Compare commits

..

128 Commits

Author SHA1 Message Date
Lincoln Stein
39881d3d7d fix installer logic for tokenizer_3 and text_encoder_3 2024-06-21 23:34:18 -04:00
Lincoln Stein
28f1d25973 unpin dependencies; fix typo in sd3.py 2024-06-21 15:59:47 -04:00
Lincoln Stein
95377ea159 add non-commercial use message to sd3 starter; rebuild frontend 2024-06-20 21:59:28 -04:00
Lincoln Stein
445561e3a4 add sd3 to starter models 2024-06-20 18:13:46 -04:00
blessedcoolant
66260fd345 fix: Update Clip 3 slot title & lint issues 2024-06-20 08:53:35 +05:30
blessedcoolant
c403efa83f fix: Make TE5 Optional 2024-06-20 08:45:36 +05:30
blessedcoolant
cd99ef2f46 Merge branch 'main' into lstein/feat/sd3-model-loading 2024-06-20 08:43:34 +05:30
Lincoln Stein
b03073d888 [MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
steffylo
a43d602f16 fix(queue): add clear_queue_on_startup config to clear problematic queues 2024-06-19 11:39:25 +10:00
Ryan Dick
7e9a89f8c6 Tidy SilenceWarnings context manager (#6493)
## Summary

No functional changes, just cleaning some things up as I touch the code.
This PR cleans up the `SilenceWarnings` context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a
decorator
- Remove duplicate implementation
- Check the initial verbosity on `__enter__()` rather than `__init__()`
- Save an indentation level in DenoiseLatents

## QA Instructions

I generated an image to confirm that warnings are still muted.

## Merge Plan

- [x] ⚠️ Merge https://github.com/invoke-ai/InvokeAI/pull/6492 first,
then change the target branch to `main`.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_
- [x] _Documentation added / updated (if applicable)_
2024-06-18 15:23:32 -04:00
Ryan Dick
79ceac2f82 (minor) Use SilenceWarnings as a decorator rather than a context manager to save an indentation level. 2024-06-18 15:06:22 -04:00
Ryan Dick
8e47e005a7 Tidy SilenceWarnings context manager:
- Fix type errors
- Enable SilenceWarnings to be used as both a context manager and a decorator
- Remove duplicate implementation
- Check the initial verbosity on __enter__() rather than __init__()
2024-06-18 15:06:22 -04:00
Ryan Dick
d13aafb514 Tidy denoise_latents.py imports to all use absolute import paths. 2024-06-18 15:06:22 -04:00
Lincoln Stein
9dce4f09ae scale default RAM cache by size of system evirtual memory 2024-06-18 13:49:12 -04:00
Brandon Rising
63a7e19dbf Run ruff 2024-06-18 10:38:29 -04:00
Brandon Rising
fbc5a8ec65 Ignore validation on improperly formatted hashes (pytest) 2024-06-18 10:38:29 -04:00
Brandon Rising
8ce6e4540e Run ruff 2024-06-18 10:38:29 -04:00
Brandon Rising
f14f377ede Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
1925f83f5e Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
3a5ad6d112 Update validator list 2024-06-18 10:38:29 -04:00
Brandon Rising
41a6bb45f3 Initial functionality 2024-06-18 10:38:29 -04:00
chainchompa
70e40fa6c1 added route to install huggingface models from model marketplace (#6515)
## Summary
added route to install huggingface models from model marketplace
<!--A description of the changes in this PR. Include the kind of change
(fix, feature, docs, etc), the "why" and the "how". Screenshots or
videos are useful for frontend changes.-->

## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions
test by going to
http://localhost:5173/api/v2/models/install/huggingface?source=${hfRepo}
<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-06-16 21:13:58 -04:00
blessedcoolant
22b5c036aa Revert "fix: height and weight not working on sd3 node"
This reverts commit be14fd59c9.
2024-06-17 06:41:49 +05:30
blessedcoolant
be14fd59c9 fix: height and weight not working on sd3 node 2024-06-17 06:34:01 +05:30
psychedelicious
e26125b734 tests: fix test_model_install.py 2024-06-17 10:57:11 +10:00
psychedelicious
cd70937b7f feat(api): improved model install confirmation page styling & messaging 2024-06-17 10:51:08 +10:00
psychedelicious
f002bca2fa feat(ui): handle new model_install_download_started event
When a model install is initiated from outside the client, we now trigger the model manager tab's model install list to update.

- Handle new `model_install_download_started` event
- Handle `model_install_download_complete` event (this event is not new but was never handled)
- Update optimistic updates/cache invalidation logic to efficiently update the model install list
2024-06-17 10:07:10 +10:00
psychedelicious
56771de856 feat(ui): add redux actions for model_install_download_started event 2024-06-17 09:52:46 +10:00
psychedelicious
c11478a94a chore(ui): typegen 2024-06-17 09:51:18 +10:00
psychedelicious
fb694b3e17 feat(app): add model_install_download_started event
Previously, we used `model_install_download_progress` for both download starting and progressing. When handling this event, we don't know which actual thing it represents.

Add `model_install_download_started` event to explicitly represent a model download started event.
2024-06-17 09:50:25 +10:00
psychedelicious
1bc98abc76 docs(ui): explain model install events 2024-06-17 09:33:46 +10:00
Lincoln Stein
423057a2e8 add config variable to suppress loading of sd3 text_encoder_3 T5 model 2024-06-16 16:28:39 -04:00
blessedcoolant
f65d50a4dd wip: basic wrapper for generating sd3 images 2024-06-16 04:18:20 +05:30
Lincoln Stein
554809c647 return correct base type for sd3 VAEs 2024-06-15 18:17:03 -04:00
chainchompa
7f03b04b2f Merge branch 'main' into chainchompa/model-install-deeplink 2024-06-14 17:16:25 -04:00
chainchompa
4029972530 formatting 2024-06-14 17:15:55 -04:00
chainchompa
328f160e88 refetch model installs when a new model install starts 2024-06-14 17:09:07 -04:00
chainchompa
aae318425d added route for installing huggingface model from model marketplace 2024-06-14 17:08:39 -04:00
Lincoln Stein
ac0396e6f7 Merge branch 'lstein/feat/sd3-model-loading' of github.com:invoke-ai/InvokeAI into lstein/feat/sd3-model-loading 2024-06-14 16:48:20 -04:00
Lincoln Stein
78f704e7d5 tweak installer to select correct components of HF SD3 diffusers models 2024-06-14 16:46:24 -04:00
blessedcoolant
41236031b2 chore: remove unrequired changes to v1 workflow field types 2024-06-15 00:00:44 +05:30
Ryan Dick
785bb1d9e4 Fix all comparisons against the DEFAULT_PRECISION constant. DEFAULT_PRECISION is a torch.dtype. Previously, it was compared to a str in a number of places where it would always resolve to False. This is a bugfix that results in a change to the default behavior. In practice, this will not change the behavior for many users, because it only causes a change in behavior if a users has configured float32 as their default precision. 2024-06-14 11:26:10 -07:00
blessedcoolant
ddbd2ebd9d wip: add Transformer Field to Node UI 2024-06-14 22:25:26 +05:30
blessedcoolant
0c970bc880 wip: add SD3 Model Loader Invocation 2024-06-14 22:21:09 +05:30
blessedcoolant
c79d9b9ecf wip: Add Initial support for select SD3 models in UI 2024-06-14 16:04:16 +05:30
Lincoln Stein
a3cb5da130 Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
Lincoln Stein
03b9d17d0b draft sd3 loading; probable VRAM leak when using quantized submodels 2024-06-13 00:51:00 -04:00
Lincoln Stein
002f8242a1 add draft SD3 probing; there is an issue with FromOriginalControlNetMixin in backend.util.hotfixes due to new diffusers 2024-06-12 22:44:34 -04:00
blessedcoolant
568a4844f7 fix: other recursive imports 2024-06-10 04:12:20 -07:00
blessedcoolant
b1e56e2485 fix: SchedulerOutput not being imported correctly 2024-06-10 04:12:20 -07:00
Kent Keirsey
9432336e2b Add simplified model manager install API to InvocationContext (#6132)
## Summary

This three two model manager-related methods to the InvocationContext
uniform API. They are accessible via `context.models.*`:

1. **`load_local_model(model_path: Path, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated path.*

This will load a local model (.safetensors, .ckpt or diffusers
directory) into the model manager RAM cache and return its
`LoadedModelWithoutConfig`. If the optional loader argument is provided,
the loader will be invoked to load the model into memory. Otherwise the
method will call `safetensors.torch.load_file()` `torch.load()` (with a
pickle scan), or `from_pretrained()` as appropriate to the path type.

Be aware that the `LoadedModelWithoutConfig` object differs from
`LoadedModel` by having no `config` attribute.

Here is an example of usage:

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_path = Path('/opt/models/RealESRGAN_x4plus.pth')
       loadnet = context.models.load_local_model(model_path)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```

---

2. **`load_remote_model(source: str | AnyHttpUrl, loader:
Optional[Callable[[Path], AnyModel]] = None) ->
LoadedModelWithoutConfig`**

*Load the model located at the indicated URL or repo_id.*

This is similar to `load_local_model()` but it accepts either a
HugginFace repo_id (as a string), or a URL. The model's file(s) will be
downloaded to `models/.download_cache` and then loaded, returning a

```
def invoke(self, context: InvocatinContext) -> ImageOutput:
       model_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
       loadnet = context.models.load_remote_model(model_url)
       with loadnet as loadnet_model:
             upscaler = RealESRGAN(loadnet=loadnet_model,...)
```
---

3. **`download_and_cache_model( source: str | AnyHttpUrl, access_token:
Optional[str] = None, timeout: Optional[int] = 0) -> Path`**

Download the model file located at source to the models cache and return
its Path. This will check `models/.download_cache` for the desired model
file and download it from the indicated source if not already present.
The local Path to the downloaded file is then returned.

---

## Other Changes

This PR performs a migration, in which it renames `models/.cache` to
`models/.convert_cache`, and migrates previously-downloaded ESRGAN,
openpose, DepthAnything and Lama inpaint models from the `models/core`
directory into `models/.download_cache`.

There are a number of legacy model files in `models/core`, such as
GFPGAN, which are no longer used. This PR deletes them and tidies up the
`models/core` directory.

## Related Issues / Discussions

I have systematically replaced all the calls to
`download_with_progress_bar()`. This function is no longer used
elsewhere and has been removed.

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

I have added unit tests for the three new calls. You may test that the
`load_and_cache_model()` call is working by running the upscaler within
the web app. On first try, you will see the model file being downloaded
into the models `.cache` directory. On subsequent tries, the model will
either load from RAM (if it hasn't been displaced) or will be loaded
from the filesystem.

<!--WHEN APPLICABLE: Describe how we can test the changes in this PR.-->

## Merge Plan

Squash merge when approved.

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [X] _The PR has a short but descriptive title, suitable for a
changelog_
- [X] _Tests added / updated (if applicable)_
- [X] _Documentation added / updated (if applicable)_
2024-06-08 16:24:31 -07:00
Lincoln Stein
7d19af2caa Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-08 18:55:06 -04:00
Ryan Dick
0dbec3ad8b Split up latent.py (code reorganization, no functional changes) (#6491)
## Summary

I've started working towards a better tiled upscaling implementation. It
is going to require some refactoring of `DenoiseLatentsInvocation`. As a
first step, this PR splits up all of the invocations in latent.py into
their own files. That file had become a bit of a dumping ground - it
should be a bit more manageable to work with now.

This PR just re-organizes the code. There should be no functional
changes.

## QA Instructions

I've done some light smoke testing. I'll do some more before merging.
The main risk is that I missed a broken import, or some other copy-paste
error.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [x] _Tests added / updated (if applicable)_: N/A
- [x] _Documentation added / updated (if applicable)_: N/A
2024-06-07 12:01:56 -04:00
Ryan Dick
52c0c4a32f Rename latent.py -> denoise_latents.py. 2024-06-07 09:28:42 -04:00
Ryan Dick
8f1afc032a Move SchedulerInvocation to a new file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
854bca668a Move CreateDenoiseMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
fea9013cad Move CreateGradientMaskInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
045caddee1 Move LatentsToImageInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
58697141bf Move ImageToLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
5e419dbb56 Move ScaleLatentsInvocation and ResizeLatentsInvocation to their own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
595096bdcf Move BlendLatentsInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
ed03d281e6 Move CropLatentsCoreInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
Ryan Dick
0b37496c57 Move IdealSizeInvocation to its own file. No functional changes. 2024-06-07 09:28:42 -04:00
psychedelicious
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
Lincoln Stein
dc134935c8 replace load_and_cache_model() with load_remote_model() and load_local_odel() 2024-06-07 14:12:16 +10:00
Lincoln Stein
9f9379682e ruff fixes 2024-06-07 13:54:41 +10:00
Lincoln Stein
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
psychedelicious
6d067e56f2 fix(ui): on page load, if CA processed image no longer exists, re-process it 2024-06-07 10:32:28 +10:00
Lincoln Stein
2871676f79 LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
psychedelicious
1c5c3cdbd6 tidy(ui): organize control layers konva logic
- More comments, docstrings
- Move things into saner, less-coupled locations
2024-06-06 07:45:13 +10:00
psychedelicious
3db69af220 refactor(ui): generalize stage event handlers
Create intermediary nanostores for values required by the event handlers. This allows the event handlers to be purely imperative, with no reactivity: instead of recreating/setting the handlers when a dependent piece of state changes, we use nanostores' imperative API to access dependent state.

For example, some handlers depend on brush size. If we used the standard declarative `useSelector` API, we'd need to recreate the event handler callback each time the brush size changed. This can be costly.

An intermediate `$brushSize` nanostore is set in a `useLayoutEffect()`, which responds to changes to the redux store. Then, in the event handler, we use the imperative API to access the brush size: `$brushSize.get()`.

This change allows the event handler logic to be shared with the pending canvas v2, and also more easily tested. It's a noticeable perf improvement, too, especially when changing brush size.
2024-06-06 07:45:13 +10:00
psychedelicious
1823e446ac fix(ui): conditionally render CL preview
This fixes an issue where it sometimes gets out of sync, and fixes some konva errors.
2024-06-06 07:45:13 +10:00
psychedelicious
311e44ad19 tidy(ui): clean up control layers renderers, docstrings 2024-06-06 07:45:13 +10:00
psychedelicious
a9962fd104 chore: ruff 2024-06-03 11:53:20 +10:00
psychedelicious
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00
psychedelicious
c7f22b6a3b tidy(mm): remove extraneous docstring
It's inherited from the ABC.
2024-06-03 10:46:28 +10:00
psychedelicious
99413256ce tidy(mm): pass enum member instead of string 2024-06-03 10:43:09 +10:00
psychedelicious
aa9695e377 tidy(download): _download_job -> _multifile_job 2024-06-03 10:15:53 +10:00
psychedelicious
c58ac1e80d tidy(mm): minor formatting 2024-06-03 10:11:08 +10:00
psychedelicious
6cc6a45274 feat(download): add type for callback_name
Just a bit of typo protection in lieu of full type safety for these methods, which is difficult due to the typing of `DownloadEventHandler`.
2024-06-03 10:05:52 +10:00
psychedelicious
521f907f58 tidy(nodes): infill
- Set `self._context=context` instead of passing it as an arg
2024-06-03 09:43:25 +10:00
psychedelicious
ccdecf21a3 tidy(nodes): cnet processors
- Set `self._context=context` instead of changing the type signature of `run_processor`
- Tidy a few typing things
2024-06-03 09:41:17 +10:00
psychedelicious
b124440023 tidy(mm): move load_model_from_url from mm to invocation context 2024-06-03 08:51:21 +10:00
psychedelicious
e3a70e598e docs(app): simplify docstring in invocation_context 2024-06-03 08:40:29 +10:00
psychedelicious
132bbf330a tidy(app): remove unnecessary changes in invocation_context
- Any mypy issues are a misconfiguration of mypy
- Use simple conditionals instead of ternaries
- Consistent & standards-compliant docstring formatting
- Use `dict` instead of `typing.Dict`
2024-06-03 08:35:23 +10:00
Lincoln Stein
2276f327e5 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-02 09:45:31 -04:00
Lincoln Stein
ead1748c54 issue a download progress event when install download starts 2024-05-28 19:30:42 -04:00
Lincoln Stein
cd12ca6e85 add migration_11; fix typo 2024-05-27 22:40:01 -04:00
Lincoln Stein
34e1eb19f9 merge with main and resolve conflicts 2024-05-27 22:20:34 -04:00
Lincoln Stein
987ee704a1 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-17 22:54:03 -04:00
Lincoln Stein
e77c7e40b7 fix ruff error 2024-05-17 22:53:45 -04:00
Lincoln Stein
8aebc29b91 fix test to run on 32bit cpu 2024-05-17 22:48:54 -04:00
Lincoln Stein
d968c6f379 refactor multifile download code 2024-05-17 22:29:19 -04:00
Lincoln Stein
2dae5eb7ad more refactoring; HF subfolders not working 2024-05-16 22:26:18 -04:00
Lincoln Stein
911a24479b add tests for model install file size reporting 2024-05-16 07:18:33 -04:00
Lincoln Stein
f29c406fed refactor model_install to work with refactored download queue 2024-05-13 22:49:15 -04:00
Lincoln Stein
287c679f7b clean up type checking for single file and multifile download job callbacks 2024-05-13 18:31:40 -04:00
Lincoln Stein
0bf14c2830 add multifile_download() method to download service 2024-05-12 20:14:00 -06:00
Lincoln Stein
b48d4a049d bad implementation of diffusers folder download 2024-05-08 21:21:01 -07:00
Lincoln Stein
f211c95dbc move access token regex matching into download queue 2024-05-05 21:00:31 -04:00
Lincoln Stein
8e5e9b53d6 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-04 17:01:15 -04:00
Lincoln Stein
e9a20051bd refactor DWOpenPose and add type hints 2024-05-03 18:08:53 -04:00
Lincoln Stein
38df6f3702 fix ruff error 2024-05-02 21:22:33 -04:00
Lincoln Stein
3b64e7a1fd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-05-02 21:20:35 -04:00
Lincoln Stein
49c84cd423 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-30 18:13:42 -04:00
psychedelicious
1fe90c357c feat(backend): lift managed model loading out of depthanything class 2024-04-29 08:56:00 +10:00
psychedelicious
fcb071f30c feat(backend): lift managed model loading out of lama class 2024-04-29 08:12:51 +10:00
Lincoln Stein
57c831442e fix safe_filename() on windows 2024-04-28 14:42:40 -04:00
Lincoln Stein
f65c7e2bfd Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 13:42:54 -04:00
Lincoln Stein
7c39929758 support VRAM caching of dict models that lack to() 2024-04-28 13:41:06 -04:00
Lincoln Stein
a26667d3ca make download and convert cache keys safe for filename length 2024-04-28 12:24:36 -04:00
Lincoln Stein
bb04f496e0 Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-28 11:33:26 -04:00
Lincoln Stein
70903ef057 refactor load_ckpt_from_url() 2024-04-28 11:33:23 -04:00
Lincoln Stein
d72f272f16 Address change requests in first round of PR reviews.
Pending:

- Move model install calls into model manager and create passthrus in invocation_context.
- Consider splitting load_model_from_url() into a call to get the path and a call to load the path.
2024-04-24 23:53:30 -04:00
Lincoln Stein
34cdfc61ab Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-17 17:18:13 -04:00
Lincoln Stein
470a39935c fix merge conflicts with main 2024-04-15 09:24:57 -04:00
Lincoln Stein
f1e79d5a8f Merge branch 'main' into lstein/feat/simple-mm2-api 2024-04-15 09:14:55 -04:00
Lincoln Stein
f055e1edb6 Merge branch 'lstein/feat/simple-mm2-api' of github.com:invoke-ai/InvokeAI into lstein/feat/simple-mm2-api 2024-04-15 09:14:37 -04:00
Lincoln Stein
fa6efac436 change names of convert and download caches and add migration script 2024-04-14 16:10:24 -04:00
Lincoln Stein
3ead827d61 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 16:10:24 -04:00
Lincoln Stein
c140d3b1df add invocation_context.load_ckpt_from_url() method 2024-04-14 16:10:24 -04:00
Lincoln Stein
34438ce1af add simplified model manager install API to InvocationContext 2024-04-14 16:10:24 -04:00
Lincoln Stein
3ddd7ced49 change names of convert and download caches and add migration script 2024-04-14 15:57:33 -04:00
Lincoln Stein
41b909cbe3 port dw_openpose, depth_anything, and lama processors to new model download scheme 2024-04-14 15:57:03 -04:00
Lincoln Stein
3a26c7bb9e fix merge conflicts 2024-04-12 00:58:11 -04:00
Lincoln Stein
df5ebdbc4f add invocation_context.load_ckpt_from_url() method 2024-04-12 00:55:21 -04:00
Lincoln Stein
af1b57a01f add simplified model manager install API to InvocationContext 2024-04-11 21:46:00 -04:00
Lincoln Stein
9cc1f20ad5 add simplified model manager install API to InvocationContext 2024-04-03 23:26:48 -04:00
116 changed files with 4111 additions and 2143 deletions

View File

@@ -128,7 +128,8 @@ The queue operates on a series of download job objects. These objects
specify the source and destination of the download, and keep track of
the progress of the download.
The only job type currently implemented is `DownloadJob`, a pydantic object with the
Two job types are defined. `DownloadJob` and
`MultiFileDownloadJob`. The former is a pydantic object with the
following fields:
| **Field** | **Type** | **Default** | **Description** |
@@ -138,7 +139,7 @@ following fields:
| `dest` | Path | | Where to download to |
| `access_token` | str | | [optional] string containing authentication token for access |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
@@ -190,6 +191,33 @@ A cancelled job will have status `DownloadJobStatus.ERROR` and an
`error_type` field of "DownloadJobCancelledException". In addition,
the job's `cancelled` property will be set to True.
The `MultiFileDownloadJob` is used for diffusers model downloads,
which contain multiple files and directories under a common root:
| **Field** | **Type** | **Default** | **Description** |
|----------------|-----------------|---------------|-----------------|
| _Fields passed in at job creation time_ |
| `download_parts` | Set[DownloadJob]| | Component download jobs |
| `dest` | Path | | Where to download to |
| `on_start` | Callable | | [optional] callback when the download starts |
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
| `on_complete` | Callable | | [optional] callback called after successful download completion |
| `on_error` | Callable | | [optional] callback called after an error occurs |
| `id` | int | auto assigned | Job ID, an integer >= 0 |
| _Fields updated over the course of the download task_
| `status` | DownloadJobStatus| | Status code |
| `download_path` | Path | | Path to the root of the downloaded files |
| `bytes` | int | 0 | Bytes downloaded so far |
| `total_bytes` | int | 0 | Total size of the file at the remote site |
| `error_type` | str | | String version of the exception that caused an error during download |
| `error` | str | | String version of the traceback associated with an error |
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
Note that the MultiFileDownloadJob does not support the `priority`,
`job_started`, `job_ended` or `content_type` attributes. You can get
these from the individual download jobs in `download_parts`.
### Callbacks
Download jobs can be associated with a series of callbacks, each with
@@ -251,11 +279,40 @@ jobs using `list_jobs()`, fetch a single job by its with
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
with `join()`.
#### job = queue.download(source, dest, priority, access_token)
#### job = queue.download(source, dest, priority, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
Create a new download job and put it on the queue, returning the
DownloadJob object.
#### multifile_job = queue.multifile_download(parts, dest, access_token, on_start, on_progress, on_complete, on_cancelled, on_error)
This is similar to download(), but instead of taking a single source,
it accepts a `parts` argument consisting of a list of
`RemoteModelFile` objects. Each part corresponds to a URL/Path pair,
where the URL is the location of the remote file, and the Path is the
destination.
`RemoteModelFile` can be imported from `invokeai.backend.model_manager.metadata`, and
consists of a url/path pair. Note that the path *must* be relative.
The method returns a `MultiFileDownloadJob`.
```
from invokeai.backend.model_manager.metadata import RemoteModelFile
remote_file_1 = RemoteModelFile(url='http://www.foo.bar/my/pytorch_model.safetensors'',
path='my_model/textencoder/pytorch_model.safetensors'
)
remote_file_2 = RemoteModelFile(url='http://www.bar.baz/vae.ckpt',
path='my_model/vae/diffusers_model.safetensors'
)
job = queue.multifile_download(parts=[remote_file_1, remote_file_2],
dest='/tmp/downloads',
on_progress=TqdmProgress().update)
queue.wait_for_job(job)
print(f"The files were downloaded to {job.download_path}")
```
#### jobs = queue.list_jobs()
Return a list of all active and inactive `DownloadJob`s.

View File

@@ -397,26 +397,25 @@ In the event you wish to create a new installer, you may use the
following initialization pattern:
```
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.config import get_config
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.shared.sqlite import SqliteDatabase
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
config = InvokeAIAppConfig.get_config()
config.parse_args()
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config, logger)
db = SqliteDatabase(config.db_path, logger)
record_store = ModelRecordServiceSQL(db)
queue = DownloadQueueService()
queue.start()
installer = ModelInstallService(app_config=config,
installer = ModelInstallService(app_config=config,
record_store=record_store,
download_queue=queue
)
download_queue=queue
)
installer.start()
```
@@ -1367,12 +1366,20 @@ the in-memory loaded model:
| `model` | AnyModel | The instantiated model (details below) |
| `locker` | ModelLockerBase | A context manager that mediates the movement of the model into VRAM |
Because the loader can return multiple model types, it is typed to
return `AnyModel`, a Union `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
### get_model_by_key(key, [submodel]) -> LoadedModel
The `get_model_by_key()` method will retrieve the model using its
unique database key. For example:
loaded_model = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
`get_model_by_key()` may raise any of the following exceptions:
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Using the Loaded Model in Inference
`LoadedModel` acts as a context manager. The context loads the model
into the execution device (e.g. VRAM on CUDA systems), locks the model
@@ -1380,17 +1387,33 @@ in the execution device for the duration of the context, and returns
the model. Use it like this:
```
model_info = loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with model_info as vae:
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model as vae:
image = vae.decode(latents)[0]
```
`get_model_by_key()` may raise any of the following exceptions:
The object returned by the LoadedModel context manager is an
`AnyModel`, which is a Union of `ModelMixin`, `torch.nn.Module`,
`IAIOnnxRuntimeModel`, `IPAdapter`, `IPAdapterPlus`, and
`EmbeddingModelRaw`. `ModelMixin` is the base class of all diffusers
models, `EmbeddingModelRaw` is used for LoRA and TextualInversion
models. The others are obvious.
In addition, you may call `LoadedModel.model_on_device()`, a context
manager that returns a tuple of the model's state dict in CPU and the
model itself in VRAM. It is used to optimize the LoRA patching and
unpatching process:
```
loaded_model_= loader.get_model_by_key('f13dd932c0c35c22dcb8d6cda4203764', SubModelType('vae'))
with loaded_model.model_on_device() as (state_dict, vae):
image = vae.decode(latents)[0]
```
Since not all models have state dicts, the `state_dict` return value
can be None.
* `UnknownModelException` -- key not in database
* `ModelNotFoundException` -- key in database but model not found at path
* `NotImplementedException` -- the loader doesn't know how to load this type of model
### Emitting model loading events
When the `context` argument is passed to `load_model_*()`, it will
@@ -1578,3 +1601,59 @@ This method takes a model key, looks it up using the
`ModelRecordServiceBase` object in `mm.store`, and passes the returned
model configuration to `load_model_by_config()`. It may raise a
`NotImplementedException`.
## Invocation Context Model Manager API
Within invocations, the following methods are available from the
`InvocationContext` object:
### context.download_and_cache_model(source) -> Path
This method accepts a `source` of a remote model, downloads and caches
it locally, and then returns a Path to the local model. The source can
be a direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
### context.load_local_model(model_path, [loader]) -> LoadedModel
This method loads a local model from the indicated path, returning a
`LoadedModel`. The optional loader is a Callable that accepts a Path
to the object, and returns a `AnyModel` object. If no loader is
provided, then the method will use `torch.load()` for a .ckpt or .bin
checkpoint file, `safetensors.torch.load_file()` for a safetensors
checkpoint file, or `cls.from_pretrained()` for a directory that looks
like a diffusers directory.
### context.load_remote_model(source, [loader]) -> LoadedModel
This method accepts a `source` of a remote model, downloads and caches
it locally, loads it, and returns a `LoadedModel`. The source can be a
direct download URL or a HuggingFace repo_id.
In the case of HuggingFace repo_id, the following variants are
recognized:
* stabilityai/stable-diffusion-v4 -- default model
* stabilityai/stable-diffusion-v4:fp16 -- fp16 variant
* stabilityai/stable-diffusion-v4:fp16:vae -- the fp16 vae subfolder
* stabilityai/stable-diffusion-v4:onnx:vae -- the onnx variant vae subfolder
You can also point at an arbitrary individual file within a repo_id
directory using this syntax:
* stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors

View File

@@ -93,7 +93,7 @@ class ApiDependencies:
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
)
download_queue_service = DownloadQueueService(event_bus=events)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")
model_manager = ModelManagerService.build_model_manager(
app_config=configuration,

View File

@@ -9,7 +9,7 @@ from copy import deepcopy
from typing import Any, Dict, List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
from fastapi.responses import FileResponse, HTMLResponse
from fastapi.routing import APIRouter
from PIL import Image
from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
@@ -502,6 +502,133 @@ async def install_model(
return result
@model_manager_router.get(
"/install/huggingface",
operation_id="install_hugging_face_model",
responses={
201: {"description": "The model is being installed"},
400: {"description": "Bad request"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_class=HTMLResponse,
)
async def install_hugging_face_model(
source: str = Query(description="HuggingFace repo_id to install"),
) -> HTMLResponse:
"""Install a Hugging Face model using a string identifier."""
def generate_html(title: str, heading: str, repo_id: str, is_error: bool, message: str | None = "") -> str:
if message:
message = f"<p>{message}</p>"
title_class = "error" if is_error else "success"
return f"""
<html>
<head>
<title>{title}</title>
<style>
body {{
text-align: center;
background-color: hsl(220 12% 10% / 1);
font-family: Helvetica, sans-serif;
color: hsl(220 12% 86% / 1);
}}
.repo-id {{
color: hsl(220 12% 68% / 1);
}}
.error {{
color: hsl(0 42% 68% / 1)
}}
.message-box {{
display: inline-block;
border-radius: 5px;
background-color: hsl(220 12% 20% / 1);
padding-inline-end: 30px;
padding: 20px;
padding-inline-start: 30px;
padding-inline-end: 30px;
}}
.container {{
display: flex;
width: 100%;
height: 100%;
align-items: center;
justify-content: center;
}}
a {{
color: inherit
}}
a:visited {{
color: inherit
}}
a:active {{
color: inherit
}}
</style>
</head>
<body style="background-color: hsl(220 12% 10% / 1);">
<div class="container">
<div class="message-box">
<h2 class="{title_class}">{heading}</h2>
{message}
<p class="repo-id">Repo ID: {repo_id}</p>
</div>
</div>
</body>
</html>
"""
try:
metadata = HuggingFaceMetadataFetch().from_id(source)
assert isinstance(metadata, ModelMetadataWithFiles)
except UnknownMetadataException:
title = "Unable to Install Model"
heading = "No HuggingFace repository found with that repo ID."
message = "Ensure the repo ID is correct and try again."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=400)
logger = ApiDependencies.invoker.services.logger
try:
installer = ApiDependencies.invoker.services.model_manager.install
if metadata.is_diffusers:
installer.heuristic_import(
source=source,
inplace=False,
)
elif metadata.ckpt_urls is not None and len(metadata.ckpt_urls) == 1:
installer.heuristic_import(
source=str(metadata.ckpt_urls[0]),
inplace=False,
)
else:
title = "Unable to Install Model"
heading = "This HuggingFace repo has multiple models."
message = "Please use the Model Manager to install this model."
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=200)
title = "Model Install Started"
heading = "Your HuggingFace model is installing now."
message = "You can close this tab and check the Model Manager for installation progress."
return HTMLResponse(content=generate_html(title, heading, source, False, message), status_code=201)
except Exception as e:
logger.error(str(e))
title = "Unable to Install Model"
heading = "There was an problem installing this model."
message = 'Please use the Model Manager directly to install this model. If the issue persists, ask for help on <a href="https://discord.gg/ZmtBAhwWhy">discord</a>.'
return HTMLResponse(content=generate_html(title, heading, source, True, message), status_code=500)
@model_manager_router.get(
"/install",
operation_id="list_model_installs",

View File

@@ -81,9 +81,13 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (
@@ -172,9 +176,14 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info as text_encoder,
text_encoder_info.model_on_device() as (state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
model_state_dict=state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),
ModelPatcher.apply_ti(tokenizer, text_encoder, ti_list) as (

View File

@@ -2,6 +2,7 @@
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from pathlib import Path
from typing import Dict, List, Literal, Union
import cv2
@@ -36,12 +37,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
@@ -139,6 +141,7 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
return context.images.get_pil(self.image.image_name, "RGB")
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
raw_image = self.load_image(context)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(raw_image)
@@ -284,7 +287,8 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# TODO: replace from_pretrained() calls with context.models.download_and_cache() (or similar)
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(
image,
@@ -311,7 +315,7 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(
image, detect_resolution=self.detect_resolution, image_resolution=self.image_resolution
@@ -330,7 +334,7 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(
image,
@@ -353,7 +357,7 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(
image,
@@ -381,7 +385,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(
image,
@@ -405,7 +409,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image
@@ -426,7 +430,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
mediapipe_face_processor = MediapipeFaceDetector()
processed_image = mediapipe_face_processor(
image,
@@ -454,7 +458,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
processed_image = leres_processor(
image,
@@ -496,8 +500,8 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
np_img = cv2.resize(np_img, (W, H), interpolation=cv2.INTER_AREA)
return np_img
def run_processor(self, img):
np_img = np.array(img, dtype=np.uint8)
def run_processor(self, image: Image.Image) -> Image.Image:
np_img = np.array(image, dtype=np.uint8)
processed_np_image = self.tile_resample(
np_img,
# res=self.tile_size,
@@ -520,7 +524,7 @@ class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
def run_processor(self, image: Image.Image) -> Image.Image:
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
segment_anything_processor = SamDetectorReproducibleColors.from_pretrained(
"ybelkada/segment-anything", subfolder="checkpoints"
@@ -566,7 +570,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image):
def run_processor(self, image: Image.Image) -> Image.Image:
np_image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2]
@@ -601,12 +605,18 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
depth_anything_detector.load_model(model_size=self.model_size)
def run_processor(self, image: Image.Image) -> Image.Image:
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(
@@ -624,8 +634,11 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
def run_processor(self, image: Image.Image) -> Image.Image:
onnx_det = self._context.models.download_and_cache_model(DWPOSE_MODELS["yolox_l.onnx"])
onnx_pose = self._context.models.download_and_cache_model(DWPOSE_MODELS["dw-ll_ucoco_384.onnx"])
dw_openpose = DWOpenposeDetector(onnx_det=onnx_det, onnx_pose=onnx_pose)
processed_image = dw_openpose(
image,
draw_face=self.draw_face,

View File

@@ -65,9 +65,6 @@ def get_scheduler(
scheduler_name: str,
seed: int,
) -> Scheduler:
"""Load a scheduler and apply some scheduler-specific overrides."""
# TODO(ryand): Silently falling back to ddim seems like a bad idea. Look into why this was added and remove if
# possible.
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.models.load(scheduler_info)
with orig_scheduler_info as orig_scheduler:
@@ -87,6 +84,9 @@ def get_scheduler(
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
assert isinstance(scheduler, Scheduler)
return scheduler
@@ -182,8 +182,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def _get_text_embeddings_and_masks(
self,
cond_list: list[ConditioningField],
context: InvocationContext,
device: torch.device,
@@ -203,9 +203,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
return text_embeddings, text_embeddings_masks
@staticmethod
def _preprocess_regional_prompt_mask(
mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
self, mask: Optional[torch.Tensor], target_height: int, target_width: int, dtype: torch.dtype
) -> torch.Tensor:
"""Preprocess a regional prompt mask to match the target height and width.
If mask is None, returns a mask of all ones with the target height and width.
@@ -229,8 +228,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
resized_mask = tf(mask)
return resized_mask
@staticmethod
def _concat_regional_text_embeddings(
self,
text_conditionings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]],
masks: Optional[list[Optional[torch.Tensor]]],
latent_height: int,
@@ -280,9 +279,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
)
processed_masks.append(
DenoiseLatentsInvocation._preprocess_regional_prompt_mask(
mask, latent_height, latent_width, dtype=dtype
)
self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
)
cur_text_embedding_len += text_embedding_info.embeds.shape[1]
@@ -304,41 +301,36 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
return BasicConditioningInfo(embeds=text_embedding), regions
@staticmethod
def get_conditioning_data(
self,
context: InvocationContext,
positive_conditioning_field: Union[ConditioningField, list[ConditioningField]],
negative_conditioning_field: Union[ConditioningField, list[ConditioningField]],
unet: UNet2DConditionModel,
latent_height: int,
latent_width: int,
cfg_scale: float | list[float],
steps: int,
cfg_rescale_multiplier: float,
) -> TextConditioningData:
# Normalize positive_conditioning_field and negative_conditioning_field to lists.
cond_list = positive_conditioning_field
# Normalize self.positive_conditioning and self.negative_conditioning to lists.
cond_list = self.positive_conditioning
if not isinstance(cond_list, list):
cond_list = [cond_list]
uncond_list = negative_conditioning_field
uncond_list = self.negative_conditioning
if not isinstance(uncond_list, list):
uncond_list = [uncond_list]
cond_text_embeddings, cond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
cond_text_embeddings, cond_text_embedding_masks = self._get_text_embeddings_and_masks(
cond_list, context, unet.device, unet.dtype
)
uncond_text_embeddings, uncond_text_embedding_masks = DenoiseLatentsInvocation._get_text_embeddings_and_masks(
uncond_text_embeddings, uncond_text_embedding_masks = self._get_text_embeddings_and_masks(
uncond_list, context, unet.device, unet.dtype
)
cond_text_embedding, cond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
cond_text_embedding, cond_regions = self._concat_regional_text_embeddings(
text_conditionings=cond_text_embeddings,
masks=cond_text_embedding_masks,
latent_height=latent_height,
latent_width=latent_width,
dtype=unet.dtype,
)
uncond_text_embedding, uncond_regions = DenoiseLatentsInvocation._concat_regional_text_embeddings(
uncond_text_embedding, uncond_regions = self._concat_regional_text_embeddings(
text_conditionings=uncond_text_embeddings,
masks=uncond_text_embedding_masks,
latent_height=latent_height,
@@ -346,21 +338,23 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype=unet.dtype,
)
if isinstance(cfg_scale, list):
assert len(cfg_scale) == steps, "cfg_scale (list) must have the same length as the number of steps"
if isinstance(self.cfg_scale, list):
assert (
len(self.cfg_scale) == self.steps
), "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
uncond_regions=uncond_regions,
cond_regions=cond_regions,
guidance_scale=cfg_scale,
guidance_rescale_multiplier=cfg_rescale_multiplier,
guidance_scale=self.cfg_scale,
guidance_rescale_multiplier=self.cfg_rescale_multiplier,
)
return conditioning_data
@staticmethod
def create_pipeline(
self,
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
@@ -589,8 +583,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
# original idea by https://github.com/AmericanPresidentJimmyCarter
# TODO: research more for second order schedulers timesteps
@staticmethod
def init_scheduler(
self,
scheduler: Union[Scheduler, ConfigMixin],
device: torch.device,
steps: int,
@@ -662,39 +656,30 @@ class DenoiseLatentsInvocation(BaseInvocation):
return 1 - mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
context: InvocationContext, noise_field: LatentsField | None, latents_field: LatentsField | None
) -> Tuple[int, torch.Tensor | None, torch.Tensor]:
noise = None
if noise_field is not None:
noise = context.tensors.load(noise_field.latents_name)
if latents_field is not None:
latents = context.tensors.load(latents_field.latents_name)
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise ValueError("'latents' or 'noise' must be provided!")
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise ValueError(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
# The seed comes from (in order of priority): the noise field, the latents field, or 0.
seed = 0
if noise_field is not None and noise_field.seed is not None:
seed = noise_field.seed
elif latents_field is not None and latents_field.seed is not None:
seed = latents_field.seed
else:
seed = 0
return seed, noise, latents
@torch.no_grad()
@SilenceWarnings() # This quenches the NSFW nag from diffusers.
def invoke(self, context: InvocationContext) -> LatentsOutput:
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
seed = None
noise = None
if self.noise is not None:
noise = context.tensors.load(self.noise.latents_name)
seed = self.noise.seed
if self.latents is not None:
latents = context.tensors.load(self.latents.latents_name)
if seed is None:
seed = self.latents.seed
if noise is not None and noise.shape[1:] != latents.shape[1:]:
raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}")
elif noise is not None:
latents = torch.zeros_like(noise)
else:
raise Exception("'latents' or 'noise' must be provided!")
if seed is None:
seed = 0
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
@@ -739,11 +724,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info as unet,
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
model_state_dict=model_state_dict,
),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
@@ -765,15 +754,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
context=context, unet=unet, latent_height=latent_height, latent_width=latent_width
)
controlnet_data = self.prep_control_data(

View File

@@ -42,6 +42,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
MainModel = "MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
SD3MainModel = "SD3MainModelField"
ONNXModel = "ONNXModelField"
VAEModel = "VAEModelField"
LoRAModel = "LoRAModelField"
@@ -125,6 +126,7 @@ class FieldDescriptions:
noise = "Noise tensor"
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
unet = "UNet (scheduler, LoRAs)"
transformer = "Transformer"
vae = "VAE"
cond = "Conditioning tensor"
controlnet_model = "ControlNet model to load"
@@ -133,6 +135,7 @@ class FieldDescriptions:
main_model = "Main model (UNet, VAE, CLIP) to load"
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
sd3_main_model = "SD3 Main Model (Transformer, CLIP1, CLIP2, CLIP3, VAE) to load"
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
lora_weight = "The weight at which the LoRA is applied to each model"
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"

View File

@@ -42,15 +42,16 @@ class InfillImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Infill the image with the specified method"""
pass
def load_image(self, context: InvocationContext) -> tuple[Image.Image, bool]:
def load_image(self) -> tuple[Image.Image, bool]:
"""Process the image to have an alpha channel before being infilled"""
image = context.images.get_pil(self.image.image_name)
image = self._context.images.get_pil(self.image.image_name)
has_alpha = True if image.mode == "RGBA" else False
return image, has_alpha
def invoke(self, context: InvocationContext) -> ImageOutput:
self._context = context
# Retrieve and process image to be infilled
input_image, has_alpha = self.load_image(context)
input_image, has_alpha = self.load_image()
# If the input image has no alpha channel, return it
if has_alpha is False:
@@ -133,8 +134,12 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image):
lama = LaMA()
return lama(image)
with self._context.models.load_remote_model(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)
return lama(image)
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.2.2")

View File

@@ -8,22 +8,14 @@ from diffusers.models.attention_processor import (
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from PIL import Image
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField, WithBoard, WithMetadata
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.util.devices import TorchDevice
@@ -49,20 +41,16 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
@staticmethod
def vae_decode(
context: InvocationContext,
vae_info: LoadedModel,
seamless_axes: list[str],
latents: torch.Tensor,
use_fp32: bool,
use_tiling: bool,
) -> Image.Image:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, torch.nn.Module)
latents = latents.to(vae.device)
if use_fp32:
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
@@ -87,7 +75,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae.to(dtype=torch.float16)
latents = latents.half()
if use_tiling or context.config.get().force_tiled_decode:
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
@@ -107,21 +95,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
TorchDevice.empty_cache()
return image
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
image = self.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=latents,
use_fp32=self.fp32,
use_tiling=self.tiled,
)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)

View File

@@ -8,13 +8,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
class ModelIdentifierField(BaseModel):
@@ -54,6 +48,11 @@ class UNetField(BaseModel):
freeu_config: Optional[FreeUConfig] = Field(default=None, description="FreeU configuration")
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load unet submodel")
scheduler: ModelIdentifierField = Field(description="Info to load scheduler submodel")
class CLIPField(BaseModel):
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
@@ -61,6 +60,15 @@ class CLIPField(BaseModel):
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class SD3CLIPField(BaseModel):
tokenizer_1: ModelIdentifierField = Field(description="Info to load tokenizer 1 submodel")
text_encoder_1: ModelIdentifierField = Field(description="Info to load text_encoder 1 submodel")
tokenizer_2: ModelIdentifierField = Field(description="Info to load tokenizer 2 submodel")
text_encoder_2: ModelIdentifierField = Field(description="Info to load text_encoder 2 submodel")
tokenizer_3: Optional[ModelIdentifierField] = Field(description="Info to load tokenizer 3 submodel")
text_encoder_3: Optional[ModelIdentifierField] = Field(description="Info to load text_encoder 3 submodel")
class VAEField(BaseModel):
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')

View File

@@ -0,0 +1,200 @@
from contextlib import ExitStack
from typing import Optional, cast
import torch
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3 import StableDiffusion3Pipeline
from pydantic import field_validator
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Input,
invocation,
invocation_output,
)
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.denoise_latents import get_scheduler
from invokeai.app.invocations.fields import FieldDescriptions, InputField, LatentsField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField, SD3CLIPField, TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.misc import SEED_MAX
from invokeai.backend.model_manager.config import SubModelType
sd3_pipeline: Optional[StableDiffusion3Pipeline] = None
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
self.block_out_channels = [0]
def __init__(self) -> None:
self.config = FakeVae.FakeVaeConfig()
@invocation_output("sd3_model_loader_output")
class SD3ModelLoaderOutput(BaseInvocationOutput):
"""Stable Diffuion 3 base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
clip: SD3CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation("sd3_model_loader", title="SD3 Main Model", tags=["model", "sd3"], category="model", version="1.0.0")
class SD3ModelLoaderInvocation(BaseInvocation):
"""Loads an SD3 base model, outputting its submodels."""
model: ModelIdentifierField = InputField(description=FieldDescriptions.sd3_main_model, ui_type=UIType.SD3MainModel)
def invoke(self, context: InvocationContext) -> SD3ModelLoaderOutput:
model_key = self.model.key
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer_1 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder_1 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer_2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder_2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
try:
tokenizer_3 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer3})
text_encoder_3 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder3})
except Exception:
tokenizer_3 = None
text_encoder_3 = None
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return SD3ModelLoaderOutput(
transformer=TransformerField(transformer=transformer, scheduler=scheduler),
clip=SD3CLIPField(
tokenizer_1=tokenizer_1,
text_encoder_1=text_encoder_1,
tokenizer_2=tokenizer_2,
text_encoder_2=text_encoder_2,
tokenizer_3=tokenizer_3,
text_encoder_3=text_encoder_3,
),
vae=VAEField(vae=vae),
)
@invocation(
"sd3_image_generator", title="Stable Diffusion 3", tags=["latent", "sd3"], category="latents", version="1.0.0"
)
class StableDiffusion3Invocation(BaseInvocation):
"""Generates an image using Stable Diffusion 3."""
transformer: TransformerField = InputField(
description=FieldDescriptions.transformer,
input=Input.Connection,
title="Transformer",
ui_order=0,
)
clip: SD3CLIPField = InputField(
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
ui_order=1,
)
noise: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=2,
)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler_f",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
positive_prompt: str = InputField(default="", title="Positive Prompt")
negative_prompt: str = InputField(default="", title="Negative Prompt")
steps: int = InputField(default=20, gt=0, description=FieldDescriptions.steps)
guidance_scale: float = InputField(default=7.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
use_clip_3: bool = InputField(default=True, description="Use TE5 Encoder of SD3", title="Use TE5 Encoder")
seed: int = InputField(
default=0,
ge=0,
le=SEED_MAX,
description=FieldDescriptions.seed,
)
width: int = InputField(
default=1024,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description=FieldDescriptions.width,
)
height: int = InputField(
default=1024,
multiple_of=LATENT_SCALE_FACTOR,
gt=0,
description=FieldDescriptions.height,
)
@field_validator("seed", mode="before")
def modulo_seed(cls, v: int):
"""Return the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> LatentsOutput:
with ExitStack() as stack:
tokenizer_1 = stack.enter_context(context.models.load(self.clip.tokenizer_1))
tokenizer_2 = stack.enter_context(context.models.load(self.clip.tokenizer_2))
text_encoder_1 = stack.enter_context(context.models.load(self.clip.text_encoder_1))
text_encoder_2 = stack.enter_context(context.models.load(self.clip.text_encoder_2))
transformer = stack.enter_context(context.models.load(self.transformer.transformer))
assert isinstance(transformer, SD3Transformer2DModel)
assert isinstance(text_encoder_1, CLIPTextModelWithProjection)
assert isinstance(text_encoder_2, CLIPTextModelWithProjection)
assert isinstance(tokenizer_1, CLIPTokenizer)
assert isinstance(tokenizer_2, CLIPTokenizer)
if self.use_clip_3 and self.clip.tokenizer_3 and self.clip.text_encoder_3:
tokenizer_3 = stack.enter_context(context.models.load(self.clip.tokenizer_3))
text_encoder_3 = stack.enter_context(context.models.load(self.clip.text_encoder_3))
assert isinstance(text_encoder_3, T5EncoderModel)
assert isinstance(tokenizer_3, T5TokenizerFast)
else:
tokenizer_3 = None
text_encoder_3 = None
scheduler = get_scheduler(
context=context,
scheduler_info=self.transformer.scheduler,
scheduler_name=self.scheduler,
seed=self.seed,
)
sd3_pipeline = StableDiffusion3Pipeline(
transformer=transformer,
vae=FakeVae(),
text_encoder=text_encoder_1,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer_1,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
scheduler=scheduler,
)
results = sd3_pipeline(
self.positive_prompt,
negative_prompt=self.negative_prompt,
num_inference_steps=self.steps,
guidance_scale=self.guidance_scale,
output_type="latent",
)
latents = cast(torch.Tensor, results.images[0])
latents = latents.unsqueeze(0)
latents_name = context.tensors.save(latents)
return LatentsOutput.build(latents_name, latents=latents, seed=self.seed)

View File

@@ -1,384 +0,0 @@
from contextlib import ExitStack
from typing import Iterator, Tuple
import numpy as np
import numpy.typing as npt
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from PIL import Image
from pydantic import field_validator
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
ImageField,
Input,
InputField,
UIType,
)
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
from invokeai.app.invocations.latent import DenoiseLatentsInvocation, get_scheduler
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
from invokeai.app.invocations.noise import get_noise
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
from invokeai.backend.tiles.utils import Tile
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@invocation(
"tiled_stable_diffusion_refine",
title="Tiled Stable Diffusion Refine",
tags=["upscale", "denoise"],
category="latents",
version="1.0.0",
)
class TiledStableDiffusionRefineInvocation(BaseInvocation):
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
"""
image: ImageField = InputField(description="Image to be refined.")
positive_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection
)
# TODO(ryand): Add multiple-of validation.
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
tile_overlap: int = InputField(
default=16,
gt=0,
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
)
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
denoising_start: float = InputField(
default=0.65,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SCHEDULER_NAME_VALUES = InputField(
default="euler",
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
)
unet: UNetField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
)
cfg_rescale_multiplier: float = InputField(
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
vae_fp32: bool = InputField(
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
)
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
# don't want to use the image field. Figure out how best to handle this.
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
# etc.
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
)
control_weight: float = InputField(default=0.6)
@field_validator("cfg_scale")
def ge_one(cls, v: list[float] | float) -> list[float] | float:
"""Validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError("cfg_scale must be greater than 1")
return v
@staticmethod
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
"""
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
if coord % LATENT_SCALE_FACTOR != 0:
raise ValueError(
f"The tile coordinates must all be divisible by the latent scale factor"
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
)
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
top = image_tile.coords.top // LATENT_SCALE_FACTOR
left = image_tile.coords.left // LATENT_SCALE_FACTOR
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
right = image_tile.coords.right // LATENT_SCALE_FACTOR
return latents[..., top:bottom, left:right]
def run_controlnet(
self,
image: Image.Image,
controlnet_model: ControlNetModel,
weight: float,
do_classifier_free_guidance: bool,
width: int,
height: int,
device: torch.device,
dtype: torch.dtype,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
) -> ControlNetData:
control_image = prepare_control_image(
image=image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=width,
height=height,
device=device,
dtype=dtype,
control_mode=control_mode,
resize_mode=resize_mode,
)
return ControlNetData(
model=controlnet_model,
image_tensor=control_image,
weight=weight,
begin_step_percent=0.0,
end_step_percent=1.0,
control_mode=control_mode,
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
# ControlNetData in case needed in the future.
resize_mode=resize_mode,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# TODO(ryand): Expose the seed parameter.
seed = 0
# Load the input image.
input_image = context.images.get_pil(self.image.image_name)
# Calculate the tile locations to cover the image.
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
# facilitates conversions between image space and latent space.
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
tiles = calc_tiles_with_overlap(
image_height=input_image.height,
image_width=input_image.width,
tile_height=self.tile_height,
tile_width=self.tile_width,
overlap=self.tile_overlap,
)
# Convert the input image to a torch.Tensor.
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
# Validate our assumptions about the shape of input_image_torch.
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
assert input_image_torch.shape[:2] == (1, 3)
# Split the input image into tiles in torch.Tensor format.
image_tiles_torch: list[torch.Tensor] = []
for tile in tiles:
image_tile = input_image_torch[
:,
:,
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
]
image_tiles_torch.append(image_tile)
# Split the input image into tiles in numpy format.
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
# with torch.Tensor tiles.
input_image_np = np.array(input_image)
image_tiles_np: list[npt.NDArray[np.uint8]] = []
for tile in tiles:
image_tile_np = input_image_np[
tile.coords.top : tile.coords.bottom,
tile.coords.left : tile.coords.right,
:,
]
image_tiles_np.append(image_tile_np)
# VAE-encode each image tile independently.
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
# about for decoding?
vae_info = context.models.load(self.vae.vae)
latent_tiles: list[torch.Tensor] = []
for image_tile_torch in image_tiles_torch:
latent_tiles.append(
ImageToLatentsInvocation.vae_encode(
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
)
)
# Generate noise with dimensions corresponding to the full image in latent space.
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
# noise.
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
global_noise = get_noise(
width=input_image_torch.shape[3],
height=input_image_torch.shape[2],
device=TorchDevice.choose_torch_device(),
seed=seed,
downsampling_factor=LATENT_SCALE_FACTOR,
use_cpu=True,
)
# Crop the global noise into tiles.
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
# Prepare an iterator that yields the UNet's LoRA models and their weights.
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.unet.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
refined_latent_tiles: list[torch.Tensor] = []
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
assert isinstance(unet, UNet2DConditionModel)
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
seed=seed,
)
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
# Assume that all tiles have the same shape.
_, _, latent_height, latent_width = latent_tiles[0].shape
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
context=context,
positive_conditioning_field=self.positive_conditioning,
negative_conditioning_field=self.negative_conditioning,
unet=unet,
latent_height=latent_height,
latent_width=latent_width,
cfg_scale=self.cfg_scale,
steps=self.steps,
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
)
# Load the ControlNet model.
# TODO(ryand): Support multiple ControlNet models.
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
assert isinstance(controlnet_model, ControlNetModel)
# Denoise (i.e. "refine") each tile independently.
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
assert latent_tile.shape == noise_tile.shape
# Prepare a PIL Image for ControlNet processing.
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
image_tile_pil = Image.fromarray(image_tile_np)
# Run the ControlNet on the image tile.
height, width, _ = image_tile_np.shape
# The height and width must be evenly divisible by LATENT_SCALE_FACTOR. This is enforced earlier, but we
# validate this assumption here.
assert height % LATENT_SCALE_FACTOR == 0
assert width % LATENT_SCALE_FACTOR == 0
controlnet_data = self.run_controlnet(
image=image_tile_pil,
controlnet_model=controlnet_model,
weight=self.control_weight,
do_classifier_free_guidance=True,
width=width,
height=height,
device=controlnet_model.device,
dtype=controlnet_model.dtype,
control_mode="balanced",
resize_mode="just_resize_simple",
)
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = (
DenoiseLatentsInvocation.init_scheduler(
scheduler,
device=unet.device,
steps=self.steps,
denoising_start=self.denoising_start,
denoising_end=self.denoising_end,
seed=seed,
)
)
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
refined_latent_tile = pipeline.latents_from_embeddings(
latents=latent_tile,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise_tile,
seed=seed,
mask=None,
masked_latents=None,
gradient_mask=None,
num_inference_steps=num_inference_steps,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
control_data=[controlnet_data],
ip_adapter_data=None,
t2i_adapter_data=None,
callback=lambda x: None,
)
refined_latent_tiles.append(refined_latent_tile)
# VAE-decode each refined latent tile independently.
refined_image_tiles: list[Image.Image] = []
for refined_latent_tile in refined_latent_tiles:
refined_image_tile = LatentsToImageInvocation.vae_decode(
context=context,
vae_info=vae_info,
seamless_axes=self.vae.seamless_axes,
latents=refined_latent_tile,
use_fp32=self.vae_fp32,
use_tiling=False,
)
refined_image_tiles.append(refined_image_tile)
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
TorchDevice.empty_cache()
# Merge the refined image tiles back into a single image.
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
merge_tiles_with_linear_blending(
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
)
# Save the refined image and return its reference.
merged_image_pil = Image.fromarray(merged_image_np)
image_dto = context.images.save(image=merged_image_pil)
return ImageOutput.build(image_dto)

View File

@@ -1,5 +1,4 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
from pathlib import Path
from typing import Literal
import cv2
@@ -10,10 +9,8 @@ from pydantic import ConfigDict
from invokeai.app.invocations.fields import ImageField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.image_util.realesrgan.realesrgan import RealESRGAN
from invokeai.backend.util.devices import TorchDevice
from .baseinvocation import BaseInvocation, invocation
from .fields import InputField, WithBoard, WithMetadata
@@ -52,7 +49,6 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
rrdbnet_model = None
netscale = None
esrgan_model_path = None
if self.model_name in [
"RealESRGAN_x4plus.pth",
@@ -95,28 +91,25 @@ class ESRGANInvocation(BaseInvocation, WithMetadata, WithBoard):
context.logger.error(msg)
raise ValueError(msg)
esrgan_model_path = Path(context.config.get().models_path, f"core/upscaling/realesrgan/{self.model_name}")
# Downloads the ESRGAN model if it doesn't already exist
download_with_progress_bar(
name=self.model_name, url=ESRGAN_MODEL_URLS[self.model_name], dest_path=esrgan_model_path
loadnet = context.models.load_remote_model(
source=ESRGAN_MODEL_URLS[self.model_name],
)
upscaler = RealESRGAN(
scale=netscale,
model_path=esrgan_model_path,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
with loadnet as loadnet_model:
upscaler = RealESRGAN(
scale=netscale,
loadnet=loadnet_model,
model=rrdbnet_model,
half=False,
tile=self.tile_size,
)
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
# prepare image - Real-ESRGAN uses cv2 internally, and cv2 uses BGR vs RGB for PIL
# TODO: This strips the alpha... is that okay?
cv2_image = cv2.cvtColor(np.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
upscaled_image = upscaler.upscale(cv2_image)
TorchDevice.empty_cache()
pil_image = Image.fromarray(cv2.cvtColor(upscaled_image, cv2.COLOR_BGR2RGB)).convert("RGBA")
image_dto = context.images.save(image=pil_image)

View File

@@ -32,6 +32,7 @@ ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
SYSTEM_RAM_TO_CACHE_SIZE_FACTOR = 0.25 # after 60 GB, default ram cache will scale by this factor
CONFIG_SCHEMA_VERSION = "4.0.1"
@@ -45,7 +46,7 @@ def get_default_ram_cache_size() -> float:
max_ram = psutil.virtual_memory().total / GB
if max_ram >= 60:
return 15.0
return max_ram * SYSTEM_RAM_TO_CACHE_SIZE_FACTOR
if max_ram >= 30:
return 7.5
if max_ram >= 14:
@@ -86,6 +87,7 @@ class InvokeAIAppConfig(BaseSettings):
patchmatch: Enable patchmatch inpaint code.
models_dir: Path to the models directory.
convert_cache_dir: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.
download_cache_dir: Path to the directory that contains dynamically downloaded models.
legacy_conf_dir: Path to directory of legacy checkpoint config files.
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
@@ -112,6 +114,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: Maximum number of items in the session queue.
clear_queue_on_startup: Empties session queue on startup.
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
node_cache_size: How many cached nodes to keep in memory.
@@ -146,7 +149,8 @@ class InvokeAIAppConfig(BaseSettings):
# PATHS
models_dir: Path = Field(default=Path("models"), description="Path to the models directory.")
convert_cache_dir: Path = Field(default=Path("models/.cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
convert_cache_dir: Path = Field(default=Path("models/.convert_cache"), description="Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.")
download_cache_dir: Path = Field(default=Path("models/.download_cache"), description="Path to the directory that contains dynamically downloaded models.")
legacy_conf_dir: Path = Field(default=Path("configs"), description="Path to directory of legacy checkpoint config files.")
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
@@ -184,6 +188,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
# NODES
allow_nodes: Optional[list[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.")
@@ -303,6 +308,11 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the converted cache models directory, resolved to an absolute path.."""
return self._resolve(self.convert_cache_dir)
@property
def download_cache_path(self) -> Path:
"""Path to the downloaded models directory, resolved to an absolute path.."""
return self._resolve(self.download_cache_dir)
@property
def custom_nodes_path(self) -> Path:
"""Path to the custom nodes directory, resolved to an absolute path.."""

View File

@@ -1,10 +1,17 @@
"""Init file for download queue."""
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
from .download_base import (
DownloadJob,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
UnknownJobIDException,
)
from .download_default import DownloadQueueService, TqdmProgress
__all__ = [
"DownloadJob",
"MultiFileDownloadJob",
"DownloadQueueServiceBase",
"DownloadQueueService",
"TqdmProgress",

View File

@@ -5,11 +5,13 @@ from abc import ABC, abstractmethod
from enum import Enum
from functools import total_ordering
from pathlib import Path
from typing import Any, Callable, List, Optional
from typing import Any, Callable, List, Optional, Set, Union
from pydantic import BaseModel, Field, PrivateAttr
from pydantic.networks import AnyHttpUrl
from invokeai.backend.model_manager.metadata import RemoteModelFile
class DownloadJobStatus(str, Enum):
"""State of a download job."""
@@ -33,30 +35,23 @@ class ServiceInactiveException(Exception):
"""This exception is raised when user attempts to initiate a download before the service is started."""
DownloadEventHandler = Callable[["DownloadJob"], None]
DownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
SingleFileDownloadEventHandler = Callable[["DownloadJob"], None]
SingleFileDownloadExceptionHandler = Callable[["DownloadJob", Optional[Exception]], None]
MultiFileDownloadEventHandler = Callable[["MultiFileDownloadJob"], None]
MultiFileDownloadExceptionHandler = Callable[["MultiFileDownloadJob", Optional[Exception]], None]
DownloadEventHandler = Union[SingleFileDownloadEventHandler, MultiFileDownloadEventHandler]
DownloadExceptionHandler = Union[SingleFileDownloadExceptionHandler, MultiFileDownloadExceptionHandler]
@total_ordering
class DownloadJob(BaseModel):
"""Class to monitor and control a model download request."""
class DownloadJobBase(BaseModel):
"""Base of classes to monitor and control downloads."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
# automatically assigned on creation
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
dest: Path = Field(description="Initial destination of downloaded model on local disk; a directory or file path")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file or directory")
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
bytes: int = Field(default=0, description="Bytes downloaded so far")
total_bytes: int = Field(default=0, description="Total file size (bytes)")
@@ -74,14 +69,6 @@ class DownloadJob(BaseModel):
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
_on_error: Optional[DownloadExceptionHandler] = PrivateAttr(default=None)
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
def cancel(self) -> None:
"""Call to cancel the job."""
self._cancelled = True
@@ -98,6 +85,11 @@ class DownloadJob(BaseModel):
"""Return true if job completed without errors."""
return self.status == DownloadJobStatus.COMPLETED
@property
def waiting(self) -> bool:
"""Return true if the job is waiting to run."""
return self.status == DownloadJobStatus.WAITING
@property
def running(self) -> bool:
"""Return true if the job is running."""
@@ -154,6 +146,37 @@ class DownloadJob(BaseModel):
self._on_cancelled = on_cancelled
@total_ordering
class DownloadJob(DownloadJobBase):
"""Class to monitor and control a model download request."""
# required variables to be passed in on creation
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
# set internally during download process
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
job_ended: Optional[str] = Field(
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
)
content_type: Optional[str] = Field(default=None, description="Content type of downloaded file")
def __hash__(self) -> int:
"""Return hash of the string representation of this object, for indexing."""
return hash(str(self))
def __le__(self, other: "DownloadJob") -> bool:
"""Return True if this job's priority is less than another's."""
return self.priority <= other.priority
class MultiFileDownloadJob(DownloadJobBase):
"""Class to monitor and control multifile downloads."""
download_parts: Set[DownloadJob] = Field(default_factory=set, description="List of download parts.")
class DownloadQueueServiceBase(ABC):
"""Multithreaded queue for downloading models via URL."""
@@ -201,6 +224,48 @@ class DownloadQueueServiceBase(ABC):
"""
pass
@abstractmethod
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
"""
Create and enqueue a multifile download job.
:param parts: Set of URL / filename pairs
:param dest: Path to download to. See below.
:param access_token: Access token to download the indicated files. If not provided,
each file's URL may be matched to an access token using the config file matching
system.
:param submit_job: If true [default] then submit the job for execution. Otherwise,
you will need to pass the job to submit_multifile_download().
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
events.
:returns: A MultiFileDownloadJob object for monitoring the state of the download.
The `dest` argument is a Path object pointing to a directory. All downloads
with be placed inside this directory. The callbacks will receive the
MultiFileDownloadJob.
"""
pass
@abstractmethod
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
"""
Enqueue a previously-created multi-file download job.
:param job: A MultiFileDownloadJob created with multifile_download()
"""
pass
@abstractmethod
def submit_download_job(
self,
@@ -252,7 +317,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
pass
@@ -262,7 +327,7 @@ class DownloadQueueServiceBase(ABC):
pass
@abstractmethod
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Wait until the indicated download job has reached a terminal state.
This will block until the indicated install job has completed,

View File

@@ -8,30 +8,32 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set
from typing import Any, Dict, List, Literal, Optional, Set
import requests
from pydantic.networks import AnyHttpUrl
from requests import HTTPError
from tqdm import tqdm
from invokeai.app.services.config import InvokeAIAppConfig, get_config
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.util.misc import get_iso_timestamp
from invokeai.backend.model_manager.metadata import RemoteModelFile
from invokeai.backend.util.logging import InvokeAILogger
from .download_base import (
DownloadEventHandler,
DownloadExceptionHandler,
DownloadJob,
DownloadJobBase,
DownloadJobCancelledException,
DownloadJobStatus,
DownloadQueueServiceBase,
MultiFileDownloadJob,
ServiceInactiveException,
UnknownJobIDException,
)
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
# Maximum number of bytes to download during each call to requests.iter_content()
DOWNLOAD_CHUNK_SIZE = 100000
@@ -42,20 +44,24 @@ class DownloadQueueService(DownloadQueueServiceBase):
def __init__(
self,
max_parallel_dl: int = 5,
app_config: Optional[InvokeAIAppConfig] = None,
event_bus: Optional["EventServiceBase"] = None,
requests_session: Optional[requests.sessions.Session] = None,
):
"""
Initialize DownloadQueue.
:param app_config: InvokeAIAppConfig object
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
:param requests_session: Optional requests.sessions.Session object, for unit tests.
"""
self._app_config = app_config or get_config()
self._jobs: Dict[int, DownloadJob] = {}
self._download_part2parent: Dict[AnyHttpUrl, MultiFileDownloadJob] = {}
self._next_job_id = 0
self._queue: PriorityQueue[DownloadJob] = PriorityQueue()
self._stop_event = threading.Event()
self._job_completed_event = threading.Event()
self._job_terminated_event = threading.Event()
self._worker_pool: Set[threading.Thread] = set()
self._lock = threading.Lock()
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
@@ -107,18 +113,16 @@ class DownloadQueueService(DownloadQueueServiceBase):
raise ServiceInactiveException(
"The download service is not currently accepting requests. Please call start() to initialize the service."
)
with self._lock:
job.id = self._next_job_id
self._next_job_id += 1
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
job.id = self._next_id()
job.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
self._jobs[job.id] = job
self._queue.put(job)
def download(
self,
@@ -141,7 +145,7 @@ class DownloadQueueService(DownloadQueueServiceBase):
source=source,
dest=dest,
priority=priority,
access_token=access_token,
access_token=access_token or self._lookup_access_token(source),
)
self.submit_download_job(
job,
@@ -153,10 +157,63 @@ class DownloadQueueService(DownloadQueueServiceBase):
)
return job
def multifile_download(
self,
parts: List[RemoteModelFile],
dest: Path,
access_token: Optional[str] = None,
submit_job: bool = True,
on_start: Optional[DownloadEventHandler] = None,
on_progress: Optional[DownloadEventHandler] = None,
on_complete: Optional[DownloadEventHandler] = None,
on_cancelled: Optional[DownloadEventHandler] = None,
on_error: Optional[DownloadExceptionHandler] = None,
) -> MultiFileDownloadJob:
mfdj = MultiFileDownloadJob(dest=dest, id=self._next_id())
mfdj.set_callbacks(
on_start=on_start,
on_progress=on_progress,
on_complete=on_complete,
on_cancelled=on_cancelled,
on_error=on_error,
)
for part in parts:
url = part.url
path = dest / part.path
assert path.is_relative_to(dest), "only relative download paths accepted"
job = DownloadJob(
source=url,
dest=path,
access_token=access_token,
)
mfdj.download_parts.add(job)
self._download_part2parent[job.source] = mfdj
if submit_job:
self.submit_multifile_download(mfdj)
return mfdj
def submit_multifile_download(self, job: MultiFileDownloadJob) -> None:
for download_job in job.download_parts:
self.submit_download_job(
download_job,
on_start=self._mfd_started,
on_progress=self._mfd_progress,
on_complete=self._mfd_complete,
on_cancelled=self._mfd_cancelled,
on_error=self._mfd_error,
)
def join(self) -> None:
"""Wait for all jobs to complete."""
self._queue.join()
def _next_id(self) -> int:
with self._lock:
id = self._next_job_id
self._next_job_id += 1
return id
def list_jobs(self) -> List[DownloadJob]:
"""List all the jobs."""
return list(self._jobs.values())
@@ -178,14 +235,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
except KeyError as excp:
raise UnknownJobIDException("Unrecognized job") from excp
def cancel_job(self, job: DownloadJob) -> None:
def cancel_job(self, job: DownloadJobBase) -> None:
"""
Cancel the indicated job.
If it is running it will be stopped.
job.status will be set to DownloadJobStatus.CANCELLED
"""
with self._lock:
if job.status in [DownloadJobStatus.WAITING, DownloadJobStatus.RUNNING]:
job.cancel()
def cancel_all_jobs(self) -> None:
@@ -194,12 +251,12 @@ class DownloadQueueService(DownloadQueueServiceBase):
if not job.in_terminal_state:
self.cancel_job(job)
def wait_for_job(self, job: DownloadJob, timeout: int = 0) -> DownloadJob:
def wait_for_job(self, job: DownloadJobBase, timeout: int = 0) -> DownloadJobBase:
"""Block until the indicated job has reached terminal state, or when timeout limit reached."""
start = time.time()
while not job.in_terminal_state:
if self._job_completed_event.wait(timeout=0.25): # in case we miss an event
self._job_completed_event.clear()
if self._job_terminated_event.wait(timeout=0.25): # in case we miss an event
self._job_terminated_event.clear()
if timeout > 0 and time.time() - start > timeout:
raise TimeoutError("Timeout exceeded")
return job
@@ -228,22 +285,25 @@ class DownloadQueueService(DownloadQueueServiceBase):
job.job_started = get_iso_timestamp()
self._do_download(job)
self._signal_job_complete(job)
except (OSError, HTTPError) as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
except DownloadJobCancelledException:
self._signal_job_cancelled(job)
self._cleanup_cancelled_job(job)
except Exception as excp:
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
job.error = traceback.format_exc()
self._signal_job_error(job, excp)
finally:
job.job_ended = get_iso_timestamp()
self._job_completed_event.set() # signal a change to terminal state
self._job_terminated_event.set() # signal a change to terminal state
self._download_part2parent.pop(job.source, None) # if this is a subpart of a multipart job, remove it
self._job_terminated_event.set()
self._queue.task_done()
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
def _do_download(self, job: DownloadJob) -> None:
"""Do the actual download."""
url = job.source
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
open_mode = "wb"
@@ -335,38 +395,29 @@ class DownloadQueueService(DownloadQueueServiceBase):
def _in_progress_path(self, path: Path) -> Path:
return path.with_name(path.name + ".downloading")
def _lookup_access_token(self, source: AnyHttpUrl) -> Optional[str]:
# Pull the token from config if it exists and matches the URL
token = None
for pair in self._app_config.remote_api_tokens or []:
if re.search(pair.url_regex, str(source)):
token = pair.token
break
return token
def _signal_job_started(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.RUNNING
if job.on_start:
try:
job.on_start(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_start callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_start")
if self._event_bus:
self._event_bus.emit_download_started(job)
def _signal_job_progress(self, job: DownloadJob) -> None:
if job.on_progress:
try:
job.on_progress(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_progress callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_progress")
if self._event_bus:
self._event_bus.emit_download_progress(job)
def _signal_job_complete(self, job: DownloadJob) -> None:
job.status = DownloadJobStatus.COMPLETED
if job.on_complete:
try:
job.on_complete(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_complete callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_complete")
if self._event_bus:
self._event_bus.emit_download_complete(job)
@@ -374,26 +425,21 @@ class DownloadQueueService(DownloadQueueServiceBase):
if job.status not in [DownloadJobStatus.RUNNING, DownloadJobStatus.WAITING]:
return
job.status = DownloadJobStatus.CANCELLED
if job.on_cancelled:
try:
job.on_cancelled(job)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_cancelled callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_cancelled")
if self._event_bus:
self._event_bus.emit_download_cancelled(job)
# if multifile download, then signal the parent
if parent_job := self._download_part2parent.get(job.source, None):
if not parent_job.in_terminal_state:
parent_job.status = DownloadJobStatus.CANCELLED
self._execute_cb(parent_job, "on_cancelled")
def _signal_job_error(self, job: DownloadJob, excp: Optional[Exception] = None) -> None:
job.status = DownloadJobStatus.ERROR
self._logger.error(f"{str(job.source)}: {traceback.format_exception(excp)}")
if job.on_error:
try:
job.on_error(job, excp)
except Exception as e:
self._logger.error(
f"An error occurred while processing the on_error callback: {traceback.format_exception(e)}"
)
self._execute_cb(job, "on_error", excp)
if self._event_bus:
self._event_bus.emit_download_error(job)
@@ -406,6 +452,97 @@ class DownloadQueueService(DownloadQueueServiceBase):
except OSError as excp:
self._logger.warning(excp)
########################################
# callbacks used for multifile downloads
########################################
def _mfd_started(self, download_job: DownloadJob) -> None:
self._logger.info(f"File download started: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.waiting:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.status = DownloadJobStatus.RUNNING
assert download_job.download_path is not None
path_relative_to_destdir = download_job.download_path.relative_to(mf_job.dest)
mf_job.download_path = (
mf_job.dest / path_relative_to_destdir.parts[0]
) # keep just the first component of the path
self._execute_cb(mf_job, "on_start")
def _mfd_progress(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
if mf_job.cancelled:
for part in mf_job.download_parts:
self.cancel_job(part)
elif mf_job.running:
mf_job.total_bytes = sum(x.total_bytes for x in mf_job.download_parts)
mf_job.bytes = sum(x.total_bytes for x in mf_job.download_parts)
self._execute_cb(mf_job, "on_progress")
def _mfd_complete(self, download_job: DownloadJob) -> None:
self._logger.info(f"Download complete: {download_job.source}")
with self._lock:
mf_job = self._download_part2parent[download_job.source]
# are there any more active jobs left in this task?
if mf_job.running and all(x.complete for x in mf_job.download_parts):
mf_job.status = DownloadJobStatus.COMPLETED
self._execute_cb(mf_job, "on_complete")
# we're done with this sub-job
self._job_terminated_event.set()
def _mfd_cancelled(self, download_job: DownloadJob) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
self._logger.warning(f"Download cancelled: {download_job.source}")
mf_job.cancel()
for s in mf_job.download_parts:
self.cancel_job(s)
def _mfd_error(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
mf_job = self._download_part2parent[download_job.source]
assert mf_job is not None
if not mf_job.in_terminal_state:
mf_job.status = download_job.status
mf_job.error = download_job.error
mf_job.error_type = download_job.error_type
self._execute_cb(mf_job, "on_error", excp)
self._logger.error(
f"Cancelling {mf_job.dest} due to an error while downloading {download_job.source}: {str(excp)}"
)
for s in [x for x in mf_job.download_parts if x.running]:
self.cancel_job(s)
self._download_part2parent.pop(download_job.source)
self._job_terminated_event.set()
def _execute_cb(
self,
job: DownloadJob | MultiFileDownloadJob,
callback_name: Literal[
"on_start",
"on_progress",
"on_complete",
"on_cancelled",
"on_error",
],
excp: Optional[Exception] = None,
) -> None:
if callback := getattr(job, callback_name, None):
args = [job, excp] if excp else [job]
try:
callback(*args)
except Exception as e:
self._logger.error(
f"An error occurred while processing the {callback_name} callback: {traceback.format_exception(e)}"
)
def get_pc_name_max(directory: str) -> int:
if hasattr(os, "pathconf"):

View File

@@ -22,6 +22,7 @@ from invokeai.app.services.events.events_common import (
ModelInstallCompleteEvent,
ModelInstallDownloadProgressEvent,
ModelInstallDownloadsCompleteEvent,
ModelInstallDownloadStartedEvent,
ModelInstallErrorEvent,
ModelInstallStartedEvent,
ModelLoadCompleteEvent,
@@ -34,7 +35,6 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineInterme
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.download.download_base import DownloadJob
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
from invokeai.app.services.session_queue.session_queue_common import (
@@ -145,6 +145,10 @@ class EventServiceBase:
# region Model install
def emit_model_install_download_started(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is started (remote models only)."""
self.dispatch(ModelInstallDownloadStartedEvent.build(job))
def emit_model_install_download_progress(self, job: "ModelInstallJob") -> None:
"""Emitted at intervals while the install job is in progress (remote models only)."""
self.dispatch(ModelInstallDownloadProgressEvent.build(job))

View File

@@ -417,6 +417,42 @@ class ModelLoadCompleteEvent(ModelEventBase):
return cls(config=config, submodel_type=submodel_type)
@payload_schema.register
class ModelInstallDownloadStartedEvent(ModelEventBase):
"""Event model for model_install_download_started"""
__event_name__ = "model_install_download_started"
id: int = Field(description="The ID of the install job")
source: str = Field(description="Source of the model; local path, repo_id or url")
local_path: str = Field(description="Where model is downloading to")
bytes: int = Field(description="Number of bytes downloaded so far")
total_bytes: int = Field(description="Total size of download, including all files")
parts: list[dict[str, int | str]] = Field(
description="Progress of downloading URLs that comprise the model, if any"
)
@classmethod
def build(cls, job: "ModelInstallJob") -> "ModelInstallDownloadStartedEvent":
parts: list[dict[str, str | int]] = [
{
"url": str(x.source),
"local_path": str(x.download_path),
"bytes": x.bytes,
"total_bytes": x.total_bytes,
}
for x in job.download_parts
]
return cls(
id=job.id,
source=str(job.source),
local_path=job.local_path.as_posix(),
parts=parts,
bytes=job.bytes,
total_bytes=job.total_bytes,
)
@payload_schema.register
class ModelInstallDownloadProgressEvent(ModelEventBase):
"""Event model for model_install_download_progress"""

View File

@@ -13,7 +13,7 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_common import ModelInstallJob, ModelSource
from invokeai.app.services.model_records import ModelRecordServiceBase
from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager import AnyModelConfig
class ModelInstallServiceBase(ABC):
@@ -243,12 +243,11 @@ class ModelInstallServiceBase(ABC):
"""
@abstractmethod
def download_and_cache(self, source: Union[str, AnyHttpUrl], access_token: Optional[str] = None) -> Path:
def download_and_cache_model(self, source: str | AnyHttpUrl) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
:param source: A Url or a string that can be converted into one.
:param access_token: Optional access token to access restricted resources.
:param source: A string representing a URL or repo_id.
The model file will be downloaded into the system-wide model cache
(`models/.cache`) if it isn't already there. Note that the model cache

View File

@@ -8,7 +8,7 @@ from pydantic import BaseModel, Field, PrivateAttr, field_validator
from pydantic.networks import AnyHttpUrl
from typing_extensions import Annotated
from invokeai.app.services.download import DownloadJob
from invokeai.app.services.download import DownloadJob, MultiFileDownloadJob
from invokeai.backend.model_manager import AnyModelConfig, ModelRepoVariant
from invokeai.backend.model_manager.config import ModelSourceType
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata
@@ -26,13 +26,6 @@ class InstallStatus(str, Enum):
CANCELLED = "cancelled" # terminated with an error message
class ModelInstallPart(BaseModel):
url: AnyHttpUrl
path: Path
bytes: int = 0
total_bytes: int = 0
class UnknownInstallJobException(Exception):
"""Raised when the status of an unknown job is requested."""
@@ -169,6 +162,7 @@ class ModelInstallJob(BaseModel):
)
# internal flags and transitory settings
_install_tmpdir: Optional[Path] = PrivateAttr(default=None)
_multifile_job: Optional[MultiFileDownloadJob] = PrivateAttr(default=None)
_exception: Optional[Exception] = PrivateAttr(default=None)
def set_error(self, e: Exception) -> None:

View File

@@ -5,21 +5,22 @@ import os
import re
import threading
import time
from hashlib import sha256
from pathlib import Path
from queue import Empty, Queue
from shutil import copyfile, copytree, move, rmtree
from tempfile import mkdtemp
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Tuple, Type, Union
import torch
import yaml
from huggingface_hub import HfFolder
from pydantic.networks import AnyHttpUrl
from pydantic_core import Url
from requests import Session
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.download import DownloadJob, DownloadQueueServiceBase, TqdmProgress
from invokeai.app.services.download import DownloadQueueServiceBase, MultiFileDownloadJob
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_install.model_install_base import ModelInstallServiceBase
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
@@ -44,6 +45,7 @@ from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.util import slugify
from .model_install_common import (
MODEL_SOURCE_TO_TYPE_MAP,
@@ -58,9 +60,6 @@ from .model_install_common import (
TMPDIR_PREFIX = "tmpinstall_"
if TYPE_CHECKING:
from invokeai.app.services.events.events_base import EventServiceBase
class ModelInstallService(ModelInstallServiceBase):
"""class for InvokeAI model installation."""
@@ -91,7 +90,7 @@ class ModelInstallService(ModelInstallServiceBase):
self._downloads_changed_event = threading.Event()
self._install_completed_event = threading.Event()
self._download_queue = download_queue
self._download_cache: Dict[AnyHttpUrl, ModelInstallJob] = {}
self._download_cache: Dict[int, ModelInstallJob] = {}
self._running = False
self._session = session
self._install_thread: Optional[threading.Thread] = None
@@ -210,33 +209,12 @@ class ModelInstallService(ModelInstallServiceBase):
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
) -> ModelInstallJob:
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source), inplace=inplace)
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=match.group(2) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
access_token=access_token,
)
elif re.match(r"^https?://[^/]+", source):
# Pull the token from config if it exists and matches the URL
_token = access_token
if _token is None:
for pair in self.app_config.remote_api_tokens or []:
if re.search(pair.url_regex, source):
_token = pair.token
break
source_obj = URLModelSource(
url=AnyHttpUrl(source),
access_token=_token,
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
"""Install a model using pattern matching to infer the type of source."""
source_obj = self._guess_source(source)
if isinstance(source_obj, LocalModelSource):
source_obj.inplace = inplace
elif isinstance(source_obj, HFModelSource) or isinstance(source_obj, URLModelSource):
source_obj.access_token = access_token
return self.import_model(source_obj, config)
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
@@ -297,8 +275,9 @@ class ModelInstallService(ModelInstallServiceBase):
def cancel_job(self, job: ModelInstallJob) -> None:
"""Cancel the indicated job."""
job.cancel()
with self._lock:
self._cancel_download_parts(job)
self._logger.warning(f"Cancelling {job.source}")
if dj := job._multifile_job:
self._download_queue.cancel_job(dj)
def prune_jobs(self) -> None:
"""Prune all completed and errored jobs."""
@@ -346,7 +325,7 @@ class ModelInstallService(ModelInstallServiceBase):
legacy_config_path = stanza.get("config")
if legacy_config_path:
# In v3, these paths were relative to the root. Migrate them to be relative to the legacy_conf_dir.
legacy_config_path: Path = self._app_config.root_path / legacy_config_path
legacy_config_path = self._app_config.root_path / legacy_config_path
if legacy_config_path.is_relative_to(self._app_config.legacy_conf_path):
legacy_config_path = legacy_config_path.relative_to(self._app_config.legacy_conf_path)
config["config_path"] = str(legacy_config_path)
@@ -386,38 +365,95 @@ class ModelInstallService(ModelInstallServiceBase):
rmtree(model_path)
self.unregister(key)
def download_and_cache(
@classmethod
def _download_cache_path(cls, source: Union[str, AnyHttpUrl], app_config: InvokeAIAppConfig) -> Path:
escaped_source = slugify(str(source))
return app_config.download_cache_path / escaped_source
def download_and_cache_model(
self,
source: Union[str, AnyHttpUrl],
access_token: Optional[str] = None,
timeout: int = 0,
source: str | AnyHttpUrl,
) -> Path:
"""Download the model file located at source to the models cache and return its Path."""
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
model_path = self._app_config.convert_cache_path / model_hash
model_path = self._download_cache_path(str(source), self._app_config)
# We expect the cache directory to contain one and only one downloaded file.
# We expect the cache directory to contain one and only one downloaded file or directory.
# We don't know the file's name in advance, as it is set by the download
# content-disposition header.
if model_path.exists():
contents = [x for x in model_path.iterdir() if x.is_file()]
contents: List[Path] = list(model_path.iterdir())
if len(contents) > 0:
return contents[0]
model_path.mkdir(parents=True, exist_ok=True)
job = self._download_queue.download(
source=AnyHttpUrl(str(source)),
model_source = self._guess_source(str(source))
remote_files, _ = self._remote_files_from_source(model_source)
job = self._multifile_download(
dest=model_path,
access_token=access_token,
on_progress=TqdmProgress().update,
remote_files=remote_files,
subfolder=model_source.subfolder if isinstance(model_source, HFModelSource) else None,
)
self._download_queue.wait_for_job(job, timeout)
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queuing model download: {source} ({len(remote_files)} {files_string})")
self._download_queue.wait_for_job(job)
if job.complete:
assert job.download_path is not None
return job.download_path
else:
raise Exception(job.error)
def _remote_files_from_source(
self, source: ModelSource
) -> Tuple[List[RemoteModelFile], Optional[AnyModelRepoMetadata]]:
metadata = None
if isinstance(source, HFModelSource):
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
return (
metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
),
metadata,
)
if isinstance(source, URLModelSource):
try:
fetcher = self.get_fetcher_from_url(str(source.url))
kwargs: dict[str, Any] = {"session": self._session}
metadata = fetcher(**kwargs).from_url(source.url)
assert isinstance(metadata, ModelMetadataWithFiles)
return metadata.download_urls(session=self._session), metadata
except ValueError:
pass
return [RemoteModelFile(url=source.url, path=Path("."), size=0)], None
raise Exception(f"No files associated with {source}")
def _guess_source(self, source: str) -> ModelSource:
"""Turn a source string into a ModelSource object."""
variants = "|".join(ModelRepoVariant.__members__.values())
hf_repoid_re = f"^([^/:]+/[^/:]+)(?::({variants})?(?::/?([^:]+))?)?$"
source_obj: Optional[StringLikeSource] = None
if Path(source).exists(): # A local file or directory
source_obj = LocalModelSource(path=Path(source))
elif match := re.match(hf_repoid_re, source):
source_obj = HFModelSource(
repo_id=match.group(1),
variant=ModelRepoVariant(match.group(2)) if match.group(2) else None, # pass None rather than ''
subfolder=Path(match.group(3)) if match.group(3) else None,
)
elif re.match(r"^https?://[^/]+", source):
source_obj = URLModelSource(
url=Url(source),
)
else:
raise ValueError(f"Unsupported model source: '{source}'")
return source_obj
# --------------------------------------------------------------------------------------------
# Internal functions that manage the installer threads
# --------------------------------------------------------------------------------------------
@@ -478,16 +514,19 @@ class ModelInstallService(ModelInstallServiceBase):
job.config_out = self.record_store.get_model(key)
self._signal_job_completed(job)
def _set_error(self, job: ModelInstallJob, excp: Exception) -> None:
if any(x.content_type is not None and "text/html" in x.content_type for x in job.download_parts):
job.set_error(
def _set_error(self, install_job: ModelInstallJob, excp: Exception) -> None:
multifile_download_job = install_job._multifile_job
if multifile_download_job and any(
x.content_type is not None and "text/html" in x.content_type for x in multifile_download_job.download_parts
):
install_job.set_error(
InvalidModelConfigException(
f"At least one file in {job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
f"At least one file in {install_job.local_path} is an HTML page, not a model. This can happen when an access token is required to download."
)
)
else:
job.set_error(excp)
self._signal_job_errored(job)
install_job.set_error(excp)
self._signal_job_errored(install_job)
# --------------------------------------------------------------------------------------------
# Internal functions that manage the models directory
@@ -513,7 +552,6 @@ class ModelInstallService(ModelInstallServiceBase):
This is typically only used during testing with a new DB or when using the memory DB, because those are the
only situations in which we may have orphaned models in the models directory.
"""
installed_model_paths = {
(self._app_config.models_path / x.path).resolve() for x in self.record_store.all_models()
}
@@ -525,8 +563,13 @@ class ModelInstallService(ModelInstallServiceBase):
if resolved_path in installed_model_paths:
return True
# Skip core models entirely - these aren't registered with the model manager.
if str(resolved_path).startswith(str(self.app_config.models_path / "core")):
return False
for special_directory in [
self.app_config.models_path / "core",
self.app_config.convert_cache_dir,
self.app_config.download_cache_dir,
]:
if resolved_path.is_relative_to(special_directory):
return False
try:
model_id = self.register_path(model_path)
self._logger.info(f"Registered {model_path.name} with id {model_id}")
@@ -641,20 +684,15 @@ class ModelInstallService(ModelInstallServiceBase):
inplace=source.inplace or False,
)
def _import_from_hf(self, source: HFModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
def _import_from_hf(
self,
source: HFModelSource,
config: Optional[Dict[str, Any]] = None,
) -> ModelInstallJob:
# Add user's cached access token to HuggingFace requests
source.access_token = source.access_token or HfFolder.get_token()
if not source.access_token:
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(
variant=source.variant or self._guess_variant(),
subfolder=source.subfolder,
session=self._session,
)
if source.access_token is None:
source.access_token = HfFolder.get_token()
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@@ -662,22 +700,12 @@ class ModelInstallService(ModelInstallServiceBase):
metadata=metadata,
)
def _import_from_url(self, source: URLModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
# URLs from HuggingFace will be handled specially
metadata = None
fetcher = None
try:
fetcher = self.get_fetcher_from_url(str(source.url))
except ValueError:
pass
kwargs: dict[str, Any] = {"session": self._session}
if fetcher is not None:
metadata = fetcher(**kwargs).from_url(source.url)
self._logger.debug(f"metadata={metadata}")
if metadata and isinstance(metadata, ModelMetadataWithFiles):
remote_files = metadata.download_urls(session=self._session)
else:
remote_files = [RemoteModelFile(url=source.url, path=Path("."), size=0)]
def _import_from_url(
self,
source: URLModelSource,
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
remote_files, metadata = self._remote_files_from_source(source)
return self._import_remote_model(
source=source,
config=config,
@@ -692,12 +720,9 @@ class ModelInstallService(ModelInstallServiceBase):
metadata: Optional[AnyModelRepoMetadata],
config: Optional[Dict[str, Any]],
) -> ModelInstallJob:
# TODO: Replace with tempfile.tmpdir() when multithreading is cleaned up.
# Currently the tmpdir isn't automatically removed at exit because it is
# being held in a daemon thread.
if len(remote_files) == 0:
raise ValueError(f"{source}: No downloadable files found")
tmpdir = Path(
destdir = Path(
mkdtemp(
dir=self._app_config.models_path,
prefix=TMPDIR_PREFIX,
@@ -708,55 +733,28 @@ class ModelInstallService(ModelInstallServiceBase):
source=source,
config_in=config or {},
source_metadata=metadata,
local_path=tmpdir, # local path may change once the download has started due to content-disposition handling
local_path=destdir, # local path may change once the download has started due to content-disposition handling
bytes=0,
total_bytes=0,
)
# In the event that there is a subfolder specified in the source,
# we need to remove it from the destination path in order to avoid
# creating unwanted subfolders
if isinstance(source, HFModelSource) and source.subfolder:
root = Path(remote_files[0].path.parts[0])
subfolder = root / source.subfolder
else:
root = Path(".")
subfolder = Path(".")
# remember the temporary directory for later removal
install_job._install_tmpdir = destdir
install_job.total_bytes = sum((x.size or 0) for x in remote_files)
# we remember the path up to the top of the tmpdir so that it may be
# removed safely at the end of the install process.
install_job._install_tmpdir = tmpdir
assert install_job.total_bytes is not None # to avoid type checking complaints in the loop below
multifile_job = self._multifile_download(
remote_files=remote_files,
dest=destdir,
subfolder=source.subfolder if isinstance(source, HFModelSource) else None,
access_token=source.access_token,
submit_job=False, # Important! Don't submit the job until we have set our _download_cache dict
)
self._download_cache[multifile_job.id] = install_job
install_job._multifile_job = multifile_job
files_string = "file" if len(remote_files) == 1 else "file"
self._logger.info(f"Queuing model install: {source} ({len(remote_files)} {files_string})")
files_string = "file" if len(remote_files) == 1 else "files"
self._logger.info(f"Queueing model install: {source} ({len(remote_files)} {files_string})")
self._logger.debug(f"remote_files={remote_files}")
for model_file in remote_files:
url = model_file.url
path = root / model_file.path.relative_to(subfolder)
self._logger.debug(f"Downloading {url} => {path}")
install_job.total_bytes += model_file.size
assert hasattr(source, "access_token")
dest = tmpdir / path.parent
dest.mkdir(parents=True, exist_ok=True)
download_job = DownloadJob(
source=url,
dest=dest,
access_token=source.access_token,
)
self._download_cache[download_job.source] = install_job # matches a download job to an install job
install_job.download_parts.add(download_job)
# only start the jobs once install_job.download_parts is fully populated
for download_job in install_job.download_parts:
self._download_queue.submit_download_job(
download_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
self._download_queue.submit_multifile_download(multifile_job)
return install_job
def _stat_size(self, path: Path) -> int:
@@ -768,87 +766,104 @@ class ModelInstallService(ModelInstallServiceBase):
size += sum(self._stat_size(Path(root, x)) for x in files)
return size
def _multifile_download(
self,
remote_files: List[RemoteModelFile],
dest: Path,
subfolder: Optional[Path] = None,
access_token: Optional[str] = None,
submit_job: bool = True,
) -> MultiFileDownloadJob:
# HuggingFace repo subfolders are a little tricky. If the name of the model is "sdxl-turbo", and
# we are installing the "vae" subfolder, we do not want to create an additional folder level, such
# as "sdxl-turbo/vae", nor do we want to put the contents of the vae folder directly into "sdxl-turbo".
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
if subfolder:
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
path_to_add = Path(f"{top}_{subfolder}")
else:
path_to_remove = Path(".")
path_to_add = Path(".")
parts: List[RemoteModelFile] = []
for model_file in remote_files:
assert model_file.size is not None
parts.append(
RemoteModelFile(
url=model_file.url, # if a subfolder, then sdxl-turbo_vae/config.json
path=path_to_add / model_file.path.relative_to(path_to_remove),
)
)
return self._download_queue.multifile_download(
parts=parts,
dest=dest,
access_token=access_token,
submit_job=submit_job,
on_start=self._download_started_callback,
on_progress=self._download_progress_callback,
on_complete=self._download_complete_callback,
on_error=self._download_error_callback,
on_cancelled=self._download_cancelled_callback,
)
# ------------------------------------------------------------------
# Callbacks are executed by the download queue in a separate thread
# ------------------------------------------------------------------
def _download_started_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download started: {download_job.source}")
def _download_started_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
install_job.status = InstallStatus.DOWNLOADING
if install_job := self._download_cache.get(download_job.id, None):
install_job.status = InstallStatus.DOWNLOADING
assert download_job.download_path
if install_job.local_path == install_job._install_tmpdir:
partial_path = download_job.download_path.relative_to(install_job._install_tmpdir)
dest_name = partial_path.parts[0]
install_job.local_path = install_job._install_tmpdir / dest_name
if install_job.local_path == install_job._install_tmpdir: # first time
assert download_job.download_path
install_job.local_path = download_job.download_path
install_job.download_parts = download_job.download_parts
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = download_job.total_bytes
self._signal_job_download_started(install_job)
# Update the total bytes count for remote sources.
if not install_job.total_bytes:
install_job.total_bytes = sum(x.total_bytes for x in install_job.download_parts)
def _download_progress_callback(self, download_job: DownloadJob) -> None:
def _download_progress_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._cancel_download_parts(install_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in install_job.download_parts)
self._signal_job_downloading(install_job)
if install_job := self._download_cache.get(download_job.id, None):
if install_job.cancelled: # This catches the case in which the caller directly calls job.cancel()
self._download_queue.cancel_job(download_job)
else:
# update sizes
install_job.bytes = sum(x.bytes for x in download_job.download_parts)
install_job.total_bytes = sum(x.total_bytes for x in download_job.download_parts)
self._signal_job_downloading(install_job)
def _download_complete_callback(self, download_job: DownloadJob) -> None:
self._logger.info(f"Model download complete: {download_job.source}")
def _download_complete_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache[download_job.source]
# are there any more active jobs left in this task?
if install_job.downloading and all(x.complete for x in install_job.download_parts):
if install_job := self._download_cache.pop(download_job.id, None):
self._signal_job_downloads_done(install_job)
self._put_in_queue(install_job)
self._put_in_queue(install_job) # this starts the installation and registration
# Let other threads know that the number of downloads has changed
self._download_cache.pop(download_job.source, None)
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_error_callback(self, download_job: DownloadJob, excp: Optional[Exception] = None) -> None:
def _download_error_callback(self, download_job: MultiFileDownloadJob, excp: Optional[Exception] = None) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
assert install_job is not None
assert excp is not None
install_job.set_error(excp)
self._logger.error(
f"Cancelling {install_job.source} due to an error while downloading {download_job.source}: {str(excp)}"
)
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
assert excp is not None
install_job.set_error(excp)
self._download_queue.cancel_job(download_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _download_cancelled_callback(self, download_job: DownloadJob) -> None:
def _download_cancelled_callback(self, download_job: MultiFileDownloadJob) -> None:
with self._lock:
install_job = self._download_cache.pop(download_job.source, None)
if not install_job:
return
self._downloads_changed_event.set()
self._logger.warning(f"Model download canceled: {download_job.source}")
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
self._cancel_download_parts(install_job)
if install_job := self._download_cache.pop(download_job.id, None):
self._downloads_changed_event.set()
# if install job has already registered an error, then do not replace its status with cancelled
if not install_job.errored:
install_job.cancel()
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
def _cancel_download_parts(self, install_job: ModelInstallJob) -> None:
# on multipart downloads, _cancel_components() will get called repeatedly from the download callbacks
# do not lock here because it gets called within a locked context
for s in install_job.download_parts:
self._download_queue.cancel_job(s)
if all(x.in_terminal_state for x in install_job.download_parts):
# When all parts have reached their terminal state, we finalize the job to clean up the temporary directory and other resources
self._put_in_queue(install_job)
# Let other threads know that the number of downloads has changed
self._downloads_changed_event.set()
# ------------------------------------------------------------------------------------------------
# Internal methods that put events on the event bus
@@ -859,8 +874,18 @@ class ModelInstallService(ModelInstallServiceBase):
if self._event_bus:
self._event_bus.emit_model_install_started(job)
def _signal_job_download_started(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_started(job)
def _signal_job_downloading(self, job: ModelInstallJob) -> None:
if self._event_bus:
assert job._multifile_job is not None
assert job.bytes is not None
assert job.total_bytes is not None
self._event_bus.emit_model_install_download_progress(job)
def _signal_job_downloads_done(self, job: ModelInstallJob) -> None:
@@ -875,6 +900,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.info(f"Model install complete: {job.source}")
self._logger.debug(f"{job.local_path} registered key {job.config_out.key}")
if self._event_bus:
assert job.local_path is not None
assert job.config_out is not None
self._event_bus.emit_model_install_complete(job)
def _signal_job_errored(self, job: ModelInstallJob) -> None:
@@ -890,7 +917,13 @@ class ModelInstallService(ModelInstallServiceBase):
self._event_bus.emit_model_install_cancelled(job)
@staticmethod
def get_fetcher_from_url(url: str) -> ModelMetadataFetchBase:
def get_fetcher_from_url(url: str) -> Type[ModelMetadataFetchBase]:
"""
Return a metadata fetcher appropriate for provided url.
This used to be more useful, but the number of supported model
sources has been reduced to HuggingFace alone.
"""
if re.match(r"^https?://huggingface.co/[^/]+/[^/]+$", url.lower()):
return HuggingFaceMetadataFetch
raise ValueError(f"Unsupported model source: '{url}'")

View File

@@ -2,10 +2,11 @@
"""Base class for model loader."""
from abc import ABC, abstractmethod
from typing import Optional
from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import LoadedModel
from invokeai.backend.model_manager.load import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
@@ -31,3 +32,26 @@ class ModelLoadServiceBase(ABC):
@abstractmethod
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""
@abstractmethod
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
"""
Load the model file or directory located at the indicated Path.
This will load an arbitrary model file into the RAM cache. If the optional loader
argument is provided, the loader will be invoked to load the model into
memory. Otherwise the method will call safetensors.torch.load_file() or
torch.load() as appropriate to the file suffix.
Be aware that this returns a LoadedModelWithoutConfig object, which is the same as
LoadedModel, but without the config attribute.
Args:
model_path: A pathlib.Path to a checkpoint-style models file
loader: A Callable that expects a Path and returns a Dict[str, Tensor]
Returns:
A LoadedModel object.
"""

View File

@@ -1,18 +1,26 @@
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Team
"""Implementation of model loader service."""
from typing import Optional, Type
from pathlib import Path
from typing import Callable, Optional, Type
from picklescan.scanner import scan_file_path
from safetensors.torch import load_file as safetensors_load_file
from torch import load as torch_load
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
from invokeai.backend.model_manager.load import (
LoadedModel,
LoadedModelWithoutConfig,
ModelLoaderRegistry,
ModelLoaderRegistryBase,
)
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from .model_load_base import ModelLoadServiceBase
@@ -75,3 +83,41 @@ class ModelLoadService(ModelLoadServiceBase):
self._invoker.services.events.emit_model_load_complete(model_config, submodel_type)
return loaded_model
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None
) -> LoadedModelWithoutConfig:
cache_key = str(model_path)
ram_cache = self.ram_cache
try:
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))
except IndexError:
pass
def torch_load_file(checkpoint: Path) -> AnyModel:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
result = torch_load(checkpoint, map_location="cpu")
return result
def diffusers_load_directory(directory: Path) -> AnyModel:
load_class = GenericDiffusersLoader(
app_config=self._app_config,
logger=self._logger,
ram_cache=self._ram_cache,
convert_cache=self.convert_cache,
).get_hf_load_class(directory)
return load_class.from_pretrained(model_path, torch_dtype=TorchDevice.choose_torch_dtype())
loader = loader or (
diffusers_load_directory
if model_path.is_dir()
else torch_load_file
if model_path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
else lambda path: safetensors_load_file(path, device="cpu")
)
assert loader is not None
raw_model = loader(model_path)
ram_cache.put(key=cache_key, model=raw_model)
return LoadedModelWithoutConfig(_locker=ram_cache.get(key=cache_key))

View File

@@ -12,15 +12,13 @@ from pydantic import BaseModel, Field
from invokeai.app.services.shared.pagination import PaginatedResults
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from invokeai.backend.model_manager import (
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
)
from invokeai.backend.model_manager.config import (
ControlAdapterDefaultSettings,
MainModelDefaultSettings,
ModelFormat,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)

View File

@@ -37,10 +37,14 @@ class SqliteSessionQueue(SessionQueueBase):
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
self._set_in_progress_to_canceled()
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
if self.__invoker.services.configuration.clear_queue_on_startup:
clear_result = self.clear(DEFAULT_QUEUE_ID)
if clear_result.deleted > 0:
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
else:
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()

View File

@@ -3,6 +3,7 @@ from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
from PIL.Image import Image
from pydantic.networks import AnyHttpUrl
from torch import Tensor
from invokeai.app.invocations.constants import IMAGE_MODES
@@ -14,8 +15,15 @@ from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.model_manager.config import (
AnyModel,
AnyModelConfig,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -320,8 +328,10 @@ class ConditioningInterface(InvocationContextInterface):
class ModelsInterface(InvocationContextInterface):
"""Common API for loading, downloading and managing models."""
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Checks if a model exists.
"""Check if a model exists.
Args:
identifier: The key or ModelField representing the model.
@@ -331,13 +341,13 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
return self._services.model_manager.store.exists(identifier.key)
else:
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model.
"""Load a model.
Args:
identifier: The key or ModelField representing the model.
@@ -361,7 +371,7 @@ class ModelsInterface(InvocationContextInterface):
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model by its attributes.
"""Load a model by its attributes.
Args:
name: Name of the model.
@@ -384,7 +394,7 @@ class ModelsInterface(InvocationContextInterface):
return self._services.model_manager.load.load_model(configs[0], submodel_type)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
"""Get a model's config.
Args:
identifier: The key or ModelField representing the model.
@@ -394,11 +404,11 @@ class ModelsInterface(InvocationContextInterface):
"""
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.store.get_model(identifier.key)
else:
return self._services.model_manager.store.get_model(identifier.key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.
"""Search for models by path.
Args:
path: The path to search for.
@@ -415,7 +425,7 @@ class ModelsInterface(InvocationContextInterface):
type: Optional[ModelType] = None,
format: Optional[ModelFormat] = None,
) -> list[AnyModelConfig]:
"""Searches for models by attributes.
"""Search for models by attributes.
Args:
name: The name to search for (exact match).
@@ -434,6 +444,72 @@ class ModelsInterface(InvocationContextInterface):
model_format=format,
)
def download_and_cache_model(
self,
source: str | AnyHttpUrl,
) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
This can be used to single-file install models and other resources of arbitrary types
which should not get registered with the database. If the model is already
installed, the cached path will be returned. Otherwise it will be downloaded.
Args:
source: A URL that points to the model, or a huggingface repo_id.
Returns:
Path to the downloaded model
"""
return self._services.model_manager.install.download_and_cache_model(source=source)
def load_local_model(
self,
model_path: Path,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Load the model file located at the indicated path
If a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
path: A model Path
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
def load_remote_model(
self,
source: str | AnyHttpUrl,
loader: Optional[Callable[[Path], AnyModel]] = None,
) -> LoadedModelWithoutConfig:
"""
Download, cache, and load the model file located at the indicated URL or repo_id.
If the model is already downloaded, it will be loaded from the cache.
If the a loader callable is provided, it will be invoked to load the model. Otherwise,
`safetensors.torch.load_file()` or `torch.load()` will be called to load the model.
Be aware that the LoadedModelWithoutConfig object has no `config` attribute
Args:
source: A URL or huggingface repoid.
loader: A Callable that expects a Path and returns a dict[str|int, Any]
Returns:
A LoadedModelWithoutConfig object.
"""
model_path = self._services.model_manager.install.download_and_cache_model(source=str(source))
return self._services.model_manager.load.load_model_from_path(model_path=model_path, loader=loader)
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:

View File

@@ -13,6 +13,7 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_7 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_8 import build_migration_8
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_9 import build_migration_9
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import build_migration_10
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -43,6 +44,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_8(app_config=config))
migrator.register_migration(build_migration_9())
migrator.register_migration(build_migration_10())
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.run_migrations()
return db

View File

@@ -0,0 +1,75 @@
import shutil
import sqlite3
from logging import Logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
LEGACY_CORE_MODELS = [
# OpenPose
"any/annotators/dwpose/yolox_l.onnx",
"any/annotators/dwpose/dw-ll_ucoco_384.onnx",
# DepthAnything
"any/annotators/depth_anything/depth_anything_vitl14.pth",
"any/annotators/depth_anything/depth_anything_vitb14.pth",
"any/annotators/depth_anything/depth_anything_vits14.pth",
# Lama inpaint
"core/misc/lama/lama.pt",
# RealESRGAN upscale
"core/upscaling/realesrgan/RealESRGAN_x4plus.pth",
"core/upscaling/realesrgan/RealESRGAN_x4plus_anime_6B.pth",
"core/upscaling/realesrgan/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth",
"core/upscaling/realesrgan/RealESRGAN_x2plus.pth",
]
class Migration11Callback:
def __init__(self, app_config: InvokeAIAppConfig, logger: Logger) -> None:
self._app_config = app_config
self._logger = logger
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._remove_convert_cache()
self._remove_downloaded_models()
self._remove_unused_core_models()
def _remove_convert_cache(self) -> None:
"""Rename models/.cache to models/.convert_cache."""
self._logger.info("Removing .cache directory. Converted models will now be cached in .convert_cache.")
legacy_convert_path = self._app_config.root_path / "models" / ".cache"
shutil.rmtree(legacy_convert_path, ignore_errors=True)
def _remove_downloaded_models(self) -> None:
"""Remove models from their old locations; they will re-download when needed."""
self._logger.info(
"Removing legacy just-in-time models. Downloaded models will now be cached in .download_cache."
)
for model_path in LEGACY_CORE_MODELS:
legacy_dest_path = self._app_config.models_path / model_path
legacy_dest_path.unlink(missing_ok=True)
def _remove_unused_core_models(self) -> None:
"""Remove unused core models and their directories."""
self._logger.info("Removing defunct core models.")
for dir in ["face_restoration", "misc", "upscaling"]:
path_to_remove = self._app_config.models_path / "core" / dir
shutil.rmtree(path_to_remove, ignore_errors=True)
shutil.rmtree(self._app_config.models_path / "any" / "annotators", ignore_errors=True)
def build_migration_11(app_config: InvokeAIAppConfig, logger: Logger) -> Migration:
"""
Build the migration from database version 10 to 11.
This migration does the following:
- Moves "core" models previously downloaded with download_with_progress_bar() into new
"models/.download_cache" directory.
- Renames "models/.cache" to "models/.convert_cache".
"""
migration_11 = Migration(
from_version=10,
to_version=11,
callback=Migration11Callback(app_config=app_config, logger=logger),
)
return migration_11

View File

@@ -289,7 +289,7 @@ def prepare_control_image(
width: int,
height: int,
num_channels: int = 3,
device: str | torch.device = "cuda",
device: str = "cuda",
dtype: torch.dtype = torch.float16,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
@@ -304,7 +304,7 @@ def prepare_control_image(
num_channels (int, optional): The target number of image channels. This is achieved by converting the input
image to RGB, then naively taking the first `num_channels` channels. The primary use case is converting a
RGB image to a single-channel grayscale image. Raises if `num_channels` cannot be achieved. Defaults to 3.
device (str | torch.Device, optional): The target device for the output image. Defaults to "cuda".
device (str, optional): The target device for the output image. Defaults to "cuda".
dtype (_type_, optional): The dtype for the output image. Defaults to torch.float16.
do_classifier_free_guidance (bool, optional): If True, repeat the output image along the batch dimension.
Defaults to True.

View File

@@ -1,51 +0,0 @@
from pathlib import Path
from urllib import request
from tqdm import tqdm
from invokeai.backend.util.logging import InvokeAILogger
class ProgressBar:
"""Simple progress bar for urllib.request.urlretrieve using tqdm."""
def __init__(self, model_name: str = "file"):
self.pbar = None
self.name = model_name
def __call__(self, block_num: int, block_size: int, total_size: int):
if not self.pbar:
self.pbar = tqdm(
desc=self.name,
initial=0,
unit="iB",
unit_scale=True,
unit_divisor=1000,
total=total_size,
)
self.pbar.update(block_size)
def download_with_progress_bar(name: str, url: str, dest_path: Path) -> bool:
"""Download a file from a URL to a destination path, with a progress bar.
If the file already exists, it will not be downloaded again.
Exceptions are not caught.
Args:
name (str): Name of the file being downloaded.
url (str): URL to download the file from.
dest_path (Path): Destination path to save the file to.
Returns:
bool: True if the file was downloaded, False if it already existed.
"""
if dest_path.exists():
return False # already downloaded
InvokeAILogger.get_logger().info(f"Downloading {name}...")
dest_path.parent.mkdir(parents=True, exist_ok=True)
request.urlretrieve(url, dest_path, ProgressBar(name))
return True

View File

@@ -1,5 +1,5 @@
import pathlib
from typing import Literal, Union
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
@@ -10,28 +10,17 @@ from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitl14.pth",
},
"base": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitb14.pth",
},
"small": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vits14.pth",
},
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
@@ -53,36 +42,27 @@ transform = Compose(
class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = TorchDevice.choose_torch_device()
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
download_with_progress_bar(
pathlib.Path(DEPTH_ANYTHING_MODELS[model_size]["url"]).name,
DEPTH_ANYTHING_MODELS[model_size]["url"],
DEPTH_ANYTHING_MODEL_PATH,
)
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
if not self.model or model_size != self.model_size:
del self.model
self.model_size = model_size
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
match self.model_size:
case "small":
self.model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
self.model.to(self.device)
return self.model
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:

View File

@@ -1,30 +1,53 @@
from pathlib import Path
from typing import Dict
import numpy as np
import torch
from controlnet_aux.util import resize_image
from PIL import Image
from invokeai.backend.image_util.dw_openpose.utils import draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.utils import NDArrayInt, draw_bodypose, draw_facepose, draw_handpose
from invokeai.backend.image_util.dw_openpose.wholebody import Wholebody
DWPOSE_MODELS = {
"yolox_l.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
"dw-ll_ucoco_384.onnx": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
}
def draw_pose(pose, H, W, draw_face=True, draw_body=True, draw_hands=True, resolution=512):
def draw_pose(
pose: Dict[str, NDArrayInt | Dict[str, NDArrayInt]],
H: int,
W: int,
draw_face: bool = True,
draw_body: bool = True,
draw_hands: bool = True,
resolution: int = 512,
) -> Image.Image:
bodies = pose["bodies"]
faces = pose["faces"]
hands = pose["hands"]
assert isinstance(bodies, dict)
candidate = bodies["candidate"]
assert isinstance(bodies, dict)
subset = bodies["subset"]
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if draw_body:
canvas = draw_bodypose(canvas, candidate, subset)
if draw_hands:
assert isinstance(hands, np.ndarray)
canvas = draw_handpose(canvas, hands)
if draw_face:
canvas = draw_facepose(canvas, faces)
assert isinstance(hands, np.ndarray)
canvas = draw_facepose(canvas, faces) # type: ignore
dwpose_image = resize_image(
dwpose_image: Image.Image = resize_image(
canvas,
resolution,
)
@@ -39,11 +62,16 @@ class DWOpenposeDetector:
Credits: https://github.com/IDEA-Research/DWPose
"""
def __init__(self) -> None:
self.pose_estimation = Wholebody()
def __init__(self, onnx_det: Path, onnx_pose: Path) -> None:
self.pose_estimation = Wholebody(onnx_det=onnx_det, onnx_pose=onnx_pose)
def __call__(
self, image: Image.Image, draw_face=False, draw_body=True, draw_hands=False, resolution=512
self,
image: Image.Image,
draw_face: bool = False,
draw_body: bool = True,
draw_hands: bool = False,
resolution: int = 512,
) -> Image.Image:
np_image = np.array(image)
H, W, C = np_image.shape
@@ -79,3 +107,6 @@ class DWOpenposeDetector:
return draw_pose(
pose, H, W, draw_face=draw_face, draw_hands=draw_hands, draw_body=draw_body, resolution=resolution
)
__all__ = ["DWPOSE_MODELS", "DWOpenposeDetector"]

View File

@@ -5,11 +5,13 @@ import math
import cv2
import matplotlib
import numpy as np
import numpy.typing as npt
eps = 0.01
NDArrayInt = npt.NDArray[np.uint8]
def draw_bodypose(canvas, candidate, subset):
def draw_bodypose(canvas: NDArrayInt, candidate: NDArrayInt, subset: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
@@ -88,7 +90,7 @@ def draw_bodypose(canvas, candidate, subset):
return canvas
def draw_handpose(canvas, all_hand_peaks):
def draw_handpose(canvas: NDArrayInt, all_hand_peaks: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
edges = [
@@ -142,7 +144,7 @@ def draw_handpose(canvas, all_hand_peaks):
return canvas
def draw_facepose(canvas, all_lmks):
def draw_facepose(canvas: NDArrayInt, all_lmks: NDArrayInt) -> NDArrayInt:
H, W, C = canvas.shape
for lmks in all_lmks:
lmks = np.array(lmks)

View File

@@ -2,47 +2,26 @@
# Modified pathing to suit Invoke
from pathlib import Path
import numpy as np
import onnxruntime as ort
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import TorchDevice
from .onnxdet import inference_detector
from .onnxpose import inference_pose
DWPOSE_MODELS = {
"yolox_l.onnx": {
"local": "any/annotators/dwpose/yolox_l.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
},
"dw-ll_ucoco_384.onnx": {
"local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
"url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
},
}
config = get_config()
class Wholebody:
def __init__(self):
def __init__(self, onnx_det: Path, onnx_pose: Path):
device = TorchDevice.choose_torch_device()
providers = ["CUDAExecutionProvider"] if device.type == "cuda" else ["CPUExecutionProvider"]
DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)
POSE_MODEL_PATH = config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"]
download_with_progress_bar(
"dw-ll_ucoco_384.onnx", DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH
)
onnx_det = DET_MODEL_PATH
onnx_pose = POSE_MODEL_PATH
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)

View File

@@ -1,4 +1,4 @@
import gc
from pathlib import Path
from typing import Any
import numpy as np
@@ -6,9 +6,7 @@ import torch
from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.model_manager.config import AnyModel
def norm_img(np_img):
@@ -19,28 +17,11 @@ def norm_img(np_img):
return np_img
def load_jit_model(url_or_path, device):
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
class LaMA:
def __init__(self, model: AnyModel):
self._model = model
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = TorchDevice.choose_torch_device()
model_location = get_config().models_path / "core/misc/lama/lama.pt"
if not model_location.exists():
download_with_progress_bar(
name="LaMa Inpainting Model",
url="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
dest_path=model_location,
)
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
@@ -48,20 +29,25 @@ class LaMA:
mask = np.asarray(mask)
mask = np.invert(mask)
mask = norm_img(mask)
mask = (mask > 0) * 1
device = next(self._model.buffers()).device
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
with torch.inference_mode():
infilled_image = model(image, mask)
infilled_image = self._model(image, mask)
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
del model
gc.collect()
torch.cuda.empty_cache()
return infilled_image
@staticmethod
def load_jit_model(url_or_path: str | Path, device: torch.device | str = "cpu") -> torch.nn.Module:
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model: torch.nn.Module = torch.jit.load(model_path, map_location="cpu").to(device) # type: ignore
model.eval()
return model

View File

@@ -1,6 +1,5 @@
import math
from enum import Enum
from pathlib import Path
from typing import Any, Optional
import cv2
@@ -11,6 +10,7 @@ from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.util.devices import TorchDevice
"""
@@ -52,7 +52,7 @@ class RealESRGAN:
def __init__(
self,
scale: int,
model_path: Path,
loadnet: AnyModel,
model: RRDBNet,
tile: int = 0,
tile_pad: int = 10,
@@ -67,8 +67,6 @@ class RealESRGAN:
self.half = half
self.device = TorchDevice.choose_torch_device()
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
# prefer to use params_ema
if "params_ema" in loadnet:
keyname = "params_ema"

View File

@@ -125,13 +125,16 @@ class IPAdapter(RawModel):
self.device, dtype=self.dtype
)
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
self.device = device
def to(
self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, non_blocking: bool = False
):
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._image_proj_model.to(device=self.device, dtype=self.dtype)
self.attn_weights.to(device=self.device, dtype=self.dtype)
self._image_proj_model.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
def calc_size(self):
# workaround for circular import

View File

@@ -61,9 +61,10 @@ class LoRALayerBase:
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
self.bias = self.bias.to(device=device, dtype=dtype, non_blocking=non_blocking)
# TODO: find and debug lora/locon with bias
@@ -109,14 +110,15 @@ class LoRALayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
super().to(device=device, dtype=dtype, non_blocking=non_blocking)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.down = self.down.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
self.mid = self.mid.to(device=device, dtype=dtype, non_blocking=non_blocking)
class LoHALayer(LoRALayerBase):
@@ -169,18 +171,19 @@ class LoHALayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.t1 = self.t1.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
class LoKRLayer(LoRALayerBase):
@@ -265,6 +268,7 @@ class LoKRLayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
@@ -273,19 +277,19 @@ class LoKRLayer(LoRALayerBase):
else:
assert self.w1_a is not None
assert self.w1_b is not None
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w1_b = self.w1_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
self.w2 = self.w2.to(device=device, dtype=dtype, non_blocking=non_blocking)
else:
assert self.w2_a is not None
assert self.w2_b is not None
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.w2_b = self.w2_b.to(device=device, dtype=dtype, non_blocking=non_blocking)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
self.t2 = self.t2.to(device=device, dtype=dtype, non_blocking=non_blocking)
class FullLayer(LoRALayerBase):
@@ -319,10 +323,11 @@ class FullLayer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
class IA3Layer(LoRALayerBase):
@@ -358,11 +363,12 @@ class IA3Layer(LoRALayerBase):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype, non_blocking=non_blocking)
self.on_input = self.on_input.to(device=device, dtype=dtype, non_blocking=non_blocking)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
@@ -388,10 +394,11 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
layer.to(device=device, dtype=dtype, non_blocking=non_blocking)
def calc_size(self) -> int:
model_size = 0
@@ -514,7 +521,7 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
layer.to(device=device, dtype=dtype, non_blocking=True)
model.layers[layer_key] = layer
return model

View File

@@ -0,0 +1,24 @@
import json
from base64 import b64decode
def validate_hash(hash: str):
if ":" not in hash:
return
for enc_hash in hashes:
alg, hash_ = hash.split(":")
if alg == "blake3":
alg = "blake3_single"
map = json.loads(b64decode(enc_hash))
if alg in map:
if hash_ == map[alg]:
raise Exception("Unrecoverable Model Error")
hashes: list[str] = [
"eyJibGFrZTNfbXVsdGkiOiI3Yjc5ODZmM2QyNTk3MDZiMjVhZDRhM2NmNGM2MTcyNGNhZmQ0Yjc4NjI4MjIwNjMyZGU4NjVlM2UxNDEyMTVlIiwiYmxha2UzX3NpbmdsZSI6IjdiNzk4NmYzZDI1OTcwNmIyNWFkNGEzY2Y0YzYxNzI0Y2FmZDRiNzg2MjgyMjA2MzJkZTg2NWUzZTE0MTIxNWUiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNzdlZmU5MzRhZGQ3YmU5Njc3NmJkODM3NWJhZDQxN2QiLCJzaGExIjoiYmM2YzYxYzgwNDgyMTE2ZTY2ZGQyNTYwNjRkYTgxYjFlY2U4NzMzOCIsInNoYTIyNCI6IjgzNzNlZGM4ZTg4Y2UxMTljODdlOTM2OTY4ZWViMWNmMzdjZGY4NTBmZjhjOTZkYjNmMDc4YmE0Iiwic2hhMjU2IjoiNzNjYWMxZWRlZmUyZjdlODFkNjRiMTI2YjIxMmY2Yzk2ZTAwNjgyNGJjZmJkZDI3Y2E5NmUyNTk5ZTQwNzUwZiIsInNoYTM4NCI6IjlmNmUwNzlmOTNiNDlkMTg1YzEyNzY0OGQwNzE3YTA0N2E3MzYyNDI4YzY4MzBhNDViNzExODAwZDE4NjIwZDZjMjcwZGE3ZmY0Y2FjOTRmNGVmZDdiZWQ5OTlkOWU0ZCIsInNoYTUxMiI6IjAwNzE5MGUyYjk5ZjVlN2Q1OGZiYWI2YTk1YmY0NjJiODhkOTg1N2NlNjY4MTMyMGJmM2M0Y2ZiZmY0MjkxZmEzNTMyMTk3YzdkODc2YWQ3NjZhOTQyOTQ2Zjc1OWY2YTViNDBlM2I2MzM3YzIwNWI0M2JkOWMyN2JiMTljNzk0IiwiYmxha2UyYiI6IjlhN2VhNTQzY2ZhMmMzMWYyZDIyNjg2MjUwNzUyNDE0Mjc1OWJiZTA0MWZlMWJkMzQzNDM1MWQwNWZlYjI2OGY2MjU0OTFlMzlmMzdkYWQ4MGM2Y2UzYTE4ZjAxNGEzZjJiMmQ2OGU2OTc0MjRmNTU2M2Y5ZjlhYzc1MzJiMjEwIiwiYmxha2UycyI6ImYxZmMwMjA0YjdjNzIwNGJlNWI1YzY3NDEyYjQ2MjY5NWE3YjFlYWQ2M2E5ZGVkMjEzYjZmYTU0NGZjNjJlYzUiLCJzaGEzXzIyNCI6IjljZDQ3YTBhMzA3NmNmYzI0NjJhNTAzMjVmMjg4ZjFiYzJjMmY2NmU2ODIxODc5NjJhNzU0NjFmIiwic2hhM18yNTYiOiI4NTFlNGI1ZDI1MWZlZTFiYzk0ODU1OWNjMDNiNjhlNTllYWU5YWI1ZTUyYjA0OTgxYTRhOTU4YWQyMDdkYjYwIiwic2hhM18zODQiOiJiZDA2ZTRhZGFlMWQ0MTJmZjFjOTcxMDJkZDFlN2JmY2UzMDViYTgxMTgyNzM3NWY5NTI4OWJkOGIyYTUxNjdiMmUyNzZjODNjNTU3ODFhMTEyMDRhNzc5MTUwMzM5ZTEiLCJzaGEzXzUxMiI6ImQ1ZGQ2OGZmZmY5NGRhZjJhMDkzZTliNmM1MTBlZmZkNThmZTA0ODMyZGQzMzEyOTZmN2NkZmYzNmRhZmQ3NGMxY2VmNjUxNTBkZjk5OGM1ODgyY2MzMzk2MTk1ZTViYjc5OTY1OGFkMTQ3MzFiMjJmZWZiMWQzNmY2MWJjYzJjIiwic2hha2VfMTI4IjoiOWJlNTgwNWMwNjg1MmZmNDUzNGQ4ZDZmODYyMmFkOTJkMGUwMWE2Y2JmYjIwN2QxOTRmM2JkYThiOGNmNWU4ZiIsInNoYWtlXzI1NiI6IjRhYjgwYjY2MzcxYzdhNjBhYWM4NDVkMTZlNWMzZDNhMmM4M2FjM2FjZDNiNTBiNzdjYWYyYTNmMWMyY2ZjZjc5OGNjYjkxN2FjZjQzNzBmZDdjN2ZmODQ5M2Q3NGY1MWM4NGU3M2ViZGQ4MTRmM2MwMzk3YzI4ODlmNTI0Mzg3In0K",
"eyJibGFrZTNfbXVsdGkiOiI4ODlmYzIwMDA4NWY1NWY4YTA4MjhiODg3MDM0OTRhMGFmNWZkZGI5N2E2YmYwMDRjM2VkYTdiYzBkNDU0MjQzIiwiYmxha2UzX3NpbmdsZSI6Ijg4OWZjMjAwMDg1ZjU1ZjhhMDgyOGI4ODcwMzQ5NGEwYWY1ZmRkYjk3YTZiZjAwNGMzZWRhN2JjMGQ0NTQyNDMiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiNTIzNTRhMzkzYTVmOGNjNmMyMzQ0OThiYjcxMDljYzEiLCJzaGExIjoiMTJmYmRhOGE3ZGUwOGMwNDc2NTA5OWY2NGNmMGIzYjcxMjc1MGM1NyIsInNoYTIyNCI6IjEyZWU3N2U0Y2NhODViMDk4YjdjNWJlMWFjNGMwNzljNGM3MmJmODA2YjdlZjU1NGI0NzgxZDkxIiwic2hhMjU2IjoiMjU1NTMwZDAyYTY4MjY4OWE5ZTZjMjRhOWZhMDM2OGNhODMxZTI1OTAyYjM2NzQyNzkwZTk3NzU1ZjEzMmNmNSIsInNoYTM4NCI6IjhkMGEyMTRlNDk0NGE2NGY3ZmZjNTg3MGY0ZWUyZTA0OGIzYjRjMmQ0MGRmMWFmYTVlOGE1ZWNkN2IwOTY3M2ZjNWI5YzM5Yzg4Yjc2YmIwY2I4ZjQ1ZjAxY2MwNjZkNCIsInNoYTUxMiI6Ijg3NTM3OWNiYzdlOGYyNzU4YjVjMDY5ZTU2ZWRjODY1ODE4MGFkNDEzNGMwMzY1NzM4ZjM1YjQwYzI2M2JkMTMwMzcwZTE0MzZkNDNmOGFhMTgyMTg5MzgzMTg1ODNhOWJhYTUyYTBjMTk1Mjg5OTQzYzZiYTY2NTg1Yjg5M2ZiIiwiYmxha2UyYiI6IjBhY2MwNWEwOGE5YjhhODNmZTVjYTk4ZmExMTg3NTYwNjk0MjY0YWUxNTI4NDliYzFkNzQzNTYzMzMyMTlhYTg3N2ZiNjc4MmRjZDZiOGIyYjM1MTkyNDQzNDE2ODJiMTQ3YmY2YTY3MDU2ZWIwOTQ4MzE1M2E4Y2ZiNTNmMTI0IiwiYmxha2UycyI6ImY5ZTRhZGRlNGEzZDRhOTZhOWUyNjVjMGVmMjdmZDNiNjA0NzI1NDllMTEyMWQzOGQwMTkxNTY5ZDY5YzdhYzAiLCJzaGEzXzIyNCI6ImM0NjQ3MGRjMjkyNGI0YjZkMTA2NDY5MDRiNWM2OGVjNTU2YmQ4MTA5NmVkMTA4YjZiMzQyZmU1Iiwic2hhM18yNTYiOiIwMDBlMThiZTI1MzYxYTk0NGExZTIwNjQ5ZmY0ZGM2OGRiZTk0OGNkNTYwY2I5MTFhODU1OTE3ODdkNWQ5YWYwIiwic2hhM18zODQiOiIzNDljZmVhMGUxZGE0NWZlMmYzNjJhMWFjZjI1ZTczOWNiNGQ0NDdiM2NiODUzZDVkYWNjMzU5ZmRhMWE1M2FhYWU5OTM2ZmFhZWM1NmFhZDkwMThhYjgxMTI4ZjI3N2YiLCJzaGEzXzUxMiI6ImMxNDgwNGY1YTNjNWE4ZGEyMTAyODk1YTFjZGU4MmIwNGYwZmY4OTczMTc0MmY2NDQyY2NmNzQ1OTQzYWQ5NGViOWZmMTNhZDg3YjRmODkxN2M5NmY5ZjMwZjkwYTFhYTI4OTI3OTkwMjg0ZDJhMzcyMjA0NjE4MTNiNDI0MzEyIiwic2hha2VfMTI4IjoiN2IxY2RkMWUyMzUzMzk0OTg5M2UyMmZkMTAwZmU0YjJhMTU1MDJmMTNjMTI0YzhiZDgxY2QwZDdlOWEzMGNmOCIsInNoYWtlXzI1NiI6ImI0NjMzZThhMjNkZDM0ODk0ZTIyNzc0ODYyNTE1MzVjYWFlNjkyMTdmOTQ0NTc3MzE1NTljODBjNWQ3M2ZkOTMxZTFjMDJlZDI0Yjc3MzE3OTJjMjVlNTZhYjg3NjI4YmJiMDgxNTU0MjU2MWY5ZGI2NWE0NDk4NDFmNGQzYTU4In0K",
"eyJibGFrZTNfbXVsdGkiOiI2Y2M0MmU4NGRiOGQyZTliYjA4YjUxNWUwYzlmYzg2NTViNDUwNGRlZDM1MzBlZjFjNTFjZWEwOWUxYThiNGYxIiwiYmxha2UzX3NpbmdsZSI6IjZjYzQyZTg0ZGI4ZDJlOWJiMDhiNTE1ZTBjOWZjODY1NWI0NTA0ZGVkMzUzMGVmMWM1MWNlYTA5ZTFhOGI0ZjEiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZDQwNjk3NTJhYjQ0NzFhZDliMDY3YmUxMmRjNTM2ZjYiLCJzaGExIjoiOGRjZmVlMjZjZjUyOTllMDBjN2QwZjJiZTc0NmVmMTlkZjliZGExNCIsInNoYTIyNCI6IjhjMzAzOTU3ZjI3NDNiMjUwNmQyYzIzY2VmNmU4MTQ5MTllZmE2MWM0MTFiMDk5ZmMzODc2MmRjIiwic2hhMjU2IjoiZDk3ZjQ2OWJjMWZkMjhjMjZkMjJhN2Y3ODczNzlhZmM4NjY3ZmZmM2FhYTQ5NTE4NmQyZTM4OTU2MTBjZDJmMyIsInNoYTM4NCI6IjY0NmY0YWM0ZDA2YWJkZmE2MDAwN2VjZWNiOWNjOTk4ZmJkOTBiYzYwMmY3NTk2M2RhZDUzMGMzNGE5ZGE1YzY4NjhlMGIwMDJkZDNlMTM4ZjhmMjA2ODcyNzFkMDVjMSIsInNoYTUxMiI6ImYzZTU4NTA0YzYyOGUwYjViNzBhOTYxYThmODA1MDA1NjQ1M2E5NDlmNTgzNDhiYTNhZTVlMjdkNDRhNGJkMjc5ZjA3MmU1OGQ5YjEyOGE1NDc1MTU2ZmM3YzcxMGJkYjI3OWQ5OGFmN2EwYTI4Y2Y1ZDY2MmQxODY4Zjg3ZjI3IiwiYmxha2UyYiI6ImFhNjgyYmJjM2U1ZGRjNDZkNWUxN2VjMzRlNmEzZGY5ZjhiNWQyNzk0YTZkNmY0M2VjODMxZjhjOTU2OGYyY2RiOGE4YjAyNTE4MDA4YmY0Y2FhYTlhY2FhYjNkNzRmZmRiNGZlNDgwOTcwODU3OGJiZjNlNzJjYTc5ZDQwYzZmIiwiYmxha2UycyI6ImQ0ZGJlZTJkMmZlNDMwOGViYTkwMTY1MDdmMzI1ZmJiODZlMWQzNDQ0MjgzNzRlMjAwNjNiNWQ1MzkzZTExNjMiLCJzaGEzXzIyNCI6ImE1ZTM5NWZlNGRlYjIyY2JhNjgwMWFiZTliZjljMjM2YmMzYjkwZDdiN2ZjMTRhZDhjZjQ0NzBlIiwic2hhM18yNTYiOiIwOWYwZGVjODk0OWEzYmQzYzU3N2RjYzUyMTMwMGRiY2UwMjVjM2VjOTJkNzQ0MDJkNTE1ZDA4NTQwODg2NGY1Iiwic2hhM18zODQiOiJmMjEyNmM5NTcxODQ3NDZmNjYyMjE4MTRkMDZkZWQ3NDBhYWU3MDA4MTc0YjI0OTEzY2YwOTQzY2IwMTA5Y2QxNWI4YmMwOGY1YjUwMWYwYzhhOTY4MzUwYzgzY2I1ZWUiLCJzaGEzXzUxMiI6ImU1ZmEwMzIwMzk2YTJjMThjN2UxZjVlZmJiODYwYTU1M2NlMTlkMDQ0MWMxNWEwZTI1M2RiNjJkM2JmNjg0ZDI1OWIxYmQ4OTJkYTcyMDVjYTYyODQ2YzU0YWI1ODYxOTBmNDUxZDlmZmNkNDA5YmU5MzlhNWM1YWIyZDdkM2ZkIiwic2hha2VfMTI4IjoiNGI2MTllM2I4N2U1YTY4OTgxMjk0YzgzMmU0NzljZGI4MWFmODdlZTE4YzM1Zjc5ZjExODY5ZWEzNWUxN2I3MiIsInNoYWtlXzI1NiI6ImYzOWVkNmMxZmQ2NzVmMDg3ODAyYTc4ZTUwYWFkN2ZiYTZiM2QxNzhlZWYzMjRkMTI3ZTZjYmEwMGRjNzkwNTkxNjQ1Y2U1Y2NmMjhjYzVkNWRkODU1OWIzMDMxYTM3ZjE5NjhmYmFhNDQzMmI2ZWU0Yzg3ZWE2YTdkMmE2NWM2In0K",
"eyJibGFrZTNfbXVsdGkiOiJhNDRiZjJkMzVkZDI3OTZlZTI1NmY0MzVkODFhNTdhOGM0MjZhMzM5ZDc3NTVkMmNiMjdmMzU4ZjM0NTM4OWM2IiwiYmxha2UzX3NpbmdsZSI6ImE0NGJmMmQzNWRkMjc5NmVlMjU2ZjQzNWQ4MWE1N2E4YzQyNmEzMzlkNzc1NWQyY2IyN2YzNThmMzQ1Mzg5YzYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiOGU5OTMzMzEyZjg4NDY4MDg0ZmRiZWNjNDYyMTMxZTgiLCJzaGExIjoiNmI0MmZjZDFmMmQyNzUwYWNkY2JkMTUzMmQ4NjQ5YTM1YWI2NDYzNCIsInNoYTIyNCI6ImQ2Y2E2OTUxNzIzZjdjZjg0NzBjZWRjMmVhNjA2ODNmMWU4NDMzM2Q2NDM2MGIzOWIyMjZlZmQzIiwic2hhMjU2IjoiMDAxNGY5Yzg0YjcwMTFhMGJkNzliNzU0NGVjNzg4NDQzNWQ4ZGY0NmRjMDBiNDk0ZmFkYzA4NWQzNDM1NjI4MyIsInNoYTM4NCI6IjMxODg2OTYxODc4NWY3MWJlM2RlZjkyZDgyNzY2NjBhZGE0MGViYTdkMDk1M2Y0YTc5ODdlMThhNzFlNjBlY2EwY2YyM2YwMjVhMmQ4ZjUyMmNkZGY3MTcxODFhMTQxNSIsInNoYTUxMiI6IjdmZGQxN2NmOWU3ZTBhZDcwMzJjMDg1MTkyYWMxZmQ0ZmFhZjZkNWNlYzAzOTE5ZDk0MmZiZTIyNWNhNmIwZTg0NmQ4ZGI0ZjllYTQ5MjJlMTdhNTg4MTY4YzExMTM1NWZiZDQ1NTlmMmU5NDcwNjAwZWE1MzBhMDdiMzY0YWQwIiwiYmxha2UyYiI6IjI0ZjExZWI5M2VlN2YxOTI5NWZiZGU5MTczMmE0NGJkZGYxOWE1ZTQ4MWNmOWFhMjQ2M2UzNDllYjg0Mzc4ZDBkODFjNzY0YWQ1NTk1YjkxZjQzYzgxODcxNTRlYWU5NTZkY2ZjZTlkMWU2MTZjNTFkZThhZDZjZTBhODcyY2Q0IiwiYmxha2UycyI6IjVkZTUwZDUwMGYwYTBmOGRlMTEwOGE2ZmFkZGM4ODNlMTA3NmQ3MThiNmQxN2E4ZDVkMjgzZDdiNGYzZDU2OGEiLCJzaGEzXzIyNCI6IjFhNTA0OGNlYWZiYjg2ZDc4ZmNiNTI0ZTViYTc4NWQ2ZmY5NzY1ZTNlMzdhZWRjZmYxZGVjNGJhIiwic2hhM18yNTYiOiI0YjA0YjE1NTRmMzRkYTlmMjBmZDczM2IzNDg4NjE0ZWNhM2IwOWU1OTJjOGJlMmM0NjA1NjYyMWU0MjJmZDllIiwic2hhM18zODQiOiI1NjMwYjM2OGQ4MGM1YmM5MTgzM2VmNWM2YWUzOTJhNDE4NTNjYmM2MWJiNTI4ZDE4YWM1OWFjZGZiZWU1YThkMWMyZDE4MTM1ZGI2ZWQ2OTJlODFkZThmYTM3MzkxN2MiLCJzaGEzXzUxMiI6IjA2ODg4MGE1MmNiNDkzODYwZDhjOTVhOTFhZGFmZTYwZGYxODc2ZDhjYjFhNmI3NTU2ZjJjM2Y1NjFmMGYwZjMyZjZhYTA1YmVmN2FhYjQ5OWEwNTM0Zjk0Njc4MDEzODlmNDc0ODFiNzcxMjdjMDFiOGFhOTY4NGJhZGUzYmY2Iiwic2hha2VfMTI4IjoiODlmYTdjNDcwNGI4NGZkMWQ1M2E0MTBlN2ZjMzU3NWRhNmUxMGU1YzkzMjM1NWYyZWEyMWM4NDVhZDBlM2UxOCIsInNoYWtlXzI1NiI6IjE4NGNlMWY2NjdmYmIyODA5NWJhZmVkZTQzNTUzZjhkYzBhNGY1MDQwYWJlMjcxMzkzMzcwNDEyZWFiZTg0ZGJhNjI0Y2ZiZWE4YzUxZDU2YzkwMTM2Mjg2ODgyZmQ0Y2E3MzA3NzZjNWUzODFlYzI5MWYxYTczOTE1MDkyMTFmIn0K",
"eyJibGFrZTNfbXVsdGkiOiJhYjA2YjNmMDliNTExOTAzMTMzMzY5NDE2MTc4ZDk2ZjlkYTc3ZGEwOTgyNDJmN2VlMTVjNTNhNTRkMDZhNWVmIiwiYmxha2UzX3NpbmdsZSI6ImFiMDZiM2YwOWI1MTE5MDMxMzMzNjk0MTYxNzhkOTZmOWRhNzdkYTA5ODI0MmY3ZWUxNWM1M2E1NGQwNmE1ZWYiLCJyYW5kb20iOiJhNDQxYjE1ZmU5YTNjZjU2NjYxMTkwYTBiOTNiOWRlYzdkMDQxMjcyODhjYzg3MjUwOTY3Y2YzYjUyODk0ZDExIiwibWQ1IjoiZWY0MjcxYjU3NTQwMjU4NGQ2OTI5ZWJkMGI3Nzk5NzYiLCJzaGExIjoiMzgzNzliYWQzZjZiZjc4MmM4OTgzOGY3YWVkMzRkNDNkMzNlYWM2MSIsInNoYTIyNCI6ImQ5ZDNiMjJkYmZlY2M1NTdlODAzNjg5M2M3ZWE0N2I0NTQzYzM2NzZhMDk4NzMxMzRhNjQ0OWEwIiwic2hhMjU2IjoiMjYxZGI3NmJlMGYxMzdlZWJkYmI5OGRlYWM0ZjcyMDdiOGUxMjdiY2MyZmMwODI5OGVjZDczYjQ3MjYxNjQ1NiIsInNoYTM4NCI6IjMzMjkwYWQxYjlhMmRkYmU0ODY3MWZiMTIxNDdiZWJhNjI4MjA1MDcwY2VkNjNiZTFmNGU5YWRhMjgwYWU2ZjZjNDkzYTY2MDllMGQ2YTIzMWU2ODU5ZmIyNGZhM2FjMCIsInNoYTUxMiI6IjAzMDZhMWI1NmNiYTdjNjJiNTNmNTk4MTAwMTQ3MDQ5ODBhNGRmZTdjZjQ5NTU4ZmMyMmQxZDczZDc5NzJmZTllODk2ZWRjMmEyYTQxYWVjNjRjZjkwZGUwYjI1NGM0MDBlZTU1YzcwZjk3OGVlMzk5NmM2YzhkNTBjYTI4YTdiIiwiYmxha2UyYiI6IjY1MDZhMDg1YWQ5MGZkZjk2NGJmMGE5NTFkZmVkMTllZTc0NGVjY2EyODQzZjQzYTI5NmFjZDM0M2RiODhhMDNlNTlkNmFmMGM1YWJkNTEzMzc4MTQ5Yjg3OTExMTVmODRmMDIyZWM1M2JmNGFjNDZhZDczNWIwMmJlYTM0MDk5IiwiYmxha2UycyI6IjdlZDQ3ZWQxOTg3MTk0YWFmNGIwMjQ3MWFkNTMyMmY3NTE3ZjI0OTcwMDc2Y2NmNDkzMWI0MzYxMDU1NzBlNDAiLCJzaGEzXzIyNCI6Ijk2MGM4MDExOTlhMGUzYWExNjdiNmU2MWVkMzE2ZDUzMDM2Yjk4M2UyOThkNWI5MjZmMDc3NDlhIiwic2hhM18yNTYiOiIzYzdmYWE1ZDE3Zjk2MGYxOTI2ZjNlNGIyZjc1ZjdiOWIyZDQ4NGFhNmEwM2ViOWNlMTI4NmM2OTE2YWEyM2RlIiwic2hhM18zODQiOiI5Y2Y0NDA1NWFjYzFlYjZmMDY1YjRjODcxYTYzNTM1MGE1ZjY0ODQwM2YwYTU0MWEzYzZhNjI3N2ViZjZmYTNjYmM1YmJiNjQwMDE4OGFlMWIxMTI2OGZmMDJiMzYzZDUiLCJzaGEzXzUxMiI6ImEyZDk3ZDRlYjYxM2UwZDViYTc2OTk2MzE2MzcxOGEwNDIxZDkxNTNiNjllYjM5MDRmZjI4ODRhZDdjNGJiYmIwNGY2Nzc1OTA1YmQxNGI2NTJmZTQ1Njg0YmI5MTQ3ZjBkYWViZjAxZjIzY2MzZDhkMjIzMTE0MGUzNjI4NTE5Iiwic2hha2VfMTI4IjoiNjkwMWMwYjg1MTg5ZTkyNTJiODI3MTc5NjE2MjRlMTM0MDQ1ZjlkMmI5MzM0MzVkM2Y0OThiZWIyN2Q3N2JiNSIsInNoYWtlXzI1NiI6ImIwMjA4ZTFkNDVjZWI0ODdiZDUwNzk3MWJiNWI3MjdjN2UyYmE3ZDliNWM2ZTEyYWE5YTNhOTY5YzcyNDRjODIwZDcyNDY1ODhlZWU3Yjk4ZWM1NzhjZWIxNjc3OTkxODljMWRkMmZkMmZmYWM4MWExZDAzZDFiNjMxOGRkMjBiIn0K",
]

View File

@@ -31,12 +31,13 @@ from typing_extensions import Annotated, Any, Dict
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
class InvalidModelConfigException(Exception):
@@ -51,6 +52,7 @@ class BaseModelType(str, Enum):
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
StableDiffusion3 = "sd-3"
# Kandinsky2_1 = "kandinsky-2.1"
@@ -74,8 +76,11 @@ class SubModelType(str, Enum):
UNet = "unet"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
TextEncoder3 = "text_encoder_3"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Tokenizer3 = "tokenizer_3"
Transformer = "transformer"
VAE = "vae"
VAEDecoder = "vae_decoder"
VAEEncoder = "vae_encoder"
@@ -115,7 +120,7 @@ class SchedulerPredictionType(str, Enum):
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
Default = "" # model files without "fp16" or other qualifier - empty str
Default = "" # model files without "fp16" or other qualifier
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
@@ -448,4 +453,6 @@ class ModelConfigFactory(object):
model.key = key
if isinstance(model, CheckpointConfigBase) and timestamp is not None:
model.converted_at = timestamp
if model:
validate_hash(model.hash)
return model # type: ignore

View File

@@ -7,7 +7,7 @@ from importlib import import_module
from pathlib import Path
from .convert_cache.convert_cache_default import ModelConvertCache
from .load_base import LoadedModel, ModelLoaderBase
from .load_base import LoadedModel, LoadedModelWithoutConfig, ModelLoaderBase
from .load_default import ModelLoader
from .model_cache.model_cache_default import ModelCache
from .model_loader_registry import ModelLoaderRegistry, ModelLoaderRegistryBase
@@ -19,6 +19,7 @@ for module in loaders:
__all__ = [
"LoadedModel",
"LoadedModelWithoutConfig",
"ModelCache",
"ModelConvertCache",
"ModelLoaderBase",

View File

@@ -7,6 +7,7 @@ from pathlib import Path
from invokeai.backend.util import GIG, directory_size
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.util.util import safe_filename
from .convert_cache_base import ModelConvertCacheBase
@@ -35,6 +36,7 @@ class ModelConvertCache(ModelConvertCacheBase):
def cache_path(self, key: str) -> Path:
"""Return the path for a model with the indicated key."""
key = safe_filename(self._cache_path, key)
return self._cache_path / key
def make_room(self, size: float) -> None:

View File

@@ -4,10 +4,13 @@ Base class for model loading in InvokeAI.
"""
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Optional
from typing import Any, Dict, Generator, Optional, Tuple
import torch
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_manager.config import (
@@ -20,10 +23,44 @@ from invokeai.backend.model_manager.load.model_cache.model_cache_base import Mod
@dataclass
class LoadedModel:
"""Context manager object that mediates transfer from RAM<->VRAM."""
class LoadedModelWithoutConfig:
"""
Context manager object that mediates transfer from RAM<->VRAM.
This is a context manager object that has two distinct APIs:
1. Older API (deprecated):
Use the LoadedModel object directly as a context manager.
It will move the model into VRAM (on CUDA devices), and
return the model in a form suitable for passing to torch.
Example:
```
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
with loaded_model as vae:
image = vae.decode(latents)[0]
```
2. Newer API (recommended):
Call the LoadedModel's `model_on_device()` method in a
context. It returns a tuple consisting of a copy of
the model's state dict in CPU RAM followed by a copy
of the model in VRAM. The state dict is provided to allow
LoRAs and other model patchers to return the model to
its unpatched state without expensive copy and restore
operations.
Example:
```
loaded_model_= loader.get_model_by_key('f13dd932', SubModelType('vae'))
with loaded_model.model_on_device() as (state_dict, vae):
image = vae.decode(latents)[0]
```
The state_dict should be treated as a read-only object and
never modified. Also be aware that some loadable models do
not have a state_dict, in which case this value will be None.
"""
config: AnyModelConfig
_locker: ModelLockerBase
def __enter__(self) -> AnyModel:
@@ -35,12 +72,29 @@ class LoadedModel:
"""Context exit."""
self._locker.unlock()
@contextmanager
def model_on_device(self) -> Generator[Tuple[Optional[Dict[str, torch.Tensor]], AnyModel], None, None]:
"""Return a tuple consisting of the model's state dict (if it exists) and the locked model on execution device."""
locked_model = self._locker.lock()
try:
state_dict = self._locker.get_state_dict()
yield (state_dict, locked_model)
finally:
self._locker.unlock()
@property
def model(self) -> AnyModel:
"""Return the model without locking it."""
return self._locker.model
@dataclass
class LoadedModel(LoadedModelWithoutConfig):
"""Context manager object that mediates transfer from RAM<->VRAM."""
config: Optional[AnyModelConfig] = None
# TODO(MM2):
# Some "intermediary" subclasses in the ModelLoaderBase class hierarchy define methods that their subclasses don't
# know about. I think the problem may be related to this class being an ABC.

View File

@@ -16,7 +16,7 @@ from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.util.devices import TorchDevice
@@ -84,7 +84,9 @@ class ModelLoader(ModelLoaderBase):
except IndexError:
pass
cache_path: Path = self._convert_cache.cache_path(config.key)
self._logger.info(f"Loading {config.key}:{submodel_type}")
cache_path: Path = self._convert_cache.cache_path(str(model_path))
if self._needs_conversion(config, model_path, cache_path):
loaded_model = self._do_convert(config, model_path, cache_path, submodel_type)
else:
@@ -95,7 +97,6 @@ class ModelLoader(ModelLoaderBase):
config.key,
submodel_type=submodel_type,
model=loaded_model,
size=calc_model_size_by_data(loaded_model),
)
return self._ram_cache.get(
@@ -126,9 +127,7 @@ class ModelLoader(ModelLoaderBase):
if subtype == submodel_type:
continue
if submodel := getattr(pipeline, subtype.value, None):
self._ram_cache.put(
config.key, submodel_type=subtype, model=submodel, size=calc_model_size_by_data(submodel)
)
self._ram_cache.put(config.key, submodel_type=subtype, model=submodel)
return getattr(pipeline, submodel_type.value) if submodel_type else pipeline
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, dest_path: Path) -> bool:

View File

@@ -30,6 +30,11 @@ class ModelLockerBase(ABC):
"""Unlock the contained model, and remove it from VRAM."""
pass
@abstractmethod
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
pass
@property
@abstractmethod
def model(self) -> AnyModel:
@@ -56,6 +61,11 @@ class CacheRecord(Generic[T]):
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
@@ -63,6 +73,7 @@ class CacheRecord(Generic[T]):
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
is_quantized: bool = False
loaded: bool = False
_locks: int = 0
@@ -159,7 +170,6 @@ class ModelCacheBase(ABC, Generic[T]):
self,
key: str,
model: T,
size: int,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""

View File

@@ -29,6 +29,7 @@ import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -59,9 +60,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
sequential_offload: bool = False,
lazy_offloading: bool = True,
sha_chunksize: int = 16777216,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
@@ -73,7 +72,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
@@ -153,17 +151,27 @@ class ModelCache(ModelCacheBase[AnyModel]):
self,
key: str,
model: AnyModel,
size: int,
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(model)
self.make_room(size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
is_quantized = hasattr(model, "is_quantized") and model.is_quantized
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) and not is_quantized else None
cache_record = CacheRecord(
key=key,
model=model,
device=self._execution_device
if is_quantized
else self._storage_device, # quantized models are loaded directly into CUDA
is_quantized=is_quantized,
state_dict=state_dict,
size=size,
)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
@@ -232,8 +240,23 @@ class ModelCache(ModelCacheBase[AnyModel]):
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
# Special handling of the stable-diffusion-3:text_encoder_3
# submodel, when the user has loaded a quantized model.
# The only way to remove the quantized version of this model from VRAM is to
# delete it completely - it can't be moved from device to device
# This also contains a workaround for quantized models that
# persist indefinitely in VRAM
if cache_entry.is_quantized:
self._empty_quantized_state_dict(cache_entry.model)
cache_entry.model = None
self._delete_cache_entry(cache_entry)
vram_in_use = torch.cuda.memory_allocated() + size_required
continue
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
@@ -241,7 +264,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
)
gc.collect()
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
@@ -252,19 +275,18 @@ class ModelCache(ModelCacheBase[AnyModel]):
May raise a torch.cuda.OutOfMemoryError
"""
# These attributes are not in the base ModelMixin class but in various derived classes.
# Some models don't have these attributes, in which case they run in RAM/CPU.
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
if not (hasattr(cache_entry.model, "device") and hasattr(cache_entry.model, "to")):
return
source_device = cache_entry.device
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# Note: We compare device types so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
@@ -285,9 +307,9 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True)
new_dict[k] = v.to(torch.device(target_device), copy=True, non_blocking=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device)
cache_entry.model.to(target_device, non_blocking=True)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
@@ -407,3 +429,20 @@ class ModelCache(ModelCacheBase[AnyModel]):
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]
del cache_entry
gc.collect()
TorchDevice.empty_cache()
def _empty_quantized_state_dict(self, model: AnyModel) -> None:
"""Set all keys of a model's state dict to None.
This is a partial workaround for a poorly-understood bug in
transformers' support for quantized T5EncoderModels (text_encoder_3
of SD3). This allows most of the model to be unloaded from VRAM, but
still leaks 8K of VRAM each time the model is unloaded. Using the quantized
version of stable-diffusion-3-medium is NOT recommended.
"""
assert isinstance(model, torch.nn.Module)
sd = model.state_dict()
for k in sd.keys():
sd[k] = None

View File

@@ -2,6 +2,8 @@
Base class and implementation of a class that moves models in and out of VRAM.
"""
from typing import Dict, Optional
import torch
from invokeai.backend.model_manager import AnyModel
@@ -27,20 +29,18 @@ class ModelLocker(ModelLockerBase):
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
if not hasattr(self.model, "to"):
return self.model
# NOTE that the model has to have the to() method in order for this code to move it into GPU!
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
@@ -55,9 +55,6 @@ class ModelLocker(ModelLockerBase):
def unlock(self) -> None:
"""Call upon exit from context."""
if not hasattr(self.model, "to"):
return
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)

View File

@@ -65,14 +65,11 @@ class GenericDiffusersLoader(ModelLoader):
else:
try:
config = self._load_diffusers_config(model_path, config_name="config.json")
class_name = config.get("_class_name", None)
if class_name:
if class_name := config.get("_class_name"):
result = self._hf_definition_to_type(module="diffusers", class_name=class_name)
if config.get("model_type", None) == "clip_vision_model":
class_name = config.get("architectures")
assert class_name is not None
elif class_name := config.get("architectures"):
result = self._hf_definition_to_type(module="transformers", class_name=class_name[0])
if not class_name:
else:
raise InvalidModelConfigException("Unable to decipher Load Class based on given config.json")
except KeyError as e:
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e

View File

@@ -36,9 +36,11 @@ VARIANT_TO_IN_CHANNEL_MAP = {
class StableDiffusionDiffusersModel(GenericDiffusersLoader):
"""Class to load main models."""
# note - will be removed for load_single_file()
model_base_to_model_type = {
BaseModelType.StableDiffusion1: "FrozenCLIPEmbedder",
BaseModelType.StableDiffusion2: "FrozenOpenCLIPEmbedder",
BaseModelType.StableDiffusion3: "SD3",
BaseModelType.StableDiffusionXL: "SDXL",
BaseModelType.StableDiffusionXLRefiner: "SDXL-Refiner",
}
@@ -65,7 +67,10 @@ class StableDiffusionDiffusersModel(GenericDiffusersLoader):
if variant and "no file named" in str(
e
): # try without the variant, just in case user's preferences changed
result = load_class.from_pretrained(model_path, torch_dtype=self._torch_dtype)
result = load_class.from_pretrained(
model_path,
torch_dtype=self._torch_dtype,
)
else:
raise e

View File

@@ -22,8 +22,7 @@ from .generic_diffusers import GenericDiffusersLoader
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.VAE, format=ModelFormat.Checkpoint)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.VAE, format=ModelFormat.Checkpoint)
class VAELoader(GenericDiffusersLoader):
"""Class to load VAE models."""
@@ -40,12 +39,8 @@ class VAELoader(GenericDiffusersLoader):
return True
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Optional[Path] = None) -> AnyModel:
# TODO(MM2): check whether sdxl VAE models convert.
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
raise Exception(f"VAE conversion not supported for model type: {config.base}")
else:
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
assert isinstance(config, CheckpointConfigBase)
config_file = self._app_config.legacy_conf_path / config.config_path
if model_path.suffix == ".safetensors":
checkpoint = safetensors_load_file(model_path, device="cpu")

View File

@@ -83,7 +83,7 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
assert s.size is not None
files.append(
RemoteModelFile(
url=hf_hub_url(id, s.rfilename, revision=variant),
url=hf_hub_url(id, s.rfilename, revision=variant or "main"),
path=Path(name, s.rfilename),
size=s.size,
sha256=s.lfs.get("sha256") if s.lfs else None,

View File

@@ -37,9 +37,12 @@ class RemoteModelFile(BaseModel):
url: AnyHttpUrl = Field(description="The url to download this model file")
path: Path = Field(description="The path to the file, relative to the model root")
size: int = Field(description="The size of this file, in bytes")
size: Optional[int] = Field(description="The size of this file, in bytes", default=0)
sha256: Optional[str] = Field(description="SHA256 hash of this model (not always available)", default=None)
def __hash__(self) -> int:
return hash(str(self))
class ModelMetadataBase(BaseModel):
"""Base class for model metadata information."""

View File

@@ -100,6 +100,7 @@ class ModelProbe(object):
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"StableDiffusion3Pipeline": ModelType.Main,
"AutoencoderKL": ModelType.VAE,
"AutoencoderTiny": ModelType.VAE,
"ControlNetModel": ModelType.ControlNet,
@@ -298,10 +299,13 @@ class ModelProbe(object):
return possible_conf.absolute()
if model_type is ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
config_file = f"stable-diffusion/{config_file}"
if base_type is BaseModelType.StableDiffusion3:
config_file = "stable-diffusion/v3-inference.yaml"
else:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
config_file = f"stable-diffusion/{config_file}"
elif model_type is ModelType.ControlNet:
config_file = (
"controlnet/cldm_v15.yaml"
@@ -374,7 +378,7 @@ def get_default_settings_controlnet_t2i_adapter(model_name: str) -> Optional[Con
def get_default_settings_main(model_base: BaseModelType) -> Optional[MainModelDefaultSettings]:
if model_base is BaseModelType.StableDiffusion1 or model_base is BaseModelType.StableDiffusion2:
return MainModelDefaultSettings(width=512, height=512)
elif model_base is BaseModelType.StableDiffusionXL:
elif model_base in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusion3]:
return MainModelDefaultSettings(width=1024, height=1024)
# We don't provide defaults for BaseModelType.StableDiffusionXLRefiner, as they are not standalone models.
return None
@@ -398,7 +402,10 @@ class CheckpointProbeBase(ProbeBase):
if model_type != ModelType.Main:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
key = "model.diffusion_model.input_blocks.0.0.weight"
if key not in state_dict:
return ModelVariantType.Normal
in_channels = state_dict[key].shape[1]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
@@ -425,6 +432,9 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
return BaseModelType.StableDiffusionXL
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
return BaseModelType.StableDiffusionXLRefiner
key_name = "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight"
if key_name in state_dict:
return BaseModelType.StableDiffusion3
else:
raise InvalidModelConfigException("Cannot determine base type")
@@ -451,8 +461,16 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
# VAEs of all base types have the same structure, so we wimp out and
# guess using the name.
for regexp, basetype in [
(r"xl", BaseModelType.StableDiffusionXL),
(r"sd2", BaseModelType.StableDiffusion2),
(r"vae", BaseModelType.StableDiffusion1),
]:
if re.search(regexp, self.model_path.name, re.IGNORECASE):
return basetype
raise InvalidModelConfigException("Cannot determine base type")
class LoRACheckpointProbe(CheckpointProbeBase):
@@ -588,6 +606,10 @@ class FolderProbeBase(ProbeBase):
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
with open(self.model_path / "model_index.json", "r") as file:
index_conf = json.load(file)
if index_conf.get("_class_name") == "StableDiffusion3Pipeline":
return BaseModelType.StableDiffusion3
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
@@ -636,6 +658,8 @@ class VaeFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
if self._config_looks_like_sdxl():
return BaseModelType.StableDiffusionXL
elif self._config_looks_like_sd3():
return BaseModelType.StableDiffusion3
elif self._name_looks_like_sdxl():
# but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down
# by a factor of 8), we can't necessarily tell them apart by config hyperparameters.
@@ -655,6 +679,15 @@ class VaeFolderProbe(FolderProbeBase):
def _name_looks_like_sdxl(self) -> bool:
return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE))
def _config_looks_like_sd3(self) -> bool:
# config values that distinguish Stability's SD 1.x VAE from their SDXL VAE.
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
return config.get("scaling_factor", 0) == 1.5305 and config.get("sample_size") in [512, 1024]
def _guess_name(self) -> str:
name = self.model_path.name
if name == "vae":

View File

@@ -122,6 +122,13 @@ STARTER_MODELS: list[StarterModel] = [
type=ModelType.Main,
dependencies=[sdxl_fp16_vae_fix],
),
StarterModel(
name="Stable Diffusion 3",
base=BaseModelType.StableDiffusion3,
source="stabilityai/stable-diffusion-3-medium-diffusers",
description="The OG Stable Diffusion 3 base model **NOT FOR COMMERCIAL USE**.",
type=ModelType.Main,
),
# endregion
# region VAE
sdxl_fp16_vae_fix,

View File

@@ -35,6 +35,18 @@ def filter_files(
The file list can be obtained from the `files` field of HuggingFaceMetadata,
as defined in `invokeai.backend.model_manager.metadata.metadata_base`.
"""
# BRITTLENESS WARNING!!
# The following pattern is designed to match model files that are components of diffusers submodels,
# but not to match other random stuff found in huggingface repos.
# Diffusers models always seem to have "model" in their name, and the regex filter below is applied to avoid
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
DIFFUSERS_COMPONENT_PATTERN = (
r"model(-fp16)?(-\d+-of-\d+)?(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$"
)
variant = variant or ModelRepoVariant.Default
paths: List[Path] = []
root = files[0].parts[0]
@@ -45,31 +57,26 @@ def filter_files(
# Start by filtering on model file extensions, discarding images, docs, etc
for file in files:
if file.name.endswith((".json", ".txt")):
paths.append(file)
elif file.name.endswith(
if file.name.endswith(
(
".json",
".txt",
"learned_embeds.bin",
"ip_adapter.bin",
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
"spiece.model",
)
):
paths.append(file)
# BRITTLENESS WARNING!!
# Diffusers models always seem to have "model" in their name, and the regex filter below is applied to avoid
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
elif re.search(DIFFUSERS_COMPONENT_PATTERN, file.name):
paths.append(file)
# limit search to subfolder if requested
if subfolder:
subfolder = root / subfolder
paths = [x for x in paths if x.parent == Path(subfolder)]
# _filter_by_variant uniquifies the paths and returns a set
return sorted(_filter_by_variant(paths, variant))
@@ -97,9 +104,22 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
if variant == ModelRepoVariant.Flax:
result.add(path)
elif path.suffix in [".json", ".txt"]:
elif path.suffix in [".json", ".txt", ".model"]:
result.add(path)
# handle shard patterns
elif re.match(r"model\.fp16-\d+-of-\d+\.safetensors", path.name):
if variant is ModelRepoVariant.FP16:
result.add(path)
else:
continue
elif re.match(r"model-\d+-of-\d+\.safetensors", path.name):
if variant in [ModelRepoVariant.FP32, ModelRepoVariant.Default]:
result.add(path)
else:
continue
elif variant in [
ModelRepoVariant.FP16,
ModelRepoVariant.FP32,
@@ -123,6 +143,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
score += 1
candidate_variant_label = path.suffixes[0] if len(path.suffixes) == 2 else None
candidate_variant_label, *_ = str(candidate_variant_label).split("-") # handle shard pattern
# Some special handling is needed here if there is not an exact match and if we cannot infer the variant
# from the file name. In this case, we only give this file a point if the requested variant is FP32 or DEFAULT.
@@ -139,6 +160,8 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
else:
continue
print(subfolder_weights)
for candidate_list in subfolder_weights.values():
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
if highest_score_candidate:

View File

@@ -5,7 +5,7 @@ from __future__ import annotations
import pickle
from contextlib import contextmanager
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
@@ -66,8 +66,14 @@ class ModelPatcher:
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(unet, loras, "lora_unet_"):
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(
unet,
loras=loras,
prefix="lora_unet_",
model_state_dict=model_state_dict,
):
yield
@classmethod
@@ -76,28 +82,9 @@ class ModelPatcher:
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
yield
@classmethod
@contextmanager
def apply_sdxl_lora_text_encoder2(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict):
yield
@classmethod
@@ -107,7 +94,16 @@ class ModelPatcher:
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
) -> None:
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes.
"""
original_weights = {}
try:
with torch.no_grad():
@@ -133,19 +129,22 @@ class ModelPatcher:
dtype = module.weight.dtype
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
original_weights[module_key] = model_state_dict[module_key + ".weight"]
else:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
layer.to(device=device, non_blocking=True)
layer.to(dtype=torch.float32, non_blocking=True)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=torch.device("cpu"))
layer.to(device=torch.device("cpu"), non_blocking=True)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
@@ -154,7 +153,7 @@ class ModelPatcher:
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype)
module.weight += layer_weight.to(dtype=dtype, non_blocking=True)
yield # wait for context manager exit
@@ -162,7 +161,7 @@ class ModelPatcher:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
model.get_submodule(module_key).weight.copy_(weight, non_blocking=True)
@classmethod
@contextmanager

View File

@@ -6,6 +6,7 @@ from typing import Any, List, Optional, Tuple, Union
import numpy as np
import onnx
import torch
from onnx import numpy_helper
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
@@ -188,6 +189,15 @@ class IAIOnnxRuntimeModel(RawModel):
# return self.io_binding.copy_outputs_to_cpu()
return self.session.run(None, inputs)
# compatability with RawModel ABC
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
pass
# compatability with diffusers load code
@classmethod
def from_pretrained(

View File

@@ -10,6 +10,20 @@ The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
that adds additional methods and attributes.
"""
from abc import ABC, abstractmethod
from typing import Optional
class RawModel:
"""Base class for 'Raw' model wrappers."""
import torch
class RawModel(ABC):
"""Abstract base class for 'Raw' model wrappers."""
@abstractmethod
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
pass

View File

@@ -11,6 +11,7 @@ import psutil
import torch
import torchvision.transforms as T
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
@@ -25,7 +26,6 @@ from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion impor
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
from invokeai.backend.util.attention import auto_detect_slice_size
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.hotfixes import ControlNetModel
@dataclass

View File

@@ -7,6 +7,7 @@ from diffusers import (
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
FlowMatchEulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
@@ -29,6 +30,7 @@ SCHEDULER_MAP = {
"euler": (EulerDiscreteScheduler, {"use_karras_sigmas": False}),
"euler_k": (EulerDiscreteScheduler, {"use_karras_sigmas": True}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"euler_f": (FlowMatchEulerDiscreteScheduler, {}),
"kdpm_2": (KDPM2DiscreteScheduler, {}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),

View File

@@ -65,6 +65,18 @@ class TextualInversionModelRaw(RawModel):
return result
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
non_blocking: bool = False,
) -> None:
if not torch.cuda.is_available():
return
for emb in [self.embedding, self.embedding_2]:
if emb is not None:
emb.to(device=device, dtype=dtype, non_blocking=non_blocking)
class TextualInversionManager(BaseTextualInversionManager):
"""TextualInversionManager implements the BaseTextualInversionManager ABC from the compel library."""

View File

@@ -3,7 +3,12 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import diffusers
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlNetMixin
# The following import is
# generating import errors with diffusers 028.2
# tried diffusers.loaders.controlnet import FromOriginalControlNetMixin, but this
# fails as well
# from diffusers.loaders import FromOriginalControlNetMixin
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
from diffusers.models.embeddings import (
@@ -32,7 +37,7 @@ from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger(__name__)
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
class ControlNetModel(ModelMixin, ConfigMixin):
"""
A ControlNet model.

View File

@@ -1,6 +1,8 @@
import base64
import io
import os
import re
import unicodedata
from pathlib import Path
from PIL import Image
@@ -9,6 +11,33 @@ from PIL import Image
GIG = 1073741824
def slugify(value: str, allow_unicode: bool = False) -> str:
"""
Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
dashes to single dashes. Remove characters that aren't alphanumerics,
underscores, or hyphens. Replace slashes with underscores.
Convert to lowercase. Also strip leading and
trailing whitespace, dashes, and underscores.
Adapted from Django: https://github.com/django/django/blob/main/django/utils/text.py
"""
value = str(value)
if allow_unicode:
value = unicodedata.normalize("NFKC", value)
else:
value = unicodedata.normalize("NFKD", value).encode("ascii", "ignore").decode("ascii")
value = re.sub(r"[/]", "_", value.lower())
value = re.sub(r"[^.\w\s-]", "", value.lower())
return re.sub(r"[-\s]+", "-", value).strip("-_")
def safe_filename(directory: Path, value: str) -> str:
"""Make a string safe to use as a filename."""
escaped_string = slugify(value)
max_name_length = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 256
return escaped_string[len(escaped_string) - max_name_length :]
def directory_size(directory: Path) -> int:
"""
Return the aggregate size of all files in a directory (bytes).

View File

@@ -22,7 +22,13 @@ import type { BatchConfig } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { assert } from 'tsafe';
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
const matcher = isAnyOf(
caLayerImageChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caLayerModelChanged,
caLayerRecalled
);
const DEBOUNCE_MS = 300;
const log = logger('session');
@@ -73,9 +79,10 @@ export const addControlAdapterPreprocessor = (startAppListening: AppStartListeni
const originalConfig = originalLayer?.controlAdapter.processorConfig;
const image = layer.controlAdapter.image;
const processedImage = layer.controlAdapter.processedImage;
const config = layer.controlAdapter.processorConfig;
if (isEqual(config, originalConfig) && isEqual(image, originalImage)) {
if (isEqual(config, originalConfig) && isEqual(image, originalImage) && processedImage) {
// Neither config nor image have changed, we can bail
return;
}

View File

@@ -5,43 +5,122 @@ import {
socketModelInstallCancelled,
socketModelInstallComplete,
socketModelInstallDownloadProgress,
socketModelInstallDownloadsComplete,
socketModelInstallDownloadStarted,
socketModelInstallError,
socketModelInstallStarted,
} from 'services/events/actions';
/**
* A model install has two main stages - downloading and installing. All these events are namespaced under `model_install_`
* which is a bit misleading. For example, a `model_install_started` event is actually fired _after_ the model has fully
* downloaded and is being "physically" installed.
*
* Note: the download events are only fired for remote model installs, not local.
*
* Here's the expected flow:
* - API receives install request, model manager preps the install
* - `model_install_download_started` fired when the download starts
* - `model_install_download_progress` fired continually until the download is complete
* - `model_install_download_complete` fired when the download is complete
* - `model_install_started` fired when the "physical" installation starts
* - `model_install_complete` fired when the installation is complete
* - `model_install_cancelled` fired if the installation is cancelled
* - `model_install_error` fired if the installation has an error
*/
const selectModelInstalls = modelsApi.endpoints.listModelInstalls.select();
export const addModelInstallEventListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: socketModelInstallDownloadProgress,
effect: async (action, { dispatch }) => {
const { bytes, total_bytes, id } = action.payload.data;
actionCreator: socketModelInstallDownloadStarted,
effect: async (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.bytes = bytes;
modelImport.total_bytes = total_bytes;
modelImport.status = 'downloading';
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'downloading';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallStarted,
effect: async (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'running';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallDownloadProgress,
effect: async (action, { dispatch, getState }) => {
const { bytes, total_bytes, id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.bytes = bytes;
modelImport.total_bytes = total_bytes;
modelImport.status = 'downloading';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallComplete,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'completed';
}
return draft;
})
);
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'completed';
}
return draft;
})
);
}
dispatch(api.util.invalidateTags([{ type: 'ModelConfig', id: LIST_TAG }]));
dispatch(api.util.invalidateTags([{ type: 'ModelScanFolderResults', id: LIST_TAG }]));
},
@@ -49,37 +128,69 @@ export const addModelInstallEventListener = (startAppListening: AppStartListenin
startAppListening({
actionCreator: socketModelInstallError,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id, error, error_type } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'error';
modelImport.error_reason = error_type;
modelImport.error = error;
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'error';
modelImport.error_reason = error_type;
modelImport.error = error;
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallCancelled,
effect: (action, { dispatch }) => {
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'cancelled';
}
return draft;
})
);
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'cancelled';
}
return draft;
})
);
}
},
});
startAppListening({
actionCreator: socketModelInstallDownloadsComplete,
effect: (action, { dispatch, getState }) => {
const { id } = action.payload.data;
const { data } = selectModelInstalls(getState());
if (!data || !data.find((m) => m.id === id)) {
dispatch(api.util.invalidateTags([{ type: 'ModelInstalls' }]));
} else {
dispatch(
modelsApi.util.updateQueryData('listModelInstalls', undefined, (draft) => {
const modelImport = draft.find((m) => m.id === id);
if (modelImport) {
modelImport.status = 'downloads_done';
}
return draft;
})
);
}
},
});
};

View File

@@ -4,6 +4,7 @@ import {
caLayerControlModeChanged,
caLayerImageChanged,
caLayerModelChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caOrIPALayerBeginEndStepPctChanged,
caOrIPALayerWeightChanged,
@@ -84,6 +85,14 @@ export const CALayerControlAdapterWrapper = memo(({ layerId }: Props) => {
[dispatch, layerId]
);
const onErrorLoadingImage = useCallback(() => {
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
}, [dispatch, layerId]);
const onErrorLoadingProcessedImage = useCallback(() => {
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
}, [dispatch, layerId]);
const droppableData = useMemo<CALayerImageDropData>(
() => ({
actionType: 'SET_CA_LAYER_IMAGE',
@@ -114,6 +123,8 @@ export const CALayerControlAdapterWrapper = memo(({ layerId }: Props) => {
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
onErrorLoadingImage={onErrorLoadingImage}
onErrorLoadingProcessedImage={onErrorLoadingProcessedImage}
/>
);
});

View File

@@ -28,6 +28,8 @@ type Props = {
onChangeProcessorConfig: (processorConfig: ProcessorConfig | null) => void;
onChangeModel: (modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => void;
onChangeImage: (imageDTO: ImageDTO | null) => void;
onErrorLoadingImage: () => void;
onErrorLoadingProcessedImage: () => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
@@ -41,6 +43,8 @@ export const ControlAdapter = memo(
onChangeProcessorConfig,
onChangeModel,
onChangeImage,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
droppableData,
postUploadAction,
}: Props) => {
@@ -91,6 +95,8 @@ export const ControlAdapter = memo(
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
onErrorLoadingImage={onErrorLoadingImage}
onErrorLoadingProcessedImage={onErrorLoadingProcessedImage}
/>
</Flex>
</Flex>

View File

@@ -27,10 +27,19 @@ type Props = {
onChangeImage: (imageDTO: ImageDTO | null) => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
onErrorLoadingImage: () => void;
onErrorLoadingProcessedImage: () => void;
};
export const ControlAdapterImagePreview = memo(
({ controlAdapter, onChangeImage, droppableData, postUploadAction }: Props) => {
({
controlAdapter,
onChangeImage,
droppableData,
postUploadAction,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
}: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
@@ -128,10 +137,23 @@ export const ControlAdapterImagePreview = memo(
controlAdapter.processorConfig !== null;
useEffect(() => {
if (isConnected && (isErrorControlImage || isErrorProcessedControlImage)) {
handleResetControlImage();
if (!isConnected) {
return;
}
}, [handleResetControlImage, isConnected, isErrorControlImage, isErrorProcessedControlImage]);
if (isErrorControlImage) {
onErrorLoadingImage();
}
if (isErrorProcessedControlImage) {
onErrorLoadingProcessedImage();
}
}, [
handleResetControlImage,
isConnected,
isErrorControlImage,
isErrorProcessedControlImage,
onErrorLoadingImage,
onErrorLoadingProcessedImage,
]);
return (
<Flex
@@ -167,6 +189,7 @@ export const ControlAdapterImagePreview = memo(
droppableData={droppableData}
imageDTO={processedControlImage}
isUploadDisabled={true}
onError={handleResetControlImage}
/>
</Box>

View File

@@ -4,20 +4,35 @@ import { createSelector } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useMouseEvents } from 'features/controlLayers/hooks/mouseEventHooks';
import { BRUSH_SPACING_PCT, MAX_BRUSH_SPACING_PX, MIN_BRUSH_SPACING_PX } from 'features/controlLayers/konva/constants';
import { setStageEventHandlers } from 'features/controlLayers/konva/events';
import { debouncedRenderers, renderers as normalRenderers } from 'features/controlLayers/konva/renderers';
import {
$brushSize,
$brushSpacingPx,
$isDrawing,
$lastAddedPoint,
$lastCursorPos,
$lastMouseDownPos,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
$tool,
brushSizeChanged,
isRegionalGuidanceLayer,
layerBboxChanged,
layerTranslated,
rgLayerLineAdded,
rgLayerPointsAdded,
rgLayerRectAdded,
selectControlLayersSlice,
} from 'features/controlLayers/store/controlLayersSlice';
import { debouncedRenderers, renderers as normalRenderers } from 'features/controlLayers/util/renderers';
import type { AddLineArg, AddPointToLineArg, AddRectArg } from 'features/controlLayers/store/types';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import { clamp } from 'lodash-es';
import { memo, useCallback, useLayoutEffect, useMemo, useState } from 'react';
import { getImageDTO } from 'services/api/endpoints/images';
import { useDevicePixelRatio } from 'use-device-pixel-ratio';
import { v4 as uuidv4 } from 'uuid';
@@ -47,7 +62,6 @@ const useStageRenderer = (
const dispatch = useAppDispatch();
const state = useAppSelector((s) => s.controlLayers.present);
const tool = useStore($tool);
const mouseEventHandlers = useMouseEvents();
const lastCursorPos = useStore($lastCursorPos);
const lastMouseDownPos = useStore($lastMouseDownPos);
const selectedLayerIdColor = useAppSelector(selectSelectedLayerColor);
@@ -56,6 +70,26 @@ const useStageRenderer = (
const layerCount = useMemo(() => state.layers.length, [state.layers]);
const renderers = useMemo(() => (asPreview ? debouncedRenderers : normalRenderers), [asPreview]);
const dpr = useDevicePixelRatio({ round: false });
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const brushSpacingPx = useMemo(
() => clamp(state.brushSize / BRUSH_SPACING_PCT, MIN_BRUSH_SPACING_PX, MAX_BRUSH_SPACING_PX),
[state.brushSize]
);
useLayoutEffect(() => {
$brushSize.set(state.brushSize);
$brushSpacingPx.set(brushSpacingPx);
$selectedLayerId.set(state.selectedLayerId);
$selectedLayerType.set(selectedLayerType);
$shouldInvertBrushSizeScrollDirection.set(shouldInvertBrushSizeScrollDirection);
}, [
brushSpacingPx,
selectedLayerIdColor,
selectedLayerType,
shouldInvertBrushSizeScrollDirection,
state.brushSize,
state.selectedLayerId,
]);
const onLayerPosChanged = useCallback(
(layerId: string, x: number, y: number) => {
@@ -71,6 +105,31 @@ const useStageRenderer = (
[dispatch]
);
const onRGLayerLineAdded = useCallback(
(arg: AddLineArg) => {
dispatch(rgLayerLineAdded(arg));
},
[dispatch]
);
const onRGLayerPointAddedToLine = useCallback(
(arg: AddPointToLineArg) => {
dispatch(rgLayerPointsAdded(arg));
},
[dispatch]
);
const onRGLayerRectAdded = useCallback(
(arg: AddRectArg) => {
dispatch(rgLayerRectAdded(arg));
},
[dispatch]
);
const onBrushSizeChanged = useCallback(
(size: number) => {
dispatch(brushSizeChanged(size));
},
[dispatch]
);
useLayoutEffect(() => {
log.trace('Initializing stage');
if (!container) {
@@ -88,21 +147,29 @@ const useStageRenderer = (
if (asPreview) {
return;
}
stage.on('mousedown', mouseEventHandlers.onMouseDown);
stage.on('mouseup', mouseEventHandlers.onMouseUp);
stage.on('mousemove', mouseEventHandlers.onMouseMove);
stage.on('mouseleave', mouseEventHandlers.onMouseLeave);
stage.on('wheel', mouseEventHandlers.onMouseWheel);
const cleanup = setStageEventHandlers({
stage,
$tool,
$isDrawing,
$lastMouseDownPos,
$lastCursorPos,
$lastAddedPoint,
$brushSize,
$brushSpacingPx,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
onRGLayerLineAdded,
onRGLayerPointAddedToLine,
onRGLayerRectAdded,
onBrushSizeChanged,
});
return () => {
log.trace('Cleaning up stage listeners');
stage.off('mousedown', mouseEventHandlers.onMouseDown);
stage.off('mouseup', mouseEventHandlers.onMouseUp);
stage.off('mousemove', mouseEventHandlers.onMouseMove);
stage.off('mouseleave', mouseEventHandlers.onMouseLeave);
stage.off('wheel', mouseEventHandlers.onMouseWheel);
log.trace('Removing stage listeners');
cleanup();
};
}, [stage, asPreview, mouseEventHandlers]);
}, [asPreview, onBrushSizeChanged, onRGLayerLineAdded, onRGLayerPointAddedToLine, onRGLayerRectAdded, stage]);
useLayoutEffect(() => {
log.trace('Updating stage dimensions');
@@ -160,7 +227,7 @@ const useStageRenderer = (
useLayoutEffect(() => {
log.trace('Rendering layers');
renderers.renderLayers(stage, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
renderers.renderLayers(stage, state.layers, state.globalMaskLayerOpacity, tool, getImageDTO, onLayerPosChanged);
}, [
stage,
state.layers,

View File

@@ -1,233 +0,0 @@
import { $ctrl, $meta } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { calculateNewBrushSize } from 'features/canvas/hooks/useCanvasZoom';
import {
$isDrawing,
$lastCursorPos,
$lastMouseDownPos,
$tool,
brushSizeChanged,
rgLayerLineAdded,
rgLayerPointsAdded,
rgLayerRectAdded,
} from 'features/controlLayers/store/controlLayersSlice';
import type Konva from 'konva';
import type { KonvaEventObject } from 'konva/lib/Node';
import type { Vector2d } from 'konva/lib/types';
import { clamp } from 'lodash-es';
import { useCallback, useMemo, useRef } from 'react';
const getIsFocused = (stage: Konva.Stage) => {
return stage.container().contains(document.activeElement);
};
const getIsMouseDown = (e: KonvaEventObject<MouseEvent>) => e.evt.buttons === 1;
const SNAP_PX = 10;
export const snapPosToStage = (pos: Vector2d, stage: Konva.Stage) => {
const snappedPos = { ...pos };
// Get the normalized threshold for snapping to the edge of the stage
const thresholdX = SNAP_PX / stage.scaleX();
const thresholdY = SNAP_PX / stage.scaleY();
const stageWidth = stage.width() / stage.scaleX();
const stageHeight = stage.height() / stage.scaleY();
// Snap to the edge of the stage if within threshold
if (pos.x - thresholdX < 0) {
snappedPos.x = 0;
} else if (pos.x + thresholdX > stageWidth) {
snappedPos.x = Math.floor(stageWidth);
}
if (pos.y - thresholdY < 0) {
snappedPos.y = 0;
} else if (pos.y + thresholdY > stageHeight) {
snappedPos.y = Math.floor(stageHeight);
}
return snappedPos;
};
export const getScaledFlooredCursorPosition = (stage: Konva.Stage) => {
const pointerPosition = stage.getPointerPosition();
const stageTransform = stage.getAbsoluteTransform().copy();
if (!pointerPosition) {
return;
}
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
return {
x: Math.floor(scaledCursorPosition.x),
y: Math.floor(scaledCursorPosition.y),
};
};
const syncCursorPos = (stage: Konva.Stage): Vector2d | null => {
const pos = getScaledFlooredCursorPosition(stage);
if (!pos) {
return null;
}
$lastCursorPos.set(pos);
return pos;
};
const BRUSH_SPACING_PCT = 10;
const MIN_BRUSH_SPACING_PX = 5;
const MAX_BRUSH_SPACING_PX = 15;
export const useMouseEvents = () => {
const dispatch = useAppDispatch();
const selectedLayerId = useAppSelector((s) => s.controlLayers.present.selectedLayerId);
const selectedLayerType = useAppSelector((s) => {
const selectedLayer = s.controlLayers.present.layers.find((l) => l.id === s.controlLayers.present.selectedLayerId);
if (!selectedLayer) {
return null;
}
return selectedLayer.type;
});
const tool = useStore($tool);
const lastCursorPosRef = useRef<[number, number] | null>(null);
const shouldInvertBrushSizeScrollDirection = useAppSelector((s) => s.canvas.shouldInvertBrushSizeScrollDirection);
const brushSize = useAppSelector((s) => s.controlLayers.present.brushSize);
const brushSpacingPx = useMemo(
() => clamp(brushSize / BRUSH_SPACING_PCT, MIN_BRUSH_SPACING_PX, MAX_BRUSH_SPACING_PX),
[brushSize]
);
const onMouseDown = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (tool === 'brush' || tool === 'eraser') {
dispatch(
rgLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
})
);
$isDrawing.set(true);
$lastMouseDownPos.set(pos);
} else if (tool === 'rect') {
$lastMouseDownPos.set(snapPosToStage(pos, stage));
}
},
[dispatch, selectedLayerId, selectedLayerType, tool]
);
const onMouseUp = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = $lastCursorPos.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
const lastPos = $lastMouseDownPos.get();
const tool = $tool.get();
if (lastPos && selectedLayerId && tool === 'rect') {
const snappedPos = snapPosToStage(pos, stage);
dispatch(
rgLayerRectAdded({
layerId: selectedLayerId,
rect: {
x: Math.min(snappedPos.x, lastPos.x),
y: Math.min(snappedPos.y, lastPos.y),
width: Math.abs(snappedPos.x - lastPos.x),
height: Math.abs(snappedPos.y - lastPos.y),
},
})
);
}
$isDrawing.set(false);
$lastMouseDownPos.set(null);
},
[dispatch, selectedLayerId, selectedLayerType]
);
const onMouseMove = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
if ($isDrawing.get()) {
// Continue the last line
if (lastCursorPosRef.current) {
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
if (Math.hypot(lastCursorPosRef.current[0] - pos.x, lastCursorPosRef.current[1] - pos.y) < brushSpacingPx) {
return;
}
}
lastCursorPosRef.current = [pos.x, pos.y];
dispatch(rgLayerPointsAdded({ layerId: selectedLayerId, point: lastCursorPosRef.current }));
} else {
// Start a new line
dispatch(rgLayerLineAdded({ layerId: selectedLayerId, points: [pos.x, pos.y, pos.x, pos.y], tool }));
}
$isDrawing.set(true);
}
},
[brushSpacingPx, dispatch, selectedLayerId, selectedLayerType, tool]
);
const onMouseLeave = useCallback(
(e: KonvaEventObject<MouseEvent>) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage);
$isDrawing.set(false);
$lastCursorPos.set(null);
$lastMouseDownPos.set(null);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
dispatch(rgLayerPointsAdded({ layerId: selectedLayerId, point: [pos.x, pos.y] }));
}
},
[selectedLayerId, selectedLayerType, tool, dispatch]
);
const onMouseWheel = useCallback(
(e: KonvaEventObject<WheelEvent>) => {
e.evt.preventDefault();
if (selectedLayerType !== 'regional_guidance_layer' || (tool !== 'brush' && tool !== 'eraser')) {
return;
}
// checking for ctrl key is pressed or not,
// so that brush size can be controlled using ctrl + scroll up/down
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if (shouldInvertBrushSizeScrollDirection) {
delta = -delta;
}
if ($ctrl.get() || $meta.get()) {
dispatch(brushSizeChanged(calculateNewBrushSize(brushSize, delta)));
}
},
[selectedLayerType, tool, shouldInvertBrushSizeScrollDirection, dispatch, brushSize]
);
const handlers = useMemo(
() => ({ onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel }),
[onMouseDown, onMouseUp, onMouseMove, onMouseLeave, onMouseWheel]
);
return handlers;
};

View File

@@ -1,11 +1,10 @@
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { imageDataToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_OBJECT_GROUP_NAME } from 'features/controlLayers/store/controlLayersSlice';
import Konva from 'konva';
import type { IRect } from 'konva/lib/types';
import { assert } from 'tsafe';
const GET_CLIENT_RECT_CONFIG = { skipTransform: true };
import { RG_LAYER_OBJECT_GROUP_NAME } from './naming';
type Extents = {
minX: number;
@@ -14,10 +13,13 @@ type Extents = {
maxY: number;
};
const GET_CLIENT_RECT_CONFIG = { skipTransform: true };
//#region getImageDataBbox
/**
* Get the bounding box of an image.
* @param imageData The ImageData object to get the bounding box of.
* @returns The minimum and maximum x and y values of the image's bounding box.
* @returns The minimum and maximum x and y values of the image's bounding box, or null if the image has no pixels.
*/
const getImageDataBbox = (imageData: ImageData): Extents | null => {
const { data, width, height } = imageData;
@@ -51,7 +53,9 @@ const getImageDataBbox = (imageData: ImageData): Extents | null => {
return isEmpty ? null : { minX, minY, maxX, maxY };
};
//#endregion
//#region getIsolatedRGLayerClone
/**
* Clones a regional guidance konva layer onto an offscreen stage/canvas. This allows the pixel data for a given layer
* to be captured, manipulated or analyzed without interference from other layers.
@@ -88,7 +92,9 @@ const getIsolatedRGLayerClone = (layer: Konva.Layer): { stageClone: Konva.Stage;
return { stageClone, layerClone };
};
//#endregion
//#region getLayerBboxPixels
/**
* Get the bounding box of a regional prompt konva layer. This function has special handling for regional prompt layers.
* @param layer The konva layer to get the bounding box of.
@@ -137,7 +143,9 @@ export const getLayerBboxPixels = (layer: Konva.Layer, preview: boolean = false)
return correctedLayerBbox;
};
//#endregion
//#region getLayerBboxFast
/**
* Get the bounding box of a konva layer. This function is faster than `getLayerBboxPixels` but less accurate. It
* should only be used when there are no eraser strokes or shapes in the layer.
@@ -153,3 +161,4 @@ export const getLayerBboxFast = (layer: Konva.Layer): IRect => {
height: Math.floor(bbox.height),
};
};
//#endregion

View File

@@ -0,0 +1,36 @@
/**
* A transparency checker pattern image.
* This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
*/
export const TRANSPARENCY_CHECKER_PATTERN =
'';
/**
* The color of a bounding box stroke when its object is selected.
*/
export const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
/**
* The inner border color for the brush preview.
*/
export const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
/**
* The outer border color for the brush preview.
*/
export const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
/**
* The target spacing of individual points of brush strokes, as a percentage of the brush size.
*/
export const BRUSH_SPACING_PCT = 10;
/**
* The minimum brush spacing in pixels.
*/
export const MIN_BRUSH_SPACING_PX = 5;
/**
* The maximum brush spacing in pixels.
*/
export const MAX_BRUSH_SPACING_PX = 15;

View File

@@ -0,0 +1,201 @@
import { calculateNewBrushSize } from 'features/canvas/hooks/useCanvasZoom';
import {
getIsFocused,
getIsMouseDown,
getScaledFlooredCursorPosition,
snapPosToStage,
} from 'features/controlLayers/konva/util';
import type { AddLineArg, AddPointToLineArg, AddRectArg, Layer, Tool } from 'features/controlLayers/store/types';
import type Konva from 'konva';
import type { Vector2d } from 'konva/lib/types';
import type { WritableAtom } from 'nanostores';
import { TOOL_PREVIEW_LAYER_ID } from './naming';
type SetStageEventHandlersArg = {
stage: Konva.Stage;
$tool: WritableAtom<Tool>;
$isDrawing: WritableAtom<boolean>;
$lastMouseDownPos: WritableAtom<Vector2d | null>;
$lastCursorPos: WritableAtom<Vector2d | null>;
$lastAddedPoint: WritableAtom<Vector2d | null>;
$brushSize: WritableAtom<number>;
$brushSpacingPx: WritableAtom<number>;
$selectedLayerId: WritableAtom<string | null>;
$selectedLayerType: WritableAtom<Layer['type'] | null>;
$shouldInvertBrushSizeScrollDirection: WritableAtom<boolean>;
onRGLayerLineAdded: (arg: AddLineArg) => void;
onRGLayerPointAddedToLine: (arg: AddPointToLineArg) => void;
onRGLayerRectAdded: (arg: AddRectArg) => void;
onBrushSizeChanged: (size: number) => void;
};
const syncCursorPos = (stage: Konva.Stage, $lastCursorPos: WritableAtom<Vector2d | null>) => {
const pos = getScaledFlooredCursorPosition(stage);
if (!pos) {
return null;
}
$lastCursorPos.set(pos);
return pos;
};
export const setStageEventHandlers = ({
stage,
$tool,
$isDrawing,
$lastMouseDownPos,
$lastCursorPos,
$lastAddedPoint,
$brushSize,
$brushSpacingPx,
$selectedLayerId,
$selectedLayerType,
$shouldInvertBrushSizeScrollDirection,
onRGLayerLineAdded,
onRGLayerPointAddedToLine,
onRGLayerRectAdded,
onBrushSizeChanged,
}: SetStageEventHandlersArg): (() => void) => {
stage.on('mouseenter', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(tool === 'brush' || tool === 'eraser');
});
stage.on('mousedown', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
const pos = syncCursorPos(stage, $lastCursorPos);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (tool === 'brush' || tool === 'eraser') {
onRGLayerLineAdded({
layerId: selectedLayerId,
points: [pos.x, pos.y, pos.x, pos.y],
tool,
});
$isDrawing.set(true);
$lastMouseDownPos.set(pos);
} else if (tool === 'rect') {
$lastMouseDownPos.set(snapPosToStage(pos, stage));
}
});
stage.on('mouseup', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = $lastCursorPos.get();
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
const lastPos = $lastMouseDownPos.get();
const tool = $tool.get();
if (lastPos && selectedLayerId && tool === 'rect') {
const snappedPos = snapPosToStage(pos, stage);
onRGLayerRectAdded({
layerId: selectedLayerId,
rect: {
x: Math.min(snappedPos.x, lastPos.x),
y: Math.min(snappedPos.y, lastPos.y),
width: Math.abs(snappedPos.x - lastPos.x),
height: Math.abs(snappedPos.y - lastPos.y),
},
});
}
$isDrawing.set(false);
$lastMouseDownPos.set(null);
});
stage.on('mousemove', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const tool = $tool.get();
const pos = syncCursorPos(stage, $lastCursorPos);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(tool === 'brush' || tool === 'eraser');
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
if ($isDrawing.get()) {
// Continue the last line
const lastAddedPoint = $lastAddedPoint.get();
if (lastAddedPoint) {
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
if (Math.hypot(lastAddedPoint.x - pos.x, lastAddedPoint.y - pos.y) < $brushSpacingPx.get()) {
return;
}
}
$lastAddedPoint.set({ x: pos.x, y: pos.y });
onRGLayerPointAddedToLine({ layerId: selectedLayerId, point: [pos.x, pos.y] });
} else {
// Start a new line
onRGLayerLineAdded({ layerId: selectedLayerId, points: [pos.x, pos.y, pos.x, pos.y], tool });
}
$isDrawing.set(true);
}
});
stage.on('mouseleave', (e) => {
const stage = e.target.getStage();
if (!stage) {
return;
}
const pos = syncCursorPos(stage, $lastCursorPos);
$isDrawing.set(false);
$lastCursorPos.set(null);
$lastMouseDownPos.set(null);
const selectedLayerId = $selectedLayerId.get();
const selectedLayerType = $selectedLayerType.get();
const tool = $tool.get();
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
if (!pos || !selectedLayerId || selectedLayerType !== 'regional_guidance_layer') {
return;
}
if (getIsFocused(stage) && getIsMouseDown(e) && (tool === 'brush' || tool === 'eraser')) {
onRGLayerPointAddedToLine({ layerId: selectedLayerId, point: [pos.x, pos.y] });
}
});
stage.on('wheel', (e) => {
e.evt.preventDefault();
const selectedLayerType = $selectedLayerType.get();
const tool = $tool.get();
if (selectedLayerType !== 'regional_guidance_layer' || (tool !== 'brush' && tool !== 'eraser')) {
return;
}
// Invert the delta if the property is set to true
let delta = e.evt.deltaY;
if ($shouldInvertBrushSizeScrollDirection.get()) {
delta = -delta;
}
if (e.evt.ctrlKey || e.evt.metaKey) {
onBrushSizeChanged(calculateNewBrushSize($brushSize.get(), delta));
}
});
return () => stage.off('mousedown mouseup mousemove mouseenter mouseleave wheel');
};

View File

@@ -0,0 +1,21 @@
/**
* Konva filters
* https://konvajs.org/docs/filters/Custom_Filter.html
*/
/**
* Calculates the lightness (HSL) of a given pixel and sets the alpha channel to that value.
* This is useful for edge maps and other masks, to make the black areas transparent.
* @param imageData The image data to apply the filter to
*/
export const LightnessToAlphaFilter = (imageData: ImageData): void => {
const len = imageData.data.length / 4;
for (let i = 0; i < len; i++) {
const r = imageData.data[i * 4 + 0] as number;
const g = imageData.data[i * 4 + 1] as number;
const b = imageData.data[i * 4 + 2] as number;
const cMin = Math.min(r, g, b);
const cMax = Math.max(r, g, b);
imageData.data[i * 4 + 3] = (cMin + cMax) / 2;
}
};

View File

@@ -0,0 +1,38 @@
/**
* This file contains IDs, names, and ID getters for konva layers and objects.
*/
// IDs for singleton Konva layers and objects
export const TOOL_PREVIEW_LAYER_ID = 'tool_preview_layer';
export const TOOL_PREVIEW_BRUSH_GROUP_ID = 'tool_preview_layer.brush_group';
export const TOOL_PREVIEW_BRUSH_FILL_ID = 'tool_preview_layer.brush_fill';
export const TOOL_PREVIEW_BRUSH_BORDER_INNER_ID = 'tool_preview_layer.brush_border_inner';
export const TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID = 'tool_preview_layer.brush_border_outer';
export const TOOL_PREVIEW_RECT_ID = 'tool_preview_layer.rect';
export const BACKGROUND_LAYER_ID = 'background_layer';
export const BACKGROUND_RECT_ID = 'background_layer.rect';
export const NO_LAYERS_MESSAGE_LAYER_ID = 'no_layers_message';
// Names for Konva layers and objects (comparable to CSS classes)
export const CA_LAYER_NAME = 'control_adapter_layer';
export const CA_LAYER_IMAGE_NAME = 'control_adapter_layer.image';
export const RG_LAYER_NAME = 'regional_guidance_layer';
export const RG_LAYER_LINE_NAME = 'regional_guidance_layer.line';
export const RG_LAYER_OBJECT_GROUP_NAME = 'regional_guidance_layer.object_group';
export const RG_LAYER_RECT_NAME = 'regional_guidance_layer.rect';
export const INITIAL_IMAGE_LAYER_ID = 'singleton_initial_image_layer';
export const INITIAL_IMAGE_LAYER_NAME = 'initial_image_layer';
export const INITIAL_IMAGE_LAYER_IMAGE_NAME = 'initial_image_layer.image';
export const LAYER_BBOX_NAME = 'layer.bbox';
export const COMPOSITING_RECT_NAME = 'compositing-rect';
// Getters for non-singleton layer and object IDs
export const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
export const getRGLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
export const getRGLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getRGLayerObjectGroupId = (layerId: string, groupId: string) => `${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
export const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIILayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;

View File

@@ -1,8 +1,7 @@
import { getStore } from 'app/store/nanostores/store';
import { rgbaColorToString, rgbColorToString } from 'features/canvas/util/colorToString';
import { getScaledFlooredCursorPosition, snapPosToStage } from 'features/controlLayers/hooks/mouseEventHooks';
import { getLayerBboxFast, getLayerBboxPixels } from 'features/controlLayers/konva/bbox';
import { LightnessToAlphaFilter } from 'features/controlLayers/konva/filters';
import {
$tool,
BACKGROUND_LAYER_ID,
BACKGROUND_RECT_ID,
CA_LAYER_IMAGE_NAME,
@@ -14,10 +13,6 @@ import {
getRGLayerObjectGroupId,
INITIAL_IMAGE_LAYER_IMAGE_NAME,
INITIAL_IMAGE_LAYER_NAME,
isControlAdapterLayer,
isInitialImageLayer,
isRegionalGuidanceLayer,
isRenderableLayer,
LAYER_BBOX_NAME,
NO_LAYERS_MESSAGE_LAYER_ID,
RG_LAYER_LINE_NAME,
@@ -30,6 +25,13 @@ import {
TOOL_PREVIEW_BRUSH_GROUP_ID,
TOOL_PREVIEW_LAYER_ID,
TOOL_PREVIEW_RECT_ID,
} from 'features/controlLayers/konva/naming';
import { getScaledFlooredCursorPosition, snapPosToStage } from 'features/controlLayers/konva/util';
import {
isControlAdapterLayer,
isInitialImageLayer,
isRegionalGuidanceLayer,
isRenderableLayer,
} from 'features/controlLayers/store/controlLayersSlice';
import type {
ControlAdapterLayer,
@@ -40,61 +42,46 @@ import type {
VectorMaskLine,
VectorMaskRect,
} from 'features/controlLayers/store/types';
import { getLayerBboxFast, getLayerBboxPixels } from 'features/controlLayers/util/bbox';
import { t } from 'i18next';
import Konva from 'konva';
import type { IRect, Vector2d } from 'konva/lib/types';
import { debounce } from 'lodash-es';
import type { RgbColor } from 'react-colorful';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
const BBOX_SELECTED_STROKE = 'rgba(78, 190, 255, 1)';
const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
export const STAGE_BG_DATAURL =
'';
import {
BBOX_SELECTED_STROKE,
BRUSH_BORDER_INNER_COLOR,
BRUSH_BORDER_OUTER_COLOR,
TRANSPARENCY_CHECKER_PATTERN,
} from './constants';
const mapId = (object: { id: string }) => object.id;
const mapId = (object: { id: string }): string => object.id;
const selectRenderableLayers = (n: Konva.Node) =>
/**
* Konva selection callback to select all renderable layers. This includes RG, CA and II layers.
*/
const selectRenderableLayers = (n: Konva.Node): boolean =>
n.name() === RG_LAYER_NAME || n.name() === CA_LAYER_NAME || n.name() === INITIAL_IMAGE_LAYER_NAME;
const selectVectorMaskObjects = (node: Konva.Node) => {
/**
* Konva selection callback to select RG mask objects. This includes lines and rects.
*/
const selectVectorMaskObjects = (node: Konva.Node): boolean => {
return node.name() === RG_LAYER_LINE_NAME || node.name() === RG_LAYER_RECT_NAME;
};
/**
* Creates the brush preview layer.
* @param stage The konva stage to render on.
* @returns The brush preview layer.
* Creates the singleton tool preview layer and all its objects.
* @param stage The konva stage
*/
const createToolPreviewLayer = (stage: Konva.Stage) => {
const createToolPreviewLayer = (stage: Konva.Stage): Konva.Layer => {
// Initialize the brush preview layer & add to the stage
const toolPreviewLayer = new Konva.Layer({ id: TOOL_PREVIEW_LAYER_ID, visible: false, listening: false });
stage.add(toolPreviewLayer);
// Add handlers to show/hide the brush preview layer
stage.on('mousemove', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
stage.on('mouseleave', (e) => {
e.target.getStage()?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
});
stage.on('mouseenter', (e) => {
const tool = $tool.get();
e.target
.getStage()
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
?.visible(tool === 'brush' || tool === 'eraser');
});
// Create the brush preview group & circles
const brushPreviewGroup = new Konva.Group({ id: TOOL_PREVIEW_BRUSH_GROUP_ID });
const brushPreviewFill = new Konva.Circle({
@@ -121,7 +108,7 @@ const createToolPreviewLayer = (stage: Konva.Stage) => {
brushPreviewGroup.add(brushPreviewBorderOuter);
toolPreviewLayer.add(brushPreviewGroup);
// Create the rect preview
// Create the rect preview - this is a rectangle drawn from the last mouse down position to the current cursor position
const rectPreview = new Konva.Rect({ id: TOOL_PREVIEW_RECT_ID, listening: false, stroke: 'white', strokeWidth: 1 });
toolPreviewLayer.add(rectPreview);
@@ -130,12 +117,14 @@ const createToolPreviewLayer = (stage: Konva.Stage) => {
/**
* Renders the brush preview for the selected tool.
* @param stage The konva stage to render on.
* @param tool The selected tool.
* @param color The selected layer's color.
* @param cursorPos The cursor position.
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool.
* @param brushSize The brush size.
* @param stage The konva stage
* @param tool The selected tool
* @param color The selected layer's color
* @param selectedLayerType The selected layer's type
* @param globalMaskLayerOpacity The global mask layer opacity
* @param cursorPos The cursor position
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool
* @param brushSize The brush size
*/
const renderToolPreview = (
stage: Konva.Stage,
@@ -146,7 +135,7 @@ const renderToolPreview = (
cursorPos: Vector2d | null,
lastMouseDownPos: Vector2d | null,
brushSize: number
) => {
): void => {
const layerCount = stage.find(selectRenderableLayers).length;
// Update the stage's pointer style
if (layerCount === 0) {
@@ -162,7 +151,7 @@ const renderToolPreview = (
// Move rect gets a crosshair
stage.container().style.cursor = 'crosshair';
} else {
// Else we use the brush preview
// Else we hide the native cursor and use the konva-rendered brush preview
stage.container().style.cursor = 'none';
}
@@ -227,28 +216,29 @@ const renderToolPreview = (
};
/**
* Creates a vector mask layer.
* @param stage The konva stage to attach the layer to.
* @param reduxLayer The redux layer to create the konva layer from.
* @param onLayerPosChanged Callback for when the layer's position changes.
* Creates a regional guidance layer.
* @param stage The konva stage
* @param layerState The regional guidance layer state
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const createRegionalGuidanceLayer = (
const createRGLayer = (
stage: Konva.Stage,
reduxLayer: RegionalGuidanceLayer,
layerState: RegionalGuidanceLayer,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
): Konva.Layer => {
// This layer hasn't been added to the konva state yet
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: RG_LAYER_NAME,
draggable: true,
dragDistance: 0,
});
// Create a `dragmove` listener for this layer
// When a drag on the layer finishes, update the layer's position in state. During the drag, konva handles changing
// the position - we do not need to call this on the `dragmove` event.
if (onLayerPosChanged) {
konvaLayer.on('dragend', function (e) {
onLayerPosChanged(reduxLayer.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
onLayerPosChanged(layerState.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
});
}
@@ -258,7 +248,7 @@ const createRegionalGuidanceLayer = (
if (!cursorPos) {
return this.getAbsolutePosition();
}
// Prevent the user from dragging the layer out of the stage bounds.
// Prevent the user from dragging the layer out of the stage bounds by constaining the cursor position to the stage bounds
if (
cursorPos.x < 0 ||
cursorPos.x > stage.width() / stage.scaleX() ||
@@ -272,7 +262,7 @@ const createRegionalGuidanceLayer = (
// The object group holds all of the layer's objects (e.g. lines and rects)
const konvaObjectGroup = new Konva.Group({
id: getRGLayerObjectGroupId(reduxLayer.id, uuidv4()),
id: getRGLayerObjectGroupId(layerState.id, uuidv4()),
name: RG_LAYER_OBJECT_GROUP_NAME,
listening: false,
});
@@ -284,47 +274,51 @@ const createRegionalGuidanceLayer = (
};
/**
* Creates a konva line from a redux vector mask line.
* @param reduxObject The redux object to create the konva line from.
* @param konvaGroup The konva group to add the line to.
* Creates a konva line from a vector mask line.
* @param vectorMaskLine The vector mask line state
* @param layerObjectGroup The konva layer's object group to add the line to
*/
const createVectorMaskLine = (reduxObject: VectorMaskLine, konvaGroup: Konva.Group): Konva.Line => {
const vectorMaskLine = new Konva.Line({
id: reduxObject.id,
key: reduxObject.id,
const createVectorMaskLine = (vectorMaskLine: VectorMaskLine, layerObjectGroup: Konva.Group): Konva.Line => {
const konvaLine = new Konva.Line({
id: vectorMaskLine.id,
key: vectorMaskLine.id,
name: RG_LAYER_LINE_NAME,
strokeWidth: reduxObject.strokeWidth,
strokeWidth: vectorMaskLine.strokeWidth,
tension: 0,
lineCap: 'round',
lineJoin: 'round',
shadowForStrokeEnabled: false,
globalCompositeOperation: reduxObject.tool === 'brush' ? 'source-over' : 'destination-out',
globalCompositeOperation: vectorMaskLine.tool === 'brush' ? 'source-over' : 'destination-out',
listening: false,
});
konvaGroup.add(vectorMaskLine);
return vectorMaskLine;
layerObjectGroup.add(konvaLine);
return konvaLine;
};
/**
* Creates a konva rect from a redux vector mask rect.
* @param reduxObject The redux object to create the konva rect from.
* @param konvaGroup The konva group to add the rect to.
* Creates a konva rect from a vector mask rect.
* @param vectorMaskRect The vector mask rect state
* @param layerObjectGroup The konva layer's object group to add the line to
*/
const createVectorMaskRect = (reduxObject: VectorMaskRect, konvaGroup: Konva.Group): Konva.Rect => {
const vectorMaskRect = new Konva.Rect({
id: reduxObject.id,
key: reduxObject.id,
const createVectorMaskRect = (vectorMaskRect: VectorMaskRect, layerObjectGroup: Konva.Group): Konva.Rect => {
const konvaRect = new Konva.Rect({
id: vectorMaskRect.id,
key: vectorMaskRect.id,
name: RG_LAYER_RECT_NAME,
x: reduxObject.x,
y: reduxObject.y,
width: reduxObject.width,
height: reduxObject.height,
x: vectorMaskRect.x,
y: vectorMaskRect.y,
width: vectorMaskRect.width,
height: vectorMaskRect.height,
listening: false,
});
konvaGroup.add(vectorMaskRect);
return vectorMaskRect;
layerObjectGroup.add(konvaRect);
return konvaRect;
};
/**
* Creates the "compositing rect" for a layer.
* @param konvaLayer The konva layer
*/
const createCompositingRect = (konvaLayer: Konva.Layer): Konva.Rect => {
const compositingRect = new Konva.Rect({ name: COMPOSITING_RECT_NAME, listening: false });
konvaLayer.add(compositingRect);
@@ -332,41 +326,41 @@ const createCompositingRect = (konvaLayer: Konva.Layer): Konva.Rect => {
};
/**
* Renders a vector mask layer.
* @param stage The konva stage to render on.
* @param reduxLayer The redux vector mask layer to render.
* @param reduxLayerIndex The index of the layer in the redux store.
* @param globalMaskLayerOpacity The opacity of the global mask layer.
* @param tool The current tool.
* Renders a regional guidance layer.
* @param stage The konva stage
* @param layerState The regional guidance layer state
* @param globalMaskLayerOpacity The global mask layer opacity
* @param tool The current tool
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const renderRegionalGuidanceLayer = (
const renderRGLayer = (
stage: Konva.Stage,
reduxLayer: RegionalGuidanceLayer,
layerState: RegionalGuidanceLayer,
globalMaskLayerOpacity: number,
tool: Tool,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
): void => {
const konvaLayer =
stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ??
createRegionalGuidanceLayer(stage, reduxLayer, onLayerPosChanged);
stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createRGLayer(stage, layerState, onLayerPosChanged);
// Update the layer's position and listening state
konvaLayer.setAttrs({
listening: tool === 'move', // The layer only listens when using the move tool - otherwise the stage is handling mouse events
x: Math.floor(reduxLayer.x),
y: Math.floor(reduxLayer.y),
x: Math.floor(layerState.x),
y: Math.floor(layerState.y),
});
// Convert the color to a string, stripping the alpha - the object group will handle opacity.
const rgbColor = rgbColorToString(reduxLayer.previewColor);
const rgbColor = rgbColorToString(layerState.previewColor);
const konvaObjectGroup = konvaLayer.findOne<Konva.Group>(`.${RG_LAYER_OBJECT_GROUP_NAME}`);
assert(konvaObjectGroup, `Object group not found for layer ${reduxLayer.id}`);
assert(konvaObjectGroup, `Object group not found for layer ${layerState.id}`);
// We use caching to handle "global" layer opacity, but caching is expensive and we should only do it when required.
let groupNeedsCache = false;
const objectIds = reduxLayer.maskObjects.map(mapId);
const objectIds = layerState.maskObjects.map(mapId);
// Destroy any objects that are no longer in the redux state
for (const objectNode of konvaObjectGroup.find(selectVectorMaskObjects)) {
if (!objectIds.includes(objectNode.id())) {
objectNode.destroy();
@@ -374,15 +368,15 @@ const renderRegionalGuidanceLayer = (
}
}
for (const reduxObject of reduxLayer.maskObjects) {
if (reduxObject.type === 'vector_mask_line') {
for (const maskObject of layerState.maskObjects) {
if (maskObject.type === 'vector_mask_line') {
const vectorMaskLine =
stage.findOne<Konva.Line>(`#${reduxObject.id}`) ?? createVectorMaskLine(reduxObject, konvaObjectGroup);
stage.findOne<Konva.Line>(`#${maskObject.id}`) ?? createVectorMaskLine(maskObject, konvaObjectGroup);
// Only update the points if they have changed. The point values are never mutated, they are only added to the
// array, so checking the length is sufficient to determine if we need to re-cache.
if (vectorMaskLine.points().length !== reduxObject.points.length) {
vectorMaskLine.points(reduxObject.points);
if (vectorMaskLine.points().length !== maskObject.points.length) {
vectorMaskLine.points(maskObject.points);
groupNeedsCache = true;
}
// Only update the color if it has changed.
@@ -390,9 +384,9 @@ const renderRegionalGuidanceLayer = (
vectorMaskLine.stroke(rgbColor);
groupNeedsCache = true;
}
} else if (reduxObject.type === 'vector_mask_rect') {
} else if (maskObject.type === 'vector_mask_rect') {
const konvaObject =
stage.findOne<Konva.Rect>(`#${reduxObject.id}`) ?? createVectorMaskRect(reduxObject, konvaObjectGroup);
stage.findOne<Konva.Rect>(`#${maskObject.id}`) ?? createVectorMaskRect(maskObject, konvaObjectGroup);
// Only update the color if it has changed.
if (konvaObject.fill() !== rgbColor) {
@@ -403,8 +397,8 @@ const renderRegionalGuidanceLayer = (
}
// Only update layer visibility if it has changed.
if (konvaLayer.visible() !== reduxLayer.isEnabled) {
konvaLayer.visible(reduxLayer.isEnabled);
if (konvaLayer.visible() !== layerState.isEnabled) {
konvaLayer.visible(layerState.isEnabled);
groupNeedsCache = true;
}
@@ -428,7 +422,7 @@ const renderRegionalGuidanceLayer = (
* Instead, with the special handling, the effect is as if you drew all the shapes at 100% opacity, flattened them to
* a single raster image, and _then_ applied the 50% opacity.
*/
if (reduxLayer.isSelected && tool !== 'move') {
if (layerState.isSelected && tool !== 'move') {
// We must clear the cache first so Konva will re-draw the group with the new compositing rect
if (konvaObjectGroup.isCached()) {
konvaObjectGroup.clearCache();
@@ -438,7 +432,7 @@ const renderRegionalGuidanceLayer = (
compositingRect.setAttrs({
// The rect should be the size of the layer - use the fast method if we don't have a pixel-perfect bbox already
...(!reduxLayer.bboxNeedsUpdate && reduxLayer.bbox ? reduxLayer.bbox : getLayerBboxFast(konvaLayer)),
...(!layerState.bboxNeedsUpdate && layerState.bbox ? layerState.bbox : getLayerBboxFast(konvaLayer)),
fill: rgbColor,
opacity: globalMaskLayerOpacity,
// Draw this rect only where there are non-transparent pixels under it (e.g. the mask shapes)
@@ -459,9 +453,14 @@ const renderRegionalGuidanceLayer = (
}
};
const createInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLayer): Konva.Layer => {
/**
* Creates an initial image konva layer.
* @param stage The konva stage
* @param layerState The initial image layer state
*/
const createIILayer = (stage: Konva.Stage, layerState: InitialImageLayer): Konva.Layer => {
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: INITIAL_IMAGE_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
@@ -470,20 +469,27 @@ const createInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
return konvaLayer;
};
const createInitialImageLayerImage = (konvaLayer: Konva.Layer, image: HTMLImageElement): Konva.Image => {
/**
* Creates the konva image for an initial image layer.
* @param konvaLayer The konva layer
* @param imageEl The image element
*/
const createIILayerImage = (konvaLayer: Konva.Layer, imageEl: HTMLImageElement): Konva.Image => {
const konvaImage = new Konva.Image({
name: INITIAL_IMAGE_LAYER_IMAGE_NAME,
image,
image: imageEl,
});
konvaLayer.add(konvaImage);
return konvaImage;
};
const updateInitialImageLayerImageAttrs = (
stage: Konva.Stage,
konvaImage: Konva.Image,
reduxLayer: InitialImageLayer
) => {
/**
* Updates an initial image layer's attributes (width, height, opacity, visibility).
* @param stage The konva stage
* @param konvaImage The konva image
* @param layerState The initial image layer state
*/
const updateIILayerImageAttrs = (stage: Konva.Stage, konvaImage: Konva.Image, layerState: InitialImageLayer): void => {
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
// TODO(psyche): Investigate and report upstream.
@@ -492,46 +498,55 @@ const updateInitialImageLayerImageAttrs = (
if (
konvaImage.width() !== newWidth ||
konvaImage.height() !== newHeight ||
konvaImage.visible() !== reduxLayer.isEnabled
konvaImage.visible() !== layerState.isEnabled
) {
konvaImage.setAttrs({
opacity: reduxLayer.opacity,
opacity: layerState.opacity,
scaleX: 1,
scaleY: 1,
width: stage.width() / stage.scaleX(),
height: stage.height() / stage.scaleY(),
visible: reduxLayer.isEnabled,
visible: layerState.isEnabled,
});
}
if (konvaImage.opacity() !== reduxLayer.opacity) {
konvaImage.opacity(reduxLayer.opacity);
if (konvaImage.opacity() !== layerState.opacity) {
konvaImage.opacity(layerState.opacity);
}
};
const updateInitialImageLayerImageSource = async (
/**
* Update an initial image layer's image source when the image changes.
* @param stage The konva stage
* @param konvaLayer The konva layer
* @param layerState The initial image layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const updateIILayerImageSource = async (
stage: Konva.Stage,
konvaLayer: Konva.Layer,
reduxLayer: InitialImageLayer
) => {
if (reduxLayer.image) {
const imageName = reduxLayer.image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
layerState: InitialImageLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): Promise<void> => {
if (layerState.image) {
const imageName = layerState.image.name;
const imageDTO = await getImageDTO(imageName);
if (!imageDTO) {
return;
}
const imageEl = new Image();
const imageId = getIILayerImageId(reduxLayer.id, imageName);
const imageId = getIILayerImageId(layerState.id, imageName);
imageEl.onload = () => {
// Find the existing image or create a new one - must find using the name, bc the id may have just changed
const konvaImage =
konvaLayer.findOne<Konva.Image>(`.${INITIAL_IMAGE_LAYER_IMAGE_NAME}`) ??
createInitialImageLayerImage(konvaLayer, imageEl);
createIILayerImage(konvaLayer, imageEl);
// Update the image's attributes
konvaImage.setAttrs({
id: imageId,
image: imageEl,
});
updateInitialImageLayerImageAttrs(stage, konvaImage, reduxLayer);
updateIILayerImageAttrs(stage, konvaImage, layerState);
imageEl.id = imageId;
};
imageEl.src = imageDTO.image_url;
@@ -540,14 +555,24 @@ const updateInitialImageLayerImageSource = async (
}
};
const renderInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLayer) => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createInitialImageLayer(stage, reduxLayer);
/**
* Renders an initial image layer.
* @param stage The konva stage
* @param layerState The initial image layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const renderIILayer = (
stage: Konva.Stage,
layerState: InitialImageLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): void => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createIILayer(stage, layerState);
const konvaImage = konvaLayer.findOne<Konva.Image>(`.${INITIAL_IMAGE_LAYER_IMAGE_NAME}`);
const canvasImageSource = konvaImage?.image();
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
const image = layerState.image;
if (image && canvasImageSource.id !== getCALayerImageId(layerState.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@@ -557,15 +582,20 @@ const renderInitialImageLayer = (stage: Konva.Stage, reduxLayer: InitialImageLay
}
if (imageSourceNeedsUpdate) {
updateInitialImageLayerImageSource(stage, konvaLayer, reduxLayer);
updateIILayerImageSource(stage, konvaLayer, layerState, getImageDTO);
} else if (konvaImage) {
updateInitialImageLayerImageAttrs(stage, konvaImage, reduxLayer);
updateIILayerImageAttrs(stage, konvaImage, layerState);
}
};
const createControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLayer): Konva.Layer => {
/**
* Creates a control adapter layer.
* @param stage The konva stage
* @param layerState The control adapter layer state
*/
const createCALayer = (stage: Konva.Stage, layerState: ControlAdapterLayer): Konva.Layer => {
const konvaLayer = new Konva.Layer({
id: reduxLayer.id,
id: layerState.id,
name: CA_LAYER_NAME,
imageSmoothingEnabled: true,
listening: false,
@@ -574,39 +604,53 @@ const createControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
return konvaLayer;
};
const createControlNetLayerImage = (konvaLayer: Konva.Layer, image: HTMLImageElement): Konva.Image => {
/**
* Creates a control adapter layer image.
* @param konvaLayer The konva layer
* @param imageEl The image element
*/
const createCALayerImage = (konvaLayer: Konva.Layer, imageEl: HTMLImageElement): Konva.Image => {
const konvaImage = new Konva.Image({
name: CA_LAYER_IMAGE_NAME,
image,
image: imageEl,
});
konvaLayer.add(konvaImage);
return konvaImage;
};
const updateControlNetLayerImageSource = async (
/**
* Updates the image source for a control adapter layer. This includes loading the image from the server and updating the konva image.
* @param stage The konva stage
* @param konvaLayer The konva layer
* @param layerState The control adapter layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const updateCALayerImageSource = async (
stage: Konva.Stage,
konvaLayer: Konva.Layer,
reduxLayer: ControlAdapterLayer
) => {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
layerState: ControlAdapterLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): Promise<void> => {
const image = layerState.controlAdapter.processedImage ?? layerState.controlAdapter.image;
if (image) {
const imageName = image.name;
const req = getStore().dispatch(imagesApi.endpoints.getImageDTO.initiate(imageName));
const imageDTO = await req.unwrap();
req.unsubscribe();
const imageDTO = await getImageDTO(imageName);
if (!imageDTO) {
return;
}
const imageEl = new Image();
const imageId = getCALayerImageId(reduxLayer.id, imageName);
const imageId = getCALayerImageId(layerState.id, imageName);
imageEl.onload = () => {
// Find the existing image or create a new one - must find using the name, bc the id may have just changed
const konvaImage =
konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`) ?? createControlNetLayerImage(konvaLayer, imageEl);
konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`) ?? createCALayerImage(konvaLayer, imageEl);
// Update the image's attributes
konvaImage.setAttrs({
id: imageId,
image: imageEl,
});
updateControlNetLayerImageAttrs(stage, konvaImage, reduxLayer);
updateCALayerImageAttrs(stage, konvaImage, layerState);
// Must cache after this to apply the filters
konvaImage.cache();
imageEl.id = imageId;
@@ -617,11 +661,17 @@ const updateControlNetLayerImageSource = async (
}
};
const updateControlNetLayerImageAttrs = (
/**
* Updates the image attributes for a control adapter layer's image (width, height, visibility, opacity, filters).
* @param stage The konva stage
* @param konvaImage The konva image
* @param layerState The control adapter layer state
*/
const updateCALayerImageAttrs = (
stage: Konva.Stage,
konvaImage: Konva.Image,
reduxLayer: ControlAdapterLayer
) => {
layerState: ControlAdapterLayer
): void => {
let needsCache = false;
// Konva erroneously reports NaN for width and height when the stage is hidden. This causes errors when caching,
// but it doesn't seem to break anything.
@@ -632,36 +682,47 @@ const updateControlNetLayerImageAttrs = (
if (
konvaImage.width() !== newWidth ||
konvaImage.height() !== newHeight ||
konvaImage.visible() !== reduxLayer.isEnabled ||
hasFilter !== reduxLayer.isFilterEnabled
konvaImage.visible() !== layerState.isEnabled ||
hasFilter !== layerState.isFilterEnabled
) {
konvaImage.setAttrs({
opacity: reduxLayer.opacity,
opacity: layerState.opacity,
scaleX: 1,
scaleY: 1,
width: stage.width() / stage.scaleX(),
height: stage.height() / stage.scaleY(),
visible: reduxLayer.isEnabled,
filters: reduxLayer.isFilterEnabled ? [LightnessToAlphaFilter] : [],
visible: layerState.isEnabled,
filters: layerState.isFilterEnabled ? [LightnessToAlphaFilter] : [],
});
needsCache = true;
}
if (konvaImage.opacity() !== reduxLayer.opacity) {
konvaImage.opacity(reduxLayer.opacity);
if (konvaImage.opacity() !== layerState.opacity) {
konvaImage.opacity(layerState.opacity);
}
if (needsCache) {
konvaImage.cache();
}
};
const renderControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLayer) => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createControlNetLayer(stage, reduxLayer);
/**
* Renders a control adapter layer. If the layer doesn't already exist, it is created. Otherwise, the layer is updated
* with the current image source and attributes.
* @param stage The konva stage
* @param layerState The control adapter layer state
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
*/
const renderCALayer = (
stage: Konva.Stage,
layerState: ControlAdapterLayer,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>
): void => {
const konvaLayer = stage.findOne<Konva.Layer>(`#${layerState.id}`) ?? createCALayer(stage, layerState);
const konvaImage = konvaLayer.findOne<Konva.Image>(`.${CA_LAYER_IMAGE_NAME}`);
const canvasImageSource = konvaImage?.image();
let imageSourceNeedsUpdate = false;
if (canvasImageSource instanceof HTMLImageElement) {
const image = reduxLayer.controlAdapter.processedImage ?? reduxLayer.controlAdapter.image;
if (image && canvasImageSource.id !== getCALayerImageId(reduxLayer.id, image.name)) {
const image = layerState.controlAdapter.processedImage ?? layerState.controlAdapter.image;
if (image && canvasImageSource.id !== getCALayerImageId(layerState.id, image.name)) {
imageSourceNeedsUpdate = true;
} else if (!image) {
imageSourceNeedsUpdate = true;
@@ -671,44 +732,46 @@ const renderControlNetLayer = (stage: Konva.Stage, reduxLayer: ControlAdapterLay
}
if (imageSourceNeedsUpdate) {
updateControlNetLayerImageSource(stage, konvaLayer, reduxLayer);
updateCALayerImageSource(stage, konvaLayer, layerState, getImageDTO);
} else if (konvaImage) {
updateControlNetLayerImageAttrs(stage, konvaImage, reduxLayer);
updateCALayerImageAttrs(stage, konvaImage, layerState);
}
};
/**
* Renders the layers on the stage.
* @param stage The konva stage to render on.
* @param reduxLayers Array of the layers from the redux store.
* @param layerOpacity The opacity of the layer.
* @param onLayerPosChanged Callback for when the layer's position changes. This is optional to allow for offscreen rendering.
* @returns
* @param stage The konva stage
* @param layerStates Array of all layer states
* @param globalMaskLayerOpacity The global mask layer opacity
* @param tool The current tool
* @param getImageDTO A function to retrieve an image DTO from the server, used to update the image source
* @param onLayerPosChanged Callback for when the layer's position changes
*/
const renderLayers = (
stage: Konva.Stage,
reduxLayers: Layer[],
layerStates: Layer[],
globalMaskLayerOpacity: number,
tool: Tool,
getImageDTO: (imageName: string) => Promise<ImageDTO | null>,
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
) => {
const reduxLayerIds = reduxLayers.filter(isRenderableLayer).map(mapId);
): void => {
const layerIds = layerStates.filter(isRenderableLayer).map(mapId);
// Remove un-rendered layers
for (const konvaLayer of stage.find<Konva.Layer>(selectRenderableLayers)) {
if (!reduxLayerIds.includes(konvaLayer.id())) {
if (!layerIds.includes(konvaLayer.id())) {
konvaLayer.destroy();
}
}
for (const reduxLayer of reduxLayers) {
if (isRegionalGuidanceLayer(reduxLayer)) {
renderRegionalGuidanceLayer(stage, reduxLayer, globalMaskLayerOpacity, tool, onLayerPosChanged);
for (const layer of layerStates) {
if (isRegionalGuidanceLayer(layer)) {
renderRGLayer(stage, layer, globalMaskLayerOpacity, tool, onLayerPosChanged);
}
if (isControlAdapterLayer(reduxLayer)) {
renderControlNetLayer(stage, reduxLayer);
if (isControlAdapterLayer(layer)) {
renderCALayer(stage, layer, getImageDTO);
}
if (isInitialImageLayer(reduxLayer)) {
renderInitialImageLayer(stage, reduxLayer);
if (isInitialImageLayer(layer)) {
renderIILayer(stage, layer, getImageDTO);
}
// IP Adapter layers are not rendered
}
@@ -716,13 +779,12 @@ const renderLayers = (
/**
* Creates a bounding box rect for a layer.
* @param reduxLayer The redux layer to create the bounding box for.
* @param konvaLayer The konva layer to attach the bounding box to.
* @param onBboxMouseDown Callback for when the bounding box is clicked.
* @param layerState The layer state for the layer to create the bounding box for
* @param konvaLayer The konva layer to attach the bounding box to
*/
const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
const createBboxRect = (layerState: Layer, konvaLayer: Konva.Layer): Konva.Rect => {
const rect = new Konva.Rect({
id: getLayerBboxId(reduxLayer.id),
id: getLayerBboxId(layerState.id),
name: LAYER_BBOX_NAME,
strokeWidth: 1,
visible: false,
@@ -733,12 +795,12 @@ const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer) => {
/**
* Renders the bounding boxes for the layers.
* @param stage The konva stage to render on
* @param reduxLayers An array of all redux layers to draw bboxes for
* @param stage The konva stage
* @param layerStates An array of layers to draw bboxes for
* @param tool The current tool
* @returns
*/
const renderBboxes = (stage: Konva.Stage, reduxLayers: Layer[], tool: Tool) => {
const renderBboxes = (stage: Konva.Stage, layerStates: Layer[], tool: Tool): void => {
// Hide all bboxes so they don't interfere with getClientRect
for (const bboxRect of stage.find<Konva.Rect>(`.${LAYER_BBOX_NAME}`)) {
bboxRect.visible(false);
@@ -749,39 +811,39 @@ const renderBboxes = (stage: Konva.Stage, reduxLayers: Layer[], tool: Tool) => {
return;
}
for (const reduxLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
if (!reduxLayer.bbox) {
for (const layer of layerStates.filter(isRegionalGuidanceLayer)) {
if (!layer.bbox) {
continue;
}
const konvaLayer = stage.findOne<Konva.Layer>(`#${reduxLayer.id}`);
assert(konvaLayer, `Layer ${reduxLayer.id} not found in stage`);
const konvaLayer = stage.findOne<Konva.Layer>(`#${layer.id}`);
assert(konvaLayer, `Layer ${layer.id} not found in stage`);
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer);
const bboxRect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(layer, konvaLayer);
bboxRect.setAttrs({
visible: !reduxLayer.bboxNeedsUpdate,
listening: reduxLayer.isSelected,
x: reduxLayer.bbox.x,
y: reduxLayer.bbox.y,
width: reduxLayer.bbox.width,
height: reduxLayer.bbox.height,
stroke: reduxLayer.isSelected ? BBOX_SELECTED_STROKE : '',
visible: !layer.bboxNeedsUpdate,
listening: layer.isSelected,
x: layer.bbox.x,
y: layer.bbox.y,
width: layer.bbox.width,
height: layer.bbox.height,
stroke: layer.isSelected ? BBOX_SELECTED_STROKE : '',
});
}
};
/**
* Calculates the bbox of each regional guidance layer. Only calculates if the mask has changed.
* @param stage The konva stage to render on.
* @param reduxLayers An array of redux layers to calculate bboxes for
* @param stage The konva stage
* @param layerStates An array of layers to calculate bboxes for
* @param onBboxChanged Callback for when the bounding box changes
*/
const updateBboxes = (
stage: Konva.Stage,
reduxLayers: Layer[],
layerStates: Layer[],
onBboxChanged: (layerId: string, bbox: IRect | null) => void
) => {
for (const rgLayer of reduxLayers.filter(isRegionalGuidanceLayer)) {
): void => {
for (const rgLayer of layerStates.filter(isRegionalGuidanceLayer)) {
const konvaLayer = stage.findOne<Konva.Layer>(`#${rgLayer.id}`);
assert(konvaLayer, `Layer ${rgLayer.id} not found in stage`);
// We only need to recalculate the bbox if the layer has changed
@@ -808,7 +870,7 @@ const updateBboxes = (
/**
* Creates the background layer for the stage.
* @param stage The konva stage to render on
* @param stage The konva stage
*/
const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
const layer = new Konva.Layer({
@@ -829,17 +891,17 @@ const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
image.onload = () => {
background.fillPatternImage(image);
};
image.src = STAGE_BG_DATAURL;
image.src = TRANSPARENCY_CHECKER_PATTERN;
return layer;
};
/**
* Renders the background layer for the stage.
* @param stage The konva stage to render on
* @param stage The konva stage
* @param width The unscaled width of the canvas
* @param height The unscaled height of the canvas
*/
const renderBackground = (stage: Konva.Stage, width: number, height: number) => {
const renderBackground = (stage: Konva.Stage, width: number, height: number): void => {
const layer = stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`) ?? createBackgroundLayer(stage);
const background = layer.findOne<Konva.Rect>(`#${BACKGROUND_RECT_ID}`);
@@ -880,6 +942,10 @@ const arrangeLayers = (stage: Konva.Stage, layerIds: string[]): void => {
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.zIndex(nextZIndex++);
};
/**
* Creates the "no layers" fallback layer
* @param stage The konva stage
*/
const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
const noLayersMessageLayer = new Konva.Layer({
id: NO_LAYERS_MESSAGE_LAYER_ID,
@@ -891,7 +957,7 @@ const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
y: 0,
align: 'center',
verticalAlign: 'middle',
text: t('controlLayers.noLayersAdded'),
text: t('controlLayers.noLayersAdded', 'No Layers Added'),
fontFamily: '"Inter Variable", sans-serif',
fontStyle: '600',
fill: 'white',
@@ -901,7 +967,14 @@ const createNoLayersMessageLayer = (stage: Konva.Stage): Konva.Layer => {
return noLayersMessageLayer;
};
const renderNoLayersMessage = (stage: Konva.Stage, layerCount: number, width: number, height: number) => {
/**
* Renders the "no layers" message when there are no layers to render
* @param stage The konva stage
* @param layerCount The current number of layers
* @param width The target width of the text
* @param height The target height of the text
*/
const renderNoLayersMessage = (stage: Konva.Stage, layerCount: number, width: number, height: number): void => {
const noLayersMessageLayer =
stage.findOne<Konva.Layer>(`#${NO_LAYERS_MESSAGE_LAYER_ID}`) ?? createNoLayersMessageLayer(stage);
if (layerCount === 0) {
@@ -936,20 +1009,3 @@ export const debouncedRenderers = {
arrangeLayers: debounce(arrangeLayers, DEBOUNCE_MS),
updateBboxes: debounce(updateBboxes, DEBOUNCE_MS),
};
/**
* Calculates the lightness (HSL) of a given pixel and sets the alpha channel to that value.
* This is useful for edge maps and other masks, to make the black areas transparent.
* @param imageData The image data to apply the filter to
*/
const LightnessToAlphaFilter = (imageData: ImageData) => {
const len = imageData.data.length / 4;
for (let i = 0; i < len; i++) {
const r = imageData.data[i * 4 + 0] as number;
const g = imageData.data[i * 4 + 1] as number;
const b = imageData.data[i * 4 + 2] as number;
const cMin = Math.min(r, g, b);
const cMax = Math.max(r, g, b);
imageData.data[i * 4 + 3] = (cMin + cMax) / 2;
}
};

View File

@@ -0,0 +1,67 @@
import type Konva from 'konva';
import type { KonvaEventObject } from 'konva/lib/Node';
import type { Vector2d } from 'konva/lib/types';
//#region getScaledFlooredCursorPosition
/**
* Gets the scaled and floored cursor position on the stage. If the cursor is not currently over the stage, returns null.
* @param stage The konva stage
*/
export const getScaledFlooredCursorPosition = (stage: Konva.Stage): Vector2d | null => {
const pointerPosition = stage.getPointerPosition();
const stageTransform = stage.getAbsoluteTransform().copy();
if (!pointerPosition) {
return null;
}
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
return {
x: Math.floor(scaledCursorPosition.x),
y: Math.floor(scaledCursorPosition.y),
};
};
//#endregion
//#region snapPosToStage
/**
* Snaps a position to the edge of the stage if within a threshold of the edge
* @param pos The position to snap
* @param stage The konva stage
* @param snapPx The snap threshold in pixels
*/
export const snapPosToStage = (pos: Vector2d, stage: Konva.Stage, snapPx = 10): Vector2d => {
const snappedPos = { ...pos };
// Get the normalized threshold for snapping to the edge of the stage
const thresholdX = snapPx / stage.scaleX();
const thresholdY = snapPx / stage.scaleY();
const stageWidth = stage.width() / stage.scaleX();
const stageHeight = stage.height() / stage.scaleY();
// Snap to the edge of the stage if within threshold
if (pos.x - thresholdX < 0) {
snappedPos.x = 0;
} else if (pos.x + thresholdX > stageWidth) {
snappedPos.x = Math.floor(stageWidth);
}
if (pos.y - thresholdY < 0) {
snappedPos.y = 0;
} else if (pos.y + thresholdY > stageHeight) {
snappedPos.y = Math.floor(stageHeight);
}
return snappedPos;
};
//#endregion
//#region getIsMouseDown
/**
* Checks if the left mouse button is currently pressed
* @param e The konva event
*/
export const getIsMouseDown = (e: KonvaEventObject<MouseEvent>): boolean => e.evt.buttons === 1;
//#endregion
//#region getIsFocused
/**
* Checks if the stage is currently focused
* @param stage The konva stage
*/
export const getIsFocused = (stage: Konva.Stage): boolean => stage.container().contains(document.activeElement);
//#endregion

View File

@@ -4,6 +4,14 @@ import type { PersistConfig, RootState } from 'app/store/store';
import { moveBackward, moveForward, moveToBack, moveToFront } from 'common/util/arrayUtils';
import { deepClone } from 'common/util/deepClone';
import { roundDownToMultiple } from 'common/util/roundDownToMultiple';
import {
getCALayerId,
getIPALayerId,
getRGLayerId,
getRGLayerLineId,
getRGLayerRectId,
INITIAL_IMAGE_LAYER_ID,
} from 'features/controlLayers/konva/naming';
import type {
CLIPVisionModelV2,
ControlModeV2,
@@ -36,6 +44,9 @@ import { assert } from 'tsafe';
import { v4 as uuidv4 } from 'uuid';
import type {
AddLineArg,
AddPointToLineArg,
AddRectArg,
ControlAdapterLayer,
ControlLayersState,
DrawingTool,
@@ -492,11 +503,11 @@ export const controlLayersSlice = createSlice({
layer.bboxNeedsUpdate = true;
layer.uploadedMaskImage = null;
},
prepare: (payload: { layerId: string; points: [number, number, number, number]; tool: DrawingTool }) => ({
prepare: (payload: AddLineArg) => ({
payload: { ...payload, lineUuid: uuidv4() },
}),
},
rgLayerPointsAdded: (state, action: PayloadAction<{ layerId: string; point: [number, number] }>) => {
rgLayerPointsAdded: (state, action: PayloadAction<AddPointToLineArg>) => {
const { layerId, point } = action.payload;
const layer = selectRGLayerOrThrow(state, layerId);
const lastLine = layer.maskObjects.findLast(isLine);
@@ -529,7 +540,7 @@ export const controlLayersSlice = createSlice({
layer.bboxNeedsUpdate = true;
layer.uploadedMaskImage = null;
},
prepare: (payload: { layerId: string; rect: IRect }) => ({ payload: { ...payload, rectUuid: uuidv4() } }),
prepare: (payload: AddRectArg) => ({ payload: { ...payload, rectUuid: uuidv4() } }),
},
rgLayerMaskImageUploaded: (state, action: PayloadAction<{ layerId: string; imageDTO: ImageDTO }>) => {
const { layerId, imageDTO } = action.payload;
@@ -883,45 +894,21 @@ const migrateControlLayersState = (state: any): any => {
return state;
};
// Ephemeral interaction state
export const $isDrawing = atom(false);
export const $lastMouseDownPos = atom<Vector2d | null>(null);
export const $tool = atom<Tool>('brush');
export const $lastCursorPos = atom<Vector2d | null>(null);
export const $isPreviewVisible = atom(true);
export const $lastAddedPoint = atom<Vector2d | null>(null);
// IDs for singleton Konva layers and objects
export const TOOL_PREVIEW_LAYER_ID = 'tool_preview_layer';
export const TOOL_PREVIEW_BRUSH_GROUP_ID = 'tool_preview_layer.brush_group';
export const TOOL_PREVIEW_BRUSH_FILL_ID = 'tool_preview_layer.brush_fill';
export const TOOL_PREVIEW_BRUSH_BORDER_INNER_ID = 'tool_preview_layer.brush_border_inner';
export const TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID = 'tool_preview_layer.brush_border_outer';
export const TOOL_PREVIEW_RECT_ID = 'tool_preview_layer.rect';
export const BACKGROUND_LAYER_ID = 'background_layer';
export const BACKGROUND_RECT_ID = 'background_layer.rect';
export const NO_LAYERS_MESSAGE_LAYER_ID = 'no_layers_message';
// Names (aka classes) for Konva layers and objects
export const CA_LAYER_NAME = 'control_adapter_layer';
export const CA_LAYER_IMAGE_NAME = 'control_adapter_layer.image';
export const RG_LAYER_NAME = 'regional_guidance_layer';
export const RG_LAYER_LINE_NAME = 'regional_guidance_layer.line';
export const RG_LAYER_OBJECT_GROUP_NAME = 'regional_guidance_layer.object_group';
export const RG_LAYER_RECT_NAME = 'regional_guidance_layer.rect';
export const INITIAL_IMAGE_LAYER_ID = 'singleton_initial_image_layer';
export const INITIAL_IMAGE_LAYER_NAME = 'initial_image_layer';
export const INITIAL_IMAGE_LAYER_IMAGE_NAME = 'initial_image_layer.image';
export const LAYER_BBOX_NAME = 'layer.bbox';
export const COMPOSITING_RECT_NAME = 'compositing-rect';
// Getters for non-singleton layer and object IDs
export const getRGLayerId = (layerId: string) => `${RG_LAYER_NAME}_${layerId}`;
const getRGLayerLineId = (layerId: string, lineId: string) => `${layerId}.line_${lineId}`;
const getRGLayerRectId = (layerId: string, lineId: string) => `${layerId}.rect_${lineId}`;
export const getRGLayerObjectGroupId = (layerId: string, groupId: string) => `${layerId}.objectGroup_${groupId}`;
export const getLayerBboxId = (layerId: string) => `${layerId}.bbox`;
export const getCALayerId = (layerId: string) => `control_adapter_layer_${layerId}`;
export const getCALayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIILayerImageId = (layerId: string, imageName: string) => `${layerId}.image_${imageName}`;
export const getIPALayerId = (layerId: string) => `ip_adapter_layer_${layerId}`;
// Some nanostores that are manually synced to redux state to provide imperative access
// TODO(psyche): This is a hack, figure out another way to handle this...
export const $brushSize = atom<number>(0);
export const $brushSpacingPx = atom<number>(0);
export const $selectedLayerId = atom<string | null>(null);
export const $selectedLayerType = atom<Layer['type'] | null>(null);
export const $shouldInvertBrushSizeScrollDirection = atom(false);
export const controlLayersPersistConfig: PersistConfig<ControlLayersState> = {
name: controlLayersSlice.name,

View File

@@ -17,6 +17,7 @@ import {
zParameterPositivePrompt,
zParameterStrength,
} from 'features/parameters/types/parameterSchemas';
import type { IRect } from 'konva/lib/types';
import { z } from 'zod';
const zTool = z.enum(['brush', 'eraser', 'move', 'rect']);
@@ -129,3 +130,7 @@ export type ControlLayersState = {
aspectRatio: AspectRatioState;
};
};
export type AddLineArg = { layerId: string; points: [number, number, number, number]; tool: DrawingTool };
export type AddPointToLineArg = { layerId: string; point: [number, number] };
export type AddRectArg = { layerId: string; rect: IRect };

View File

@@ -1,66 +0,0 @@
import { getStore } from 'app/store/nanostores/store';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { isRegionalGuidanceLayer, RG_LAYER_NAME } from 'features/controlLayers/store/controlLayersSlice';
import { renderers } from 'features/controlLayers/util/renderers';
import Konva from 'konva';
import { assert } from 'tsafe';
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
export const getRegionalPromptLayerBlobs = async (
layerIds?: string[],
preview: boolean = false
): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const { layers } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
const reduxLayers = layers.filter(isRegionalGuidanceLayer);
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width, height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush');
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};

View File

@@ -3,7 +3,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import { useBoolean } from 'common/hooks/useBoolean';
import { preventDefault } from 'common/util/stopPropagation';
import type { Dimensions } from 'features/canvas/store/canvasTypes';
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
import { TRANSPARENCY_CHECKER_PATTERN } from 'features/controlLayers/konva/constants';
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
import { memo, useMemo, useRef } from 'react';
@@ -78,7 +78,7 @@ export const ImageComparisonHover = memo(({ firstImage, secondImage, containerDi
left={0}
right={0}
bottom={0}
backgroundImage={STAGE_BG_DATAURL}
backgroundImage={TRANSPARENCY_CHECKER_PATTERN}
backgroundRepeat="repeat"
opacity={0.2}
/>

View File

@@ -2,7 +2,7 @@ import { Box, Flex, Icon, Image } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { preventDefault } from 'common/util/stopPropagation';
import type { Dimensions } from 'features/canvas/store/canvasTypes';
import { STAGE_BG_DATAURL } from 'features/controlLayers/util/renderers';
import { TRANSPARENCY_CHECKER_PATTERN } from 'features/controlLayers/konva/constants';
import { ImageComparisonLabel } from 'features/gallery/components/ImageViewer/ImageComparisonLabel';
import { memo, useCallback, useEffect, useMemo, useRef, useState } from 'react';
import { PiCaretLeftBold, PiCaretRightBold } from 'react-icons/pi';
@@ -120,7 +120,7 @@ export const ImageComparisonSlider = memo(({ firstImage, secondImage, containerD
left={0}
right={0}
bottom={0}
backgroundImage={STAGE_BG_DATAURL}
backgroundImage={TRANSPARENCY_CHECKER_PATTERN}
backgroundRepeat="repeat"
opacity={0.2}
/>

View File

@@ -4,7 +4,7 @@ import {
initialT2IAdapter,
} from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { getCALayerId, getIPALayerId, INITIAL_IMAGE_LAYER_ID } from 'features/controlLayers/store/controlLayersSlice';
import { getCALayerId, getIPALayerId, INITIAL_IMAGE_LAYER_ID } from 'features/controlLayers/konva/naming';
import type { ControlAdapterLayer, InitialImageLayer, IPAdapterLayer, Layer } from 'features/controlLayers/store/types';
import { zLayer } from 'features/controlLayers/store/types';
import {

View File

@@ -6,12 +6,10 @@ import {
ipAdaptersReset,
t2iAdaptersReset,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { getCALayerId, getIPALayerId, getRGLayerId } from 'features/controlLayers/konva/naming';
import {
allLayersDeleted,
caLayerRecalled,
getCALayerId,
getIPALayerId,
getRGLayerId,
heightChanged,
iiLayerRecalled,
ipaLayerRecalled,

View File

@@ -11,6 +11,7 @@ const BASE_COLOR_MAP: Record<BaseModelType, string> = {
any: 'base',
'sd-1': 'green',
'sd-2': 'teal',
'sd-3': 'purple',
sdxl: 'invokeBlue',
'sdxl-refiner': 'invokeBlue',
};

View File

@@ -10,6 +10,7 @@ import type { UpdateModelArg } from 'services/api/endpoints/models';
const options: ComboboxOption[] = [
{ value: 'sd-1', label: MODEL_TYPE_MAP['sd-1'] },
{ value: 'sd-2', label: MODEL_TYPE_MAP['sd-2'] },
{ value: 'sd-3', label: MODEL_TYPE_MAP['sd-3'] },
{ value: 'sdxl', label: MODEL_TYPE_MAP['sdxl'] },
{ value: 'sdxl-refiner', label: MODEL_TYPE_MAP['sdxl-refiner'] },
];

View File

@@ -28,6 +28,8 @@ import {
isModelIdentifierFieldInputTemplate,
isSchedulerFieldInputInstance,
isSchedulerFieldInputTemplate,
isSD3MainModelFieldInputInstance,
isSD3MainModelFieldInputTemplate,
isSDXLMainModelFieldInputInstance,
isSDXLMainModelFieldInputTemplate,
isSDXLRefinerModelFieldInputInstance,
@@ -53,6 +55,7 @@ import MainModelFieldInputComponent from './inputs/MainModelFieldInputComponent'
import NumberFieldInputComponent from './inputs/NumberFieldInputComponent';
import RefinerModelFieldInputComponent from './inputs/RefinerModelFieldInputComponent';
import SchedulerFieldInputComponent from './inputs/SchedulerFieldInputComponent';
import SD3MainModelFieldInputComponent from './inputs/SD3MainModelFieldInputComponent';
import SDXLMainModelFieldInputComponent from './inputs/SDXLMainModelFieldInputComponent';
import StringFieldInputComponent from './inputs/StringFieldInputComponent';
import T2IAdapterModelFieldInputComponent from './inputs/T2IAdapterModelFieldInputComponent';
@@ -133,6 +136,10 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isSD3MainModelFieldInputInstance(fieldInstance) && isSD3MainModelFieldInputTemplate(fieldTemplate)) {
return <SD3MainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}
if (isSchedulerFieldInputInstance(fieldInstance) && isSchedulerFieldInputTemplate(fieldTemplate)) {
return <SchedulerFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
}

View File

@@ -0,0 +1,55 @@
import { Combobox, Flex, FormControl } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
import type { SD3MainModelFieldInputInstance, SD3MainModelFieldInputTemplate } from 'features/nodes/types/field';
import { memo, useCallback } from 'react';
import { useSD3Models } from 'services/api/hooks/modelsByType';
import type { MainModelConfig } from 'services/api/types';
import type { FieldComponentProps } from './types';
type Props = FieldComponentProps<SD3MainModelFieldInputInstance, SD3MainModelFieldInputTemplate>;
const SD3MainModelFieldInputComponent = (props: Props) => {
const { nodeId, field } = props;
const dispatch = useAppDispatch();
const [modelConfigs, { isLoading }] = useSD3Models();
const _onChange = useCallback(
(value: MainModelConfig | null) => {
if (!value) {
return;
}
dispatch(
fieldMainModelValueChanged({
nodeId,
fieldName: field.name,
value,
})
);
},
[dispatch, field.name, nodeId]
);
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChange,
isLoading,
selectedModel: field.value,
});
return (
<Flex w="full" alignItems="center" gap={2}>
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
<Combobox
value={value}
placeholder={placeholder}
options={options}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Flex>
);
};
export default memo(SD3MainModelFieldInputComponent);

View File

@@ -631,6 +631,7 @@ export const schema = {
'euler',
'euler_k',
'euler_a',
'euler_f',
'kdpm_2',
'kdpm_2_a',
'dpmpp_2s',
@@ -694,6 +695,7 @@ export const schema = {
'euler',
'euler_k',
'euler_a',
'euler_f',
'kdpm_2',
'kdpm_2_a',
'dpmpp_2s',
@@ -839,7 +841,7 @@ export const schema = {
},
BaseModelType: {
description: 'Base model type.',
enum: ['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner'],
enum: ['any', 'sd-1', 'sd-2', 'sd-3', 'sdxl', 'sdxl-refiner'],
title: 'BaseModelType',
type: 'string',
},
@@ -855,8 +857,11 @@ export const schema = {
'unet',
'text_encoder',
'text_encoder_2',
'text_encoder_3',
'tokenizer',
'tokenizer_2',
'tokenizer_3',
'transformer',
'vae',
'vae_decoder',
'vae_encoder',

View File

@@ -47,6 +47,7 @@ export const zSchedulerField = z.enum([
'heun_k',
'lms_k',
'euler_a',
'euler_f',
'kdpm_2_a',
'lcm',
'tcd',
@@ -55,7 +56,7 @@ export type SchedulerField = z.infer<typeof zSchedulerField>;
// #endregion
// #region Model-related schemas
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sd-3', 'sdxl', 'sdxl-refiner']);
const zModelType = z.enum([
'main',
'vae',
@@ -71,8 +72,11 @@ const zSubModelType = z.enum([
'unet',
'text_encoder',
'text_encoder_2',
'text_encoder_3',
'tokenizer',
'tokenizer_2',
'tokenizer_3',
'transformer',
'vae',
'vae_decoder',
'vae_encoder',

View File

@@ -32,11 +32,14 @@ export const MODEL_TYPES = [
'LoRAModelField',
'MainModelField',
'SDXLMainModelField',
'SD3MainModelField',
'SDXLRefinerModelField',
'VaeModelField',
'UNetField',
'TransformerField',
'VAEField',
'CLIPField',
'SD3CLIPField',
'T2IAdapterModelField',
];
@@ -47,6 +50,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
BoardField: 'purple.500',
BooleanField: 'green.500',
CLIPField: 'green.500',
SD3CLIPField: 'green.500',
ColorField: 'pink.300',
ConditioningField: 'cyan.500',
ControlField: 'teal.500',
@@ -62,10 +66,12 @@ export const FIELD_COLORS: { [key: string]: string } = {
MainModelField: 'teal.500',
SDXLMainModelField: 'teal.500',
SDXLRefinerModelField: 'teal.500',
SD3MainModelField: 'teal.500',
StringField: 'yellow.500',
T2IAdapterField: 'teal.500',
T2IAdapterModelField: 'teal.500',
UNetField: 'red.500',
TransformerField: 'red.500',
VAEField: 'blue.500',
VAEModelField: 'teal.500',
};

View File

@@ -119,6 +119,10 @@ const zSDXLRefinerModelFieldType = zFieldTypeBase.extend({
name: z.literal('SDXLRefinerModelField'),
originalType: zStatelessFieldType.optional(),
});
const zSD3MainModelFieldType = zFieldTypeBase.extend({
name: z.literal('SD3MainModelField'),
originalType: zStatelessFieldType.optional(),
});
const zVAEModelFieldType = zFieldTypeBase.extend({
name: z.literal('VAEModelField'),
originalType: zStatelessFieldType.optional(),
@@ -155,6 +159,7 @@ const zStatefulFieldType = z.union([
zMainModelFieldType,
zSDXLMainModelFieldType,
zSDXLRefinerModelFieldType,
zSD3MainModelFieldType,
zVAEModelFieldType,
zLoRAModelFieldType,
zControlNetModelFieldType,
@@ -466,6 +471,28 @@ export const isSDXLRefinerModelFieldInputTemplate = (val: unknown): val is SDXLR
zSDXLRefinerModelFieldInputTemplate.safeParse(val).success;
// #endregion
// #region SD3MainModelField
const zSD3MainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SD3 models only.
const zSD3MainModelFieldInputInstance = zFieldInputInstanceBase.extend({
value: zSD3MainModelFieldValue,
});
const zSD3MainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
type: zSD3MainModelFieldType,
originalType: zFieldType.optional(),
default: zSD3MainModelFieldValue,
});
const zSD3MainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
type: zSD3MainModelFieldType,
});
export type SD3MainModelFieldInputInstance = z.infer<typeof zSD3MainModelFieldInputInstance>;
export type SD3MainModelFieldInputTemplate = z.infer<typeof zSD3MainModelFieldInputTemplate>;
export const isSD3MainModelFieldInputInstance = (val: unknown): val is SD3MainModelFieldInputInstance =>
zSD3MainModelFieldInputInstance.safeParse(val).success;
export const isSD3MainModelFieldInputTemplate = (val: unknown): val is SD3MainModelFieldInputTemplate =>
zSD3MainModelFieldInputTemplate.safeParse(val).success;
// #endregion
// #region VAEModelField
export const zVAEModelFieldValue = zModelIdentifierField.optional();
@@ -662,6 +689,7 @@ export const zStatefulFieldValue = z.union([
zMainModelFieldValue,
zSDXLMainModelFieldValue,
zSDXLRefinerModelFieldValue,
zSD3MainModelFieldValue,
zVAEModelFieldValue,
zLoRAModelFieldValue,
zControlNetModelFieldValue,
@@ -689,6 +717,7 @@ const zStatefulFieldInputInstance = z.union([
zMainModelFieldInputInstance,
zSDXLMainModelFieldInputInstance,
zSDXLRefinerModelFieldInputInstance,
zSD3MainModelFieldInputInstance,
zVAEModelFieldInputInstance,
zLoRAModelFieldInputInstance,
zControlNetModelFieldInputInstance,
@@ -717,6 +746,7 @@ const zStatefulFieldInputTemplate = z.union([
zMainModelFieldInputTemplate,
zSDXLMainModelFieldInputTemplate,
zSDXLRefinerModelFieldInputTemplate,
zSD3MainModelFieldInputTemplate,
zVAEModelFieldInputTemplate,
zLoRAModelFieldInputTemplate,
zControlNetModelFieldInputTemplate,
@@ -746,6 +776,7 @@ const zStatefulFieldOutputTemplate = z.union([
zMainModelFieldOutputTemplate,
zSDXLMainModelFieldOutputTemplate,
zSDXLRefinerModelFieldOutputTemplate,
zSD3MainModelFieldOutputTemplate,
zVAEModelFieldOutputTemplate,
zLoRAModelFieldOutputTemplate,
zControlNetModelFieldOutputTemplate,

View File

@@ -44,7 +44,7 @@ export const zSchedulerField = z.enum([
// #endregion
// #region Model-related schemas
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sd-3', 'sdxl', 'sdxl-refiner']);
const zModelName = z.string().min(3);
export const zModelIdentifier = z.object({
model_name: zModelName,

View File

@@ -217,6 +217,20 @@ const zSDXLRefinerModelFieldOutputInstance = zFieldOutputInstanceBase.extend({
});
// #endregion
// #region SDXLMainModelField
const zSD3MainModelFieldType = zFieldTypeBase.extend({
name: z.literal('SD3MainModelField'),
});
const zSD3MainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SD3 models only.
const zSD3MainModelFieldInputInstance = zFieldInputInstanceBase.extend({
type: zSD3MainModelFieldType,
value: zSD3MainModelFieldValue,
});
const zSD3MainModelFieldOutputInstance = zFieldOutputInstanceBase.extend({
type: zSD3MainModelFieldType,
});
// #endregion
// #region VAEModelField
const zVAEModelFieldType = zFieldTypeBase.extend({
name: z.literal('VAEModelField'),
@@ -339,6 +353,7 @@ const zStatefulFieldType = z.union([
zMainModelFieldType,
zSDXLMainModelFieldType,
zSDXLRefinerModelFieldType,
zSD3MainModelFieldType,
zVAEModelFieldType,
zLoRAModelFieldType,
zControlNetModelFieldType,
@@ -378,6 +393,7 @@ const zStatefulFieldInputInstance = z.union([
zMainModelFieldInputInstance,
zSDXLMainModelFieldInputInstance,
zSDXLRefinerModelFieldInputInstance,
zSD3MainModelFieldInputInstance,
zVAEModelFieldInputInstance,
zLoRAModelFieldInputInstance,
zControlNetModelFieldInputInstance,
@@ -402,6 +418,7 @@ const zStatefulFieldOutputInstance = z.union([
zMainModelFieldOutputInstance,
zSDXLMainModelFieldOutputInstance,
zSDXLRefinerModelFieldOutputInstance,
zSD3MainModelFieldOutputInstance,
zVAEModelFieldOutputInstance,
zLoRAModelFieldOutputInstance,
zControlNetModelFieldOutputInstance,

View File

@@ -1,6 +1,10 @@
import { getStore } from 'app/store/nanostores/store';
import type { RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
import { blobToDataURL } from 'features/canvas/util/blobToDataURL';
import { RG_LAYER_NAME } from 'features/controlLayers/konva/naming';
import { renderers } from 'features/controlLayers/konva/renderers';
import {
isControlAdapterLayer,
isInitialImageLayer,
@@ -16,7 +20,6 @@ import type {
ProcessorConfig,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import { getRegionalPromptLayerBlobs } from 'features/controlLayers/util/getLayerBlobs';
import type { ImageField } from 'features/nodes/types/common';
import {
CONTROL_NET_COLLECT,
@@ -31,11 +34,13 @@ import {
T2I_ADAPTER_COLLECT,
} from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import Konva from 'konva';
import { size } from 'lodash-es';
import { getImageDTO, imagesApi } from 'services/api/endpoints/images';
import type { BaseModelType, ImageDTO, Invocation } from 'services/api/types';
import { assert } from 'tsafe';
//#region addControlLayers
/**
* Adds the control layers to the graph
* @param state The app root state
@@ -90,7 +95,7 @@ export const addControlLayers = async (
const validRGLayers = validLayers.filter(isRegionalGuidanceLayer);
const layerIds = validRGLayers.map((l) => l.id);
const blobs = await getRegionalPromptLayerBlobs(layerIds);
const blobs = await getRGLayerBlobs(layerIds);
assert(size(blobs) === size(layerIds), 'Mismatch between layer IDs and blobs');
for (const layer of validRGLayers) {
@@ -257,6 +262,7 @@ export const addControlLayers = async (
g.upsertMetadata({ control_layers: { layers: validLayers, version: state.controlLayers.present._version } });
return validLayers;
};
//#endregion
//#region Control Adapters
const addGlobalControlAdapterToGraph = (
@@ -509,7 +515,7 @@ const isValidLayer = (layer: Layer, base: BaseModelType) => {
};
//#endregion
//#region Helpers
//#region getMaskImage
const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<ImageDTO> => {
if (layer.uploadedMaskImage) {
const imageDTO = await getImageDTO(layer.uploadedMaskImage.name);
@@ -529,7 +535,9 @@ const getMaskImage = async (layer: RegionalGuidanceLayer, blob: Blob): Promise<I
dispatch(rgLayerMaskImageUploaded({ layerId: layer.id, imageDTO }));
return imageDTO;
};
//#endregion
//#region buildControlImage
const buildControlImage = (
image: ImageWithDims | null,
processedImage: ImageWithDims | null,
@@ -549,3 +557,61 @@ const buildControlImage = (
assert(false, 'Attempted to add unprocessed control image');
};
//#endregion
//#region getRGLayerBlobs
/**
* Get the blobs of all regional prompt layers. Only visible layers are returned.
* @param layerIds The IDs of the layers to get blobs for. If not provided, all regional prompt layers are used.
* @param preview Whether to open a new tab displaying each layer.
* @returns A map of layer IDs to blobs.
*/
const getRGLayerBlobs = async (layerIds?: string[], preview: boolean = false): Promise<Record<string, Blob>> => {
const state = getStore().getState();
const { layers } = state.controlLayers.present;
const { width, height } = state.controlLayers.present.size;
const reduxLayers = layers.filter(isRegionalGuidanceLayer);
const container = document.createElement('div');
const stage = new Konva.Stage({ container, width, height });
renderers.renderLayers(stage, reduxLayers, 1, 'brush', getImageDTO);
const konvaLayers = stage.find<Konva.Layer>(`.${RG_LAYER_NAME}`);
const blobs: Record<string, Blob> = {};
// First remove all layers
for (const layer of konvaLayers) {
layer.remove();
}
// Next render each layer to a blob
for (const layer of konvaLayers) {
if (layerIds && !layerIds.includes(layer.id())) {
continue;
}
const reduxLayer = reduxLayers.find((l) => l.id === layer.id());
assert(reduxLayer, `Redux layer ${layer.id()} not found`);
stage.add(layer);
const blob = await new Promise<Blob>((resolve) => {
stage.toBlob({
callback: (blob) => {
assert(blob, 'Blob is null');
resolve(blob);
},
});
});
if (preview) {
const base64 = await blobToDataURL(blob);
openBase64ImageInTab([
{
base64,
caption: `${reduxLayer.id}: ${reduxLayer.positivePrompt} / ${reduxLayer.negativePrompt}`,
},
]);
}
layer.remove();
blobs[layer.id()] = blob;
}
return blobs;
};
//#endregion

View File

@@ -15,6 +15,7 @@ const FIELD_VALUE_FALLBACK_MAP: Record<StatefulFieldType['name'], FieldValue> =
MainModelField: undefined,
SchedulerField: 'euler',
SDXLMainModelField: undefined,
SD3MainModelField: undefined,
SDXLRefinerModelField: undefined,
StringField: '',
T2IAdapterModelField: undefined,

View File

@@ -15,6 +15,7 @@ import type {
MainModelFieldInputTemplate,
ModelIdentifierFieldInputTemplate,
SchedulerFieldInputTemplate,
SD3MainModelFieldInputTemplate,
SDXLMainModelFieldInputTemplate,
SDXLRefinerModelFieldInputTemplate,
StatefulFieldType,
@@ -193,6 +194,20 @@ const buildRefinerModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLRefiner
return template;
};
const buildSD3MainModelFieldInputTemplate: FieldInputTemplateBuilder<SD3MainModelFieldInputTemplate> = ({
schemaObject,
baseField,
fieldType,
}) => {
const template: SD3MainModelFieldInputTemplate = {
...baseField,
type: fieldType,
default: schemaObject.default ?? undefined,
};
return template;
};
const buildVAEModelFieldInputTemplate: FieldInputTemplateBuilder<VAEModelFieldInputTemplate> = ({
schemaObject,
baseField,
@@ -375,6 +390,7 @@ export const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputT
SchedulerField: buildSchedulerFieldInputTemplate,
SDXLMainModelField: buildSDXLMainModelFieldInputTemplate,
SDXLRefinerModelField: buildRefinerModelFieldInputTemplate,
SD3MainModelField: buildSD3MainModelFieldInputTemplate,
StringField: buildStringFieldInputTemplate,
T2IAdapterModelField: buildT2IAdapterModelFieldInputTemplate,
VAEModelField: buildVAEModelFieldInputTemplate,

View File

@@ -30,6 +30,7 @@ const MODEL_FIELD_TYPES = [
'MainModelField',
'SDXLMainModelField',
'SDXLRefinerModelField',
'SD3MainModelField',
'VAEModelField',
'LoRAModelField',
'ControlNetModelField',

Some files were not shown because too many files have changed in this diff Show More