,
OutputField,
UIType,
)
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("scheduler_output")
class SchedulerOutput(BaseInvocationOutput):
scheduler: SCHEDULER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation(
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler."""
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
def invoke(self, context: InvocationContext) -> SchedulerOutput:
return SchedulerOutput(scheduler=self.scheduler)

View File

@@ -0,0 +1,268 @@
import copy
from contextlib import ExitStack
from typing import Iterator, Tuple
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
LatentsField,
UIType,
)
from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
MultiDiffusionRegionConditioning,
)
from invokeai.backend.tiles.tiles import (
calc_tiles_min_overlap,
)
from invokeai.backend.tiles.utils import TBLR
from invokeai.backend.util.devices import TorchDevice
def crop_controlnet_data(control_data: ControlNetData, latent_region: TBLR) -> ControlNetData:
"""Crop a ControlNetData object to a region."""
# Create a shallow copy of the control_data object.
control_data_copy = copy.copy(control_data)
# The ControlNet reference image is the only attribute that needs to be cropped.
control_data_copy.image_tensor = control_data.image_tensor[
:,
:,
latent_region.top * LATENT_SCALE_FACTOR : latent_region.bottom * LATENT_SCALE_FACTOR,
latent_region.left * LATENT_SCALE_FACTOR : latent_region.right * LATENT_SCALE_FACTOR,
]
return control_data_copy
@invocation(
"tiled_multi_diffusion_denoise_latents",
title="Tiled Multi-Diffusion Denoise Latents",
tags=["upscale", "denoise"],
category="latents",
# TODO(ryand): Reset to 1.0.0 right before release.
version="1.0.0",
)
class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
"""Tiled Multi-Diffusion denoising.
This node handles automatically tiling the input image. Future iterations of
this node should allow the user to specify custom regions with different parameters for each region to harness the
full power of Multi-Diffusion.
This node has a similar interface to the `DenoiseLatents` node, but it has a reduced feature set (no IP-Adapter,
T2I-Adapter, masking, etc.).
"""
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
noise: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
)
latents: LatentsField | None = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
# TODO(ryand): Add multiple-of validation.
# TODO(ryand): Smaller defaults might make more sense.
tile_height: int = InputField(default=112, gt=0, description="Height of the tiles in latent space.")
tile_width: int = InputField(default=112, gt=0, description="Width of the tiles in latent space.")
tile_min_overlap: int = InputField(
default=16,
gt=0,
description="The minimum overlap between adjacent tiles in latent space. The actual overlap may be larger than "
"this to evenly cover the entire image.",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
# TODO(ryand): The default here should probably be 0.0.
denoising_start: float = InputField(
default=0.65,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
control: ControlField | list[ControlField] | None = InputField(
default=None,
input=Input.Connection,
)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def create_pipeline(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
) -> MultiDiffusionPipeline:
# TODO(ryand): Get rid of this FakeVae hack.
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
return MultiDiffusionPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = DenoiseLatentsInvocation.prepare_noise_and_latents(context, self.noise, self.latents)
_, _, latent_height, latent_width = latents.shape
# Calculate the tile locations to cover the latent-space image.
# TODO(ryand): Add constraints on the tile params. Is there a multiple-of constraint?
tiles = calc_tiles_min_overlap(
image_height=latent_height,
image_width=latent_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.tile_min_overlap,
)
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = self.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=self.tile_height,
latent_width=self.tile_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
controlnet_data = DenoiseLatentsInvocation.prep_control_data(
context=context,
control_input=self.control,
latents_shape=list(latents.shape),
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
exit_stack=exit_stack,
)
# Split the controlnet_data into tiles.
# controlnet_data_tiles[t][c] is the c'th control data for the t'th tile.
controlnet_data_tiles: list[list[ControlNetData]] = []
for tile in tiles:
tile_controlnet_data = [crop_controlnet_data(cn, tile.coords) for cn in controlnet_data or []]
controlnet_data_tiles.append(tile_controlnet_data)
# Prepare the MultiDiffusionRegionConditioning list.
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning] = []
for tile, tile_controlnet_data in zip(tiles, controlnet_data_tiles, strict=True):
multi_diffusion_conditioning.append(
MultiDiffusionRegionConditioning(
region=tile.coords,
text_conditioning_data=conditioning_data,
control_data=tile_controlnet_data,
)
)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# Run Multi-Diffusion denoising.
result_latents = pipeline.multi_diffusion_denoise(
multi_diffusion_conditioning=multi_diffusion_conditioning,
latents=latents,
scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise,
timesteps=timesteps,
init_timestep=init_timestep,
# TODO(ryand): Add proper callback.
callback=lambda x: None,
)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
result_latents = result_latents.to("cpu")
TorchDevice.empty_cache()
name = context.tensors.save(tensor=result_latents)
return LatentsOutput.build(latents_name=name, latents=result_latents, seed=None)

View File

@@ -0,0 +1,380 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import numpy as np
import numpy.typing as npt
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from PIL import Image
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
ImageField,
Input,
InputField,
UIType,
)
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
from invokeai.app.invocations.noise import get_noise
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.utils import Tile
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@invocation(
"tiled_stable_diffusion_refine",
title="Tiled Stable Diffusion Refine",
tags=["upscale", "denoise"],
category="latents",
version="1.0.0",
)
class TiledStableDiffusionRefineInvocation(BaseInvocation):
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
"""
image: ImageField = InputField(description="Image to be refined.")
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
# TODO(ryand): Add multiple-of validation.
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
tile_overlap: int = InputField(
default=16,
gt=0,
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
denoising_start: float = InputField(
default=0.65,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
vae_fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
)
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
# don't want to use the image field. Figure out how best to handle this.
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
# etc.
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: float = InputField(default=0.6)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
"""
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
if coord % LATENT_SCALE_FACTOR != 0:
raise ValueError(
f"The tile coordinates must all be divisible by the latent scale factor"
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
)
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
top = image_tile.coords.top // LATENT_SCALE_FACTOR
left = image_tile.coords.left // LATENT_SCALE_FACTOR
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
right = image_tile.coords.right // LATENT_SCALE_FACTOR
return latents[..., top:bottom, left:right]
def run_controlnet(
self,
image: Image.Image,
controlnet_model: ControlNetModel,
weight: float,
do_classifier_free_guidance: bool,
width: int,
height: int,
device: torch.device,
dtype: torch.dtype,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
) -> ControlNetData:
control_image = prepare_control_image(
image=image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
device=device,
dtype=dtype,
control_mode=control_mode,
resize_mode=resize_mode,
)
return ControlNetData(
model=controlnet_model,
image_tensor=control_image,
weight=weight,
begin_step_percent=0.0,
end_step_percent=1.0,
control_mode=control_mode,
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
# ControlNetData in case needed in the future.
resize_mode=resize_mode,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# TODO(ryand): Expose the seed parameter.
seed = 0
# Load the input image.
input_image = context.images.get_pil(self.image.image_name)
# Calculate the tile locations to cover the image.
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
# facilitates conversions between image space and latent space.
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
tiles = calc_tiles_with_overlap(
image_height=input_image.height,
image_width=input_image.width,
tile_height=self.tile_height,
tile_width=self.tile_width,
overlap=self.tile_overlap,
)
# Convert the input image to a torch.Tensor.
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
# Validate our assumptions about the shape of input_image_torch.
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
assert input_image_torch.shape[:2] == (1, 3)
# Split the input image into tiles in torch.Tensor format.
image_tiles_torch: list[torch.Tensor] = []
for tile in tiles:
image_tile = input_image_torch[
:,
:,
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
]
image_tiles_torch.append(image_tile)
# Split the input image into tiles in numpy format.
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
# with torch.Tensor tiles.
input_image_np = np.array(input_image)
image_tiles_np: list[npt.NDArray[np.uint8]] = []
for tile in tiles:
image_tile_np = input_image_np[
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
:,
]
image_tiles_np.append(image_tile_np)
# VAE-encode each image tile independently.
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
# about for decoding?
vae_info = context.models.load(self.vae.vae)
latent_tiles: list[torch.Tensor] = []
for image_tile_torch in image_tiles_torch:
latent_tiles.append(
ImageToLatentsInvocation.vae_encode(
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
)
)
# Generate noise with dimensions corresponding to the full image in latent space.
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
# noise.
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
global_noise = get_noise(
width=input_image_torch.shape[3],
height=input_image_torch.shape[2],
device=TorchDevice.choose_torch_device(),
seed=seed,
downsampling_factor=LATENT_SCALE_FACTOR,
use_cpu=True,
)
# Crop the global noise into tiles.
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
refined_latent_tiles: list[torch.Tensor] = []
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
# Assume that all tiles have the same shape.
_, _, latent_height, latent_width = latent_tiles[0].shape
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
# Load the ControlNet model.
# TODO(ryand): Support multiple ControlNet models.
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
assert isinstance(controlnet_model, ControlNetModel)
# Denoise (i.e. "refine") each tile independently.
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
assert latent_tile.shape == noise_tile.shape
# Prepare a PIL Image for ControlNet processing.
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
image_tile_pil = Image.fromarray(image_tile_np)
# Run the ControlNet on the image tile.
height, width, _ = image_tile_np.shape
# The height and width must be evenly divisible by LATENT_SCALE_FACTOR. This is enforced earlier, but we
# validate this assumption here.
assert height % LATENT_SCALE_FACTOR == 0
assert width % LATENT_SCALE_FACTOR == 0
controlnet_data = self.run_controlnet(
image=image_tile_pil,
controlnet_model=controlnet_model,
weight=self.control_weight,
do_classifier_free_guidance=True,
width=width,
height=height,
device=controlnet_model.device,
dtype=controlnet_model.dtype,
control_mode="balanced",
resize_mode="just_resize_simple",
)
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
refined_latent_tile = pipeline.latents_from_embeddings(
latents=latent_tile,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise_tile,
seed=seed,
mask=None,
masked_latents=None,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=[controlnet_data],
ip_adapter_data=None,
t2i_adapter_data=None,
callback=lambda x: None,
)
refined_latent_tiles.append(refined_latent_tile)
# VAE-decode each refined latent tile independently.
refined_image_tiles: list[Image.Image] = []
for refined_latent_tile in refined_latent_tiles:
refined_image_tile = LatentsToImageInvocation.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=refined_latent_tile,
use_fp32=self.vae_fp32,
use_tiling=False,
)
refined_image_tiles.append(refined_image_tile)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
# Merge the refined image tiles back into a single image.
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
merge_tiles_with_linear_blending(
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
)
# Save the refined image and return its reference.
merged_image_pil = Image.fromarray(merged_image_np)
image_dto = context.images.save(image=merged_image_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,5 +1,4 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path
from typing import Literal
import cv2
@@ -10,10 +9,8 @@ from pydantic import ConfigDict
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@@ -52,7 +49,6 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
rrdbnet_model = None
netscale = None
esrgan_model_path = None
if self.model_name in [
"RealESRGAN_x4plus.pth",
@@ -95,28 +91,25 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
context.logger.error(msg)
raise ValueError(msg)
esrgan_model_path = Path(context.config.get().models_path, f"core/upscaling/realesrgan/{self.model_name}")
# Downloads the ESRGAN model if it doesn't already exist
download_with_progress_bar(
name=self.model_name, url=ESRGAN_MODEL_URLS[self.model_name], dest_path=esrgan_model_path
loadnet = context.models.load_remote_model(
source=ESRGAN_MODEL_URLS[self.model_name],
)
upscaler = RealESRGAN(
scale=netscale,
model_path=esrgan_model_path,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
with loadnet as loadnet_model:
upscaler = RealESRGAN(
scale=netscale,
loadnet=loadnet_model,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
TorchDevice.empty_cache()
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
image_dto = context.images.save(image=pil_image)

View File

@@ -86,6 +86,7 @@ class InvokeAIAppConfig(BaseSettings):
patchmatch: Enable patchmatch inpaint code.
models_dir: Path to the models directory.
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
download_cache_dir: Path to the directory that contains dynamically downloaded models.
legacy_conf_dir: Path to directory of legacy checkpoint config files.
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
@@ -146,7 +147,8 @@ class InvokeAIAppConfig(BaseSettings):
# PATHS
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
convert_cache_dir: Path = Field(default=Path("models/.cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
@@ -303,6 +305,11 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the converted cache models directory, resolved to an absolute path.."""
return self._resolve(self.convert_cache_dir)
@property
def download_cache_path(self) -> Path:
"""Path to the downloaded models directory, resolved to an absolute path.."""
return self._resolve(self.download_cache_dir)
@property
def custom_nodes_path(self) -> Path:
"""Path to the custom nodes directory, resolved to an absolute path.."""

View File

@@ -1,10 +1,17 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_base import (
DownloadJob,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
UnknownJobIDException,
)
from .download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",
"MultiFileDownloadJob",
"DownloadQueueServiceBase",
"DownloadQueueService",
"TqdmProgress",

View File

@@ -5,11 +5,13 @@ from abc import ABC, abstractmethod
from enum import Enum
from functools import total_ordering
from pathlib import Path
from typing import Any, Callable, List, Optional
from typing import Any, Callable, List, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr
from pydantic.networks import AnyHttpUrl
from invokeai.backend.model_manager.metadata import RemoteModelFile
class DownloadJobStatus(str, Enum):
"""State of a download job."""
@@ -33,30 +35,23 @@ class ServiceInactiveException(Exception):
"""This exception is raised when user attempts to initiate a download before the service is started."""
DownloadEventHandler = Callable[["DownloadJob"], None]
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
SingleFileDownloadEventHandler = Callable[["DownloadJob"], None]
SingleFileDownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
MultiFileDownloadEventHandler = Callable[["MultiFileDownloadJob"], None]
MultiFileDownloadExceptionHandler = Callable[["MultiFileDownloadJob", Optional[Exception]], None]
DownloadEventHandler = Union[SingleFileDownloadEventHandler, MultiFileDownloadEventHandler]
DownloadExceptionHandler = Union[SingleFileDownloadExceptionHandler, MultiFileDownloadExceptionHandler]
@total_ordering
class DownloadJob(BaseModel):
"""Class to monitor and control a model download request."""
class DownloadJobBase(BaseModel):
"""Base of classes to monitor and control downloads."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
# automatically assigned on creation
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
dest: Path = Field(description="Initial destination of downloaded model on local disk; a directory or file path")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file or directory")
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
bytes: int = Field(default=0, description="Bytes downloaded so far")
total_bytes: int = Field(default=0, description="Total file size (bytes)")
@@ -74,14 +69,6 @@ class DownloadJob(BaseModel):
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
def cancel(self) -> None:
"""Call to cancel the job."""
self._cancelled = True
@@ -98,6 +85,11 @@ class DownloadJob(BaseModel):
"""Return true if job completed without errors."""
return self.status == DownloadJobStatus.COMPLETED
@property
def waiting(self) -> bool:
"""Return true if the job is waiting to run."""
return self.status == DownloadJobStatus.WAITING
@property
def running(self) -> bool:
"""Return true if the job is running."""
@@ -154,6 +146,37 @@ class DownloadJob(BaseModel):
self._on_cancelled = on_cancelled
@total_ordering
class DownloadJob(DownloadJobBase):
"""Class to monitor and control a model download request."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
class MultiFileDownloadJob(DownloadJobBase):
"""Class to monitor and control multifile downloads."""
download_parts: Set[DownloadJob] = Field(default_factory=set, description="List of download parts.")
class DownloadQueueServiceBase(ABC):
"""Multithreaded queue for downloading models via URL."""
@@ -201,6 +224,48 @@ class DownloadQueueServiceBase(ABC):
"""
pass
@abstractmethod
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
"""
Create and enqueue a multifile download job.
:param parts: Set of URL / filename pairs
:param dest: Path to download to. See below.
:param access_token: Access token to download the indicated files. If not provided,
each file's URL may be matched to an access token using the config file matching
system.
:param submit_job: If true [default] then submit the job for execution. Otherwise,
you will need to pass the job to submit_multifile_download().
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
:returns: A MultiFileDownloadJob object for monitoring the state of the download.
The `dest` argument is a Path object pointing to a directory. All downloads
with be placed inside this directory. The callbacks will receive the
MultiFileDownloadJob.
"""
pass
@abstractmethod
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
"""
Enqueue a previously-created multi-file download job.
:param job: A MultiFileDownloadJob created with multifile_download()
"""
pass
@abstractmethod
def submit_download_job(
self,
@@ -252,7 +317,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
pass
@@ -262,7 +327,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Wait until the indicated download job has reached a terminal state.
This will block until the indicated install job has completed,

View File

@@ -8,30 +8,32 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
from typing import Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.config import InvokeAIAppConfig, get_config
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
DownloadEventHandler,
DownloadExceptionHandler,
DownloadJob,
DownloadJobBase,
DownloadJobCancelledException,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
ServiceInactiveException,
UnknownJobIDException,
)
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
@@ -42,20 +44,24 @@ class DownloadQueueService(DownloadQueueServiceBase):
def __init__(
self,
max_parallel_dl: int = 5,
app_config: Optional[InvokeAIAppConfig] = None,
event_bus: Optional["EventServiceBase"] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
Initialize DownloadQueue.
:param app_config: InvokeAIAppConfig object
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._app_config = app_config or get_config()
self._jobs: Dict[int, DownloadJob] = {}
self._download_part2parent: Dict[AnyHttpUrl, MultiFileDownloadJob] = {}
self._next_job_id = 0
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
self._stop_event = threading.Event()
self._job_completed_event = threading.Event()
self._job_terminated_event = threading.Event()
self._worker_pool: Set[threading.Thread] = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
@@ -107,18 +113,16 @@ class DownloadQueueService(DownloadQueueServiceBase):
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
with self._lock:
job.id = self._next_job_id
self._next_job_id += 1
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
job.id = self._next_id()
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
def download(
self,
@@ -141,7 +145,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
source=source,
dest=dest,
priority=priority,
access_token=access_token,
access_token=access_token or self._lookup_access_token(source),
)
self.submit_download_job(
job,
@@ -153,10 +157,63 @@ class DownloadQueueService(DownloadQueueServiceBase):
)
return job
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
mfdj = MultiFileDownloadJob(dest=dest, id=self._next_id())
mfdj.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
for part in parts:
url = part.url
path = dest / part.path
assert path.is_relative_to(dest), "only relative download paths accepted"
job = DownloadJob(
source=url,
dest=path,
access_token=access_token,
)
mfdj.download_parts.add(job)
self._download_part2parent[job.source] = mfdj
if submit_job:
self.submit_multifile_download(mfdj)
return mfdj
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
for download_job in job.download_parts:
self.submit_download_job(
download_job,
on_start=self._mfd_started,
on_progress=self._mfd_progress,
on_complete=self._mfd_complete,
on_cancelled=self._mfd_cancelled,
on_error=self._mfd_error,
)
def join(self) -> None:
"""Wait for all jobs to complete."""
self._queue.join()
def _next_id(self) -> int:
with self._lock:
id = self._next_job_id
self._next_job_id += 1
return id
def list_jobs(self) -> List[DownloadJob]:
"""List all the jobs."""
return list(self._jobs.values())
@@ -178,14 +235,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
except KeyError as excp:
raise UnknownJobIDException("Unrecognized job") from excp
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""
Cancel the indicated job.
If it is running it will be stopped.
job.status will be set to DownloadJobStatus.CANCELLED
"""
with self._lock:
if job.status in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]:
job.cancel()
def cancel_all_jobs(self) -> None:
@@ -194,12 +251,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
if not job.in_terminal_state:
self.cancel_job(job)
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
start = time.time()
while not job.in_terminal_state:
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
self._job_completed_event.clear()
if self._job_terminated_event.wait(timeout=0.25): # in case we miss an event
self._job_terminated_event.clear()
if timeout > 0 and time.time() - start > timeout:
raise TimeoutError("Timeout exceeded")
return job
@@ -228,22 +285,25 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
except DownloadJobCancelledException:
self._signal_job_cancelled(job)
self._cleanup_cancelled_job(job)
except Exception as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
finally:
job.job_ended = get_iso_timestamp()
self._job_completed_event.set() # signal a change to terminal state
self._job_terminated_event.set() # signal a change to terminal state
self._download_part2parent.pop(job.source, None) # if this is a subpart of a multipart job, remove it
self._job_terminated_event.set()
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
def _do_download(self, job: DownloadJob) -> None:
"""Do the actual download."""
url = job.source
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
open_mode = "wb"
@@ -335,38 +395,29 @@ class DownloadQueueService(DownloadQueueServiceBase):
def _in_progress_path(self, path: Path) -> Path:
return path.with_name(path.name + ".downloading")
def _lookup_access_token(self, source: AnyHttpUrl) -> Optional[str]:
# Pull the token from config if it exists and matches the URL
token = None
for pair in self._app_config.remote_api_tokens or []:
if re.search(pair.url_regex, str(source)):
token = pair.token
break
return token
def _signal_job_started(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.RUNNING
if job.on_start:
try:
job.on_start(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_start")
if self._event_bus:
self._event_bus.emit_download_started(job)
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
try:
job.on_progress(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_progress")
if self._event_bus:
self._event_bus.emit_download_progress(job)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
if job.on_complete:
try:
job.on_complete(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_complete")
if self._event_bus:
self._event_bus.emit_download_complete(job)
@@ -374,26 +425,21 @@ class DownloadQueueService(DownloadQueueServiceBase):
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
return
job.status = DownloadJobStatus.CANCELLED
if job.on_cancelled:
try:
job.on_cancelled(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_cancelled")
if self._event_bus:
self._event_bus.emit_download_cancelled(job)
# if multifile download, then signal the parent
if parent_job := self._download_part2parent.get(job.source, None):
if not parent_job.in_terminal_state:
parent_job.status = DownloadJobStatus.CANCELLED
self._execute_cb(parent_job, "on_cancelled")
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
job.status = DownloadJobStatus.ERROR
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
if job.on_error:
try:
job.on_error(job, excp)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_error", excp)
if self._event_bus:
self._event_bus.emit_download_error(job)
@@ -406,6 +452,97 @@ class DownloadQueueService(DownloadQueueServiceBase):
except OSError as excp:
self._logger.warning(excp)
########################################
# callbacks used for multifile downloads
########################################
def _mfd_started(self, download_job: DownloadJob) -> None:
self._logger.info(f"File download started: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.waiting:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.status = DownloadJobStatus.RUNNING
assert download_job.download_path is not None
path_relative_to_destdir = download_job.download_path.relative_to(mf_job.dest)
mf_job.download_path = (
mf_job.dest / path_relative_to_destdir.parts[0]
) # keep just the first component of the path
self._execute_cb(mf_job, "on_start")
def _mfd_progress(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.cancelled:
for part in mf_job.download_parts:
self.cancel_job(part)
elif mf_job.running:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.bytes = sum(x.total_bytes for x in mf_job.download_parts)
self._execute_cb(mf_job, "on_progress")
def _mfd_complete(self, download_job: DownloadJob) -> None:
self._logger.info(f"Download complete: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
# are there any more active jobs left in this task?
if mf_job.running and all(x.complete for x in mf_job.download_parts):
mf_job.status = DownloadJobStatus.COMPLETED
self._execute_cb(mf_job, "on_complete")
# we're done with this sub-job
self._job_terminated_event.set()
def _mfd_cancelled(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
self._logger.warning(f"Download cancelled: {download_job.source}")
mf_job.cancel()
for s in mf_job.download_parts:
self.cancel_job(s)
def _mfd_error(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
mf_job.status = download_job.status
mf_job.error = download_job.error
mf_job.error_type = download_job.error_type
self._execute_cb(mf_job, "on_error", excp)
self._logger.error(
f"Cancelling {mf_job.dest} due to an error while downloading {download_job.source}: {str(excp)}"
)
for s in [x for x in mf_job.download_parts if x.running]:
self.cancel_job(s)
self._download_part2parent.pop(download_job.source)
self._job_terminated_event.set()
def _execute_cb(
self,
job: DownloadJob | MultiFileDownloadJob,
callback_name: Literal[
"on_start",
"on_progress",
"on_complete",
"on_cancelled",
"on_error",
],
excp: Optional[Exception] = None,
) -> None:
if callback := getattr(job, callback_name, None):
args = [job, excp] if excp else [job]
try:
callback(*args)
except Exception as e:
self._logger.error(
f"An error occurred while processing the {callback_name} callback: {traceback.format_exception(e)}"
)
def get_pc_name_max(directory: str) -> int:
if hasattr(os, "pathconf"):

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.events.events_common import (
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallDownloadStartedEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
@@ -34,7 +35,6 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineInterme
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
@@ -145,6 +145,10 @@ class EventServiceBase:
# region Model install
def emit_model_install_download_started(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is started (remote models only)."""
self.dispatch(ModelInstallDownloadStartedEvent.build(job))
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is in progress (remote models only)."""
self.dispatch(ModelInstallDownloadProgressEvent.build(job))

View File

@@ -417,6 +417,42 @@ class ModelLoadCompleteEvent(ModelEventBase):
return cls(config=config, submodel_type=submodel_type)
@payload_schema.register
class ModelInstallDownloadStartedEvent(ModelEventBase):
"""Event model for model_install_download_started"""
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
parts: list[dict[str, int | str]] = Field(
description="Progress of downloading URLs that comprise the model, if any"
)
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadStartedEvent":
parts: list[dict[str, str | int]] = [
{
"url": str(x.source),
"local_path": str(x.download_path),
"bytes": x.bytes,
"total_bytes": x.total_bytes,
}
for x in job.download_parts
]
return cls(
id=job.id,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
total_bytes=job.total_bytes,
)
@payload_schema.register
class ModelInstallDownloadProgressEvent(ModelEventBase):
"""Event model for model_install_download_progress"""

View File

@@ -13,7 +13,7 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModelConfig
class ModelInstallServiceBase(ABC):
@@ -243,12 +243,11 @@ class ModelInstallServiceBase(ABC):
"""
@abstractmethod
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
def download_and_cache_model(self, source: str | AnyHttpUrl) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
:param source: A Url or a string that can be converted into one.
:param access_token: Optional access token to access restricted resources.
:param source: A string representing a URL or repo_id.
The model file will be downloaded into the system-wide model cache
(`models/.cache`) if it isn't already there. Note that the model cache

View File

@@ -8,7 +8,7 @@ from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
@@ -26,13 +26,6 @@ class InstallStatus(str, Enum):
CANCELLED = "cancelled" # terminated with an error message
class ModelInstallPart(BaseModel):
url: AnyHttpUrl
path: Path
bytes: int = 0
total_bytes: int = 0
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
@@ -169,6 +162,7 @@ class ModelInstallJob(BaseModel):
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_multifile_job: Optional[MultiFileDownloadJob] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
def set_error(self, e: Exception) -> None:

View File

@@ -5,21 +5,22 @@ import os
import re
import threading
import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
from huggingface_hub import HfFolder
from pydantic.networks import AnyHttpUrl
from pydantic_core import Url
from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
@@ -44,6 +45,7 @@ from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
from .model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
@@ -58,9 +60,6 @@ from .model_install_common import (
TMPDIR_PREFIX = "tmpinstall_"
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
@@ -91,7 +90,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._downloads_changed_event = threading.Event()
self._install_completed_event = threading.Event()
self._download_queue = download_queue
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
self._download_cache: Dict[int, ModelInstallJob] = {}
self._running = False
self._session = session
self._install_thread: Optional[threading.Thread] = None
@@ -210,33 +209,12 @@ class ModelInstallService(ModelInstallServiceBase):
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=match.group(2) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
access_token=access_token,
)
elif re.match(r"^https?://[^/]+", source):
# Pull the token from config if it exists and matches the URL
_token = access_token
if _token is None:
for pair in self.app_config.remote_api_tokens or []:
if re.search(pair.url_regex, source):
_token = pair.token
break
source_obj = URLModelSource(
url=AnyHttpUrl(source),
access_token=_token,
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
"""Install a model using pattern matching to infer the type of source."""
source_obj = self._guess_source(source)
if isinstance(source_obj, LocalModelSource):
source_obj.inplace = inplace
elif isinstance(source_obj, HFModelSource) or isinstance(source_obj, URLModelSource):
source_obj.access_token = access_token
return self.import_model(source_obj, config)
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
@@ -297,8 +275,9 @@ class ModelInstallService(ModelInstallServiceBase):
def cancel_job(self, job: ModelInstallJob) -> None:
"""Cancel the indicated job."""
job.cancel()
with self._lock:
self._cancel_download_parts(job)
self._logger.warning(f"Cancelling {job.source}")
if dj := job._multifile_job:
self._download_queue.cancel_job(dj)
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
@@ -346,7 +325,7 @@ class ModelInstallService(ModelInstallServiceBase):
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
legacy_config_path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
@@ -386,38 +365,95 @@ class ModelInstallService(ModelInstallServiceBase):
rmtree(model_path)
self.unregister(key)
def download_and_cache(
@classmethod
def _download_cache_path(cls, source: Union[str, AnyHttpUrl], app_config: InvokeAIAppConfig) -> Path:
escaped_source = slugify(str(source))
return app_config.download_cache_path / escaped_source
def download_and_cache_model(
self,
source: Union[str, AnyHttpUrl],
access_token: Optional[str] = None,
timeout: int = 0,
source: str | AnyHttpUrl,
) -> Path:
"""Download the model file located at source to the models cache and return its Path."""
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
model_path = self._app_config.convert_cache_path / model_hash
model_path = self._download_cache_path(str(source), self._app_config)
# We expect the cache directory to contain one and only one downloaded file.
# We expect the cache directory to contain one and only one downloaded file or directory.
# We don't know the file's name in advance, as it is set by the download
# content-disposition header.
if model_path.exists():
contents = [x for x in model_path.iterdir() if x.is_file()]
contents: List[Path] = list(model_path.iterdir())
if len(contents) > 0:
return contents[0]
model_path.mkdir(parents=True, exist_ok=True)
job = self._download_queue.download(
source=AnyHttpUrl(str(source)),
model_source = self._guess_source(str(source))
remote_files, _ = self._remote_files_from_source(model_source)
job = self._multifile_download(
dest=model_path,
access_token=access_token,
on_progress=TqdmProgress().update,
remote_files=remote_files,
subfolder=model_source.subfolder if isinstance(model_source, HFModelSource) else None,
)
self._download_queue.wait_for_job(job, timeout)
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queuing model download: {source} ({len(remote_files)} {files_string})")
self._download_queue.wait_for_job(job)
if job.complete:
assert job.download_path is not None
return job.download_path
else:
raise Exception(job.error)
def _remote_files_from_source(
self, source: ModelSource
) -> Tuple[List[RemoteModelFile], Optional[AnyModelRepoMetadata]]:
metadata = None
if isinstance(source, HFModelSource):
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
return (
metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
),
metadata,
)
if isinstance(source, URLModelSource):
try:
fetcher = self.get_fetcher_from_url(str(source.url))
kwargs: dict[str, Any] = {"session": self._session}
metadata = fetcher(**kwargs).from_url(source.url)
assert isinstance(metadata, ModelMetadataWithFiles)
return metadata.download_urls(session=self._session), metadata
except ValueError:
pass
return [RemoteModelFile(url=source.url, path=Path("."), size=0)], None
raise Exception(f"No files associated with {source}")
def _guess_source(self, source: str) -> ModelSource:
"""Turn a source string into a ModelSource object."""
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=ModelRepoVariant(match.group(2)) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
)
elif re.match(r"^https?://[^/]+", source):
source_obj = URLModelSource(
url=Url(source),
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
return source_obj
# --------------------------------------------------------------------------------------------
# Internal functions that manage the installer threads
# --------------------------------------------------------------------------------------------
@@ -478,16 +514,19 @@ class ModelInstallService(ModelInstallServiceBase):
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
job.set_error(
def _set_error(self, install_job: ModelInstallJob, excp: Exception) -> None:
multifile_download_job = install_job._multifile_job
if multifile_download_job and any(
x.content_type is not None and "text/html" in x.content_type for x in multifile_download_job.download_parts
):
install_job.set_error(
InvalidModelConfigException(
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
f"At least one file in {install_job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
)
)
else:
job.set_error(excp)
self._signal_job_errored(job)
install_job.set_error(excp)
self._signal_job_errored(install_job)
# --------------------------------------------------------------------------------------------
# Internal functions that manage the models directory
@@ -513,7 +552,6 @@ class ModelInstallService(ModelInstallServiceBase):
This is typically only used during testing with a new DB or when using the memory DB, because those are the
only situations in which we may have orphaned models in the models directory.
"""
installed_model_paths = {
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
}
@@ -525,8 +563,13 @@ class ModelInstallService(ModelInstallServiceBase):
if resolved_path in installed_model_paths:
return True
# Skip core models entirely - these aren't registered with the model manager.
if str(resolved_path).startswith(str(self.app_config.models_path / "core")):
return False
for special_directory in [
self.app_config.models_path / "core",
self.app_config.convert_cache_dir,
self.app_config.download_cache_dir,
]:
if resolved_path.is_relative_to(special_directory):
return False
try:
model_id = self.register_path(model_path)
self._logger.info(f"Registered {model_path.name} with id {model_id}")
@@ -641,20 +684,15 @@ class ModelInstallService(ModelInstallServiceBase):
inplace=source.inplace or False,
)
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
def _import_from_hf(
self,
source: HFModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
source.access_token = source.access_token or HfFolder.get_token()
if not source.access_token:
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
)
if source.access_token is None:
source.access_token = HfFolder.get_token()
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@@ -662,22 +700,12 @@ class ModelInstallService(ModelInstallServiceBase):
metadata=metadata,
)
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from HuggingFace will be handled specially
metadata = None
fetcher = None
try:
fetcher = self.get_fetcher_from_url(str(source.url))
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
else:
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
def _import_from_url(
self,
source: URLModelSource,
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@@ -692,12 +720,9 @@ class ModelInstallService(ModelInstallServiceBase):
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
# TODO: Replace with tempfile.tmpdir() when multithreading is cleaned up.
# Currently the tmpdir isn't automatically removed at exit because it is
# being held in a daemon thread.
if len(remote_files) == 0:
raise ValueError(f"{source}: No downloadable files found")
tmpdir = Path(
destdir = Path(
mkdtemp(
dir=self._app_config.models_path,
prefix=TMPDIR_PREFIX,
@@ -708,55 +733,28 @@ class ModelInstallService(ModelInstallServiceBase):
source=source,
config_in=config or {},
source_metadata=metadata,
local_path=tmpdir, # local path may change once the download has started due to content-disposition handling
local_path=destdir, # local path may change once the download has started due to content-disposition handling
bytes=0,
total_bytes=0,
)
# In the event that there is a subfolder specified in the source,
# we need to remove it from the destination path in order to avoid
# creating unwanted subfolders
if isinstance(source, HFModelSource) and source.subfolder:
root = Path(remote_files[0].path.parts[0])
subfolder = root / source.subfolder
else:
root = Path(".")
subfolder = Path(".")
# remember the temporary directory for later removal
install_job._install_tmpdir = destdir
install_job.total_bytes = sum((x.size or 0) for x in remote_files)
# we remember the path up to the top of the tmpdir so that it may be
# removed safely at the end of the install process.
install_job._install_tmpdir = tmpdir
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
multifile_job = self._multifile_download(
remote_files=remote_files,
dest=destdir,
subfolder=source.subfolder if isinstance(source, HFModelSource) else None,
access_token=source.access_token,
submit_job=False, # Important! Don't submit the job until we have set our _download_cache dict
)
self._download_cache[multifile_job.id] = install_job
install_job._multifile_job = multifile_job
files_string = "file" if len(remote_files) == 1 else "file"
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queueing model install: {source} ({len(remote_files)} {files_string})")
self._logger.debug(f"remote_files={remote_files}")
for model_file in remote_files:
url = model_file.url
path = root / model_file.path.relative_to(subfolder)
self._logger.debug(f"Downloading {url} => {path}")
install_job.total_bytes += model_file.size
assert hasattr(source, "access_token")
dest = tmpdir / path.parent
dest.mkdir(parents=True, exist_ok=True)
download_job = DownloadJob(
source=url,
dest=dest,
access_token=source.access_token,
)
self._download_cache[download_job.source] = install_job # matches a download job to an install job
install_job.download_parts.add(download_job)
# only start the jobs once install_job.download_parts is fully populated
for download_job in install_job.download_parts:
self._download_queue.submit_download_job(
download_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
self._download_queue.submit_multifile_download(multifile_job)
return install_job
def _stat_size(self, path: Path) -> int:
@@ -768,87 +766,104 @@ class ModelInstallService(ModelInstallServiceBase):
size += sum(self._stat_size(Path(root, x)) for x in files)
return size
def _multifile_download(
self,
remote_files: List[RemoteModelFile],
dest: Path,
subfolder: Optional[Path] = None,
access_token: Optional[str] = None,
submit_job: bool = True,
) -> MultiFileDownloadJob:
# HuggingFace repo subfolders are a little tricky. If the name of the model is "sdxl-turbo", and
# we are installing the "vae" subfolder, we do not want to create an additional folder level, such
# as "sdxl-turbo/vae", nor do we want to put the contents of the vae folder directly into "sdxl-turbo".
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")
parts: List[RemoteModelFile] = []
for model_file in remote_files:
assert model_file.size is not None
parts.append(
RemoteModelFile(
url=model_file.url, # if a subfolder, then sdxl-turbo_vae/config.json
path=path_to_add / model_file.path.relative_to(path_to_remove),
)
)
return self._download_queue.multifile_download(
parts=parts,
dest=dest,
access_token=access_token,
submit_job=submit_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
# ------------------------------------------------------------------
# Callbacks are executed by the download queue in a separate thread
# ------------------------------------------------------------------
def _download_started_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download started: {download_job.source}")
def _download_started_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
install_job.status = InstallStatus.DOWNLOADING
if install_job := self._download_cache.get(download_job.id, None):
install_job.status = InstallStatus.DOWNLOADING
assert download_job.download_path
if install_job.local_path == install_job._install_tmpdir:
partial_path = download_job.download_path.relative_to(install_job._install_tmpdir)
dest_name = partial_path.parts[0]
install_job.local_path = install_job._install_tmpdir / dest_name
if install_job.local_path == install_job._install_tmpdir: # first time
assert download_job.download_path
install_job.local_path = download_job.download_path
install_job.download_parts = download_job.download_parts
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = download_job.total_bytes
self._signal_job_download_started(install_job)
# Update the total bytes count for remote sources.
if not install_job.total_bytes:
install_job.total_bytes = sum(x.total_bytes for x in install_job.download_parts)
def _download_progress_callback(self, download_job: DownloadJob) -> None:
def _download_progress_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._cancel_download_parts(install_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in install_job.download_parts)
self._signal_job_downloading(install_job)
if install_job := self._download_cache.get(download_job.id, None):
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._download_queue.cancel_job(download_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = sum(x.total_bytes for x in download_job.download_parts)
self._signal_job_downloading(install_job)
def _download_complete_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download complete: {download_job.source}")
def _download_complete_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
# are there any more active jobs left in this task?
if install_job.downloading and all(x.complete for x in install_job.download_parts):
if install_job := self._download_cache.pop(download_job.id, None):
self._signal_job_downloads_done(install_job)
self._put_in_queue(install_job)
self._put_in_queue(install_job) # this starts the installation and registration
# Let other threads know that the number of downloads has changed
self._download_cache.pop(download_job.source, None)
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_error_callback(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
def _download_error_callback(self, download_job: MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
assert install_job is not None
assert excp is not None
install_job.set_error(excp)
self._logger.error(
f"Cancelling {install_job.source} due to an error while downloading {download_job.source}: {str(excp)}"
)
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
assert excp is not None
install_job.set_error(excp)
self._download_queue.cancel_job(download_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_cancelled_callback(self, download_job: DownloadJob) -> None:
def _download_cancelled_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
if not install_job:
return
self._downloads_changed_event.set()
self._logger.warning(f"Model download canceled: {download_job.source}")
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
self._downloads_changed_event.set()
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _cancel_download_parts(self, install_job: ModelInstallJob) -> None:
# on multipart downloads, _cancel_components() will get called repeatedly from the download callbacks
# do not lock here because it gets called within a locked context
for s in install_job.download_parts:
self._download_queue.cancel_job(s)
if all(x.in_terminal_state for x in install_job.download_parts):
# When all parts have reached their terminal state, we finalize the job to clean up the temporary directory and other resources
self._put_in_queue(install_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# ------------------------------------------------------------------------------------------------
# Internal methods that put events on the event bus
@@ -859,8 +874,18 @@ class ModelInstallService(ModelInstallServiceBase):
if self._event_bus:
self._event_bus.emit_model_install_started(job)
def _signal_job_download_started(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_started(job)
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_progress(job)
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
@@ -875,6 +900,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Model install complete: {job.source}")
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
self._event_bus.emit_model_install_complete(job)
def _signal_job_errored(self, job: ModelInstallJob) -> None:
@@ -890,7 +917,13 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_cancelled(job)
@staticmethod
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
def get_fetcher_from_url(url: str) -> Type[ModelMetadataFetchBase]:
"""
Return a metadata fetcher appropriate for provided url.
This used to be more useful, but the number of supported model
sources has been reduced to HuggingFace alone.
"""
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@@ -2,10 +2,11 @@
"""Base class for model loader."""
from abc import ABC, abstractmethod
from typing import Optional
from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
@@ -31,3 +32,26 @@ class ModelLoadServiceBase(ABC):
@abstractmethod
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""
@abstractmethod
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
"""
Load the model file or directory located at the indicated Path.
This will load an arbitrary model file into the RAM cache. If the optional loader
argument is provided, the loader will be invoked to load the model into
memory. Otherwise the method will call safetensors.torch.load_file() or
torch.load() as appropriate to the file suffix.
Be aware that this returns a LoadedModelWithoutConfig object, which is the same as
LoadedModel, but without the config attribute.
Args:
model_path: A pathlib.Path to a checkpoint-style models file
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
Returns:
A LoadedModel object.
"""

View File

@@ -1,18 +1,26 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
"""Implementation of model loader service."""
from typing import Optional, Type
from pathlib import Path
from typing import Callable, Optional, Type
from picklescan.scanner import scan_file_path
from safetensors.torch import load_file as safetensors_load_file
from torch import load as torch_load
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
LoadedModelWithoutConfig,
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .model_load_base import ModelLoadServiceBase
@@ -75,3 +83,41 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
return loaded_model
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
except IndexError:
pass
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result
def diffusers_load_directory(directory: Path) -> AnyModel:
load_class = GenericDiffusersLoader(
app_config=self._app_config,
logger=self._logger,
ram_cache=self._ram_cache,
convert_cache=self.convert_cache,
).get_hf_load_class(directory)
return load_class.from_pretrained(model_path, torch_dtype=TorchDevice.choose_torch_dtype())
loader = loader or (
diffusers_load_directory
if model_path.is_dir()
else torch_load_file
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
else lambda path: safetensors_load_file(path, device="cpu")
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))

View File

@@ -12,15 +12,13 @@ from pydantic import BaseModel, Field
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager import (
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)

View File

@@ -3,6 +3,7 @@ from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
from PIL.Image import Image
from pydantic.networks import AnyHttpUrl
from torch import Tensor
from invokeai.app.invocations.constants import IMAGE_MODES
@@ -14,8 +15,15 @@ from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -320,8 +328,10 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Checks if a model exists.
"""Check if a model exists.
Args:
identifier: The key or ModelField representing the model.
@@ -331,13 +341,13 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
return self._services.model_manager.store.exists(identifier.key)
else:
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model.
"""Load a model.
Args:
identifier: The key or ModelField representing the model.
@@ -361,7 +371,7 @@ class ModelsInterface(InvocationContextInterface):
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model by its attributes.
"""Load a model by its attributes.
Args:
name: Name of the model.
@@ -384,7 +394,7 @@ class ModelsInterface(InvocationContextInterface):
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
"""Get a model's config.
Args:
identifier: The key or ModelField representing the model.
@@ -394,11 +404,11 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.store.get_model(identifier.key)
else:
return self._services.model_manager.store.get_model(identifier.key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.
"""Search for models by path.
Args:
path: The path to search for.
@@ -415,7 +425,7 @@ class ModelsInterface(InvocationContextInterface):
type: Optional[ModelType] = None,
format: Optional[ModelFormat] = None,
) -> list[AnyModelConfig]:
"""Searches for models by attributes.
"""Search for models by attributes.
Args:
name: The name to search for (exact match).
@@ -434,6 +444,72 @@ class ModelsInterface(InvocationContextInterface):
model_format=format,
)
def download_and_cache_model(
self,
source: str | AnyHttpUrl,
) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
This can be used to single-file install models and other resources of arbitrary types
which should not get registered with the database. If the model is already
installed, the cached path will be returned. Otherwise it will be downloaded.
Args:
source: A URL that points to the model, or a huggingface repo_id.
Returns:
Path to the downloaded model
"""
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
self,
model_path: Path,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Load the model file located at the indicated path
If a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
path: A model Path
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
self,
source: str | AnyHttpUrl,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Download, cache, and load the model file located at the indicated URL or repo_id.
If the model is already downloaded, it will be loaded from the cache.
If the a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
source: A URL or huggingface repoid.
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:

View File

@@ -13,6 +13,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -43,6 +44,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.register_migration(build_migration_10())
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.run_migrations()
return db

View File

@@ -0,0 +1,75 @@
import shutil
import sqlite3
from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
LEGACY_CORE_MODELS = [
# OpenPose
"any/annotators/dwpose/yolox_l.onnx",
"any/annotators/dwpose/dw-ll_ucoco_384.onnx",
# DepthAnything
"any/annotators/depth_anything/depth_anything_vitl14.pth",
"any/annotators/depth_anything/depth_anything_vitb14.pth",
"any/annotators/depth_anything/depth_anything_vits14.pth",
# Lama inpaint
"core/misc/lama/lama.pt",
# RealESRGAN upscale
"core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
"core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
"core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
]
class Migration11Callback:
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
self._app_config = app_config
self._logger = logger
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._remove_convert_cache()
self._remove_downloaded_models()
self._remove_unused_core_models()
def _remove_convert_cache(self) -> None:
"""Rename models/.cache to models/.convert_cache."""
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
shutil.rmtree(legacy_convert_path, ignore_errors=True)
def _remove_downloaded_models(self) -> None:
"""Remove models from their old locations; they will re-download when needed."""
self._logger.info(
"Removing legacy just-in-time models. Downloaded models will now be cached in .download_cache."
)
for model_path in LEGACY_CORE_MODELS:
legacy_dest_path = self._app_config.models_path / model_path
legacy_dest_path.unlink(missing_ok=True)
def _remove_unused_core_models(self) -> None:
"""Remove unused core models and their directories."""
self._logger.info("Removing defunct core models.")
for dir in ["face_restoration", "misc", "upscaling"]:
path_to_remove = self._app_config.models_path / "core" / dir
shutil.rmtree(path_to_remove, ignore_errors=True)
shutil.rmtree(self._app_config.models_path / "any" / "annotators", ignore_errors=True)
def build_migration_11(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
"""
Build the migration from database version 10 to 11.
This migration does the following:
- Moves "core" models previously downloaded with download_with_progress_bar() into new
"models/.download_cache" directory.
- Renames "models/.cache" to "models/.convert_cache".
"""
migration_11 = Migration(
from_version=10,
to_version=11,
callback=Migration11Callback(app_config=app_config, logger=logger),
)
return migration_11

View File

@@ -289,7 +289,7 @@ def prepare_control_image(
width: int,
height: int,
num_channels: int = 3,
device: str = "cuda",
device: str | torch.device = "cuda",
dtype: torch.dtype = torch.float16,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
@@ -304,7 +304,7 @@ def prepare_control_image(
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
device (str, optional): The target device for the output image. Defaults to "cuda".
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
Defaults to True.

View File

@@ -1,51 +0,0 @@
from pathlib import Path
from urllib import request
from tqdm import tqdm
from invokeai.backend.util.logging import InvokeAILogger
class ProgressBar:
"""Simple progress bar for urllib.request.urlretrieve using tqdm."""
def __init__(self, model_name: str = "file"):
self.pbar = None
self.name = model_name
def __call__(self, block_num: int, block_size: int, total_size: int):
if not self.pbar:
self.pbar = tqdm(
desc=self.name,
initial=0,
unit="iB",
unit_scale=True,
unit_divisor=1000,
total=total_size,
)
self.pbar.update(block_size)
def download_with_progress_bar(name: str, url: str, dest_path: Path) -> bool:
"""Download a file from a URL to a destination path, with a progress bar.
If the file already exists, it will not be downloaded again.
Exceptions are not caught.
Args:
name (str): Name of the file being downloaded.
url (str): URL to download the file from.
dest_path (Path): Destination path to save the file to.
Returns:
bool: True if the file was downloaded, False if it already existed.
"""
if dest_path.exists():
return False # already downloaded
InvokeAILogger.get_logger().info(f"Downloading {name}...")
dest_path.parent.mkdir(parents=True, exist_ok=True)
request.urlretrieve(url, dest_path, ProgressBar(name))
return True

View File

@@ -1,5 +1,5 @@
import pathlib
from typing import Literal, Union
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
@@ -10,28 +10,17 @@ from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitl14.pth",
},
"base": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitb14.pth",
},
"small": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vits14.pth",
},
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
@@ -53,36 +42,27 @@ transform = Compose(
class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = TorchDevice.choose_torch_device()
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
download_with_progress_bar(
pathlib.Path(DEPTH_ANYTHING_MODELS[model_size]["url"]).name,
DEPTH_ANYTHING_MODELS[model_size]["url"],
DEPTH_ANYTHING_MODEL_PATH,
)
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
if not self.model or model_size != self.model_size:
del self.model
self.model_size = model_size
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
match self.model_size:
case "small":
self.model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
self.model.to(self.device)
return self.model
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:

View File

@@ -1,30 +1,53 @@
from pathlib import Path
from typing import Dict
import numpy as np
import torch
from controlnet_aux.util import resize_image
from PIL import Image
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.utils import NDArrayInt, draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
DWPOSE_MODELS = {
"yolox_l.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
"dw-ll_ucoco_384.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
}
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
def draw_pose(
pose: Dict[str, NDArrayInt | Dict[str, NDArrayInt]],
H: int,
W: int,
draw_face: bool = True,
draw_body: bool = True,
draw_hands: bool = True,
resolution: int = 512,
) -> Image.Image:
bodies = pose["bodies"]
faces = pose["faces"]
hands = pose["hands"]
assert isinstance(bodies, dict)
candidate = bodies["candidate"]
assert isinstance(bodies, dict)
subset = bodies["subset"]
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if draw_body:
canvas = draw_bodypose(canvas, candidate, subset)
if draw_hands:
assert isinstance(hands, np.ndarray)
canvas = draw_handpose(canvas, hands)
if draw_face:
canvas = draw_facepose(canvas, faces)
assert isinstance(hands, np.ndarray)
canvas = draw_facepose(canvas, faces) # type: ignore
dwpose_image = resize_image(
dwpose_image: Image.Image = resize_image(
canvas,
resolution,
)
@@ -39,11 +62,16 @@ class DWOpenposeDetector:
Credits: https://github.com/IDEA-Research/DWPose
"""
def __init__(self) -> None:
self.pose_estimation = Wholebody()
def __init__(self, onnx_det: Path, onnx_pose: Path) -> None:
self.pose_estimation = Wholebody(onnx_det=onnx_det, onnx_pose=onnx_pose)
def __call__(
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
self,
image: Image.Image,
draw_face: bool = False,
draw_body: bool = True,
draw_hands: bool = False,
resolution: int = 512,
) -> Image.Image:
np_image = np.array(image)
H, W, C = np_image.shape
@@ -79,3 +107,6 @@ class DWOpenposeDetector:
return draw_pose(
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
)
__all__ = ["DWPOSE_MODELS", "DWOpenposeDetector"]

View File

@@ -5,11 +5,13 @@ import math
import cv2
import matplotlib
import numpy as np
import numpy.typing as npt
eps = 0.01
NDArrayInt = npt.NDArray[np.uint8]
def draw_bodypose(canvas, candidate, subset):
def draw_bodypose(canvas: NDArrayInt, candidate: NDArrayInt, subset: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
@@ -88,7 +90,7 @@ def draw_bodypose(canvas, candidate, subset):
return canvas
def draw_handpose(canvas, all_hand_peaks):
def draw_handpose(canvas: NDArrayInt, all_hand_peaks: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
edges = [
@@ -142,7 +144,7 @@ def draw_handpose(canvas, all_hand_peaks):
return canvas
def draw_facepose(canvas, all_lmks):
def draw_facepose(canvas: NDArrayInt, all_lmks: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)

View File

@@ -2,47 +2,26 @@
# Modified pathing to suit Invoke
from pathlib import Path
import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector
from .onnxpose import inference_pose
DWPOSE_MODELS = {
"yolox_l.onnx": {
"local": "any/annotators/dwpose/yolox_l.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
},
"dw-ll_ucoco_384.onnx": {
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
},
}
config = get_config()
class Wholebody:
def __init__(self):
def __init__(self, onnx_det: Path, onnx_pose: Path):
device = TorchDevice.choose_torch_device()
providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
POSE_MODEL_PATH = config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"]
download_with_progress_bar(
"dw-ll_ucoco_384.onnx", DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH
)
onnx_det = DET_MODEL_PATH
onnx_pose = POSE_MODEL_PATH
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)

View File

@@ -1,4 +1,4 @@
import gc
from pathlib import Path
from typing import Any
import numpy as np
@@ -6,9 +6,7 @@ import torch
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.model_manager.config import AnyModel
def norm_img(np_img):
@@ -19,28 +17,11 @@ def norm_img(np_img):
return np_img
def load_jit_model(url_or_path, device):
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
class LaMA:
def __init__(self, model: AnyModel):
self._model = model
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = TorchDevice.choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=model_location,
)
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
@@ -48,20 +29,25 @@ class LaMA:
mask = np.asarray(mask)
mask = np.invert(mask)
mask = norm_img(mask)
mask = (mask > 0) * 1
device = next(self._model.buffers()).device
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
with torch.inference_mode():
infilled_image = model(image, mask)
infilled_image = self._model(image, mask)
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
del model
gc.collect()
torch.cuda.empty_cache()
return infilled_image
@staticmethod
def load_jit_model(url_or_path: str | Path, device: torch.device | str = "cpu") -> torch.nn.Module:
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model: torch.nn.Module = torch.jit.load(model_path, map_location="cpu").to(device) # type: ignore
model.eval()
return model

View File

@@ -1,6 +1,5 @@
import math
from enum import Enum
from pathlib import Path
from typing import Any, Optional
import cv2
@@ -11,6 +10,7 @@ from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.util.devices import TorchDevice
"""
@@ -52,7 +52,7 @@ class RealESRGAN:
def __init__(
self,
scale: int,
model_path: Path,
loadnet: AnyModel,
model: RRDBNet,
tile: int = 0,
tile_pad: int = 10,
@@ -67,8 +67,6 @@ class RealESRGAN:
self.half = half
self.device = TorchDevice.choose_torch_device()
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
# prefer to use params_ema
if "params_ema" in loadnet:
keyname = "params_ema"

View File

@@ -125,13 +125,16 @@ class IPAdapter(RawModel):
self.device, dtype=self.dtype
)
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
self.device = device
def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
def calc_size(self):
# workaround for circular import

View File

@@ -61,9 +61,10 @@ class LoRALayerBase:
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
# TODO: find and debug lora/locon with bias
@@ -109,14 +110,15 @@ class LoRALayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
class LoHALayer(LoRALayerBase):
@@ -169,18 +171,19 @@ class LoHALayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
class LoKRLayer(LoRALayerBase):
@@ -265,6 +268,7 @@ class LoKRLayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
@@ -273,19 +277,19 @@ class LoKRLayer(LoRALayerBase):
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
class FullLayer(LoRALayerBase):
@@ -319,10 +323,11 @@ class FullLayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
class IA3Layer(LoRALayerBase):
@@ -358,11 +363,12 @@ class IA3Layer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
@@ -388,10 +394,11 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
def calc_size(self) -> int:
model_size = 0
@@ -514,7 +521,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
layer.to(device=device, dtype=dtype, non_blocking=True)
model.layers[layer_key] = layer
return model

View File

@@ -0,0 +1,24 @@
import json
from base64 import b64decode
def validate_hash(hash: str):
if ":" not in hash:
return
for enc_hash in hashes:
alg, hash_ = hash.split(":")
if alg == "blake3":
alg = "blake3_single"
map = json.loads(b64decode(enc_hash))
if alg in map:
if hash_ == map[alg]:
raise Exception("Unrecoverable Model Error")
hashes: list[str] = [
"eyJibGFrZTNfbXVsdGkiOiI3Yjc5ODZmM2QyNTk3MDZiMjVhZDRhM2NmNGM2MTcyNGNhZmQ0Yjc4NjI4MjIwNjMyZGU4NjVlM2UxNDEyMTVlIiwiYmxha2UzX3NpbmdsZSI6IjdiNzk4NmYzZDI1OTcwNmIyNWFkNGEzY2Y0YzYxNzI0Y2FmZDRiNzg2MjgyMjA2MzJkZTg2NWUzZTE0MTIxNWUiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNzdlZmU5MzRhZGQ3YmU5Njc3NmJkODM3NWJhZDQxN2QiLCJzaGExIjoiYmM2YzYxYzgwNDgyMTE2ZTY2ZGQyNTYwNjRkYTgxYjFlY2U4NzMzOCIsInNoYTIyNCI6IjgzNzNlZGM4ZTg4Y2UxMTljODdlOTM2OTY4ZWViMWNmMzdjZGY4NTBmZjhjOTZkYjNmMDc4YmE0Iiwic2hhMjU2IjoiNzNjYWMxZWRlZmUyZjdlODFkNjRiMTI2YjIxMmY2Yzk2ZTAwNjgyNGJjZmJkZDI3Y2E5NmUyNTk5ZTQwNzUwZiIsInNoYTM4NCI6IjlmNmUwNzlmOTNiNDlkMTg1YzEyNzY0OGQwNzE3YTA0N2E3MzYyNDI4YzY4MzBhNDViNzExODAwZDE4NjIwZDZjMjcwZGE3ZmY0Y2FjOTRmNGVmZDdiZWQ5OTlkOWU0ZCIsInNoYTUxMiI6IjAwNzE5MGUyYjk5ZjVlN2Q1OGZiYWI2YTk1YmY0NjJiODhkOTg1N2NlNjY4MTMyMGJmM2M0Y2ZiZmY0MjkxZmEzNTMyMTk3YzdkODc2YWQ3NjZhOTQyOTQ2Zjc1OWY2YTViNDBlM2I2MzM3YzIwNWI0M2JkOWMyN2JiMTljNzk0IiwiYmxha2UyYiI6IjlhN2VhNTQzY2ZhMmMzMWYyZDIyNjg2MjUwNzUyNDE0Mjc1OWJiZTA0MWZlMWJkMzQzNDM1MWQwNWZlYjI2OGY2MjU0OTFlMzlmMzdkYWQ4MGM2Y2UzYTE4ZjAxNGEzZjJiMmQ2OGU2OTc0MjRmNTU2M2Y5ZjlhYzc1MzJiMjEwIiwiYmxha2UycyI6ImYxZmMwMjA0YjdjNzIwNGJlNWI1YzY3NDEyYjQ2MjY5NWE3YjFlYWQ2M2E5ZGVkMjEzYjZmYTU0NGZjNjJlYzUiLCJzaGEzXzIyNCI6IjljZDQ3YTBhMzA3NmNmYzI0NjJhNTAzMjVmMjg4ZjFiYzJjMmY2NmU2ODIxODc5NjJhNzU0NjFmIiwic2hhM18yNTYiOiI4NTFlNGI1ZDI1MWZlZTFiYzk0ODU1OWNjMDNiNjhlNTllYWU5YWI1ZTUyYjA0OTgxYTRhOTU4YWQyMDdkYjYwIiwic2hhM18zODQiOiJiZDA2ZTRhZGFlMWQ0MTJmZjFjOTcxMDJkZDFlN2JmY2UzMDViYTgxMTgyNzM3NWY5NTI4OWJkOGIyYTUxNjdiMmUyNzZjODNjNTU3ODFhMTEyMDRhNzc5MTUwMzM5ZTEiLCJzaGEzXzUxMiI6ImQ1ZGQ2OGZmZmY5NGRhZjJhMDkzZTliNmM1MTBlZmZkNThmZTA0ODMyZGQzMzEyOTZmN2NkZmYzNmRhZmQ3NGMxY2VmNjUxNTBkZjk5OGM1ODgyY2MzMzk2MTk1ZTViYjc5OTY1OGFkMTQ3MzFiMjJmZWZiMWQzNmY2MWJjYzJjIiwic2hha2VfMTI4IjoiOWJlNTgwNWMwNjg1MmZmNDUzNGQ4ZDZmODYyMmFkOTJkMGUwMWE2Y2JmYjIwN2QxOTRmM2JkYThiOGNmNWU4ZiIsInNoYWtlXzI1NiI6IjRhYjgwYjY2MzcxYzdhNjBhYWM4NDVkMTZlNWMzZDNhMmM4M2FjM2FjZDNiNTBiNzdjYWYyYTNmMWMyY2ZjZjc5OGNjYjkxN2FjZjQzNzBmZDdjN2ZmODQ5M2Q3NGY1MWM4NGU3M2ViZGQ4MTRmM2MwMzk3YzI4ODlmNTI0Mzg3In0K",
"eyJibGFrZTNfbXVsdGkiOiI4ODlmYzIwMDA4NWY1NWY4YTA4MjhiODg3MDM0OTRhMGFmNWZkZGI5N2E2YmYwMDRjM2VkYTdiYzBkNDU0MjQzIiwiYmxha2UzX3NpbmdsZSI6Ijg4OWZjMjAwMDg1ZjU1ZjhhMDgyOGI4ODcwMzQ5NGEwYWY1ZmRkYjk3YTZiZjAwNGMzZWRhN2JjMGQ0NTQyNDMiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNTIzNTRhMzkzYTVmOGNjNmMyMzQ0OThiYjcxMDljYzEiLCJzaGExIjoiMTJmYmRhOGE3ZGUwOGMwNDc2NTA5OWY2NGNmMGIzYjcxMjc1MGM1NyIsInNoYTIyNCI6IjEyZWU3N2U0Y2NhODViMDk4YjdjNWJlMWFjNGMwNzljNGM3MmJmODA2YjdlZjU1NGI0NzgxZDkxIiwic2hhMjU2IjoiMjU1NTMwZDAyYTY4MjY4OWE5ZTZjMjRhOWZhMDM2OGNhODMxZTI1OTAyYjM2NzQyNzkwZTk3NzU1ZjEzMmNmNSIsInNoYTM4NCI6IjhkMGEyMTRlNDk0NGE2NGY3ZmZjNTg3MGY0ZWUyZTA0OGIzYjRjMmQ0MGRmMWFmYTVlOGE1ZWNkN2IwOTY3M2ZjNWI5YzM5Yzg4Yjc2YmIwY2I4ZjQ1ZjAxY2MwNjZkNCIsInNoYTUxMiI6Ijg3NTM3OWNiYzdlOGYyNzU4YjVjMDY5ZTU2ZWRjODY1ODE4MGFkNDEzNGMwMzY1NzM4ZjM1YjQwYzI2M2JkMTMwMzcwZTE0MzZkNDNmOGFhMTgyMTg5MzgzMTg1ODNhOWJhYTUyYTBjMTk1Mjg5OTQzYzZiYTY2NTg1Yjg5M2ZiIiwiYmxha2UyYiI6IjBhY2MwNWEwOGE5YjhhODNmZTVjYTk4ZmExMTg3NTYwNjk0MjY0YWUxNTI4NDliYzFkNzQzNTYzMzMyMTlhYTg3N2ZiNjc4MmRjZDZiOGIyYjM1MTkyNDQzNDE2ODJiMTQ3YmY2YTY3MDU2ZWIwOTQ4MzE1M2E4Y2ZiNTNmMTI0IiwiYmxha2UycyI6ImY5ZTRhZGRlNGEzZDRhOTZhOWUyNjVjMGVmMjdmZDNiNjA0NzI1NDllMTEyMWQzOGQwMTkxNTY5ZDY5YzdhYzAiLCJzaGEzXzIyNCI6ImM0NjQ3MGRjMjkyNGI0YjZkMTA2NDY5MDRiNWM2OGVjNTU2YmQ4MTA5NmVkMTA4YjZiMzQyZmU1Iiwic2hhM18yNTYiOiIwMDBlMThiZTI1MzYxYTk0NGExZTIwNjQ5ZmY0ZGM2OGRiZTk0OGNkNTYwY2I5MTFhODU1OTE3ODdkNWQ5YWYwIiwic2hhM18zODQiOiIzNDljZmVhMGUxZGE0NWZlMmYzNjJhMWFjZjI1ZTczOWNiNGQ0NDdiM2NiODUzZDVkYWNjMzU5ZmRhMWE1M2FhYWU5OTM2ZmFhZWM1NmFhZDkwMThhYjgxMTI4ZjI3N2YiLCJzaGEzXzUxMiI6ImMxNDgwNGY1YTNjNWE4ZGEyMTAyODk1YTFjZGU4MmIwNGYwZmY4OTczMTc0MmY2NDQyY2NmNzQ1OTQzYWQ5NGViOWZmMTNhZDg3YjRmODkxN2M5NmY5ZjMwZjkwYTFhYTI4OTI3OTkwMjg0ZDJhMzcyMjA0NjE4MTNiNDI0MzEyIiwic2hha2VfMTI4IjoiN2IxY2RkMWUyMzUzMzk0OTg5M2UyMmZkMTAwZmU0YjJhMTU1MDJmMTNjMTI0YzhiZDgxY2QwZDdlOWEzMGNmOCIsInNoYWtlXzI1NiI6ImI0NjMzZThhMjNkZDM0ODk0ZTIyNzc0ODYyNTE1MzVjYWFlNjkyMTdmOTQ0NTc3MzE1NTljODBjNWQ3M2ZkOTMxZTFjMDJlZDI0Yjc3MzE3OTJjMjVlNTZhYjg3NjI4YmJiMDgxNTU0MjU2MWY5ZGI2NWE0NDk4NDFmNGQzYTU4In0K",
"eyJibGFrZTNfbXVsdGkiOiI2Y2M0MmU4NGRiOGQyZTliYjA4YjUxNWUwYzlmYzg2NTViNDUwNGRlZDM1MzBlZjFjNTFjZWEwOWUxYThiNGYxIiwiYmxha2UzX3NpbmdsZSI6IjZjYzQyZTg0ZGI4ZDJlOWJiMDhiNTE1ZTBjOWZjODY1NWI0NTA0ZGVkMzUzMGVmMWM1MWNlYTA5ZTFhOGI0ZjEiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZDQwNjk3NTJhYjQ0NzFhZDliMDY3YmUxMmRjNTM2ZjYiLCJzaGExIjoiOGRjZmVlMjZjZjUyOTllMDBjN2QwZjJiZTc0NmVmMTlkZjliZGExNCIsInNoYTIyNCI6IjhjMzAzOTU3ZjI3NDNiMjUwNmQyYzIzY2VmNmU4MTQ5MTllZmE2MWM0MTFiMDk5ZmMzODc2MmRjIiwic2hhMjU2IjoiZDk3ZjQ2OWJjMWZkMjhjMjZkMjJhN2Y3ODczNzlhZmM4NjY3ZmZmM2FhYTQ5NTE4NmQyZTM4OTU2MTBjZDJmMyIsInNoYTM4NCI6IjY0NmY0YWM0ZDA2YWJkZmE2MDAwN2VjZWNiOWNjOTk4ZmJkOTBiYzYwMmY3NTk2M2RhZDUzMGMzNGE5ZGE1YzY4NjhlMGIwMDJkZDNlMTM4ZjhmMjA2ODcyNzFkMDVjMSIsInNoYTUxMiI6ImYzZTU4NTA0YzYyOGUwYjViNzBhOTYxYThmODA1MDA1NjQ1M2E5NDlmNTgzNDhiYTNhZTVlMjdkNDRhNGJkMjc5ZjA3MmU1OGQ5YjEyOGE1NDc1MTU2ZmM3YzcxMGJkYjI3OWQ5OGFmN2EwYTI4Y2Y1ZDY2MmQxODY4Zjg3ZjI3IiwiYmxha2UyYiI6ImFhNjgyYmJjM2U1ZGRjNDZkNWUxN2VjMzRlNmEzZGY5ZjhiNWQyNzk0YTZkNmY0M2VjODMxZjhjOTU2OGYyY2RiOGE4YjAyNTE4MDA4YmY0Y2FhYTlhY2FhYjNkNzRmZmRiNGZlNDgwOTcwODU3OGJiZjNlNzJjYTc5ZDQwYzZmIiwiYmxha2UycyI6ImQ0ZGJlZTJkMmZlNDMwOGViYTkwMTY1MDdmMzI1ZmJiODZlMWQzNDQ0MjgzNzRlMjAwNjNiNWQ1MzkzZTExNjMiLCJzaGEzXzIyNCI6ImE1ZTM5NWZlNGRlYjIyY2JhNjgwMWFiZTliZjljMjM2YmMzYjkwZDdiN2ZjMTRhZDhjZjQ0NzBlIiwic2hhM18yNTYiOiIwOWYwZGVjODk0OWEzYmQzYzU3N2RjYzUyMTMwMGRiY2UwMjVjM2VjOTJkNzQ0MDJkNTE1ZDA4NTQwODg2NGY1Iiwic2hhM18zODQiOiJmMjEyNmM5NTcxODQ3NDZmNjYyMjE4MTRkMDZkZWQ3NDBhYWU3MDA4MTc0YjI0OTEzY2YwOTQzY2IwMTA5Y2QxNWI4YmMwOGY1YjUwMWYwYzhhOTY4MzUwYzgzY2I1ZWUiLCJzaGEzXzUxMiI6ImU1ZmEwMzIwMzk2YTJjMThjN2UxZjVlZmJiODYwYTU1M2NlMTlkMDQ0MWMxNWEwZTI1M2RiNjJkM2JmNjg0ZDI1OWIxYmQ4OTJkYTcyMDVjYTYyODQ2YzU0YWI1ODYxOTBmNDUxZDlmZmNkNDA5YmU5MzlhNWM1YWIyZDdkM2ZkIiwic2hha2VfMTI4IjoiNGI2MTllM2I4N2U1YTY4OTgxMjk0YzgzMmU0NzljZGI4MWFmODdlZTE4YzM1Zjc5ZjExODY5ZWEzNWUxN2I3MiIsInNoYWtlXzI1NiI6ImYzOWVkNmMxZmQ2NzVmMDg3ODAyYTc4ZTUwYWFkN2ZiYTZiM2QxNzhlZWYzMjRkMTI3ZTZjYmEwMGRjNzkwNTkxNjQ1Y2U1Y2NmMjhjYzVkNWRkODU1OWIzMDMxYTM3ZjE5NjhmYmFhNDQzMmI2ZWU0Yzg3ZWE2YTdkMmE2NWM2In0K",
"eyJibGFrZTNfbXVsdGkiOiJhNDRiZjJkMzVkZDI3OTZlZTI1NmY0MzVkODFhNTdhOGM0MjZhMzM5ZDc3NTVkMmNiMjdmMzU4ZjM0NTM4OWM2IiwiYmxha2UzX3NpbmdsZSI6ImE0NGJmMmQzNWRkMjc5NmVlMjU2ZjQzNWQ4MWE1N2E4YzQyNmEzMzlkNzc1NWQyY2IyN2YzNThmMzQ1Mzg5YzYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiOGU5OTMzMzEyZjg4NDY4MDg0ZmRiZWNjNDYyMTMxZTgiLCJzaGExIjoiNmI0MmZjZDFmMmQyNzUwYWNkY2JkMTUzMmQ4NjQ5YTM1YWI2NDYzNCIsInNoYTIyNCI6ImQ2Y2E2OTUxNzIzZjdjZjg0NzBjZWRjMmVhNjA2ODNmMWU4NDMzM2Q2NDM2MGIzOWIyMjZlZmQzIiwic2hhMjU2IjoiMDAxNGY5Yzg0YjcwMTFhMGJkNzliNzU0NGVjNzg4NDQzNWQ4ZGY0NmRjMDBiNDk0ZmFkYzA4NWQzNDM1NjI4MyIsInNoYTM4NCI6IjMxODg2OTYxODc4NWY3MWJlM2RlZjkyZDgyNzY2NjBhZGE0MGViYTdkMDk1M2Y0YTc5ODdlMThhNzFlNjBlY2EwY2YyM2YwMjVhMmQ4ZjUyMmNkZGY3MTcxODFhMTQxNSIsInNoYTUxMiI6IjdmZGQxN2NmOWU3ZTBhZDcwMzJjMDg1MTkyYWMxZmQ0ZmFhZjZkNWNlYzAzOTE5ZDk0MmZiZTIyNWNhNmIwZTg0NmQ4ZGI0ZjllYTQ5MjJlMTdhNTg4MTY4YzExMTM1NWZiZDQ1NTlmMmU5NDcwNjAwZWE1MzBhMDdiMzY0YWQwIiwiYmxha2UyYiI6IjI0ZjExZWI5M2VlN2YxOTI5NWZiZGU5MTczMmE0NGJkZGYxOWE1ZTQ4MWNmOWFhMjQ2M2UzNDllYjg0Mzc4ZDBkODFjNzY0YWQ1NTk1YjkxZjQzYzgxODcxNTRlYWU5NTZkY2ZjZTlkMWU2MTZjNTFkZThhZDZjZTBhODcyY2Q0IiwiYmxha2UycyI6IjVkZTUwZDUwMGYwYTBmOGRlMTEwOGE2ZmFkZGM4ODNlMTA3NmQ3MThiNmQxN2E4ZDVkMjgzZDdiNGYzZDU2OGEiLCJzaGEzXzIyNCI6IjFhNTA0OGNlYWZiYjg2ZDc4ZmNiNTI0ZTViYTc4NWQ2ZmY5NzY1ZTNlMzdhZWRjZmYxZGVjNGJhIiwic2hhM18yNTYiOiI0YjA0YjE1NTRmMzRkYTlmMjBmZDczM2IzNDg4NjE0ZWNhM2IwOWU1OTJjOGJlMmM0NjA1NjYyMWU0MjJmZDllIiwic2hhM18zODQiOiI1NjMwYjM2OGQ4MGM1YmM5MTgzM2VmNWM2YWUzOTJhNDE4NTNjYmM2MWJiNTI4ZDE4YWM1OWFjZGZiZWU1YThkMWMyZDE4MTM1ZGI2ZWQ2OTJlODFkZThmYTM3MzkxN2MiLCJzaGEzXzUxMiI6IjA2ODg4MGE1MmNiNDkzODYwZDhjOTVhOTFhZGFmZTYwZGYxODc2ZDhjYjFhNmI3NTU2ZjJjM2Y1NjFmMGYwZjMyZjZhYTA1YmVmN2FhYjQ5OWEwNTM0Zjk0Njc4MDEzODlmNDc0ODFiNzcxMjdjMDFiOGFhOTY4NGJhZGUzYmY2Iiwic2hha2VfMTI4IjoiODlmYTdjNDcwNGI4NGZkMWQ1M2E0MTBlN2ZjMzU3NWRhNmUxMGU1YzkzMjM1NWYyZWEyMWM4NDVhZDBlM2UxOCIsInNoYWtlXzI1NiI6IjE4NGNlMWY2NjdmYmIyODA5NWJhZmVkZTQzNTUzZjhkYzBhNGY1MDQwYWJlMjcxMzkzMzcwNDEyZWFiZTg0ZGJhNjI0Y2ZiZWE4YzUxZDU2YzkwMTM2Mjg2ODgyZmQ0Y2E3MzA3NzZjNWUzODFlYzI5MWYxYTczOTE1MDkyMTFmIn0K",
"eyJibGFrZTNfbXVsdGkiOiJhYjA2YjNmMDliNTExOTAzMTMzMzY5NDE2MTc4ZDk2ZjlkYTc3ZGEwOTgyNDJmN2VlMTVjNTNhNTRkMDZhNWVmIiwiYmxha2UzX3NpbmdsZSI6ImFiMDZiM2YwOWI1MTE5MDMxMzMzNjk0MTYxNzhkOTZmOWRhNzdkYTA5ODI0MmY3ZWUxNWM1M2E1NGQwNmE1ZWYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZWY0MjcxYjU3NTQwMjU4NGQ2OTI5ZWJkMGI3Nzk5NzYiLCJzaGExIjoiMzgzNzliYWQzZjZiZjc4MmM4OTgzOGY3YWVkMzRkNDNkMzNlYWM2MSIsInNoYTIyNCI6ImQ5ZDNiMjJkYmZlY2M1NTdlODAzNjg5M2M3ZWE0N2I0NTQzYzM2NzZhMDk4NzMxMzRhNjQ0OWEwIiwic2hhMjU2IjoiMjYxZGI3NmJlMGYxMzdlZWJkYmI5OGRlYWM0ZjcyMDdiOGUxMjdiY2MyZmMwODI5OGVjZDczYjQ3MjYxNjQ1NiIsInNoYTM4NCI6IjMzMjkwYWQxYjlhMmRkYmU0ODY3MWZiMTIxNDdiZWJhNjI4MjA1MDcwY2VkNjNiZTFmNGU5YWRhMjgwYWU2ZjZjNDkzYTY2MDllMGQ2YTIzMWU2ODU5ZmIyNGZhM2FjMCIsInNoYTUxMiI6IjAzMDZhMWI1NmNiYTdjNjJiNTNmNTk4MTAwMTQ3MDQ5ODBhNGRmZTdjZjQ5NTU4ZmMyMmQxZDczZDc5NzJmZTllODk2ZWRjMmEyYTQxYWVjNjRjZjkwZGUwYjI1NGM0MDBlZTU1YzcwZjk3OGVlMzk5NmM2YzhkNTBjYTI4YTdiIiwiYmxha2UyYiI6IjY1MDZhMDg1YWQ5MGZkZjk2NGJmMGE5NTFkZmVkMTllZTc0NGVjY2EyODQzZjQzYTI5NmFjZDM0M2RiODhhMDNlNTlkNmFmMGM1YWJkNTEzMzc4MTQ5Yjg3OTExMTVmODRmMDIyZWM1M2JmNGFjNDZhZDczNWIwMmJlYTM0MDk5IiwiYmxha2UycyI6IjdlZDQ3ZWQxOTg3MTk0YWFmNGIwMjQ3MWFkNTMyMmY3NTE3ZjI0OTcwMDc2Y2NmNDkzMWI0MzYxMDU1NzBlNDAiLCJzaGEzXzIyNCI6Ijk2MGM4MDExOTlhMGUzYWExNjdiNmU2MWVkMzE2ZDUzMDM2Yjk4M2UyOThkNWI5MjZmMDc3NDlhIiwic2hhM18yNTYiOiIzYzdmYWE1ZDE3Zjk2MGYxOTI2ZjNlNGIyZjc1ZjdiOWIyZDQ4NGFhNmEwM2ViOWNlMTI4NmM2OTE2YWEyM2RlIiwic2hhM18zODQiOiI5Y2Y0NDA1NWFjYzFlYjZmMDY1YjRjODcxYTYzNTM1MGE1ZjY0ODQwM2YwYTU0MWEzYzZhNjI3N2ViZjZmYTNjYmM1YmJiNjQwMDE4OGFlMWIxMTI2OGZmMDJiMzYzZDUiLCJzaGEzXzUxMiI6ImEyZDk3ZDRlYjYxM2UwZDViYTc2OTk2MzE2MzcxOGEwNDIxZDkxNTNiNjllYjM5MDRmZjI4ODRhZDdjNGJiYmIwNGY2Nzc1OTA1YmQxNGI2NTJmZTQ1Njg0YmI5MTQ3ZjBkYWViZjAxZjIzY2MzZDhkMjIzMTE0MGUzNjI4NTE5Iiwic2hha2VfMTI4IjoiNjkwMWMwYjg1MTg5ZTkyNTJiODI3MTc5NjE2MjRlMTM0MDQ1ZjlkMmI5MzM0MzVkM2Y0OThiZWIyN2Q3N2JiNSIsInNoYWtlXzI1NiI6ImIwMjA4ZTFkNDVjZWI0ODdiZDUwNzk3MWJiNWI3MjdjN2UyYmE3ZDliNWM2ZTEyYWE5YTNhOTY5YzcyNDRjODIwZDcyNDY1ODhlZWU3Yjk4ZWM1NzhjZWIxNjc3OTkxODljMWRkMmZkMmZmYWM4MWExZDAzZDFiNjMxOGRkMjBiIn0K",
]

View File

@@ -31,12 +31,13 @@ from typing_extensions import Annotated, Any, Dict
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
class InvalidModelConfigException(Exception):
@@ -115,7 +116,7 @@ class SchedulerPredictionType(str, Enum):
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier - empty str
Default = "" # model files without "fp16" or other qualifier
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
@@ -448,4 +449,6 @@ class ModelConfigFactory(object):
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
if model:
validate_hash(model.hash)
return model # type: ignore

View File

@@ -7,7 +7,7 @@ from importlib import import_module
from pathlib import Path
from .convert_cache.convert_cache_default import ModelConvertCache
from .load_base import LoadedModel, ModelLoaderBase
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from .load_default import ModelLoader
from .model_cache.model_cache_default import ModelCache
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
@@ -19,6 +19,7 @@ for module in loaders:
__all__ = [
"LoadedModel",
"LoadedModelWithoutConfig",
"ModelCache",
"ModelConvertCache",
"ModelLoaderBase",

View File

@@ -7,6 +7,7 @@ from pathlib import Path
from invokeai.backend.util import GIG, directory_size
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.util import safe_filename
from .convert_cache_base import ModelConvertCacheBase
@@ -35,6 +36,7 @@ class ModelConvertCache(ModelConvertCacheBase):
def cache_path(self, key: str) -> Path:
"""Return the path for a model with the indicated key."""
key = safe_filename(self._cache_path, key)
return self._cache_path / key
def make_room(self, size: float) -> None:

View File

@@ -4,10 +4,13 @@ Base class for model loading in InvokeAI.
"""
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, Generator, Optional, Tuple
import torch
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_manager.config import (
@@ -20,10 +23,44 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Mod
@dataclass
class LoadedModel:
"""Context manager object that mediates transfer from RAM<->VRAM."""
class LoadedModelWithoutConfig:
"""
Context manager object that mediates transfer from RAM<->VRAM.
This is a context manager object that has two distinct APIs:
1. Older API (deprecated):
Use the LoadedModel object directly as a context manager.
It will move the model into VRAM (on CUDA devices), and
return the model in a form suitable for passing to torch.
Example:
```
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
with loaded_model as vae:
image = vae.decode(latents)[0]
```
2. Newer API (recommended):
Call the LoadedModel's `model_on_device()` method in a
context. It returns a tuple consisting of a copy of
the model's state dict in CPU RAM followed by a copy
of the model in VRAM. The state dict is provided to allow
LoRAs and other model patchers to return the model to
its unpatched state without expensive copy and restore
operations.
Example:
```
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
with loaded_model.model_on_device() as (state_dict, vae):
image = vae.decode(latents)[0]
```
The state_dict should be treated as a read-only object and
never modified. Also be aware that some loadable models do
not have a state_dict, in which case this value will be None.
"""
config: AnyModelConfig
_locker: ModelLockerBase
def __enter__(self) -> AnyModel:
@@ -35,12 +72,29 @@ class LoadedModel:
"""Context exit."""
self._locker.unlock()
@contextmanager
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
locked_model = self._locker.lock()
try:
state_dict = self._locker.get_state_dict()
yield (state_dict, locked_model)
finally:
self._locker.unlock()
@property
def model(self) -> AnyModel:
"""Return the model without locking it."""
return self._locker.model
@dataclass
class LoadedModel(LoadedModelWithoutConfig):
"""Context manager object that mediates transfer from RAM<->VRAM."""
config: Optional[AnyModelConfig] = None
# TODO(MM2):
# Some "intermediary" subclasses in the ModelLoaderBase class hierarchy define methods that their subclasses don't
# know about. I think the problem may be related to this class being an ABC.

View File

@@ -16,7 +16,7 @@ from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice
@@ -84,7 +84,7 @@ class ModelLoader(ModelLoaderBase):
except IndexError:
pass
cache_path: Path = self._convert_cache.cache_path(config.key)
cache_path: Path = self._convert_cache.cache_path(str(model_path))
if self._needs_conversion(config, model_path, cache_path):
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)
else:
@@ -95,7 +95,6 @@ class ModelLoader(ModelLoaderBase):
config.key,
submodel_type=submodel_type,
model=loaded_model,
size=calc_model_size_by_data(loaded_model),
)
return self._ram_cache.get(
@@ -126,9 +125,7 @@ class ModelLoader(ModelLoaderBase):
if subtype == submodel_type:
continue
if submodel := getattr(pipeline, subtype.value, None):
self._ram_cache.put(
config.key, submodel_type=subtype, model=submodel, size=calc_model_size_by_data(submodel)
)
self._ram_cache.put(config.key, submodel_type=subtype, model=submodel)
return getattr(pipeline, submodel_type.value) if submodel_type else pipeline
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:

View File

@@ -30,6 +30,11 @@ class ModelLockerBase(ABC):
"""Unlock the contained model, and remove it from VRAM."""
pass
@abstractmethod
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
pass
@property
@abstractmethod
def model(self) -> AnyModel:
@@ -56,6 +61,11 @@ class CacheRecord(Generic[T]):
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
@@ -159,7 +169,6 @@ class ModelCacheBase(ABC, Generic[T]):
self,
key: str,
model: T,
size: int,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""

View File

@@ -29,6 +29,7 @@ import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -153,13 +154,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
self,
key: str,
model: AnyModel,
size: int,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(model)
self.make_room(size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
@@ -252,12 +253,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
May raise a torch.cuda.OutOfMemoryError
"""
# These attributes are not in the base ModelMixin class but in various derived classes.
# Some models don't have these attributes, in which case they run in RAM/CPU.
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
if not (hasattr(cache_entry.model, "device") and hasattr(cache_entry.model, "to")):
return
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
@@ -265,6 +261,10 @@ class ModelCache(ModelCacheBase[AnyModel]):
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
@@ -285,9 +285,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True)
new_dict[k] = v.to(torch.device(target_device), copy=True, non_blocking=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.model.to(target_device, non_blocking=True)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)

View File

@@ -2,6 +2,8 @@
Base class and implementation of a class that moves models in and out of VRAM.
"""
from typing import Dict, Optional
import torch
from invokeai.backend.model_manager import AnyModel
@@ -27,20 +29,18 @@ class ModelLocker(ModelLockerBase):
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
if not hasattr(self.model, "to"):
return self.model
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
@@ -55,9 +55,6 @@ class ModelLocker(ModelLockerBase):
def unlock(self) -> None:
"""Call upon exit from context."""
if not hasattr(self.model, "to"):
return
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)

View File

@@ -65,14 +65,11 @@ class GenericDiffusersLoader(ModelLoader):
else:
try:
config = self._load_diffusers_config(model_path, config_name="config.json")
class_name = config.get("_class_name", None)
if class_name:
if class_name := config.get("_class_name"):
result = self._hf_definition_to_type(module="diffusers", class_name=class_name)
if config.get("model_type", None) == "clip_vision_model":
class_name = config.get("architectures")
assert class_name is not None
elif class_name := config.get("architectures"):
result = self._hf_definition_to_type(module="transformers", class_name=class_name[0])
if not class_name:
else:
raise InvalidModelConfigException("Unable to decipher Load Class based on given config.json")
except KeyError as e:
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e

View File

@@ -83,7 +83,7 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
assert s.size is not None
files.append(
RemoteModelFile(
url=hf_hub_url(id, s.rfilename, revision=variant),
url=hf_hub_url(id, s.rfilename, revision=variant or "main"),
path=Path(name, s.rfilename),
size=s.size,
sha256=s.lfs.get("sha256") if s.lfs else None,

View File

@@ -37,9 +37,12 @@ class RemoteModelFile(BaseModel):
url: AnyHttpUrl = Field(description="The url to download this model file")
path: Path = Field(description="The path to the file, relative to the model root")
size: int = Field(description="The size of this file, in bytes")
size: Optional[int] = Field(description="The size of this file, in bytes", default=0)
sha256: Optional[str] = Field(description="SHA256 hash of this model (not always available)", default=None)
def __hash__(self) -> int:
return hash(str(self))
class ModelMetadataBase(BaseModel):
"""Base class for model metadata information."""

View File

@@ -10,7 +10,7 @@ from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.util.util import SilenceWarnings
from invokeai.backend.util.silence_warnings import SilenceWarnings
from .config import (
AnyModelConfig,

View File

@@ -5,7 +5,7 @@ from __future__ import annotations
import pickle
from contextlib import contextmanager
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
@@ -66,8 +66,14 @@ class ModelPatcher:
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(unet, loras, "lora_unet_"):
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(
unet,
loras=loras,
prefix="lora_unet_",
model_state_dict=model_state_dict,
):
yield
@classmethod
@@ -76,28 +82,9 @@ class ModelPatcher:
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict):
yield
@classmethod
@@ -107,7 +94,16 @@ class ModelPatcher:
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
) -> None:
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes.
"""
original_weights = {}
try:
with torch.no_grad():
@@ -133,19 +129,22 @@ class ModelPatcher:
dtype = module.weight.dtype
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
original_weights[module_key] = model_state_dict[module_key + ".weight"]
else:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
layer.to(device=device, non_blocking=True)
layer.to(dtype=torch.float32, non_blocking=True)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=torch.device("cpu"))
layer.to(device=torch.device("cpu"), non_blocking=True)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
@@ -154,7 +153,7 @@ class ModelPatcher:
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype)
module.weight += layer_weight.to(dtype=dtype, non_blocking=True)
yield # wait for context manager exit
@@ -162,7 +161,7 @@ class ModelPatcher:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
model.get_submodule(module_key).weight.copy_(weight, non_blocking=True)
@classmethod
@contextmanager

View File

@@ -6,6 +6,7 @@ from typing import Any, List, Optional, Tuple, Union
import numpy as np
import onnx
import torch
from onnx import numpy_helper
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
@@ -188,6 +189,15 @@ class IAIOnnxRuntimeModel(RawModel):
# return self.io_binding.copy_outputs_to_cpu()
return self.session.run(None, inputs)
# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
pass
# compatability with diffusers load code
@classmethod
def from_pretrained(

View File

@@ -10,6 +10,20 @@ The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
that adds additional methods and attributes.
"""
from abc import ABC, abstractmethod
from typing import Optional
class RawModel:
"""Base class for 'Raw' model wrappers."""
import torch
class RawModel(ABC):
"""Abstract base class for 'Raw' model wrappers."""
@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
pass

View File

@@ -10,12 +10,11 @@ import PIL.Image
import psutil
import torch
import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from diffusers.utils.import_utils import is_xformers_available
from pydantic import Field
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
@@ -26,6 +25,7 @@ from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion impor
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@dataclass
@@ -38,56 +38,18 @@ class PipelineIntermediateState:
predicted_original: Optional[torch.Tensor] = None
@dataclass
class AddsMaskLatents:
"""Add the channels required for inpainting model input.
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
and the latent encoding of the base image.
This class assumes the same mask and base image should apply to all items in the batch.
"""
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
mask: torch.Tensor
initial_image_latents: torch.Tensor
def __call__(
self,
latents: torch.Tensor,
t: torch.Tensor,
text_embeddings: torch.Tensor,
**kwargs,
) -> torch.Tensor:
model_input = self.add_mask_channels(latents)
return self.forward(model_input, t, text_embeddings, **kwargs)
def add_mask_channels(self, latents):
batch_size = latents.size(0)
# duplicate mask and latents for each batch
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
# add mask and image as additional channels
model_input, _ = einops.pack([latents, mask, image_latents], "b * h w")
return model_input
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
return isinstance(b, torch.Tensor) and (a.size() == b.size())
@dataclass
class AddsMaskGuidance:
mask: torch.FloatTensor
mask_latents: torch.FloatTensor
mask: torch.Tensor
mask_latents: torch.Tensor
scheduler: SchedulerMixin
noise: torch.Tensor
gradient_mask: bool
is_gradient_mask: bool
def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return self.apply_mask(latents, t)
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
def apply_mask(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0:
@@ -100,7 +62,7 @@ class AddsMaskGuidance:
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self.gradient_mask:
if self.is_gradient_mask:
threshhold = (t.item()) / self.scheduler.config.num_train_timesteps
mask_bool = mask > threshhold # I don't know when mask got inverted, but it did
masked_input = torch.where(mask_bool, latents, mask_latents)
@@ -200,7 +162,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
safety_checker: Optional[StableDiffusionSafetyChecker],
feature_extractor: Optional[CLIPFeatureExtractor],
requires_safety_checker: bool = False,
control_model: ControlNetModel = None,
):
super().__init__(
vae=vae,
@@ -214,8 +175,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
)
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
self.control_model = control_model
self.use_ip_adapter = False
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
"""
@@ -280,116 +239,131 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False):
raise Exception("Should not be called")
def add_inpainting_channels_to_latents(
self, latents: torch.Tensor, masked_ref_image_latents: torch.Tensor, inpainting_mask: torch.Tensor
):
"""Given a `latents` tensor, adds the mask and image latents channels required for inpainting.
Standard (non-inpainting) SD UNet models expect an input with shape (N, 4, H, W). Inpainting models expect an
input of shape (N, 9, H, W). The 9 channels are defined as follows:
- Channel 0-3: The latents being denoised.
- Channel 4: The mask indicating which parts of the image are being inpainted.
- Channel 5-8: The latent representation of the masked reference image being inpainted.
This function assumes that the same mask and base image should apply to all items in the batch.
"""
# Validate assumptions about input tensor shapes.
batch_size, latent_channels, latent_height, latent_width = latents.shape
assert latent_channels == 4
assert masked_ref_image_latents.shape == [1, 4, latent_height, latent_width]
assert inpainting_mask == [1, 1, latent_height, latent_width]
# Repeat original_image_latents and inpainting_mask to match the latents batch size.
original_image_latents = masked_ref_image_latents.expand(batch_size, -1, -1, -1)
inpainting_mask = inpainting_mask.expand(batch_size, -1, -1, -1)
# Concatenate along the channel dimension.
return torch.cat([latents, inpainting_mask, original_image_latents], dim=1)
def latents_from_embeddings(
self,
latents: torch.Tensor,
num_inference_steps: int,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
*,
noise: Optional[torch.Tensor],
seed: int,
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
additional_guidance: List[Callable] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
control_data: List[ControlNetData] = None,
callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
gradient_mask: Optional[bool] = False,
seed: int,
is_gradient_mask: bool = False,
) -> torch.Tensor:
if init_timestep.shape[0] == 0:
return latents
"""Denoise the latents.
if additional_guidance is None:
additional_guidance = []
Args:
latents: The latent-space image to denoise.
- If we are inpainting, this is the initial latent image before noise has been added.
- If we are generating a new image, this should be initialized to zeros.
- In some cases, this may be a partially-noised latent image (e.g. when running the SDXL refiner).
scheduler_step_kwargs: kwargs forwarded to the scheduler.step() method.
conditioning_data: Text conditionging data.
noise: Noise used for two purposes:
1. Used by the scheduler to noise the initial `latents` before denoising.
2. Used to noise the `masked_latents` when inpainting.
`noise` should be None if the `latents` tensor has already been noised.
seed: The seed used to generate the noise for the denoising process.
HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the
same noise used earlier in the pipeline. This should really be handled in a clearer way.
timesteps: The timestep schedule for the denoising process.
init_timestep: The first timestep in the schedule.
TODO(ryand): I'm pretty sure this should always be the same as timesteps[0:1]. Confirm that that is the
case, and remove this duplicate param.
callback: A callback function that is called to report progress during the denoising process.
control_data: ControlNet data.
ip_adapter_data: IP-Adapter data.
t2i_adapter_data: T2I-Adapter data.
mask: A mask indicating which parts of the image are being inpainted. The presence of mask is used to
determine whether we are inpainting or not. `mask` should have the same spatial dimensions as the
`latents` tensor.
TODO(ryand): Check and document the expected dtype, range, and values used to represent
foreground/background.
masked_latents: A latent-space representation of a masked inpainting reference image. This tensor is only
used if an *inpainting* model is being used i.e. this tensor is not used when inpainting with a standard
SD UNet model.
is_gradient_mask: A flag indicating whether `mask` is a gradient mask or not.
"""
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
orig_latents = latents.clone()
batch_size = latents.shape[0]
batched_t = init_timestep.expand(batch_size)
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_t)
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
if mask is not None:
if is_inpainting_model(self.unet):
if masked_latents is None:
raise Exception("Source image required for inpaint mask when inpaint model used!")
self.invokeai_diffuser.model_forward_callback = AddsMaskLatents(
self._unet_forward, mask, masked_latents
)
else:
# if no noise provided, noisify unmasked area based on seed
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask))
try:
latents = self.generate_latents_from_embeddings(
latents,
timesteps,
conditioning_data,
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
callback=callback,
)
finally:
self.invokeai_diffuser.model_forward_callback = self._unet_forward
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents
def generate_latents_from_embeddings(
self,
latents: torch.Tensor,
timesteps,
conditioning_data: TextConditioningData,
scheduler_step_kwargs: dict[str, Any],
*,
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
) -> torch.Tensor:
self._adjust_memory_efficient_attention(latents)
if additional_guidance is None:
additional_guidance = []
batch_size = latents.shape[0]
# Handle mask guidance (a.k.a. inpainting).
mask_guidance: AddsMaskGuidance | None = None
if mask is not None and not is_inpainting_model(self.unet):
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
# apply mask guidance to the latents.
if timesteps.shape[0] == 0:
return latents
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
mask_guidance = AddsMaskGuidance(
mask=mask,
mask_latents=orig_latents,
scheduler=self.scheduler,
noise=noise,
is_gradient_mask=is_gradient_mask,
)
use_ip_adapter = ip_adapter_data is not None
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
unet_attention_patcher = None
self.use_ip_adapter = use_ip_adapter
attn_ctx = nullcontext()
if use_ip_adapter or use_regional_prompting:
@@ -402,28 +376,28 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
with attn_ctx:
if callback is not None:
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
# print("timesteps:", timesteps)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
step_output = self.step(
batched_t,
latents,
conditioning_data,
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
additional_guidance=additional_guidance,
mask_guidance=mask_guidance,
mask=mask,
masked_latents=masked_latents,
control_data=control_data,
ip_adapter_data=ip_adapter_data,
t2i_adapter_data=t2i_adapter_data,
@@ -431,19 +405,28 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None)
if callback is not None:
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if is_gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents
@torch.inference_mode()
def step(
@@ -454,19 +437,20 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
additional_guidance: List[Callable] = None,
control_data: List[ControlNetData] = None,
mask_guidance: AddsMaskGuidance | None,
mask: torch.Tensor | None,
masked_latents: torch.Tensor | None,
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
):
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
timestep = t[0]
if additional_guidance is None:
additional_guidance = []
# one day we will expand this extension point, but for now it just does denoise masking
for guidance in additional_guidance:
latents = guidance(latents, timestep)
# Handle masked image-to-image (a.k.a inpainting).
if mask_guidance is not None:
# NOTE: This is intentionally done *before* self.scheduler.scale_model_input(...).
latents = mask_guidance(latents, timestep)
# TODO: should this scaling happen here or inside self._unet_forward?
# i.e. before or after passing it to InvokeAIDiffuserComponent
@@ -514,6 +498,31 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
down_intrablock_additional_residuals = accum_adapter_state
# Handle inpainting models.
if is_inpainting_model(self.unet):
# NOTE: These calls to add_inpainting_channels_to_latents(...) are intentionally done *after*
# self.scheduler.scale_model_input(...) so that the scaling is not applied to the mask or reference image
# latents.
if mask is not None:
if masked_latents is None:
raise ValueError("Source image required for inpaint mask when inpaint model used!")
latent_model_input = self.add_inpainting_channels_to_latents(
latents=latent_model_input, masked_ref_image_latents=masked_latents, inpainting_mask=mask
)
else:
# We are using an inpainting model, but no mask was provided, so we are not really "inpainting".
# We generate a global mask and empty original image so that we can still generate in this
# configuration.
# TODO(ryand): Should we just raise an exception here instead? I can't think of a use case for wanting
# to do this.
# TODO(ryand): If we decide that there is a good reason to keep this, then we should generate the 'fake'
# mask and original image once rather than on every denoising step.
latent_model_input = self.add_inpainting_channels_to_latents(
latents=latent_model_input,
masked_ref_image_latents=torch.zeros_like(latent_model_input[:1]),
inpainting_mask=torch.ones_like(latent_model_input[:1, :1]),
)
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
sample=latent_model_input,
timestep=t, # TODO: debug how handled batched and non batched timesteps
@@ -542,17 +551,18 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
# compute the previous noisy sample x_t -> x_t-1
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting again.
for guidance in additional_guidance:
# apply the mask to any "denoised" or "pred_original_sample" fields
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting
# again.
if mask_guidance is not None:
# Apply the mask to any "denoised" or "pred_original_sample" fields.
if hasattr(step_output, "denoised"):
step_output.pred_original_sample = guidance(step_output.denoised, self.scheduler.timesteps[-1])
step_output.pred_original_sample = mask_guidance(step_output.denoised, self.scheduler.timesteps[-1])
elif hasattr(step_output, "pred_original_sample"):
step_output.pred_original_sample = guidance(
step_output.pred_original_sample = mask_guidance(
step_output.pred_original_sample, self.scheduler.timesteps[-1]
)
else:
step_output.pred_original_sample = guidance(latents, self.scheduler.timesteps[-1])
step_output.pred_original_sample = mask_guidance(latents, self.scheduler.timesteps[-1])
return step_output
@@ -575,17 +585,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
**kwargs,
):
"""predict the noise residual"""
if is_inpainting_model(self.unet) and latents.size(1) == 4:
# Pad out normal non-inpainting inputs for an inpainting model.
# FIXME: There are too many layers of functions and we have too many different ways of
# overriding things! This should get handled in a way more consistent with the other
# use of AddsMaskLatents.
latents = AddsMaskLatents(
self._unet_forward,
mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype),
).add_mask_channels(latents)
# First three args should be positional, not keywords, so torch hooks can see them.
return self.unet(
latents,

View File

@@ -0,0 +1,242 @@
from __future__ import annotations
import copy
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData
from invokeai.backend.tiles.utils import TBLR
# The maximum number of regions with compatible sizes that will be batched together.
# Larger batch sizes improve speed, but require more device memory.
MAX_REGION_BATCH_SIZE = 4
@dataclass
class MultiDiffusionRegionConditioning:
# Region coords in latent space.
region: TBLR
text_conditioning_data: TextConditioningData
control_data: list[ControlNetData]
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
def _split_into_region_batches(
self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]
) -> list[list[MultiDiffusionRegionConditioning]]:
# Group the regions by shape. Only regions with the same shape can be batched together.
conditioning_by_shape: dict[tuple[int, int], list[MultiDiffusionRegionConditioning]] = {}
for region_conditioning in multi_diffusion_conditioning:
shape_hw = (
region_conditioning.region.bottom - region_conditioning.region.top,
region_conditioning.region.right - region_conditioning.region.left,
)
# In python, a tuple of hashable objects is hashable, so can be used as a key in a dict.
if shape_hw not in conditioning_by_shape:
conditioning_by_shape[shape_hw] = []
conditioning_by_shape[shape_hw].append(region_conditioning)
# Split the regions into batches, respecting the MAX_REGION_BATCH_SIZE constraint.
region_conditioning_batches = []
for region_conditioning_batch in conditioning_by_shape.values():
for i in range(0, len(region_conditioning_batch), MAX_REGION_BATCH_SIZE):
region_conditioning_batches.append(region_conditioning_batch[i : i + MAX_REGION_BATCH_SIZE])
return region_conditioning_batches
def _check_regional_prompting(self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning]):
"""Check the input conditioning and confirm that regional prompting is not used."""
for region_conditioning in multi_diffusion_conditioning:
if (
region_conditioning.text_conditioning_data.cond_regions is not None
or region_conditioning.text_conditioning_data.uncond_regions is not None
):
raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.")
def multi_diffusion_denoise(
self,
multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning],
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor],
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
) -> torch.Tensor:
self._check_regional_prompting(multi_diffusion_conditioning)
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
# TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after
# cropping into regions.
self._adjust_memory_efficient_attention(latents)
# Populate a weighted mask that will be used to combine the results from each region after every step.
# For now, we assume that each region has the same weight (1.0).
region_weight_mask = torch.zeros(
(1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype
)
for region_conditioning in multi_diffusion_conditioning:
region = region_conditioning.region
region_weight_mask[:, :, region.top : region.bottom, region.left : region.right] += 1.0
# Group the region conditioning into batches for faster processing.
# region_conditioning_batches[b][r] is the r'th region in the b'th batch.
region_conditioning_batches = self._split_into_region_batches(multi_diffusion_conditioning)
# Many of the diffusers schedulers are stateful (i.e. they update internal state in each call to step()). Since
# we are calling step() multiple times at the same timestep (once for each region batch), we must maintain a
# separate scheduler state for each region batch.
region_batch_schedulers: list[SchedulerMixin] = [
copy.deepcopy(self.scheduler) for _ in region_conditioning_batches
]
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
merged_latents = torch.zeros_like(latents)
merged_pred_original: torch.Tensor | None = None
for region_batch_idx, region_conditioning_batch in enumerate(region_conditioning_batches):
# Switch to the scheduler for the region batch.
self.scheduler = region_batch_schedulers[region_batch_idx]
# TODO(ryand): This logic has not yet been tested with input latents with a batch_size > 1.
# Prepare the latents for the region batch.
batch_latents = torch.cat(
[
latents[
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
for region_conditioning in region_conditioning_batch
],
)
# TODO(ryand): Do we have to repeat the text_conditioning_data to match the batch size? Or does step()
# handle broadcasting properly?
# TODO(ryand): Resume here!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Run the denoising step on the region.
step_output = self.step(
t=batched_t,
latents=batch_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=i,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)
# Run a denoising step on the region.
# step_output = self._region_step(
# region_conditioning=region_conditioning,
# t=batched_t,
# latents=latents,
# step_index=i,
# total_step_count=len(timesteps),
# scheduler_step_kwargs=scheduler_step_kwargs,
# )
# Store the results from the region.
region = region_conditioning.region
merged_latents[:, :, region.top : region.bottom, region.left : region.right] += step_output.prev_sample
pred_orig_sample = getattr(step_output, "pred_original_sample", None)
if pred_orig_sample is not None:
# If one region has pred_original_sample, then we can assume that all regions will have it, because
# they all use the same scheduler.
if merged_pred_original is None:
merged_pred_original = torch.zeros_like(latents)
merged_pred_original[:, :, region.top : region.bottom, region.left : region.right] += (
pred_orig_sample
)
# Normalize the merged results.
latents = torch.where(region_weight_mask > 0, merged_latents / region_weight_mask, merged_latents)
predicted_original = None
if merged_pred_original is not None:
predicted_original = torch.where(
region_weight_mask > 0, merged_pred_original / region_weight_mask, merged_pred_original
)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
return latents
@torch.inference_mode()
def _region_batch_step(
self,
region_conditioning: MultiDiffusionRegionConditioning,
t: torch.Tensor,
latents: torch.Tensor,
step_index: int,
total_step_count: int,
scheduler_step_kwargs: dict[str, Any],
):
# Crop the inputs to the region.
region_latents = latents[
:,
:,
region_conditioning.region.top : region_conditioning.region.bottom,
region_conditioning.region.left : region_conditioning.region.right,
]
# Run the denoising step on the region.
return self.step(
t=t,
latents=region_latents,
conditioning_data=region_conditioning.text_conditioning_data,
step_index=step_index,
total_step_count=total_step_count,
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=None,
mask=None,
masked_latents=None,
control_data=region_conditioning.control_data,
)

View File

@@ -65,6 +65,18 @@ class TextualInversionModelRaw(RawModel):
return result
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
class TextualInversionManager(BaseTextualInversionManager):
"""TextualInversionManager implements the BaseTextualInversionManager ABC from the compel library."""

View File

@@ -1,29 +1,36 @@
"""Context class to silence transformers and diffusers warnings."""
import warnings
from typing import Any
from contextlib import ContextDecorator
from diffusers import logging as diffusers_logging
from diffusers.utils import logging as diffusers_logging
from transformers import logging as transformers_logging
class SilenceWarnings(object):
"""Use in context to temporarily turn off warnings from transformers & diffusers modules.
# Inherit from ContextDecorator to allow using SilenceWarnings as both a context manager and a decorator.
class SilenceWarnings(ContextDecorator):
"""A context manager that disables warnings from transformers & diffusers modules while active.
As context manager:
```
with SilenceWarnings():
# do something
```
As decorator:
```
@SilenceWarnings()
def some_function():
# do something
```
"""
def __init__(self) -> None:
self.transformers_verbosity = transformers_logging.get_verbosity()
self.diffusers_verbosity = diffusers_logging.get_verbosity()
def __enter__(self) -> None:
self._transformers_verbosity = transformers_logging.get_verbosity()
self._diffusers_verbosity = diffusers_logging.get_verbosity()
transformers_logging.set_verbosity_error()
diffusers_logging.set_verbosity_error()
warnings.simplefilter("ignore")
def __exit__(self, *args: Any) -> None:
transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity)
def __exit__(self, *args) -> None:
transformers_logging.set_verbosity(self._transformers_verbosity)
diffusers_logging.set_verbosity(self._diffusers_verbosity)
warnings.simplefilter("default")

View File

@@ -1,17 +1,43 @@
import base64
import io
import os
import warnings
import re
import unicodedata
from pathlib import Path
from diffusers import logging as diffusers_logging
from PIL import Image
from transformers import logging as transformers_logging
# actual size of a gig
GIG = 1073741824
def slugify(value: str, allow_unicode: bool = False) -> str:
"""
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
dashes to single dashes. Remove characters that aren't alphanumerics,
underscores, or hyphens. Replace slashes with underscores.
Convert to lowercase. Also strip leading and
trailing whitespace, dashes, and underscores.
Adapted from Django: https://github.com/django/django/blob/main/django/utils/text.py
"""
value = str(value)
if allow_unicode:
value = unicodedata.normalize("NFKC", value)
else:
value = unicodedata.normalize("NFKD", value).encode("ascii", "ignore").decode("ascii")
value = re.sub(r"[/]", "_", value.lower())
value = re.sub(r"[^.\w\s-]", "", value.lower())
return re.sub(r"[-\s]+", "-", value).strip("-_")
def safe_filename(directory: Path, value: str) -> str:
"""Make a string safe to use as a filename."""
escaped_string = slugify(value)
max_name_length = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 256
return escaped_string[len(escaped_string) - max_name_length :]
def directory_size(directory: Path) -> int:
"""
Return the aggregate size of all files in a directory (bytes).
@@ -51,21 +77,3 @@ class Chdir(object):
def __exit__(self, *args):
os.chdir(self.original)
class SilenceWarnings(object):
"""Context manager to temporarily lower verbosity of diffusers & transformers warning messages."""
def __enter__(self):
"""Set verbosity to error."""
self.transformers_verbosity = transformers_logging.get_verbosity()
self.diffusers_verbosity = diffusers_logging.get_verbosity()
transformers_logging.set_verbosity_error()
diffusers_logging.set_verbosity_error()
warnings.simplefilter("ignore")
def __exit__(self, type, value, traceback):
"""Restore logger verbosity to state before context was entered."""
transformers_logging.set_verbosity(self.transformers_verbosity)
diffusers_logging.set_verbosity(self.diffusers_verbosity)
warnings.simplefilter("default")

View File

@@ -22,7 +22,13 @@ import type { BatchConfig } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { assert } from 'tsafe';
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
const matcher = isAnyOf(
caLayerImageChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caLayerModelChanged,
caLayerRecalled
);
const DEBOUNCE_MS = 300;
const log = logger('session');
@@ -73,9 +79,10 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
const originalConfig = originalLayer?.controlAdapter.processorConfig;
const image = layer.controlAdapter.image;
const processedImage = layer.controlAdapter.processedImage;
const config = layer.controlAdapter.processorConfig;
if (isEqual(config, originalConfig) && isEqual(image, originalImage)) {
if (isEqual(config, originalConfig) && isEqual(image, originalImage) && processedImage) {
// Neither config nor image have changed, we can bail
return;
}

View File

@@ -5,43 +5,122 @@ import {
socketModelInstallCancelled,
socketModelInstallComplete,
socketModelInstallDownloadProgress,
socketModelInstallDownloadsComplete,
socketModelInstallDownloadStarted,
socketModelInstallError,
socketModelInstallStarted,
} from 'services/events/actions';
/**
* A model install has two main stages - downloading and installing. All these events are namespaced under `model_install_`
* which is a bit misleading. For example, a `model_install_started` event is actually fired _after_ the model has fully
* downloaded and is being "physically" installed.
*
* Note: the download events are only fired for remote model installs, not local.
*
* Here's the expected flow:
* - API receives install request, model manager preps the install
* - `model_install_download_started` fired when the download starts
* - `model_install_download_progress` fired continually until the download is complete
* - `model_install_download_complete` fired when the download is complete
* - `model_install_started` fired when the "physical" installation starts
* - `model_install_complete` fired when the installation is complete
* - `model_install_cancelled` fired if the installation is cancelled
* - `model_install_error` fired if the installation has an error
*/
const selectModelInstalls = modelsApi.endpoints.listModelInstalls.select();
export const addModelInstallEventListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: socketModelInstallDownloadProgress,
effect: async (action, { dispatch }) => {
const { bytes, total_bytes, id } = action.payload.data;
actionCreator: socketModelInstallDownloadStarted,
effect: async (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.bytes = bytes;
modelImport.total_bytes = total_bytes;
modelImport.status = 'downloading';
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'downloading';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallStarted,
effect: async (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'running';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallDownloadProgress,
effect: async (action, { dispatch, getState }) => {
const { bytes, total_bytes, id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.bytes = bytes;
modelImport.total_bytes = total_bytes;
modelImport.status = 'downloading';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallComplete,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'completed';
}
return draft;
})
);
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'completed';
}
return draft;
})
);
}
dispatch(api.util.invalidateTags([{ type: 'ModelConfig', id: LIST_TAG }]));
dispatch(api.util.invalidateTags([{ type: 'ModelScanFolderResults', id: LIST_TAG }]));
},
@@ -49,37 +128,69 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
startAppListening({
actionCreator: socketModelInstallError,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id, error, error_type } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'error';
modelImport.error_reason = error_type;
modelImport.error = error;
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'error';
modelImport.error_reason = error_type;
modelImport.error = error;
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallCancelled,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'cancelled';
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'cancelled';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallDownloadsComplete,
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'downloads_done';
}
return draft;
})
);
}
},
});
};

View File

@@ -4,6 +4,7 @@ import {
caLayerControlModeChanged,
caLayerImageChanged,
caLayerModelChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caOrIPALayerBeginEndStepPctChanged,
caOrIPALayerWeightChanged,
@@ -84,6 +85,14 @@ export const CALayerControlAdapterWrapper = memo(({ layerId }: Props) => {
[dispatch, layerId]
);
const onErrorLoadingImage = useCallback(() => {
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
}, [dispatch, layerId]);
const onErrorLoadingProcessedImage = useCallback(() => {
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
}, [dispatch, layerId]);
const droppableData = useMemo<CALayerImageDropData>(
() => ({
actionType: 'SET_CA_LAYER_IMAGE',
@@ -114,6 +123,8 @@ export const CALayerControlAdapterWrapper = memo(({ layerId }: Props) => {
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
onErrorLoadingImage={onErrorLoadingImage}
onErrorLoadingProcessedImage={onErrorLoadingProcessedImage}
/>
);
});

View File

@@ -28,6 +28,8 @@ type Props = {
onChangeProcessorConfig: (processorConfig: ProcessorConfig | null) => void;
onChangeModel: (modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => void;
onChangeImage: (imageDTO: ImageDTO | null) => void;
onErrorLoadingImage: () => void;
onErrorLoadingProcessedImage: () => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
@@ -41,6 +43,8 @@ export const ControlAdapter = memo(
onChangeProcessorConfig,
onChangeModel,
onChangeImage,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
droppableData,
postUploadAction,
}: Props) => {
@@ -91,6 +95,8 @@ export const ControlAdapter = memo(
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
onErrorLoadingImage={onErrorLoadingImage}
onErrorLoadingProcessedImage={onErrorLoadingProcessedImage}
/>
</Flex>
</Flex>

View File

@@ -27,10 +27,19 @@ type Props = {
onChangeImage: (imageDTO: ImageDTO | null) => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
onErrorLoadingImage: () => void;
onErrorLoadingProcessedImage: () => void;
};
export const ControlAdapterImagePreview = memo(
({ controlAdapter, onChangeImage, droppableData, postUploadAction }: Props) => {
({
controlAdapter,
onChangeImage,
droppableData,
postUploadAction,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
}: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
@@ -128,10 +137,23 @@ export const ControlAdapterImagePreview = memo(
controlAdapter.processorConfig !== null;
useEffect(() => {
if (isConnected && (isErrorControlImage || isErrorProcessedControlImage)) {
handleResetControlImage();
if (!isConnected) {
return;
}
}, [handleResetControlImage, isConnected, isErrorControlImage, isErrorProcessedControlImage]);
if (isErrorControlImage) {
onErrorLoadingImage();
}
if (isErrorProcessedControlImage) {
onErrorLoadingProcessedImage();
}
}, [
handleResetControlImage,
isConnected,
isErrorControlImage,
isErrorProcessedControlImage,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
]);
return (
<Flex
@@ -167,6 +189,7 @@ export const ControlAdapterImagePreview = memo(
droppableData={droppableData}
imageDTO={processedControlImage}
isUploadDisabled={true}
onError={handleResetControlImage}
/>
</Box>

View File

@@ -4,20 +4,35 @@ import { createSelector } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useMouseEvents } from 'features/controlLayers/hooks/mouseEventHooks';
import { BRUSH_SPACING_PCT, MAX_BRUSH_SPACING_PX, MIN_BRUSH_SPACING_PX } from 'features/controlLayers/konva/constants';
import { setStageEventHandlers } from 'features/controlLayers/konva/events';
import { debouncedRenderers, renderers as normalRenderers } from 'features/controlLayers/konva/renderers';
import {
$brushSize,
$brushSpacingPx,
$isDrawing,
$lastAddedPoint,
$lastCursorPos,
$lastMouseDownPos,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
$tool,
brushSizeChanged,
isRegionalGuidanceLayer,
layerBboxChanged,
layerTranslated,
rgLayerLineAdded,
rgLayerPointsAdded,
rgLayerRectAdded,
selectControlLayersSlice,
} from 'features/controlLayers/store/controlLayersSlice';
import { debouncedRenderers, renderers as normalRenderers } from 'features/controlLayers/util/renderers';
import type { AddLineArg, AddPointToLineArg, AddRectArg } from 'features/controlLayers/store/types';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import { clamp } from 'lodash-es';
import { memo, useCallback, useLayoutEffect, useMemo, useState } from 'react';
import { getImageDTO } from 'services/api/endpoints/images';
import { useDevicePixelRatio } from 'use-device-pixel-ratio';
import { v4 as uuidv4 } from 'uuid';
@@ -47,7 +62,6 @@ const useStageRenderer = (
const dispatch = useAppDispatch();
const state = useAppSelector((s) => s.controlLayers.present);
const tool = useStore($tool);
const mouseEventHandlers = useMouseEvents();
const lastCursorPos = useStore($lastCursorPos);
const lastMouseDownPos = useStore($lastMouseDownPos);
const selectedLayerIdColor = useAppSelector(selectSelectedLayerColor);
@@ -56,6 +70,26 @@ const useStageRenderer = (
const layerCount = useMemo(() => state.layers.length, [state.layers]);
const renderers = useMemo(() => (asPreview ? debouncedRenderers : normalRenderers), [asPreview]);
const dpr = useDevicePixelRatio({ round: false });
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const brushSpacingPx = useMemo(
() => clamp(state.brushSize / BRUSH_SPACING_PCT, MIN_BRUSH_SPACING_PX, MAX_BRUSH_SPACING_PX),
[state.brushSize]
);
useLayoutEffect(() => {
$brushSize.set(state.brushSize);
$brushSpacingPx.set(brushSpacingPx);
$selectedLayerId.set(state.selectedLayerId);
$selectedLayerType.set(selectedLayerType);
$shouldInvertBrushSizeScrollDirection.set(shouldInvertBrushSizeScrollDirection);
}, [
brushSpacingPx,
selectedLayerIdColor,
selectedLayerType,
shouldInvertBrushSizeScrollDirection,
state.brushSize,
state.selectedLayerId,
]);
const onLayerPosChanged = useCallback(
(layerId: string, x: number, y: number) => {
@@ -71,6 +105,31 @@ const useStageRenderer = (
[dispatch]
);
const onRGLayerLineAdded = useCallback(
(arg: AddLineArg) => {
dispatch(rgLayerLineAdded(arg));
},
[dispatch]
);
const onRGLayerPointAddedToLine = useCallback(
(arg: AddPointToLineArg) => {
dispatch(rgLayerPointsAdded(arg));
},
[dispatch]
);
const onRGLayerRectAdded = useCallback(
(arg: AddRectArg) => {
dispatch(rgLayerRectAdded(arg));
},
[dispatch]
);
const onBrushSizeChanged = useCallback(
(size: number) => {
dispatch(brushSizeChanged(size));
},
[dispatch]
);
useLayoutEffect(() => {
log.trace('Initializing stage');
if (!container) {
@@ -88,21 +147,29 @@ const useStageRenderer = (
if (asPreview) {
return;
}
stage.on('mousedown', mouseEventHandlers.onMouseDown);
stage.on('mouseup', mouseEventHandlers.onMouseUp);
stage.on('mousemove', mouseEventHandlers.onMouseMove);
stage.on('mouseleave', mouseEventHandlers.onMouseLeave);
stage.on('wheel', mouseEventHandlers.onMouseWheel);
const cleanup = setStageEventHandlers({
stage,
$tool,
$isDrawing,
$lastMouseDownPos,
$lastCursorPos,
$lastAddedPoint,
$brushSize,
$brushSpacingPx,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
onRGLayerLineAdded,
onRGLayerPointAddedToLine,
onRGLayerRectAdded,
onBrushSizeChanged,
});
return () => {
log.trace('Cleaning up stage listeners');
stage.off('mousedown', mouseEventHandlers.onMouseDown);
stage.off('mouseup', mouseEventHandlers.onMouseUp);
stage.off('mousemove', mouseEventHandlers.onMouseMove);
stage.off('mouseleave', mouseEventHandlers.onMouseLeave);
stage.off('wheel', mouseEventHandlers.onMouseWheel);
log.trace('Removing stage listeners');
cleanup();
};
}, [stage, asPreview, mouseEventHandlers]);
}, [asPreview, onBrushSizeChanged, onRGLayerLineAdded, onRGLayerPointAddedToLine, onRGLayerRectAdded, stage]);
useLayoutEffect(() => {
log.trace('Updating stage dimensions');
@@ -160,7 +227,7 @@ const useStageRenderer = (
useLayoutEffect(() => {
log.trace('Rendering layers');
renderers.renderLayers(stage, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
renderers.renderLayers(stage, state.layers, state.globalMaskLayerOpacity, tool, getImageDTO, onLayerPosChanged);
}, [
stage,
state.layers,

View File

@@ -1,233 +0,0 @@
import { $ctrl, $meta } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { calculateNewBrushSize } from 'features/canvas/hooks/useCanvasZoom';
import {
$isDrawing,
$lastCursorPos,
$lastMouseDownPos,
$tool,
brushSizeChanged,
rgLayerLineAdded,
rgLayerPointsAdded,
rgLayerRectAdded,
} from 'features/controlLayers/store/controlLayersSlice';
import type Konva from 'konva';
import type { KonvaEventObject } from 'konva/lib/Node';
import type { Vector2d } from 'konva/lib/types';
import { clamp } from 'lodash-es';
import { useCallback, useMemo, useRef } from 'react';
const getIsFocused = (stage: Konva.Stage) => {
return stage.container().contains(document.activeElement);
};
const getIsMouseDown = (e: KonvaEventObject<MouseEvent>) => e.evt.buttons === 1;
const SNAP_PX = 10;
export const snapPosToStage = (pos: Vector2d, stage: Konva.Stage) => {
const snappedPos = { ...pos };
// Get the normalized threshold for snapping to the edge of the stage
const thresholdX = SNAP_PX / stage.scaleX();
const thresholdY = SNAP_PX / stage.scaleY();
const stageWidth = stage.width() / stage.scaleX();
const stageHeight = stage.height() / stage.scaleY();
// Snap to the edge of the stage if within threshold
if (pos.x - thresholdX < 0) {
snappedPos.x = 0;
} else if (pos.x + thresholdX > stageWidth) {
snappedPos.x = Math.floor(stageWidth);
}
if (pos.y - thresholdY < 0) {
snappedPos.y = 0;
} else if (pos.y + thresholdY > stageHeight) {
snappedPos.y = Math.floor(stageHeight);
}
return snappedPos;
};
export const getScaledFlooredCursorPosition = (stage: Konva.Stage) => {
const pointerPosition = stage.getPointerPosition();
const stageTransform = stage.getAbsoluteTransform().copy();
if (!pointerPosition) {
return;
}
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
return {
x: Math.floor(scaledCursorPosition.x),
y: Math.floor(scaledCursorPosition.y),
};
};
const syncCursorPos = (stage: Konva.Stage): Vector2d | null => {
const pos = getScaledFlooredCursorPosition(stage);
if (!pos) {
return null;
}
$lastCursorPos.set(pos);
return pos;
};
const BRUSH_SPACING_PCT = 10;
const MIN_BRUSH_SPACING_PX = 5;
const MAX_BRUSH_SPACING_PX = 15;
export const useMouseEvents = () => {
const dispatch = useAppDispatch();
const selectedLayerId = useAppSelector((s) => s.controlLayers.present.selectedLayerId);
const selectedLayerType = useAppSelector((s) => {
const selectedLayer = s.controlLayers.present.layers.find((l) => l.id === s.controlLayers.present.selectedLayerId);
if (!selectedLayer) {
return null;
}
return selectedLayer.type;
});
const tool = useStore($tool);
const lastCursorPosRef = useRef<[number, number] | null>(null);
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const brushSize = useAppSelector((s) => s.controlLayers.present.brushSize);
const brushSpacingPx = useMemo(
() => clamp(brushSize / BRUSH_SPACING_PCT, MIN_BRUSH_SPACING_PX, MAX_BRUSH_SPACING_PX),
[brushSize]
);
const onMouseDown = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (tool === 'brush' || tool === 'eraser') {
dispatch(
rgLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
})
);
$isDrawing.set(true);
$lastMouseDownPos.set(pos);
} else if (tool === 'rect') {
$lastMouseDownPos.set(snapPosToStage(pos, stage));
}
},
[dispatch, selectedLayerId, selectedLayerType, tool]
);
const onMouseUp = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = $lastCursorPos.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
const lastPos = $lastMouseDownPos.get();
const tool = $tool.get();
if (lastPos && selectedLayerId && tool === 'rect') {
const snappedPos = snapPosToStage(pos, stage);
dispatch(
rgLayerRectAdded({
layerId: selectedLayerId,
rect: {
x: Math.min(snappedPos.x, lastPos.x),
y: Math.min(snappedPos.y, lastPos.y),
width: Math.abs(snappedPos.x - lastPos.x),
height: Math.abs(snappedPos.y - lastPos.y),
},
})
);
}
$isDrawing.set(false);
$lastMouseDownPos.set(null);
},
[dispatch, selectedLayerId, selectedLayerType]
);
const onMouseMove = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
if ($isDrawing.get()) {
// Continue the last line
if (lastCursorPosRef.current) {
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
if (Math.hypot(lastCursorPosRef.current[0] - pos.x, lastCursorPosRef.current[1] - pos.y) < brushSpacingPx) {
return;
}
}
lastCursorPosRef.current = [pos.x, pos.y];
dispatch(rgLayerPointsAdded({ layerId: selectedLayerId, point: lastCursorPosRef.current }));
} else {
// Start a new line
dispatch(rgLayerLineAdded({ layerId: selectedLayerId, points: [pos.x, pos.y, pos.x, pos.y], tool }));
}
$isDrawing.set(true);
}
},
[brushSpacingPx, dispatch, selectedLayerId, selectedLayerType, tool]
);
const onMouseLeave = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
$isDrawing.set(false);
$lastCursorPos.set(null);
$lastMouseDownPos.set(null);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
dispatch(rgLayerPointsAdded({ layerId: selectedLayerId, point: [pos.x, pos.y] }));
}
},
[selectedLayerId, selectedLayerType, tool, dispatch]
);
const onMouseWheel = useCallback(
(e: KonvaEventObject<WheelEvent>) => {
e.evt.preventDefault();
if (selectedLayerType !== 'regional_guidance_layer' || (tool !== 'brush' && tool !== 'eraser')) {
return;
}
// checking for ctrl key is pressed or not,
// so that brush size can be controlled using ctrl + scroll up/down
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if (shouldInvertBrushSizeScrollDirection) {
delta = -delta;
}
if ($ctrl.get() || $meta.get()) {
dispatch(brushSizeChanged(calculateNewBrushSize(brushSize, delta)));
}
},
[selectedLayerType, tool, shouldInvertBrushSizeScrollDirection, dispatch, brushSize]
);
const handlers = useMemo(
() => ({ onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel }),
[onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel]
);
return handlers;
};

View File

@@ -1,11 +1,10 @@
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { imageDataToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_OBJECT_GROUP_NAME } from 'features/controlLayers/store/controlLayersSlice';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import { assert } from 'tsafe';
const GET_CLIENT_RECT_CONFIG = { skipTransform: true };
import { RG_LAYER_OBJECT_GROUP_NAME } from './naming';
type Extents = {
minX: number;
@@ -14,10 +13,13 @@ type Extents = {
maxY: number;
};
const GET_CLIENT_RECT_CONFIG = { skipTransform: true };
//#region getImageDataBbox
/**
* Get the bounding box of an image.
* @param imageData The ImageData object to get the bounding box of.
* @returns The minimum and maximum x and y values of the image's bounding box.
* @returns The minimum and maximum x and y values of the image's bounding box, or null if the image has no pixels.
*/
const getImageDataBbox = (imageData: ImageData): Extents | null => {
const { data, width, height } = imageData;
@@ -51,7 +53,9 @@ const getImageDataBbox = (imageData: ImageData): Extents | null => {
return isEmpty ? null : { minX, minY, maxX, maxY };
};
//#endregion
//#region getIsolatedRGLayerClone
/**
* Clones a regional guidance konva layer onto an offscreen stage/canvas. This allows the pixel data for a given layer
* to be captured, manipulated or analyzed without interference from other layers.
@@ -88,7 +92,9 @@ const getIsolatedRGLayerClone = (layer: Konva.Layer): { stageClone: Konva.Stage;
return { stageClone, layerClone };
};
//#endregion
//#region getLayerBboxPixels
/**
* Get the bounding box of a regional prompt konva layer. This function has special handling for regional prompt layers.
* @param layer The konva layer to get the bounding box of.
@@ -137,7 +143,9 @@ export const getLayerBboxPixels = (layer: Konva.Layer, preview: boolean = false)
return correctedLayerBbox;
};
//#endregion
//#region getLayerBboxFast
/**
* Get the bounding box of a konva layer. This function is faster than `getLayerBboxPixels` but less accurate. It
* should only be used when there are no eraser strokes or shapes in the layer.
@@ -153,3 +161,4 @@ export const getLayerBboxFast = (layer: Konva.Layer): IRect => {
height: Math.floor(bbox.height),
};
};
//#endregion

View File

@@ -0,0 +1,36 @@
/**
* A transparency checker pattern image.
* This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
*/
export const TRANSPARENCY_CHECKER_PATTERN =
'';
/**
* The color of a bounding box stroke when its object is selected.
*/
export const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
/**
* The inner border color for the brush preview.
*/
export const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
/**
* The outer border color for the brush preview.
*/
export const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
/**
* The target spacing of individual points of brush strokes, as a percentage of the brush size.
*/
export const BRUSH_SPACING_PCT = 10;
/**
* The minimum brush spacing in pixels.
*/
export const MIN_BRUSH_SPACING_PX = 5;
/**
* The maximum brush spacing in pixels.
*/
export const MAX_BRUSH_SPACING_PX = 15;

View File

@@ -0,0 +1,201 @@
import { calculateNewBrushSize } from 'features/canvas/hooks/useCanvasZoom';
import {
getIsFocused,
getIsMouseDown,
getScaledFlooredCursorPosition,
snapPosToStage,
} from 'features/controlLayers/konva/util';
import type { AddLineArg, AddPointToLineArg, AddRectArg, Layer, Tool } from 'features/controlLayers/store/types';
import type Konva from 'konva';
import type { Vector2d } from 'konva/lib/types';
import type { WritableAtom } from 'nanostores';
import { TOOL_PREVIEW_LAYER_ID } from './naming';
type SetStageEventHandlersArg = {
stage: Konva.Stage;
$tool: WritableAtom<Tool>;
$isDrawing: WritableAtom<boolean>;
$lastMouseDownPos: WritableAtom<Vector2d | null>;
$lastCursorPos: WritableAtom<Vector2d | null>;
$lastAddedPoint: WritableAtom<Vector2d | null>;
$brushSize: WritableAtom<number>;
$brushSpacingPx: WritableAtom<number>;
$selectedLayerId: WritableAtom<string | null>;
$selectedLayerType: WritableAtom<Layer['type'] | null>;
$shouldInvertBrushSizeScrollDirection: WritableAtom<boolean>;
onRGLayerLineAdded: (arg: AddLineArg) => void;
onRGLayerPointAddedToLine: (arg: AddPointToLineArg) => void;
onRGLayerRectAdded: (arg: AddRectArg) => void;
onBrushSizeChanged: (size: number) => void;
};
const syncCursorPos = (stage: Konva.Stage, $lastCursorPos: WritableAtom<Vector2d | null>) => {
const pos = getScaledFlooredCursorPosition(stage);
if (!pos) {
return null;
}
$lastCursorPos.set(pos);
return pos;
};
export const setStageEventHandlers = ({
stage,
$tool,
$isDrawing,
$lastMouseDownPos,
$lastCursorPos,
$lastAddedPoint,
$brushSize,
$brushSpacingPx,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
onRGLayerLineAdded,
onRGLayerPointAddedToLine,
onRGLayerRectAdded,
onBrushSizeChanged,
}: SetStageEventHandlersArg): (() => void) => {
stage.on('mouseenter', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(tool === 'brush' || tool === 'eraser');
});
stage.on('mousedown', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
const pos = syncCursorPos(stage, $lastCursorPos);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (tool === 'brush' || tool === 'eraser') {
onRGLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
});
$isDrawing.set(true);
$lastMouseDownPos.set(pos);
} else if (tool === 'rect') {
$lastMouseDownPos.set(snapPosToStage(pos, stage));
}
});
stage.on('mouseup', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = $lastCursorPos.get();
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
const lastPos = $lastMouseDownPos.get();
const tool = $tool.get();
if (lastPos && selectedLayerId && tool === 'rect') {
const snappedPos = snapPosToStage(pos, stage);
onRGLayerRectAdded({
layerId: selectedLayerId,
rect: {
x: Math.min(snappedPos.x, lastPos.x),
y: Math.min(snappedPos.y, lastPos.y),
width: Math.abs(snappedPos.x - lastPos.x),
height: Math.abs(snappedPos.y - lastPos.y),
},
});
}
$isDrawing.set(false);
$lastMouseDownPos.set(null);
});
stage.on('mousemove', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
const pos = syncCursorPos(stage, $lastCursorPos);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(tool === 'brush' || tool === 'eraser');
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
if ($isDrawing.get()) {
// Continue the last line
const lastAddedPoint = $lastAddedPoint.get();
if (lastAddedPoint) {
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
if (Math.hypot(lastAddedPoint.x - pos.x, lastAddedPoint.y - pos.y) < $brushSpacingPx.get()) {
return;
}
}
$lastAddedPoint.set({ x: pos.x, y: pos.y });
onRGLayerPointAddedToLine({ layerId: selectedLayerId, point: [pos.x, pos.y] });
} else {
// Start a new line
onRGLayerLineAdded({ layerId: selectedLayerId, points: [pos.x, pos.y, pos.x, pos.y], tool });
}
$isDrawing.set(true);
}
});
stage.on('mouseleave', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage, $lastCursorPos);
$isDrawing.set(false);
$lastCursorPos.set(null);
$lastMouseDownPos.set(null);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
const tool = $tool.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
onRGLayerPointAddedToLine({ layerId: selectedLayerId, point: [pos.x, pos.y] });
}
});
stage.on('wheel', (e) => {
e.evt.preventDefault();
const selectedLayerType = $selectedLayerType.get();
const tool = $tool.get();
if (selectedLayerType !== 'regional_guidance_layer' || (tool !== 'brush' && tool !== 'eraser')) {
return;
}
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if ($shouldInvertBrushSizeScrollDirection.get()) {
delta = -delta;
}
if (e.evt.ctrlKey || e.evt.metaKey) {
onBrushSizeChanged(calculateNewBrushSize($brushSize.get(), delta));
}
});
return () => stage.off('mousedown mouseup mousemove mouseenter mouseleave wheel');
};

View File

@@ -0,0 +1,21 @@
/**
* Konva filters
* https://konvajs.org/docs/filters/Custom_Filter.html
*/
/**
* Calculates the lightness (HSL) of a given pixel and sets the alpha channel to that value.
* This is useful for edge maps and other masks, to make the black areas transparent.
* @param imageData The image data to apply the filter to
*/
export const LightnessToAlphaFilter = (imageData: ImageData): void => {
const len = imageData.data.length / 4;
for (let i = 0; i < len; i++) {
const r = imageData.data[i * 4 + 0] as number;
const g = imageData.data[i * 4 + 1] as number;
const b = imageData.data[i * 4 + 2] as number;
const cMin = Math.min(r, g, b);
const cMax = Math.max(r, g, b);
imageData.data[i * 4 + 3] = (cMin + cMax) / 2;
}
};

View File

@@ -0,0 +1,38 @@
/**
* This file contains IDs, names, and ID getters for konva layers and objects.
*/
// IDs for singleton Konva layers and objects
export const TOOL_PREVIEW_LAYER_ID = 'tool_preview_layer';
export const TOOL_PREVIEW_BRUSH_GROUP_ID = 'tool_preview_layer.brush_group';
export const TOOL_PREVIEW_BRUSH_FILL_ID = 'tool_preview_layer.brush_fill';
export const TOOL_PREVIEW_BRUSH_BORDER_INNER_ID = 'tool_preview_layer.brush_border_inner';
export const TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID = 'tool_preview_layer.brush_border_outer';
export const TOOL_PREVIEW_RECT_ID = 'tool_preview_layer.rect';
export const BACKGROUND_LAYER_ID = 'background_layer';
export const BACKGROUND_RECT_ID = 'background_layer.rect';
export const NO_LAYERS_MESSAGE_LAYER_ID = 'no_layers_message';
// Names for Konva layers and objects (comparable to CSS classes)
export const CA_LAYER_NAME = 'control_adapter_layer';
export const CA_LAYER_IMAGE_NAME = 'control_adapter_layer.image';
export const RG_LAYER_NAME = 'regional_guidance_layer';
export const RG_LAYER_LINE_NAME = 'regional_guidance_layer.line';
export const RG_LAYER_OBJECT_GROUP_NAME = 'regional_guidance_layer.object_group';
export const RG_LAYER_RECT_NAME = 'regional_guidance_layer.rect';
export const INITIAL_IMAGE_LAYER_ID = 'singleton_initial_image_layer';
export const INITIAL_IMAGE_LAYER_NAME = 'initial_image_layer';
export const INITIAL_IMAGE_LAYER_IMAGE_NAME = 'initial_image_layer.image';
export const LAYER_BBOX_NAME = 'layer.bbox';
export const COMPOSITING_RECT_NAME = 'compositing-rect';
// Getters for non-singleton layer and object IDs
export const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
export const getRGLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
export const getRGLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getRGLayerObjectGroupId = (layerId: string, groupId: string) => `${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
export const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIILayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;

View File

@@ -1,8 +1,7 @@
import { getStore } from 'app/store/nanostores/store';
import { rgbaColorToString, rgbColorToString } from 'features/canvas/util/colorToString';
import { getScaledFlooredCursorPosition, snapPosToStage } from 'features/controlLayers/hooks/mouseEventHooks';
import { getLayerBboxFast, getLayerBboxPixels } from 'features/controlLayers/konva/bbox';
import { LightnessToAlphaFilter } from 'features/controlLayers/konva/filters';
import {
$tool,
BACKGROUND_LAYER_ID,
BACKGROUND_RECT_ID,
CA_LAYER_IMAGE_NAME,
@@ -14,10 +13,6 @@ import {
getRGLayerObjectGroupId,
INITIAL_IMAGE_LAYER_IMAGE_NAME,
INITIAL_IMAGE_LAYER_NAME,
isControlAdapterLayer,
isInitialImageLayer,
isRegionalGuidanceLayer,
isRenderableLayer,
LAYER_BBOX_NAME,
NO_LAYERS_MESSAGE_LAYER_ID,
RG_LAYER_LINE_NAME,
@@ -30,6 +25,13 @@ import {
TOOL_PREVIEW_BRUSH_GROUP_ID,
TOOL_PREVIEW_LAYER_ID,
TOOL_PREVIEW_RECT_ID,
} from 'features/controlLayers/konva/naming';
import { getScaledFlooredCursorPosition, snapPosToStage } from 'features/controlLayers/konva/util';
import {
isControlAdapterLayer,
isInitialImageLayer,
isRegionalGuidanceLayer,
isRenderableLayer,
} from 'features/controlLayers/store/controlLayersSlice';
import type {
ControlAdapterLayer,
@@ -40,61 +42,46 @@ import type {
VectorMaskLine,
VectorMaskRect,
} from 'features/controlLayers/store/types';
import { getLayerBboxFast, getLayerBboxPixels } from 'features/controlLayers/util/bbox';
import { t } from 'i18next';
import Konva from 'konva';
import type { IRect, Vector2d } from 'konva/lib/types';
import { debounce } from 'lodash-es';
import type { RgbColor } from 'react-colorful';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
export const STAGE_BG_DATAURL =
'';
import {
BBOX_SELECTED_STROKE,
BRUSH_BORDER_INNER_COLOR,
BRUSH_BORDER_OUTER_COLOR,
TRANSPARENCY_CHECKER_PATTERN,
} from './constants';
const mapId = (object: { id: string }) => object.id;
const mapId = (object: { id: string }): string => object.id;
const selectRenderableLayers = (n: Konva.Node) =>
/**
* Konva selection callback to select all renderable layers. This includes RG, CA and II layers.
*/
const selectRenderableLayers = (n: Konva.Node): boolean =>
n.name() === RG_LAYER_NAME || n.name() === CA_LAYER_NAME || n.name() === INITIAL_IMAGE_LAYER_NAME;
const selectVectorMaskObjects = (node: Konva.Node) => {
/**
* Konva selection callback to select RG mask objects. This includes lines and rects.
*/
const selectVectorMaskObjects = (node: Konva.Node): boolean => {
return node.name() === RG_LAYER_LINE_NAME || node.name() === RG_LAYER_RECT_NAME;
};
/**
* Creates the brush preview layer.
* @param stage The konva stage to render on.
* @returns The brush preview layer.
* Creates the singleton tool preview layer and all its objects.
* @param stage The konva stage
*/
const createToolPreviewLayer = (stage: Konva.Stage) => {
const createToolPreviewLayer = (stage: Konva.Stage): Konva.Layer => {
// Initialize the brush preview layer & add to the stage
const toolPreviewLayer = new Konva.Layer({ id: TOOL_PREVIEW_LAYER_ID, visible: false, listening: false });
stage.add(toolPreviewLayer);
// Add handlers to show/hide the brush preview layer
stage.on('mousemove', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
stage.on('mouseleave', (e) => {
e.target.getStage()?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
});
stage.on('mouseenter', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
// Create the brush preview group & circles
const brushPreviewGroup = new Konva.Group({ id: TOOL_PREVIEW_BRUSH_GROUP_ID });
const brushPreviewFill = new Konva.Circle({
@@ -121,7 +108,7 @@ const createToolPreviewLayer = (stage: Konva.Stage) => {
brushPreviewGroup.add(brushPreviewBorderOuter);
toolPreviewLayer.add(brushPreviewGroup);
// Create the rect preview
// Create the rect preview - this is a rectangle drawn from the last mouse down position to the current cursor position
const rectPreview = new Konva.Rect({ id: TOOL_PREVIEW_RECT_ID, listening: false, stroke: 'white', strokeWidth: 1 });
toolPreviewLayer.add(rectPreview);
@@ -130,12 +117,14 @@ const createToolPreviewLayer = (stage: Konva.Stage) => {
/**
* Renders the brush preview for the selected tool.
* @param stage The konva stage to render on.
* @param tool The selected tool.
* @param color The selected layer's color.
* @param cursorPos The cursor position.
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool.
* @param brushSize The brush size.
* @param stage The konva stage
* @param tool The selected tool
* @param color The selected layer's color
* @param selectedLayerType The selected layer's type
* @param globalMaskLayerOpacity The global mask layer opacity
* @param cursorPos The cursor position
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool
* @param brushSize The brush size
*/
const renderToolPreview = (
stage: Konva.Stage,
@@ -146,7 +135,7 @@ const renderToolPreview = (
cursorPos: Vector2d | null,
lastMouseDownPos: Vector2d | null,
brushSize: number
) => {
): void => {
const layerCount = stage.find(selectRenderableLayers).length;
// Update the stage's pointer style
if (layerCount === 0) {
@@ -162,7 +151,7 @@ const renderToolPreview = (
// Move rect gets a crosshair
stage.container().style.cursor = 'crosshair';
} else {
// Else we use the brush preview
// Else we hide the native cursor and use the konva-rendered brush preview
stage.container().style.cursor = 'none';
}
@@ -227,28 +216,29 @@ const renderToolPreview = (
};
/**
* Creates a vector mask layer.
* @param stage The konva stage to attach the layer to.
* @param reduxLayer The redux layer to create the konva layer from.
* @param onLayerPosChanged Callback for when the layer's position changes.
* Creates a regional guidance layer.
* @param stage The konva stage
* @param layerState The regional guidance layer state
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const createRegionalGuidanceLayer = (
const createRGLayer = (
stage: Konva.Stage,
reduxLayer: RegionalGuidanceLayer,
layerState: RegionalGuidanceLayer,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
): Konva.Layer => {
// This layer hasn't been added to the konva state yet
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: RG_LAYER_NAME,
draggable: true,
dragDistance: 0,
});
// Create a `dragmove` listener for this layer
// When a drag on the layer finishes, update the layer's position in state. During the drag, konva handles changing
// the position - we do not need to call this on the `dragmove` event.
if (onLayerPosChanged) {
konvaLayer.on('dragend', function (e) {
onLayerPosChanged(reduxLayer.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
onLayerPosChanged(layerState.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
});
}
@@ -258,7 +248,7 @@ const createRegionalGuidanceLayer = (
if (!cursorPos) {
return this.getAbsolutePosition();
}
// Prevent the user from dragging the layer out of the stage bounds.
// Prevent the user from dragging the layer out of the stage bounds by constaining the cursor position to the stage bounds
if (
cursorPos.x < 0 ||
cursorPos.x > stage.width() / stage.scaleX() ||
@@ -272,7 +262,7 @@ const createRegionalGuidanceLayer = (
// The object group holds all of the layer's objects (e.g. lines and rects)
const konvaObjectGroup = new Konva.Group({
id: getRGLayerObjectGroupId(reduxLayer.id, uuidv4()),
id: getRGLayerObjectGroupId(layerState.id, uuidv4()),
name: RG_LAYER_OBJECT_GROUP_NAME,
listening: false,
});
@@ -284,47 +274,51 @@ const createRegionalGuidanceLayer = (
};
/**
* Creates a konva line from a redux vector mask line.
* @param reduxObject The redux object to create the konva line from.
* @param konvaGroup The konva group to add the line to.
* Creates a konva line from a vector mask line.
* @param vectorMaskLine The vector mask line state
* @param layerObjectGroup The konva layer's object group to add the line to
*/
const createVectorMaskLine = (reduxObject: VectorMaskLine, konvaGroup: Konva.Group): Konva.Line => {
const vectorMaskLine = new Konva.Line({
id: reduxObject.id,
key: reduxObject.id,
const createVectorMaskLine = (vectorMaskLine: VectorMaskLine, layerObjectGroup: Konva.Group): Konva.Line => {
const konvaLine = new Konva.Line({
id: vectorMaskLine.id,
key: vectorMaskLine.id,
name: RG_LAYER_LINE_NAME,
strokeWidth: reduxObject.strokeWidth,
strokeWidth: vectorMaskLine.strokeWidth,
tension: 0,
lineCap: 'round',
lineJoin: 'round',
shadowForStrokeEnabled: false,
globalCompositeOperation: reduxObject.tool === 'brush' ? 'source-over' : 'destination-out',
globalCompositeOperation: vectorMaskLine.tool === 'brush' ? 'source-over' : 'destination-out',
listening: false,
});
konvaGroup.add(vectorMaskLine);
return vectorMaskLine;
layerObjectGroup.add(konvaLine);
return konvaLine;
};
/**
* Creates a konva rect from a redux vector mask rect.
* @param reduxObject The redux object to create the konva rect from.
* @param konvaGroup The konva group to add the rect to.
* Creates a konva rect from a vector mask rect.
* @param vectorMaskRect The vector mask rect state
* @param layerObjectGroup The konva layer's object group to add the line to
*/
const createVectorMaskRect = (reduxObject: VectorMaskRect, konvaGroup: Konva.Group): Konva.Rect => {
const vectorMaskRect = new Konva.Rect({
id: reduxObject.id,
key: reduxObject.id,
const createVectorMaskRect = (vectorMaskRect: VectorMaskRect, layerObjectGroup: Konva.Group): Konva.Rect => {
const konvaRect = new Konva.Rect({
id: vectorMaskRect.id,
key: vectorMaskRect.id,
name: RG_LAYER_RECT_NAME,
x: reduxObject.x,
y: reduxObject.y,
width: reduxObject.width,
height: reduxObject.height,
x: vectorMaskRect.x,
y: vectorMaskRect.y,
width: vectorMaskRect.width,
height: vectorMaskRect.height,
listening: false,
});
konvaGroup.add(vectorMaskRect);
return vectorMaskRect;
layerObjectGroup.add(konvaRect);
return konvaRect;
};
/**
* Creates the "compositing rect" for a layer.
* @param konvaLayer The konva layer
*/
const createCompositingRect = (konvaLayer: Konva.Layer): Konva.Rect => {
const compositingRect = new Konva.Rect({ name: COMPOSITING_RECT_NAME, listening: false });
konvaLayer.add(compositingRect);
@@ -332,41 +326,41 @@ const createCompositingRect = (konvaLayer: Konva.Layer): Konva.Rect => {
};
/**
* Renders a vector mask layer.
* @param stage The konva stage to render on.
* @param reduxLayer The redux vector mask layer to render.
* @param reduxLayerIndex The index of the layer in the redux store.
* @param globalMaskLayerOpacity The opacity of the global mask layer.
* @param tool The current tool.
* Renders a regional guidance layer.
* @param stage The konva stage
* @param layerState The regional guidance layer state
* @param globalMaskLayerOpacity The global mask layer opacity
* @param tool The current tool
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const renderRegionalGuidanceLayer = (
const renderRGLayer = (
stage: Konva.Stage,
reduxLayer: RegionalGuidanceLayer,
layerState: RegionalGuidanceLayer,
globalMaskLayerOpacity: number,
tool: Tool,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
): void => {
const konvaLayer =
stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ??
createRegionalGuidanceLayer(stage, reduxLayer, onLayerPosChanged);
stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createRGLayer(stage, layerState, onLayerPosChanged);
// Update the layer's position and listening state
konvaLayer.setAttrs({
listening: tool === 'move', // The layer only listens when using the move tool - otherwise the stage is handling mouse events
x: Math.floor(reduxLayer.x),
y: Math.floor(reduxLayer.y),
x: Math.floor(layerState.x),
y: Math.floor(layerState.y),
});
// Convert the color to a string, stripping the alpha - the object group will handle opacity.
const rgbColor = rgbColorToString(reduxLayer.previewColor);
const rgbColor = rgbColorToString(layerState.previewColor);
const konvaObjectGroup = konvaLayer.findOne<Konva.Group>(`.${RG_LAYER_OBJECT_GROUP_NAME}`);
assert(konvaObjectGroup, `Object group not found for layer ${reduxLayer.id}`);
assert(konvaObjectGroup, `Object group not found for layer ${layerState.id}`);
// We use caching to handle "global" layer opacity, but caching is expensive and we should only do it when required.
let groupNeedsCache = false;
const objectIds = reduxLayer.maskObjects.map(mapId);
const objectIds = layerState.maskObjects.map(mapId);
// Destroy any objects that are no longer in the redux state
for (const objectNode of konvaObjectGroup.find(selectVectorMaskObjects)) {
if (!objectIds.includes(objectNode.id())) {
objectNode.destroy();
@@ -374,15 +368,15 @@ const renderRegionalGuidanceLayer = (
}
}
for (const reduxObject of reduxLayer.maskObjects) {
if (reduxObject.type === 'vector_mask_line') {
for (const maskObject of layerState.maskObjects) {
if (maskObject.type === 'vector_mask_line') {
const vectorMaskLine =
stage.findOne<Konva.Line>(`#${reduxObject.id}`) ?? createVectorMaskLine(reduxObject, konvaObjectGroup);
stage.findOne<Konva.Line>(`#${maskObject.id}`) ?? createVectorMaskLine(maskObject, konvaObjectGroup);
// Only update the points if they have changed. The point values are never mutated, they are only added to the
// array, so checking the length is sufficient to determine if we need to re-cache.
if (vectorMaskLine.points().length !== reduxObject.points.length) {
vectorMaskLine.points(reduxObject.points);
if (vectorMaskLine.points().length !== maskObject.points.length) {
vectorMaskLine.points(maskObject.points);
groupNeedsCache = true;
}
// Only update the color if it has changed.
@@ -390,9 +384,9 @@ const renderRegionalGuidanceLayer = (
vectorMaskLine.stroke(rgbColor);
groupNeedsCache = true;
}
} else if (reduxObject.type === 'vector_mask_rect') {
} else if (maskObject.type === 'vector_mask_rect') {
const konvaObject =
stage.findOne<Konva.Rect>(`#${reduxObject.id}`) ?? createVectorMaskRect(reduxObject, konvaObjectGroup);
stage.findOne<Konva.Rect>(`#${maskObject.id}`) ?? createVectorMaskRect(maskObject, konvaObjectGroup);
// Only update the color if it has changed.
if (konvaObject.fill() !== rgbColor) {
@@ -403,8 +397,8 @@ const renderRegionalGuidanceLayer = (
}
// Only update layer visibility if it has changed.
if (konvaLayer.visible() !== reduxLayer.isEnabled) {
konvaLayer.visible(reduxLayer.isEnabled);
if (konvaLayer.visible() !== layerState.isEnabled) {
konvaLayer.visible(layerState.isEnabled);
groupNeedsCache = true;
}
@@ -428,7 +422,7 @@ const renderRegionalGuidanceLayer = (
* Instead, with the special handling, the effect is as if you drew all the shapes at 100% opacity, flattened them to
* a single raster image, and _then_ applied the 50% opacity.
*/
if (reduxLayer.isSelected && tool !== 'move') {
if (layerState.isSelected && tool !== 'move') {
// We must clear the cache first so Konva will re-draw the group with the new compositing rect
if (konvaObjectGroup.isCached()) {
konvaObjectGroup.clearCache();
@@ -438,7 +432,7 @@ const renderRegionalGuidanceLayer = (
compositingRect.setAttrs({
// The rect should be the size of the layer - use the fast method if we don't have a pixel-perfect bbox already
...(!reduxLayer.bboxNeedsUpdate && reduxLayer.bbox ? reduxLayer.bbox : getLayerBboxFast(konvaLayer)),
...(!layerState.bboxNeedsUpdate && layerState.bbox ? layerState.bbox : getLayerBboxFast(konvaLayer)),
fill: rgbColor,
opacity: globalMaskLayerOpacity,
// Draw this rect only where there are non-transparent pixels under it (e.g. the mask shapes)
@@ -459,9 +453,14 @@ const renderRegionalGuidanceLayer = (
}
};
const createInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLayer): Konva.Layer => {
/**
* Creates an initial image konva layer.
* @param stage The konva stage
* @param layerState The initial image layer state
*/
const createIILayer = (stage: Konva.Stage, layerState: InitialImageLayer): Konva.Layer => {
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: INITIAL_IMAGE_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
@@ -470,20 +469,27 @@ const createInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
return konvaLayer;
};
const createInitialImageLayerImage = (konvaLayer: Konva.Layer, image: HTMLImageElement): Konva.Image => {
/**
* Creates the konva image for an initial image layer.
* @param konvaLayer The konva layer
* @param imageEl The image element
*/
const createIILayerImage = (konvaLayer: Konva.Layer, imageEl: HTMLImageElement): Konva.Image => {
const konvaImage = new Konva.Image({
name: INITIAL_IMAGE_LAYER_IMAGE_NAME,
image,
image: imageEl,
});
konvaLayer.add(konvaImage);
return konvaImage;
};
const updateInitialImageLayerImageAttrs = (
stage: Konva.Stage,
konvaImage: Konva.Image,
reduxLayer: InitialImageLayer
) => {
/**
* Updates an initial image layer's attributes (width, height, opacity, visibility).
* @param stage The konva stage
* @param konvaImage The konva image
* @param layerState The initial image layer state
*/
const updateIILayerImageAttrs = (stage: Konva.Stage, konvaImage: Konva.Image, layerState: InitialImageLayer): void => {
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
// TODO(psyche): Investigate and report upstream.
@@ -492,46 +498,55 @@ const updateInitialImageLayerImageAttrs = (
if (
konvaImage.width() !== newWidth ||
konvaImage.height() !== newHeight ||
konvaImage.visible() !== reduxLayer.isEnabled
konvaImage.visible() !== layerState.isEnabled
) {
konvaImage.setAttrs({
opacity: reduxLayer.opacity,
opacity: layerState.opacity,
scaleX: 1,
scaleY: 1,
width: stage.width() / stage.scaleX(),
height: stage.height() / stage.scaleY(),
visible: reduxLayer.isEnabled,
visible: layerState.isEnabled,
});
}
if (konvaImage.opacity() !== reduxLayer.opacity) {
konvaImage.opacity(reduxLayer.opacity);
if (konvaImage.opacity() !== layerState.opacity) {
konvaImage.opacity(layerState.opacity);
}
};
const updateInitialImageLayerImageSource = async (
/**
* Update an initial image layer's image source when the image changes.
* @param stage The konva stage
* @param konvaLayer The konva layer
* @param layerState The initial image layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const updateIILayerImageSource = async (
stage: Konva.Stage,
konvaLayer: Konva.Layer,
reduxLayer: InitialImageLayer
) => {
if (reduxLayer.image) {
const imageName = reduxLayer.image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
layerState: InitialImageLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): Promise<void> => {
if (layerState.image) {
const imageName = layerState.image.name;
const imageDTO = await getImageDTO(imageName);
if (!imageDTO) {
return;
}
const imageEl = new Image();
const imageId = getIILayerImageId(reduxLayer.id, imageName);
const imageId = getIILayerImageId(layerState.id, imageName);
imageEl.onload = () => {
// Find the existing image or create a new one - must find using the name, bc the id may have just changed
const konvaImage =
konvaLayer.findOne<Konva.Image>(`.${INITIAL_IMAGE_LAYER_IMAGE_NAME}`) ??
createInitialImageLayerImage(konvaLayer, imageEl);
createIILayerImage(konvaLayer, imageEl);
// Update the image's attributes
konvaImage.setAttrs({
id: imageId,
image: imageEl,
});
updateInitialImageLayerImageAttrs(stage, konvaImage, reduxLayer);
updateIILayerImageAttrs(stage, konvaImage, layerState);
imageEl.id = imageId;
};
imageEl.src = imageDTO.image_url;
@@ -540,14 +555,24 @@ const updateInitialImageLayerImageSource = async (
}
};
const renderInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLayer) => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createInitialImageLayer(stage, reduxLayer);
/**
* Renders an initial image layer.
* @param stage The konva stage
* @param layerState The initial image layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const renderIILayer = (
stage: Konva.Stage,
layerState: InitialImageLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): void => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createIILayer(stage, layerState);
const konvaImage = konvaLayer.findOne<Konva.Image>(`.${INITIAL_IMAGE_LAYER_IMAGE_NAME}`);
const canvasImageSource = konvaImage?.image();
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
const image = layerState.image;
if (image && canvasImageSource.id !== getCALayerImageId(layerState.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@@ -557,15 +582,20 @@ const renderInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
}
if (imageSourceNeedsUpdate) {
updateInitialImageLayerImageSource(stage, konvaLayer, reduxLayer);
updateIILayerImageSource(stage, konvaLayer, layerState, getImageDTO);
} else if (konvaImage) {
updateInitialImageLayerImageAttrs(stage, konvaImage, reduxLayer);
updateIILayerImageAttrs(stage, konvaImage, layerState);
}
};
const createControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLayer): Konva.Layer => {
/**
* Creates a control adapter layer.
* @param stage The konva stage
* @param layerState The control adapter layer state
*/
const createCALayer = (stage: Konva.Stage, layerState: ControlAdapterLayer): Konva.Layer => {
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: CA_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
@@ -574,39 +604,53 @@ const createControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
return konvaLayer;
};
const createControlNetLayerImage = (konvaLayer: Konva.Layer, image: HTMLImageElement): Konva.Image => {
/**
* Creates a control adapter layer image.
* @param konvaLayer The konva layer
* @param imageEl The image element
*/
const createCALayerImage = (konvaLayer: Konva.Layer, imageEl: HTMLImageElement): Konva.Image => {
const konvaImage = new Konva.Image({
name: CA_LAYER_IMAGE_NAME,
image,
image: imageEl,
});
konvaLayer.add(konvaImage);
return konvaImage;
};
const updateControlNetLayerImageSource = async (
/**
* Updates the image source for a control adapter layer. This includes loading the image from the server and updating the konva image.
* @param stage The konva stage
* @param konvaLayer The konva layer
* @param layerState The control adapter layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const updateCALayerImageSource = async (
stage: Konva.Stage,
konvaLayer: Konva.Layer,
reduxLayer: ControlAdapterLayer
) => {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
layerState: ControlAdapterLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): Promise<void> => {
const image = layerState.controlAdapter.processedImage ?? layerState.controlAdapter.image;
if (image) {
const imageName = image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
const imageDTO = await getImageDTO(imageName);
if (!imageDTO) {
return;
}
const imageEl = new Image();
const imageId = getCALayerImageId(reduxLayer.id, imageName);
const imageId = getCALayerImageId(layerState.id, imageName);
imageEl.onload = () => {
// Find the existing image or create a new one - must find using the name, bc the id may have just changed
const konvaImage =
konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`) ?? createControlNetLayerImage(konvaLayer, imageEl);
konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`) ?? createCALayerImage(konvaLayer, imageEl);
// Update the image's attributes
konvaImage.setAttrs({
id: imageId,
image: imageEl,
});
updateControlNetLayerImageAttrs(stage, konvaImage, reduxLayer);
updateCALayerImageAttrs(stage, konvaImage, layerState);
// Must cache after this to apply the filters
konvaImage.cache();
imageEl.id = imageId;
@@ -617,11 +661,17 @@ const updateControlNetLayerImageSource = async (
}
};
const updateControlNetLayerImageAttrs = (
/**
* Updates the image attributes for a control adapter layer's image (width, height, visibility, opacity, filters).
* @param stage The konva stage
* @param konvaImage The konva image
* @param layerState The control adapter layer state
*/
const updateCALayerImageAttrs = (
stage: Konva.Stage,
konvaImage: Konva.Image,
reduxLayer: ControlAdapterLayer
) => {
layerState: ControlAdapterLayer
): void => {
let needsCache = false;
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
@@ -632,36 +682,47 @@ const updateControlNetLayerImageAttrs = (
if (
konvaImage.width() !== newWidth ||
konvaImage.height() !== newHeight ||
konvaImage.visible() !== reduxLayer.isEnabled ||
hasFilter !== reduxLayer.isFilterEnabled
konvaImage.visible() !== layerState.isEnabled ||
hasFilter !== layerState.isFilterEnabled
) {
konvaImage.setAttrs({
opacity: reduxLayer.opacity,
opacity: layerState.opacity,
scaleX: 1,
scaleY: 1,
width: stage.width() / stage.scaleX(),
height: stage.height() / stage.scaleY(),
visible: reduxLayer.isEnabled,
filters: reduxLayer.isFilterEnabled ? [LightnessToAlphaFilter] : [],
visible: layerState.isEnabled,
filters: layerState.isFilterEnabled ? [LightnessToAlphaFilter] : [],
});
needsCache = true;
}
if (konvaImage.opacity() !== reduxLayer.opacity) {
konvaImage.opacity(reduxLayer.opacity);
if (konvaImage.opacity() !== layerState.opacity) {
konvaImage.opacity(layerState.opacity);
}
if (needsCache) {
konvaImage.cache();
}
};
const renderControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLayer) => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createControlNetLayer(stage, reduxLayer);
/**
* Renders a control adapter layer. If the layer doesn't already exist, it is created. Otherwise, the layer is updated
* with the current image source and attributes.
* @param stage The konva stage
* @param layerState The control adapter layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const renderCALayer = (
stage: Konva.Stage,
layerState: ControlAdapterLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): void => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createCALayer(stage, layerState);
const konvaImage = konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`);
const canvasImageSource = konvaImage?.image();
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
const image = layerState.controlAdapter.processedImage ?? layerState.controlAdapter.image;
if (image && canvasImageSource.id !== getCALayerImageId(layerState.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@@ -671,44 +732,46 @@ const renderControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
}
if (imageSourceNeedsUpdate) {
updateControlNetLayerImageSource(stage, konvaLayer, reduxLayer);
updateCALayerImageSource(stage, konvaLayer, layerState, getImageDTO);
} else if (konvaImage) {
updateControlNetLayerImageAttrs(stage, konvaImage, reduxLayer);
updateCALayerImageAttrs(stage, konvaImage, layerState);
}
};
/**
* Renders the layers on the stage.
* @param stage The konva stage to render on.
* @param reduxLayers Array of the layers from the redux store.
* @param layerOpacity The opacity of the layer.
* @param onLayerPosChanged Callback for when the layer's position changes. This is optional to allow for offscreen rendering.
* @returns
* @param stage The konva stage
* @param layerStates Array of all layer states
* @param globalMaskLayerOpacity The global mask layer opacity
* @param tool The current tool
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const renderLayers = (
stage: Konva.Stage,
reduxLayers: Layer[],
layerStates: Layer[],
globalMaskLayerOpacity: number,
tool: Tool,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
const reduxLayerIds = reduxLayers.filter(isRenderableLayer).map(mapId);
): void => {
const layerIds = layerStates.filter(isRenderableLayer).map(mapId);
// Remove un-rendered layers
for (const konvaLayer of stage.find<Konva.Layer>(selectRenderableLayers)) {
if (!reduxLayerIds.includes(konvaLayer.id())) {
if (!layerIds.includes(konvaLayer.id())) {
konvaLayer.destroy();
}
}
for (const reduxLayer of reduxLayers) {
if (isRegionalGuidanceLayer(reduxLayer)) {
renderRegionalGuidanceLayer(stage, reduxLayer, globalMaskLayerOpacity, tool, onLayerPosChanged);
for (const layer of layerStates) {
if (isRegionalGuidanceLayer(layer)) {
renderRGLayer(stage, layer, globalMaskLayerOpacity, tool, onLayerPosChanged);
}
if (isControlAdapterLayer(reduxLayer)) {
renderControlNetLayer(stage, reduxLayer);
if (isControlAdapterLayer(layer)) {
renderCALayer(stage, layer, getImageDTO);
}
if (isInitialImageLayer(reduxLayer)) {
renderInitialImageLayer(stage, reduxLayer);
if (isInitialImageLayer(layer)) {
renderIILayer(stage, layer, getImageDTO);
}
// IP Adapter layers are not rendered
}
@@ -716,13 +779,12 @@ const renderLayers = (
/**
* Creates a bounding box rect for a layer.
* @param reduxLayer The redux layer to create the bounding box for.
* @param konvaLayer The konva layer to attach the bounding box to.
* @param onBboxMouseDown Callback for when the bounding box is clicked.
* @param layerState The layer state for the layer to create the bounding box for
* @param konvaLayer The konva layer to attach the bounding box to
*/
const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
const createBboxRect = (layerState: Layer, konvaLayer: Konva.Layer): Konva.Rect => {
const rect = new Konva.Rect({
id: getLayerBboxId(reduxLayer.id),
id: getLayerBboxId(layerState.id),
name: LAYER_BBOX_NAME,
strokeWidth: 1,
visible: false,
@@ -733,12 +795,12 @@ const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
/**
* Renders the bounding boxes for the layers.
* @param stage The konva stage to render on
* @param reduxLayers An array of all redux layers to draw bboxes for
* @param stage The konva stage
* @param layerStates An array of layers to draw bboxes for
* @param tool The current tool
* @returns
*/
const renderBboxes = (stage: Konva.Stage, reduxLayers: Layer[], tool: Tool) => {
const renderBboxes = (stage: Konva.Stage, layerStates: Layer[], tool: Tool): void => {
// Hide all bboxes so they don't interfere with getClientRect
for (const bboxRect of stage.find<Konva.Rect>(`.${LAYER_BBOX_NAME}`)) {
bboxRect.visible(false);
@@ -749,39 +811,39 @@ const renderBboxes = (stage: Konva.Stage, reduxLayers: Layer[], tool: Tool) => {
return;
}
for (const reduxLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
if (!reduxLayer.bbox) {
for (const layer of layerStates.filter(isRegionalGuidanceLayer)) {
if (!layer.bbox) {
continue;
}
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`);
assert(konvaLayer, `Layer ${reduxLayer.id} not found in stage`);
const konvaLayer = stage.findOne<Konva.Layer>(`#${layer.id}`);
assert(konvaLayer, `Layer ${layer.id} not found in stage`);
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer);
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(layer, konvaLayer);
bboxRect.setAttrs({
visible: !reduxLayer.bboxNeedsUpdate,
listening: reduxLayer.isSelected,
x: reduxLayer.bbox.x,
y: reduxLayer.bbox.y,
width: reduxLayer.bbox.width,
height: reduxLayer.bbox.height,
stroke: reduxLayer.isSelected ? BBOX_SELECTED_STROKE : '',
visible: !layer.bboxNeedsUpdate,
listening: layer.isSelected,
x: layer.bbox.x,
y: layer.bbox.y,
width: layer.bbox.width,
height: layer.bbox.height,
stroke: layer.isSelected ? BBOX_SELECTED_STROKE : '',
});
}
};
/**
* Calculates the bbox of each regional guidance layer. Only calculates if the mask has changed.
* @param stage The konva stage to render on.
* @param reduxLayers An array of redux layers to calculate bboxes for
* @param stage The konva stage
* @param layerStates An array of layers to calculate bboxes for
* @param onBboxChanged Callback for when the bounding box changes
*/
const updateBboxes = (
stage: Konva.Stage,
reduxLayers: Layer[],
layerStates: Layer[],
onBboxChanged: (layerId: string, bbox: IRect | null) => void
) => {
for (const rgLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
): void => {
for (const rgLayer of layerStates.filter(isRegionalGuidanceLayer)) {
const konvaLayer = stage.findOne<Konva.Layer>(`#${rgLayer.id}`);
assert(konvaLayer, `Layer ${rgLayer.id} not found in stage`);
// We only need to recalculate the bbox if the layer has changed
@@ -808,7 +870,7 @@ const updateBboxes = (
/**
* Creates the background layer for the stage.
* @param stage The konva stage to render on
* @param stage The konva stage
*/
const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
const layer = new Konva.Layer({
@@ -829,17 +891,17 @@ const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
image.onload = () => {
background.fillPatternImage(image);
};
image.src = STAGE_BG_DATAURL;
image.src = TRANSPARENCY_CHECKER_PATTERN;
return layer;
};
/**
* Renders the background layer for the stage.
* @param stage The konva stage to render on
* @param stage The konva stage
* @param width The unscaled width of the canvas
* @param height The unscaled height of the canvas
*/
const renderBackground = (stage: Konva.Stage, width: number, height: number) => {
const renderBackground = (stage: Konva.Stage, width: number, height: number): void => {
const layer = stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`) ?? createBackgroundLayer(stage);
const background = layer.findOne<Konva.Rect>(`#${BACKGROUND_RECT_ID}`);
@@ -880,6 +942,10 @@ const arrangeLayers = (stage: Konva.Stage, layerIds: string[]): void => {
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.zIndex(nextZIndex++);
};
/**
* Creates the "no layers" fallback layer
* @param stage The konva stage
*/
const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
const noLayersMessageLayer = new Konva.Layer({
id: NO_LAYERS_MESSAGE_LAYER_ID,
@@ -891,7 +957,7 @@ const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
y: 0,
align: 'center',
verticalAlign: 'middle',
text: t('controlLayers.noLayersAdded'),
text: t('controlLayers.noLayersAdded', 'No Layers Added'),
fontFamily: '"Inter Variable", sans-serif',
fontStyle: '600',
fill: 'white',
@@ -901,7 +967,14 @@ const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
return noLayersMessageLayer;
};
const renderNoLayersMessage = (stage: Konva.Stage, layerCount: number, width: number, height: number) => {
/**
* Renders the "no layers" message when there are no layers to render
* @param stage The konva stage
* @param layerCount The current number of layers
* @param width The target width of the text
* @param height The target height of the text
*/
const renderNoLayersMessage = (stage: Konva.Stage, layerCount: number, width: number, height: number): void => {
const noLayersMessageLayer =
stage.findOne<Konva.Layer>(`#${NO_LAYERS_MESSAGE_LAYER_ID}`) ?? createNoLayersMessageLayer(stage);
if (layerCount === 0) {
@@ -936,20 +1009,3 @@ export const debouncedRenderers = {
arrangeLayers: debounce(arrangeLayers, DEBOUNCE_MS),
updateBboxes: debounce(updateBboxes, DEBOUNCE_MS),
};
/**
* Calculates the lightness (HSL) of a given pixel and sets the alpha channel to that value.
* This is useful for edge maps and other masks, to make the black areas transparent.
* @param imageData The image data to apply the filter to
*/
const LightnessToAlphaFilter = (imageData: ImageData) => {
const len = imageData.data.length / 4;
for (let i = 0; i < len; i++) {
const r = imageData.data[i * 4 + 0] as number;
const g = imageData.data[i * 4 + 1] as number;
const b = imageData.data[i * 4 + 2] as number;
const cMin = Math.min(r, g, b);
const cMax = Math.max(r, g, b);
imageData.data[i * 4 + 3] = (cMin + cMax) / 2;
}
};

View File

@@ -0,0 +1,67 @@
import type Konva from 'konva';
import type { KonvaEventObject } from 'konva/lib/Node';
import type { Vector2d } from 'konva/lib/types';
//#region getScaledFlooredCursorPosition
/**
* Gets the scaled and floored cursor position on the stage. If the cursor is not currently over the stage, returns null.
* @param stage The konva stage
*/
export const getScaledFlooredCursorPosition = (stage: Konva.Stage): Vector2d | null => {
const pointerPosition = stage.getPointerPosition();
const stageTransform = stage.getAbsoluteTransform().copy();
if (!pointerPosition) {
return null;
}
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
return {
x: Math.floor(scaledCursorPosition.x),
y: Math.floor(scaledCursorPosition.y),
};
};
//#endregion
//#region snapPosToStage
/**
* Snaps a position to the edge of the stage if within a threshold of the edge
* @param pos The position to snap
* @param stage The konva stage
* @param snapPx The snap threshold in pixels
*/
export const snapPosToStage = (pos: Vector2d, stage: Konva.Stage, snapPx = 10): Vector2d => {
const snappedPos = { ...pos };
// Get the normalized threshold for snapping to the edge of the stage
const thresholdX = snapPx / stage.scaleX();
const thresholdY = snapPx / stage.scaleY();
const stageWidth = stage.width() / stage.scaleX();
const stageHeight = stage.height() / stage.scaleY();
// Snap to the edge of the stage if within threshold
if (pos.x - thresholdX < 0) {
snappedPos.x = 0;
} else if (pos.x + thresholdX > stageWidth) {
snappedPos.x = Math.floor(stageWidth);
}
if (pos.y - thresholdY < 0) {
snappedPos.y = 0;
} else if (pos.y + thresholdY > stageHeight) {
snappedPos.y = Math.floor(stageHeight);
}
return snappedPos;
};
//#endregion
//#region getIsMouseDown
/**
* Checks if the left mouse button is currently pressed
* @param e The konva event
*/
export const getIsMouseDown = (e: KonvaEventObject<MouseEvent>): boolean => e.evt.buttons === 1;
//#endregion
//#region getIsFocused
/**
* Checks if the stage is currently focused
* @param stage The konva stage
*/
export const getIsFocused = (stage: Konva.Stage): boolean => stage.container().contains(document.activeElement);
//#endregion

View File

@@ -4,6 +4,14 @@ import type { PersistConfig, RootState } from 'app/store/store';
import { moveBackward, moveForward, moveToBack, moveToFront } from 'common/util/arrayUtils';
import { deepClone } from 'common/util/deepClone';
import { roundDownToMultiple } from 'common/util/roundDownToMultiple';
import {
getCALayerId,
getIPALayerId,
getRGLayerId,
getRGLayerLineId,
getRGLayerRectId,
INITIAL_IMAGE_LAYER_ID,
} from 'features/controlLayers/konva/naming';
import type {
CLIPVisionModelV2,
ControlModeV2,
@@ -36,6 +44,9 @@ import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
import type {
AddLineArg,
AddPointToLineArg,
AddRectArg,
ControlAdapterLayer,
ControlLayersState,
DrawingTool,
@@ -492,11 +503,11 @@ export const controlLayersSlice = createSlice({
layer.bboxNeedsUpdate = true;
layer.uploadedMaskImage = null;
},
prepare: (payload: { layerId: string; points: [number, number, number, number]; tool: DrawingTool }) => ({
prepare: (payload: AddLineArg) => ({
payload: { ...payload, lineUuid: uuidv4() },
}),
},
rgLayerPointsAdded: (state, action: PayloadAction<{ layerId: string; point: [number, number] }>) => {
rgLayerPointsAdded: (state, action: PayloadAction<AddPointToLineArg>) => {
const { layerId, point } = action.payload;
const layer = selectRGLayerOrThrow(state, layerId);
const lastLine = layer.maskObjects.findLast(isLine);
@@ -529,7 +540,7 @@ export const controlLayersSlice = createSlice({
layer.bboxNeedsUpdate = true;
layer.uploadedMaskImage = null;
},
prepare: (payload: { layerId: string; rect: IRect }) => ({ payload: { ...payload, rectUuid: uuidv4() } }),
prepare: (payload: AddRectArg) => ({ payload: { ...payload, rectUuid: uuidv4() } }),
},
rgLayerMaskImageUploaded: (state, action: PayloadAction<{ layerId: string; imageDTO: ImageDTO }>) => {
const { layerId, imageDTO } = action.payload;
@@ -883,45 +894,21 @@ const migrateControlLayersState = (state: any): any => {
return state;
};
// Ephemeral interaction state
export const $isDrawing = atom(false);
export const $lastMouseDownPos = atom<Vector2d | null>(null);
export const $tool = atom<Tool>('brush');
export const $lastCursorPos = atom<Vector2d | null>(null);
export const $isPreviewVisible = atom(true);
export const $lastAddedPoint = atom<Vector2d | null>(null);
// IDs for singleton Konva layers and objects
export const TOOL_PREVIEW_LAYER_ID = 'tool_preview_layer';
export const TOOL_PREVIEW_BRUSH_GROUP_ID = 'tool_preview_layer.brush_group';
export const TOOL_PREVIEW_BRUSH_FILL_ID = 'tool_preview_layer.brush_fill';
export const TOOL_PREVIEW_BRUSH_BORDER_INNER_ID = 'tool_preview_layer.brush_border_inner';
export const TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID = 'tool_preview_layer.brush_border_outer';
export const TOOL_PREVIEW_RECT_ID = 'tool_preview_layer.rect';
export const BACKGROUND_LAYER_ID = 'background_layer';
export const BACKGROUND_RECT_ID = 'background_layer.rect';
export const NO_LAYERS_MESSAGE_LAYER_ID = 'no_layers_message';
// Names (aka classes) for Konva layers and objects
export const CA_LAYER_NAME = 'control_adapter_layer';
export const CA_LAYER_IMAGE_NAME = 'control_adapter_layer.image';
export const RG_LAYER_NAME = 'regional_guidance_layer';
export const RG_LAYER_LINE_NAME = 'regional_guidance_layer.line';
export const RG_LAYER_OBJECT_GROUP_NAME = 'regional_guidance_layer.object_group';
export const RG_LAYER_RECT_NAME = 'regional_guidance_layer.rect';
export const INITIAL_IMAGE_LAYER_ID = 'singleton_initial_image_layer';
export const INITIAL_IMAGE_LAYER_NAME = 'initial_image_layer';
export const INITIAL_IMAGE_LAYER_IMAGE_NAME = 'initial_image_layer.image';
export const LAYER_BBOX_NAME = 'layer.bbox';
export const COMPOSITING_RECT_NAME = 'compositing-rect';
// Getters for non-singleton layer and object IDs
export const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
const getRGLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
const getRGLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getRGLayerObjectGroupId = (layerId: string, groupId: string) => `${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
export const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIILayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;
// Some nanostores that are manually synced to redux state to provide imperative access
// TODO(psyche): This is a hack, figure out another way to handle this...
export const $brushSize = atom<number>(0);
export const $brushSpacingPx = atom<number>(0);
export const $selectedLayerId = atom<string | null>(null);
export const $selectedLayerType = atom<Layer['type'] | null>(null);
export const $shouldInvertBrushSizeScrollDirection = atom(false);
export const controlLayersPersistConfig: PersistConfig<ControlLayersState> = {
name: controlLayersSlice.name,

View File

@@ -17,6 +17,7 @@ import {
zParameterPositivePrompt,
zParameterStrength,
} from 'features/parameters/types/parameterSchemas';
import type { IRect } from 'konva/lib/types';
import { z } from 'zod';
const zTool = z.enum(['brush', 'eraser', 'move', 'rect']);
@@ -129,3 +130,7 @@ export type ControlLayersState = {
aspectRatio: AspectRatioState;
};
};
export type AddLineArg = { layerId: string; points: [number, number, number, number]; tool: DrawingTool };
export type AddPointToLineArg = { layerId: string; point: [number, number] };
export type AddRectArg = { layerId: string; rect: IRect };

View File

@@ -1,66 +0,0 @@
import { getStore } from 'app/store/nanostores/store';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { isRegionalGuidanceLayer, RG_LAYER_NAME } from 'features/controlLayers/store/controlLayersSlice';
import { renderers } from 'features/controlLayers/util/renderers';
import Konva from 'konva';
import { assert } from 'tsafe';
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
export const getRegionalPromptLayerBlobs = async (
layerIds?: string[],
preview: boolean = false
): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const { layers } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
const reduxLayers = layers.filter(isRegionalGuidanceLayer);
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width, height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush');
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};

View File

@@ -3,7 +3,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import { useBoolean } from 'common/hooks/useBoolean';
import { preventDefault } from 'common/util/stopPropagation';
import type { Dimensions } from 'features/canvas/store/canvasTypes';
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
import { TRANSPARENCY_CHECKER_PATTERN } from 'features/controlLayers/konva/constants';
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
import { memo, useMemo, useRef } from 'react';
@@ -78,7 +78,7 @@ export const ImageComparisonHover = memo(({ firstImage, secondImage, containerDi
left={0}
right={0}
bottom={0}
backgroundImage={STAGE_BG_DATAURL}
backgroundImage={TRANSPARENCY_CHECKER_PATTERN}
backgroundRepeat="repeat"
opacity={0.2}
/>

View File

@@ -2,7 +2,7 @@ import { Box, Flex, Icon, Image } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { preventDefault } from 'common/util/stopPropagation';
import type { Dimensions } from 'features/canvas/store/canvasTypes';
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
import { TRANSPARENCY_CHECKER_PATTERN } from 'features/controlLayers/konva/constants';
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
import { memo, useCallback, useEffect, useMemo, useRef, useState } from 'react';
import { PiCaretLeftBold, PiCaretRightBold } from 'react-icons/pi';
@@ -120,7 +120,7 @@ export const ImageComparisonSlider = memo(({ firstImage, secondImage, containerD
left={0}
right={0}
bottom={0}
backgroundImage={STAGE_BG_DATAURL}
backgroundImage={TRANSPARENCY_CHECKER_PATTERN}
backgroundRepeat="repeat"
opacity={0.2}
/>

View File

@@ -4,7 +4,7 @@ import {
initialT2IAdapter,
} from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { getCALayerId, getIPALayerId, INITIAL_IMAGE_LAYER_ID } from 'features/controlLayers/store/controlLayersSlice';
import { getCALayerId, getIPALayerId, INITIAL_IMAGE_LAYER_ID } from 'features/controlLayers/konva/naming';
import type { ControlAdapterLayer, InitialImageLayer, IPAdapterLayer, Layer } from 'features/controlLayers/store/types';
import { zLayer } from 'features/controlLayers/store/types';
import {

View File

@@ -6,12 +6,10 @@ import {
ipAdaptersReset,
t2iAdaptersReset,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { getCALayerId, getIPALayerId, getRGLayerId } from 'features/controlLayers/konva/naming';
import {
allLayersDeleted,
caLayerRecalled,
getCALayerId,
getIPALayerId,
getRGLayerId,
heightChanged,
iiLayerRecalled,
ipaLayerRecalled,

View File

@@ -1,6 +1,10 @@
import { getStore } from 'app/store/nanostores/store';
import type { RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_NAME } from 'features/controlLayers/konva/naming';
import { renderers } from 'features/controlLayers/konva/renderers';
import {
isControlAdapterLayer,
isInitialImageLayer,
@@ -16,7 +20,6 @@ import type {
ProcessorConfig,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import { getRegionalPromptLayerBlobs } from 'features/controlLayers/util/getLayerBlobs';
import type { ImageField } from 'features/nodes/types/common';
import {
CONTROL_NET_COLLECT,
@@ -31,11 +34,13 @@ import {
T2I_ADAPTER_COLLECT,
} from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import Konva from 'konva';
import { size } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
//#region addControlLayers
/**
* Adds the control layers to the graph
* @param state The app root state
@@ -90,7 +95,7 @@ export const addControlLayers = async (
const validRGLayers = validLayers.filter(isRegionalGuidanceLayer);
const layerIds = validRGLayers.map((l) => l.id);
const blobs = await getRegionalPromptLayerBlobs(layerIds);
const blobs = await getRGLayerBlobs(layerIds);
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
for (const layer of validRGLayers) {
@@ -257,6 +262,7 @@ export const addControlLayers = async (
g.upsertMetadata({ control_layers: { layers: validLayers, version: state.controlLayers.present._version } });
return validLayers;
};
//#endregion
//#region Control Adapters
const addGlobalControlAdapterToGraph = (
@@ -509,7 +515,7 @@ const isValidLayer = (layer: Layer, base: BaseModelType) => {
};
//#endregion
//#region Helpers
//#region getMaskImage
const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<ImageDTO> => {
if (layer.uploadedMaskImage) {
const imageDTO = await getImageDTO(layer.uploadedMaskImage.name);
@@ -529,7 +535,9 @@ const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<I
dispatch(rgLayerMaskImageUploaded({ layerId: layer.id, imageDTO }));
return imageDTO;
};
//#endregion
//#region buildControlImage
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
@@ -549,3 +557,61 @@ const buildControlImage = (
assert(false, 'Attempted to add unprocessed control image');
};
//#endregion
//#region getRGLayerBlobs
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
const getRGLayerBlobs = async (layerIds?: string[], preview: boolean = false): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const { layers } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
const reduxLayers = layers.filter(isRegionalGuidanceLayer);
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width, height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush', getImageDTO);
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};
//#endregion

View File

@@ -1,8 +1,17 @@
import { Flex } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { StageComponent } from 'features/controlLayers/components/StageComponent';
import { $isPreviewVisible } from 'features/controlLayers/store/controlLayersSlice';
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
import { memo } from 'react';
export const AspectRatioCanvasPreview = memo(() => {
const isPreviewVisible = useStore($isPreviewVisible);
if (!isPreviewVisible) {
return <AspectRatioIconPreview />;
}
return (
<Flex w="full" h="full" alignItems="center" justifyContent="center" position="relative">
<StageComponent asPreview />

View File

@@ -3,15 +3,12 @@ import { aspectRatioChanged, heightChanged, widthChanged } from 'features/contro
import { ParamHeight } from 'features/parameters/components/Core/ParamHeight';
import { ParamWidth } from 'features/parameters/components/Core/ParamWidth';
import { AspectRatioCanvasPreview } from 'features/parameters/components/ImageSize/AspectRatioCanvasPreview';
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
import { ImageSize } from 'features/parameters/components/ImageSize/ImageSize';
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback } from 'react';
export const ImageSizeLinear = memo(() => {
const dispatch = useAppDispatch();
const tab = useAppSelector(activeTabNameSelector);
const width = useAppSelector((s) => s.controlLayers.present.size.width);
const height = useAppSelector((s) => s.controlLayers.present.size.height);
const aspectRatioState = useAppSelector((s) => s.controlLayers.present.size.aspectRatio);
@@ -50,7 +47,7 @@ export const ImageSizeLinear = memo(() => {
aspectRatioState={aspectRatioState}
heightComponent={<ParamHeight />}
widthComponent={<ParamWidth />}
previewComponent={tab === 'generation' ? <AspectRatioCanvasPreview /> : <AspectRatioIconPreview />}
previewComponent={<AspectRatioCanvasPreview />}
onChangeAspectRatioState={onChangeAspectRatioState}
onChangeWidth={onChangeWidth}
onChangeHeight={onChangeHeight}

View File

@@ -3,6 +3,7 @@ import { Box, Flex, Tab, TabList, TabPanel, TabPanels, Tabs } from '@invoke-ai/u
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { overlayScrollbarsParams } from 'common/components/OverlayScrollbars/constants';
import { ControlLayersPanelContent } from 'features/controlLayers/components/ControlLayersPanelContent';
import { $isPreviewVisible } from 'features/controlLayers/store/controlLayersSlice';
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
import { Prompts } from 'features/parameters/components/Prompts/Prompts';
import QueueControls from 'features/queue/components/QueueControls';
@@ -53,6 +54,7 @@ const ParametersPanelTextToImage = () => {
if (i === 1) {
dispatch(isImageViewerOpenChanged(false));
}
$isPreviewVisible.set(i === 0);
},
[dispatch]
);
@@ -66,6 +68,7 @@ const ParametersPanelTextToImage = () => {
<Flex gap={2} flexDirection="column" h="full" w="full">
{isSDXL ? <SDXLPrompts /> : <Prompts />}
<Tabs
defaultIndex={0}
variant="enclosed"
display="flex"
flexDir="column"

View File

@@ -123,6 +123,13 @@ export type paths = {
*/
delete: operations["prune_model_install_jobs"];
};
"/api/v2/models/install/huggingface": {
/**
* Install Hugging Face Model
* @description Install a Hugging Face model using a string identifier.
*/
get: operations["install_hugging_face_model"];
};
"/api/v2/models/install/{id}": {
/**
* Get Model Install Job
@@ -3788,23 +3795,6 @@ export type components = {
* @description Class to monitor and control a model download request.
*/
DownloadJob: {
/**
* Source
* Format: uri
* @description Where to download from. Specific types specified in child classes.
*/
source: string;
/**
* Dest
* Format: path
* @description Destination of downloaded model on local disk; a directory or file path
*/
dest: string;
/**
* Access Token
* @description authorization token for protected resources
*/
access_token?: string | null;
/**
* Id
* @description Numeric ID of this job
@@ -3812,36 +3802,21 @@ export type components = {
*/
id?: number;
/**
* Priority
* @description Queue priority; lower values are higher priority
* @default 10
* Dest
* Format: path
* @description Initial destination of downloaded model on local disk; a directory or file path
*/
priority?: number;
dest: string;
/**
* Download Path
* @description Final location of downloaded file or directory
*/
download_path?: string | null;
/**
* @description Status of the download
* @default waiting
*/
status?: components["schemas"]["DownloadJobStatus"];
/**
* Download Path
* @description Final location of downloaded file
*/
download_path?: string | null;
/**
* Job Started
* @description Timestamp for when the download job started
*/
job_started?: string | null;
/**
* Job Ended
* @description Timestamp for when the download job ende1d (completed or errored)
*/
job_ended?: string | null;
/**
* Content Type
* @description Content type of downloaded file
*/
content_type?: string | null;
/**
* Bytes
* @description Bytes downloaded so far
@@ -3864,6 +3839,38 @@ export type components = {
* @description Traceback of the exception that caused an error
*/
error?: string | null;
/**
* Source
* Format: uri
* @description Where to download from. Specific types specified in child classes.
*/
source: string;
/**
* Access Token
* @description authorization token for protected resources
*/
access_token?: string | null;
/**
* Priority
* @description Queue priority; lower values are higher priority
* @default 10
*/
priority?: number;
/**
* Job Started
* @description Timestamp for when the download job started
*/
job_started?: string | null;
/**
* Job Ended
* @description Timestamp for when the download job ende1d (completed or errored)
*/
job_ended?: string | null;
/**
* Content Type
* @description Content type of downloaded file
*/
content_type?: string | null;
};
/**
* DownloadJobStatus
@@ -7276,144 +7283,144 @@ export type components = {
project_id: string | null;
};
InvocationOutputMap: {
pidi_image_processor: components["schemas"]["ImageOutput"];
image_mask_to_tensor: components["schemas"]["MaskOutput"];
vae_loader: components["schemas"]["VAEOutput"];
collect: components["schemas"]["CollectInvocationOutput"];
string_join_three: components["schemas"]["StringOutput"];
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
random_range: components["schemas"]["IntegerCollectionOutput"];
ip_adapter: components["schemas"]["IPAdapterOutput"];
step_param_easing: components["schemas"]["FloatCollectionOutput"];
core_metadata: components["schemas"]["MetadataOutput"];
main_model_loader: components["schemas"]["ModelLoaderOutput"];
leres_image_processor: components["schemas"]["ImageOutput"];
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
color_correct: components["schemas"]["ImageOutput"];
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
float_range: components["schemas"]["FloatCollectionOutput"];
infill_cv2: components["schemas"]["ImageOutput"];
img_channel_multiply: components["schemas"]["ImageOutput"];
img_pad_crop: components["schemas"]["ImageOutput"];
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
face_mask_detection: components["schemas"]["FaceMaskOutput"];
infill_lama: components["schemas"]["ImageOutput"];
mask_combine: components["schemas"]["ImageOutput"];
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
segment_anything_processor: components["schemas"]["ImageOutput"];
merge_metadata: components["schemas"]["MetadataOutput"];
img_ilerp: components["schemas"]["ImageOutput"];
heuristic_resize: components["schemas"]["ImageOutput"];
cv_inpaint: components["schemas"]["ImageOutput"];
div: components["schemas"]["IntegerOutput"];
pair_tile_image: components["schemas"]["PairTileImageOutput"];
float_math: components["schemas"]["FloatOutput"];
img_channel_offset: components["schemas"]["ImageOutput"];
canvas_paste_back: components["schemas"]["ImageOutput"];
canny_image_processor: components["schemas"]["ImageOutput"];
integer_collection: components["schemas"]["IntegerCollectionOutput"];
freeu: components["schemas"]["UNetOutput"];
lresize: components["schemas"]["LatentsOutput"];
range_of_size: components["schemas"]["IntegerCollectionOutput"];
depth_anything_image_processor: components["schemas"]["ImageOutput"];
float_to_int: components["schemas"]["IntegerOutput"];
rand_int: components["schemas"]["IntegerOutput"];
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
string_split: components["schemas"]["String2Output"];
img_nsfw: components["schemas"]["ImageOutput"];
string: components["schemas"]["StringOutput"];
mask_edge: components["schemas"]["ImageOutput"];
i2l: components["schemas"]["LatentsOutput"];
face_identifier: components["schemas"]["ImageOutput"];
compel: components["schemas"]["ConditioningOutput"];
esrgan: components["schemas"]["ImageOutput"];
seamless: components["schemas"]["SeamlessModeOutput"];
mask_from_id: components["schemas"]["ImageOutput"];
invert_tensor_mask: components["schemas"]["MaskOutput"];
rectangle_mask: components["schemas"]["MaskOutput"];
conditioning: components["schemas"]["ConditioningOutput"];
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
string_collection: components["schemas"]["StringCollectionOutput"];
show_image: components["schemas"]["ImageOutput"];
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
string_split_neg: components["schemas"]["StringPosNegOutput"];
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
infill_patchmatch: components["schemas"]["ImageOutput"];
img_conv: components["schemas"]["ImageOutput"];
unsharp_mask: components["schemas"]["ImageOutput"];
metadata_item: components["schemas"]["MetadataItemOutput"];
image: components["schemas"]["ImageOutput"];
image_collection: components["schemas"]["ImageCollectionOutput"];
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
lblend: components["schemas"]["LatentsOutput"];
float: components["schemas"]["FloatOutput"];
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
color: components["schemas"]["ColorOutput"];
midas_depth_image_processor: components["schemas"]["ImageOutput"];
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
infill_rgba: components["schemas"]["ImageOutput"];
mlsd_image_processor: components["schemas"]["ImageOutput"];
lscale: components["schemas"]["LatentsOutput"];
string_split: components["schemas"]["String2Output"];
mask_edge: components["schemas"]["ImageOutput"];
content_shuffle_image_processor: components["schemas"]["ImageOutput"];
color_correct: components["schemas"]["ImageOutput"];
save_image: components["schemas"]["ImageOutput"];
show_image: components["schemas"]["ImageOutput"];
segment_anything_processor: components["schemas"]["ImageOutput"];
latents: components["schemas"]["LatentsOutput"];
lineart_image_processor: components["schemas"]["ImageOutput"];
hed_image_processor: components["schemas"]["ImageOutput"];
infill_lama: components["schemas"]["ImageOutput"];
infill_patchmatch: components["schemas"]["ImageOutput"];
float_collection: components["schemas"]["FloatCollectionOutput"];
denoise_latents: components["schemas"]["LatentsOutput"];
metadata: components["schemas"]["MetadataOutput"];
compel: components["schemas"]["ConditioningOutput"];
img_blur: components["schemas"]["ImageOutput"];
img_crop: components["schemas"]["ImageOutput"];
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
img_ilerp: components["schemas"]["ImageOutput"];
img_paste: components["schemas"]["ImageOutput"];
core_metadata: components["schemas"]["MetadataOutput"];
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
lora_selector: components["schemas"]["LoRASelectorOutput"];
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
rectangle_mask: components["schemas"]["MaskOutput"];
noise: components["schemas"]["NoiseOutput"];
float_to_int: components["schemas"]["IntegerOutput"];
esrgan: components["schemas"]["ImageOutput"];
merge_tiles_to_image: components["schemas"]["ImageOutput"];
prompt_from_file: components["schemas"]["StringCollectionOutput"];
boolean: components["schemas"]["BooleanOutput"];
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
rand_float: components["schemas"]["FloatOutput"];
img_mul: components["schemas"]["ImageOutput"];
controlnet: components["schemas"]["ControlOutput"];
latents_collection: components["schemas"]["LatentsCollectionOutput"];
img_lerp: components["schemas"]["ImageOutput"];
noise: components["schemas"]["NoiseOutput"];
iterate: components["schemas"]["IterateInvocationOutput"];
lineart_image_processor: components["schemas"]["ImageOutput"];
tomask: components["schemas"]["ImageOutput"];
integer: components["schemas"]["IntegerOutput"];
create_denoise_mask: components["schemas"]["DenoiseMaskOutput"];
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
denoise_latents: components["schemas"]["LatentsOutput"];
string_join: components["schemas"]["StringOutput"];
scheduler: components["schemas"]["SchedulerOutput"];
model_identifier: components["schemas"]["ModelIdentifierOutput"];
normalbae_image_processor: components["schemas"]["ImageOutput"];
face_off: components["schemas"]["FaceOffOutput"];
hed_image_processor: components["schemas"]["ImageOutput"];
img_paste: components["schemas"]["ImageOutput"];
img_chan: components["schemas"]["ImageOutput"];
img_watermark: components["schemas"]["ImageOutput"];
l2i: components["schemas"]["ImageOutput"];
string_replace: components["schemas"]["StringOutput"];
color_map_image_processor: components["schemas"]["ImageOutput"];
tile_image_processor: components["schemas"]["ImageOutput"];
crop_latents: components["schemas"]["LatentsOutput"];
sdxl_lora_collection_loader: components["schemas"]["SDXLLoRALoaderOutput"];
add: components["schemas"]["IntegerOutput"];
sub: components["schemas"]["IntegerOutput"];
img_scale: components["schemas"]["ImageOutput"];
range: components["schemas"]["IntegerCollectionOutput"];
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
img_crop: components["schemas"]["ImageOutput"];
infill_tile: components["schemas"]["ImageOutput"];
img_resize: components["schemas"]["ImageOutput"];
mediapipe_face_processor: components["schemas"]["ImageOutput"];
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
lora_selector: components["schemas"]["LoRASelectorOutput"];
img_hue_adjust: components["schemas"]["ImageOutput"];
latents: components["schemas"]["LatentsOutput"];
lora_collection_loader: components["schemas"]["LoRALoaderOutput"];
img_blur: components["schemas"]["ImageOutput"];
ideal_size: components["schemas"]["IdealSizeOutput"];
float_collection: components["schemas"]["FloatCollectionOutput"];
blank_image: components["schemas"]["ImageOutput"];
integer_math: components["schemas"]["IntegerOutput"];
lora_loader: components["schemas"]["LoRALoaderOutput"];
metadata: components["schemas"]["MetadataOutput"];
infill_rgba: components["schemas"]["ImageOutput"];
sdxl_lora_loader: components["schemas"]["SDXLLoRALoaderOutput"];
round_float: components["schemas"]["FloatOutput"];
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
mul: components["schemas"]["IntegerOutput"];
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
lscale: components["schemas"]["LatentsOutput"];
save_image: components["schemas"]["ImageOutput"];
lora_loader: components["schemas"]["LoRALoaderOutput"];
iterate: components["schemas"]["IterateInvocationOutput"];
t2i_adapter: components["schemas"]["T2IAdapterOutput"];
color_map_image_processor: components["schemas"]["ImageOutput"];
blank_image: components["schemas"]["ImageOutput"];
normalbae_image_processor: components["schemas"]["ImageOutput"];
canvas_paste_back: components["schemas"]["ImageOutput"];
string_split_neg: components["schemas"]["StringPosNegOutput"];
img_channel_offset: components["schemas"]["ImageOutput"];
face_mask_detection: components["schemas"]["FaceMaskOutput"];
cv_inpaint: components["schemas"]["ImageOutput"];
clip_skip: components["schemas"]["CLIPSkipInvocationOutput"];
invert_tensor_mask: components["schemas"]["MaskOutput"];
tomask: components["schemas"]["ImageOutput"];
main_model_loader: components["schemas"]["ModelLoaderOutput"];
img_watermark: components["schemas"]["ImageOutput"];
img_pad_crop: components["schemas"]["ImageOutput"];
random_range: components["schemas"]["IntegerCollectionOutput"];
mlsd_image_processor: components["schemas"]["ImageOutput"];
merge_metadata: components["schemas"]["MetadataOutput"];
string_join: components["schemas"]["StringOutput"];
vae_loader: components["schemas"]["VAEOutput"];
calculate_image_tiles_even_split: components["schemas"]["CalculateImageTilesOutput"];
calculate_image_tiles_min_overlap: components["schemas"]["CalculateImageTilesOutput"];
mask_from_id: components["schemas"]["ImageOutput"];
zoe_depth_image_processor: components["schemas"]["ImageOutput"];
img_resize: components["schemas"]["ImageOutput"];
string_replace: components["schemas"]["StringOutput"];
face_identifier: components["schemas"]["ImageOutput"];
canny_image_processor: components["schemas"]["ImageOutput"];
collect: components["schemas"]["CollectInvocationOutput"];
infill_tile: components["schemas"]["ImageOutput"];
integer_collection: components["schemas"]["IntegerCollectionOutput"];
img_lerp: components["schemas"]["ImageOutput"];
step_param_easing: components["schemas"]["FloatCollectionOutput"];
lresize: components["schemas"]["LatentsOutput"];
img_mul: components["schemas"]["ImageOutput"];
create_gradient_mask: components["schemas"]["GradientMaskOutput"];
img_scale: components["schemas"]["ImageOutput"];
rand_float: components["schemas"]["FloatOutput"];
tile_to_properties: components["schemas"]["TileToPropertiesOutput"];
calculate_image_tiles: components["schemas"]["CalculateImageTilesOutput"];
range_of_size: components["schemas"]["IntegerCollectionOutput"];
sdxl_refiner_model_loader: components["schemas"]["SDXLRefinerModelLoaderOutput"];
heuristic_resize: components["schemas"]["ImageOutput"];
controlnet: components["schemas"]["ControlOutput"];
string: components["schemas"]["StringOutput"];
tile_image_processor: components["schemas"]["ImageOutput"];
metadata_item: components["schemas"]["MetadataItemOutput"];
freeu: components["schemas"]["UNetOutput"];
round_float: components["schemas"]["FloatOutput"];
conditioning: components["schemas"]["ConditioningOutput"];
ideal_size: components["schemas"]["IdealSizeOutput"];
float: components["schemas"]["FloatOutput"];
conditioning_collection: components["schemas"]["ConditioningCollectionOutput"];
alpha_mask_to_tensor: components["schemas"]["MaskOutput"];
integer_math: components["schemas"]["IntegerOutput"];
string_collection: components["schemas"]["StringCollectionOutput"];
img_conv: components["schemas"]["ImageOutput"];
img_channel_multiply: components["schemas"]["ImageOutput"];
lblend: components["schemas"]["LatentsOutput"];
color: components["schemas"]["ColorOutput"];
image: components["schemas"]["ImageOutput"];
sdxl_model_loader: components["schemas"]["SDXLModelLoaderOutput"];
image_collection: components["schemas"]["ImageCollectionOutput"];
model_identifier: components["schemas"]["ModelIdentifierOutput"];
l2i: components["schemas"]["ImageOutput"];
seamless: components["schemas"]["SeamlessModeOutput"];
boolean_collection: components["schemas"]["BooleanCollectionOutput"];
string_join_three: components["schemas"]["StringOutput"];
ip_adapter: components["schemas"]["IPAdapterOutput"];
add: components["schemas"]["IntegerOutput"];
crop_latents: components["schemas"]["LatentsOutput"];
float_range: components["schemas"]["FloatCollectionOutput"];
mul: components["schemas"]["IntegerOutput"];
dw_openpose_image_processor: components["schemas"]["ImageOutput"];
boolean: components["schemas"]["BooleanOutput"];
dynamic_prompt: components["schemas"]["StringCollectionOutput"];
mediapipe_face_processor: components["schemas"]["ImageOutput"];
i2l: components["schemas"]["LatentsOutput"];
latents_collection: components["schemas"]["LatentsCollectionOutput"];
integer: components["schemas"]["IntegerOutput"];
img_chan: components["schemas"]["ImageOutput"];
pair_tile_image: components["schemas"]["PairTileImageOutput"];
unsharp_mask: components["schemas"]["ImageOutput"];
img_hue_adjust: components["schemas"]["ImageOutput"];
lineart_anime_image_processor: components["schemas"]["ImageOutput"];
face_off: components["schemas"]["FaceOffOutput"];
mask_combine: components["schemas"]["ImageOutput"];
leres_image_processor: components["schemas"]["ImageOutput"];
image_mask_to_tensor: components["schemas"]["MaskOutput"];
sdxl_refiner_compel_prompt: components["schemas"]["ConditioningOutput"];
scheduler: components["schemas"]["SchedulerOutput"];
sub: components["schemas"]["IntegerOutput"];
pidi_image_processor: components["schemas"]["ImageOutput"];
infill_cv2: components["schemas"]["ImageOutput"];
div: components["schemas"]["IntegerOutput"];
img_nsfw: components["schemas"]["ImageOutput"];
depth_anything_image_processor: components["schemas"]["ImageOutput"];
sdxl_compel_prompt: components["schemas"]["ConditioningOutput"];
range: components["schemas"]["IntegerCollectionOutput"];
rand_int: components["schemas"]["IntegerOutput"];
float_math: components["schemas"]["FloatOutput"];
};
/**
* InvocationStartedEvent
@@ -9443,6 +9450,49 @@ export type components = {
[key: string]: number | string;
})[];
};
/**
* ModelInstallDownloadStartedEvent
* @description Event model for model_install_download_started
*/
ModelInstallDownloadStartedEvent: {
/**
* Timestamp
* @description The timestamp of the event
*/
timestamp: number;
/**
* Id
* @description The ID of the install job
*/
id: number;
/**
* Source
* @description Source of the model; local path, repo_id or url
*/
source: string;
/**
* Local Path
* @description Where model is downloading to
*/
local_path: string;
/**
* Bytes
* @description Number of bytes downloaded so far
*/
bytes: number;
/**
* Total Bytes
* @description Total size of download, including all files
*/
total_bytes: number;
/**
* Parts
* @description Progress of downloading URLs that comprise the model, if any
*/
parts: ({
[key: string]: number | string;
})[];
};
/**
* ModelInstallDownloadsCompleteEvent
* @description Emitted once when an install job becomes active.
@@ -10671,8 +10721,9 @@ export type components = {
/**
* Size
* @description The size of this file, in bytes
* @default 0
*/
size: number;
size?: number | null;
/**
* Sha256
* @description SHA256 hash of this model (not always available)
@@ -14050,6 +14101,40 @@ export type operations = {
};
};
};
/**
* Install Hugging Face Model
* @description Install a Hugging Face model using a string identifier.
*/
install_hugging_face_model: {
parameters: {
query: {
/** @description Hugging Face repo_id to install */
source: string;
};
};
responses: {
/** @description The model is being installed */
201: {
content: {
"text/html": string;
};
};
/** @description Bad request */
400: {
content: never;
};
/** @description There is already a model corresponding to this path or repo_id */
409: {
content: never;
};
/** @description Validation Error */
422: {
content: {
"application/json": components["schemas"]["HTTPValidationError"];
};
};
};
};
/**
* Get Model Install Job
* @description Return model install job corresponding to the given source. See the documentation for 'List Model Install Jobs'

View File

@@ -16,6 +16,7 @@ import type {
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallDownloadStartedEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
@@ -45,6 +46,9 @@ export const socketModelInstallStarted = createSocketAction<ModelInstallStartedE
export const socketModelInstallDownloadProgress = createSocketAction<ModelInstallDownloadProgressEvent>(
'ModelInstallDownloadProgressEvent'
);
export const socketModelInstallDownloadStarted = createSocketAction<ModelInstallDownloadStartedEvent>(
'ModelInstallDownloadStartedEvent'
);
export const socketModelInstallDownloadsComplete = createSocketAction<ModelInstallDownloadsCompleteEvent>(
'ModelInstallDownloadsCompleteEvent'
);

View File

@@ -9,6 +9,7 @@ export type InvocationCompleteEvent = S['InvocationCompleteEvent'];
export type InvocationErrorEvent = S['InvocationErrorEvent'];
export type ProgressImage = InvocationDenoiseProgressEvent['progress_image'];
export type ModelInstallDownloadStartedEvent = S['ModelInstallDownloadStartedEvent'];
export type ModelInstallDownloadProgressEvent = S['ModelInstallDownloadProgressEvent'];
export type ModelInstallDownloadsCompleteEvent = S['ModelInstallDownloadsCompleteEvent'];
export type ModelInstallCompleteEvent = S['ModelInstallCompleteEvent'];
@@ -49,6 +50,7 @@ export type ServerToClientEvents = {
download_error: (payload: DownloadErrorEvent) => void;
model_load_started: (payload: ModelLoadStartedEvent) => void;
model_install_started: (payload: ModelInstallStartedEvent) => void;
model_install_download_started: (payload: ModelInstallDownloadStartedEvent) => void;
model_install_download_progress: (payload: ModelInstallDownloadProgressEvent) => void;
model_install_downloads_complete: (payload: ModelInstallDownloadsCompleteEvent) => void;
model_install_complete: (payload: ModelInstallCompleteEvent) => void;

View File

@@ -31,7 +31,6 @@ from invokeai.app.invocations.fields import (
WithMetadata,
WithWorkflow,
)
from invokeai.app.invocations.latent import SchedulerOutput
from invokeai.app.invocations.metadata import MetadataItemField, MetadataItemOutput, MetadataOutput
from invokeai.app.invocations.model import (
CLIPField,
@@ -64,6 +63,7 @@ from invokeai.app.invocations.primitives import (
StringCollectionOutput,
StringOutput,
)
from invokeai.app.invocations.scheduler import SchedulerOutput
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_records.image_records_common import ImageCategory
@@ -108,7 +108,7 @@ __all__ = [
"WithBoard",
"WithMetadata",
"WithWorkflow",
# invokeai.app.invocations.latent
# invokeai.app.invocations.scheduler
"SchedulerOutput",
# invokeai.app.invocations.metadata
"MetadataItemField",

View File

@@ -224,7 +224,7 @@ follow_imports = "skip" # skips type checking of the modules listed below
module = [
"invokeai.app.api.routers.models",
"invokeai.app.invocations.compel",
"invokeai.app.invocations.latent",
"invokeai.app.invocations.denoise_latents",
"invokeai.app.services.invocation_stats.invocation_stats_default",
"invokeai.app.services.model_manager.model_manager_base",
"invokeai.app.services.model_manager.model_manager_default",

View File

@@ -2,14 +2,18 @@
import re
import time
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Generator, Optional
import pytest
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from requests_testadapter import TestAdapter, TestSession
from requests_testadapter import TestAdapter
from invokeai.app.services.download import DownloadJob, DownloadJobStatus, DownloadQueueService
from invokeai.app.services.config import get_config
from invokeai.app.services.config.config_default import URLRegexTokenPair
from invokeai.app.services.download import DownloadJob, DownloadJobStatus, DownloadQueueService, MultiFileDownloadJob
from invokeai.app.services.events.events_common import (
DownloadCancelledEvent,
DownloadCompleteEvent,
@@ -17,56 +21,23 @@ from invokeai.app.services.events.events_common import (
DownloadProgressEvent,
DownloadStartedEvent,
)
from invokeai.backend.model_manager.metadata import HuggingFaceMetadataFetch, ModelMetadataWithFiles, RemoteModelFile
from tests.backend.model_manager.model_manager_fixtures import * # noqa F403
from tests.test_nodes import TestEventService
# Prevent pytest deprecation warnings
TestAdapter.__test__ = False # type: ignore
TestAdapter.__test__ = False
@pytest.fixture
def session() -> Session:
sess = TestSession()
for i in ["12345", "9999", "54321"]:
content = (
b"I am a safetensors file " + bytearray(i, "utf-8") + bytearray(32_000)
) # for pause tests, must make content large
sess.mount(
f"http://www.civitai.com/models/{i}",
TestAdapter(
content,
headers={
"Content-Length": len(content),
"Content-Disposition": f'filename="mock{i}.safetensors"',
},
),
)
# here are some malformed URLs to test
# missing the content length
sess.mount(
"http://www.civitai.com/models/missing",
TestAdapter(
b"Missing content length",
headers={
"Content-Disposition": 'filename="missing.txt"',
},
),
)
# not found test
sess.mount("http://www.civitai.com/models/broken", TestAdapter(b"Not found", status=404))
return sess
@pytest.mark.timeout(timeout=20, method="thread")
def test_basic_queue_download(tmp_path: Path, session: Session) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_basic_queue_download(tmp_path: Path, mm2_session: Session) -> None:
events = set()
def event_handler(job: DownloadJob) -> None:
def event_handler(job: DownloadJob, excp: Optional[Exception] = None) -> None:
events.add(job.status)
queue = DownloadQueueService(
requests_session=session,
requests_session=mm2_session,
)
queue.start()
job = queue.download(
@@ -82,16 +53,17 @@ def test_basic_queue_download(tmp_path: Path, session: Session) -> None:
queue.join()
assert job.status == DownloadJobStatus("completed"), "expected job status to be completed"
assert job.download_path == tmp_path / "mock12345.safetensors"
assert Path(tmp_path, "mock12345.safetensors").exists(), f"expected {tmp_path}/mock12345.safetensors to exist"
assert events == {DownloadJobStatus.RUNNING, DownloadJobStatus.COMPLETED}
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_errors(tmp_path: Path, session: Session) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_errors(tmp_path: Path, mm2_session: Session) -> None:
queue = DownloadQueueService(
requests_session=session,
requests_session=mm2_session,
)
queue.start()
@@ -110,11 +82,11 @@ def test_errors(tmp_path: Path, session: Session) -> None:
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_event_bus(tmp_path: Path, session: Session) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_event_bus(tmp_path: Path, mm2_session: Session) -> None:
event_bus = TestEventService()
queue = DownloadQueueService(requests_session=session, event_bus=event_bus)
queue = DownloadQueueService(requests_session=mm2_session, event_bus=event_bus)
queue.start()
queue.download(
source=AnyHttpUrl("http://www.civitai.com/models/12345"),
@@ -146,10 +118,10 @@ def test_event_bus(tmp_path: Path, session: Session) -> None:
queue.stop()
@pytest.mark.timeout(timeout=20, method="thread")
def test_broken_callbacks(tmp_path: Path, session: Session, capsys) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_broken_callbacks(tmp_path: Path, mm2_session: Session, capsys) -> None:
queue = DownloadQueueService(
requests_session=session,
requests_session=mm2_session,
)
queue.start()
@@ -178,11 +150,11 @@ def test_broken_callbacks(tmp_path: Path, session: Session, capsys) -> None:
queue.stop()
@pytest.mark.timeout(timeout=15, method="thread")
def test_cancel(tmp_path: Path, session: Session) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_cancel(tmp_path: Path, mm2_session: Session) -> None:
event_bus = TestEventService()
queue = DownloadQueueService(requests_session=session, event_bus=event_bus)
queue = DownloadQueueService(requests_session=mm2_session, event_bus=event_bus)
queue.start()
cancelled = False
@@ -194,9 +166,6 @@ def test_cancel(tmp_path: Path, session: Session) -> None:
nonlocal cancelled
cancelled = True
def handler(signum, frame):
raise TimeoutError("Join took too long to return")
job = queue.download(
source=AnyHttpUrl("http://www.civitai.com/models/12345"),
dest=tmp_path,
@@ -212,3 +181,178 @@ def test_cancel(tmp_path: Path, session: Session) -> None:
assert isinstance(events[-1], DownloadCancelledEvent)
assert events[-1].source == "http://www.civitai.com/models/12345"
queue.stop()
@pytest.mark.timeout(timeout=10, method="thread")
def test_multifile_download(tmp_path: Path, mm2_session: Session) -> None:
fetcher = HuggingFaceMetadataFetch(mm2_session)
metadata = fetcher.from_id("stabilityai/sdxl-turbo")
assert isinstance(metadata, ModelMetadataWithFiles)
events = set()
def event_handler(job: DownloadJob | MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
events.add(job.status)
queue = DownloadQueueService(
requests_session=mm2_session,
)
queue.start()
job = queue.multifile_download(
parts=metadata.download_urls(session=mm2_session),
dest=tmp_path,
on_start=event_handler,
on_progress=event_handler,
on_complete=event_handler,
on_error=event_handler,
)
assert isinstance(job, MultiFileDownloadJob), "expected the job to be of type MultiFileDownloadJobBase"
queue.join()
assert job.status == DownloadJobStatus("completed"), "expected job status to be completed"
assert job.bytes > 0, "expected download bytes to be positive"
assert job.bytes == job.total_bytes, "expected download bytes to equal total bytes"
assert job.download_path == tmp_path / "sdxl-turbo"
assert Path(
tmp_path, "sdxl-turbo/model_index.json"
).exists(), f"expected {tmp_path}/sdxl-turbo/model_inded.json to exist"
assert Path(
tmp_path, "sdxl-turbo/text_encoder/config.json"
).exists(), f"expected {tmp_path}/sdxl-turbo/text_encoder/config.json to exist"
assert events == {DownloadJobStatus.RUNNING, DownloadJobStatus.COMPLETED}
queue.stop()
@pytest.mark.timeout(timeout=10, method="thread")
def test_multifile_download_error(tmp_path: Path, mm2_session: Session) -> None:
fetcher = HuggingFaceMetadataFetch(mm2_session)
metadata = fetcher.from_id("stabilityai/sdxl-turbo")
assert isinstance(metadata, ModelMetadataWithFiles)
events = set()
def event_handler(job: DownloadJob | MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
events.add(job.status)
queue = DownloadQueueService(
requests_session=mm2_session,
)
queue.start()
files = metadata.download_urls(session=mm2_session)
# this will give a 404 error
files.append(RemoteModelFile(url="https://test.com/missing_model.safetensors", path=Path("sdxl-turbo/broken")))
job = queue.multifile_download(
parts=files,
dest=tmp_path,
on_start=event_handler,
on_progress=event_handler,
on_complete=event_handler,
on_error=event_handler,
)
queue.join()
assert job.status == DownloadJobStatus("error"), "expected job status to be errored"
assert job.error_type is not None
assert "HTTPError(NOT FOUND)" in job.error_type
assert DownloadJobStatus.ERROR in events
queue.stop()
@pytest.mark.timeout(timeout=10, method="thread")
def test_multifile_cancel(tmp_path: Path, mm2_session: Session, monkeypatch: Any) -> None:
event_bus = TestEventService()
queue = DownloadQueueService(requests_session=mm2_session, event_bus=event_bus)
queue.start()
cancelled = False
def cancelled_callback(job: DownloadJob) -> None:
nonlocal cancelled
cancelled = True
fetcher = HuggingFaceMetadataFetch(mm2_session)
metadata = fetcher.from_id("stabilityai/sdxl-turbo")
assert isinstance(metadata, ModelMetadataWithFiles)
job = queue.multifile_download(
parts=metadata.download_urls(session=mm2_session),
dest=tmp_path,
on_cancelled=cancelled_callback,
)
queue.cancel_job(job)
queue.join()
assert job.status == DownloadJobStatus.CANCELLED
assert cancelled
events = event_bus.events
assert DownloadCancelledEvent in [type(x) for x in events]
queue.stop()
def test_multifile_onefile(tmp_path: Path, mm2_session: Session) -> None:
queue = DownloadQueueService(
requests_session=mm2_session,
)
queue.start()
job = queue.multifile_download(
parts=[
RemoteModelFile(url=AnyHttpUrl("http://www.civitai.com/models/12345"), path=Path("mock12345.safetensors"))
],
dest=tmp_path,
)
assert isinstance(job, MultiFileDownloadJob), "expected the job to be of type MultiFileDownloadJobBase"
queue.join()
assert job.status == DownloadJobStatus("completed"), "expected job status to be completed"
assert job.bytes > 0, "expected download bytes to be positive"
assert job.bytes == job.total_bytes, "expected download bytes to equal total bytes"
assert job.download_path == tmp_path / "mock12345.safetensors"
assert Path(tmp_path, "mock12345.safetensors").exists(), f"expected {tmp_path}/mock12345.safetensors to exist"
queue.stop()
def test_multifile_no_rel_paths(tmp_path: Path, mm2_session: Session) -> None:
queue = DownloadQueueService(
requests_session=mm2_session,
)
with pytest.raises(AssertionError) as error:
queue.multifile_download(
parts=[RemoteModelFile(url=AnyHttpUrl("http://www.civitai.com/models/12345"), path=Path("/etc/passwd"))],
dest=tmp_path,
)
assert str(error.value) == "only relative download paths accepted"
@contextmanager
def clear_config() -> Generator[None, None, None]:
try:
yield None
finally:
get_config.cache_clear()
def test_tokens(tmp_path: Path, mm2_session: Session):
with clear_config():
config = get_config()
config.remote_api_tokens = [URLRegexTokenPair(url_regex="civitai", token="cv_12345")]
queue = DownloadQueueService(requests_session=mm2_session)
queue.start()
# this one has an access token assigned
job1 = queue.download(
source=AnyHttpUrl("http://www.civitai.com/models/12345"),
dest=tmp_path,
)
# this one doesn't
job2 = queue.download(
source=AnyHttpUrl(
"http://www.huggingface.co/foo.txt",
),
dest=tmp_path,
)
queue.join()
# this token is defined in the temporary root invokeai.yaml
# see tests/backend/model_manager/data/invokeai_root/invokeai.yaml
assert job1.access_token == "cv_12345"
assert job2.access_token is None
queue.stop()

View File

@@ -17,9 +17,11 @@ from invokeai.app.services.events.events_common import (
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallDownloadStartedEvent,
ModelInstallStartedEvent,
)
from invokeai.app.services.model_install import (
HFModelSource,
ModelInstallServiceBase,
)
from invokeai.app.services.model_install.model_install_common import (
@@ -29,7 +31,14 @@ from invokeai.app.services.model_install.model_install_common import (
URLModelSource,
)
from invokeai.app.services.model_records import ModelRecordChanges, UnknownModelException
from invokeai.backend.model_manager.config import BaseModelType, InvalidModelConfigException, ModelFormat, ModelType
from invokeai.backend.model_manager.config import (
BaseModelType,
InvalidModelConfigException,
ModelFormat,
ModelRepoVariant,
ModelType,
)
from tests.backend.model_manager.model_manager_fixtures import * # noqa F403
from tests.test_nodes import TestEventService
OS = platform.uname().system
@@ -222,7 +231,7 @@ def test_delete_register(
store.get_model(key)
@pytest.mark.timeout(timeout=20, method="thread")
@pytest.mark.timeout(timeout=10, method="thread")
def test_simple_download(mm2_installer: ModelInstallServiceBase, mm2_app_config: InvokeAIAppConfig) -> None:
source = URLModelSource(url=Url("https://www.test.foo/download/test_embedding.safetensors"))
@@ -243,15 +252,16 @@ def test_simple_download(mm2_installer: ModelInstallServiceBase, mm2_app_config:
model_record = store.get_model(key)
assert (mm2_app_config.models_path / model_record.path).exists()
assert len(bus.events) == 4
assert isinstance(bus.events[0], ModelInstallDownloadProgressEvent)
assert isinstance(bus.events[1], ModelInstallDownloadsCompleteEvent)
assert isinstance(bus.events[2], ModelInstallStartedEvent)
assert isinstance(bus.events[3], ModelInstallCompleteEvent)
assert len(bus.events) == 5
assert isinstance(bus.events[0], ModelInstallDownloadStartedEvent) # download starts
assert isinstance(bus.events[1], ModelInstallDownloadProgressEvent) # download progresses
assert isinstance(bus.events[2], ModelInstallDownloadsCompleteEvent) # download completed
assert isinstance(bus.events[3], ModelInstallStartedEvent) # install started
assert isinstance(bus.events[4], ModelInstallCompleteEvent) # install completed
@pytest.mark.timeout(timeout=20, method="thread")
def test_huggingface_download(mm2_installer: ModelInstallServiceBase, mm2_app_config: InvokeAIAppConfig) -> None:
@pytest.mark.timeout(timeout=10, method="thread")
def test_huggingface_install(mm2_installer: ModelInstallServiceBase, mm2_app_config: InvokeAIAppConfig) -> None:
source = URLModelSource(url=Url("https://huggingface.co/stabilityai/sdxl-turbo"))
bus: TestEventService = mm2_installer.event_bus
@@ -277,6 +287,49 @@ def test_huggingface_download(mm2_installer: ModelInstallServiceBase, mm2_app_co
assert len(bus.events) >= 3
@pytest.mark.timeout(timeout=10, method="thread")
def test_huggingface_repo_id(mm2_installer: ModelInstallServiceBase, mm2_app_config: InvokeAIAppConfig) -> None:
source = HFModelSource(repo_id="stabilityai/sdxl-turbo", variant=ModelRepoVariant.Default)
bus = mm2_installer.event_bus
store = mm2_installer.record_store
assert isinstance(bus, EventServiceBase)
assert store is not None
job = mm2_installer.import_model(source)
job_list = mm2_installer.wait_for_installs(timeout=10)
assert len(job_list) == 1
assert job.complete
assert job.config_out
key = job.config_out.key
model_record = store.get_model(key)
assert (mm2_app_config.models_path / model_record.path).exists()
assert model_record.type == ModelType.Main
assert model_record.format == ModelFormat.Diffusers
assert hasattr(bus, "events") # the dummyeventservice has this
assert len(bus.events) >= 3
event_types = [type(x) for x in bus.events]
assert all(
x in event_types
for x in [
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallStartedEvent,
ModelInstallCompleteEvent,
]
)
completed_events = [x for x in bus.events if isinstance(x, ModelInstallCompleteEvent)]
downloading_events = [x for x in bus.events if isinstance(x, ModelInstallDownloadProgressEvent)]
assert completed_events[0].total_bytes == downloading_events[-1].bytes
assert job.total_bytes == completed_events[0].total_bytes
print(downloading_events[-1])
print(job.download_parts)
assert job.total_bytes == sum(x["total_bytes"] for x in downloading_events[-1].parts)
def test_404_download(mm2_installer: ModelInstallServiceBase, mm2_app_config: InvokeAIAppConfig) -> None:
source = URLModelSource(url=Url("https://test.com/missing_model.safetensors"))
job = mm2_installer.import_model(source)
@@ -308,7 +361,6 @@ def test_other_error_during_install(
assert job.error == "Test error"
# TODO: Fix bug in model install causing jobs to get installed multiple times then uncomment this test
@pytest.mark.parametrize(
"model_params",
[
@@ -326,7 +378,7 @@ def test_other_error_during_install(
},
],
)
@pytest.mark.timeout(timeout=40, method="thread")
@pytest.mark.timeout(timeout=10, method="thread")
def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, model_params: Dict[str, str]):
"""Test whether or not type is respected on configs when passed to heuristic import."""
assert "name" in model_params and "type" in model_params
@@ -342,7 +394,7 @@ def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, mode
}
assert "repo_id" in model_params
install_job1 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config1)
mm2_installer.wait_for_job(install_job1, timeout=20)
mm2_installer.wait_for_job(install_job1, timeout=10)
if model_params["type"] != "embedding":
assert install_job1.errored
assert install_job1.error_type == "InvalidModelConfigException"
@@ -351,6 +403,6 @@ def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, mode
assert install_job1.config_out if model_params["type"] == "embedding" else not install_job1.config_out
install_job2 = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config2)
mm2_installer.wait_for_job(install_job2, timeout=20)
mm2_installer.wait_for_job(install_job2, timeout=10)
assert install_job2.complete
assert install_job2.config_out if model_params["type"] == "embedding" else not install_job2.config_out

Some files were not shown because too many files have changed in this diff Show More