Compare commits

...

25 Commits

Author SHA1 Message Date
Lincoln Stein
7a701506a4 restore ability of ksamplers to process -v variation options
- supersedes PR #977
- works with both img2img and txt2img
2022-10-07 16:25:58 -04:00
Lincoln Stein
3d7bc074cf autorotate init images using exif orientation tag 2022-10-07 12:06:50 -04:00
Jakub Kolčář
70bb7f4a61 fixed perlin noise generation for mps (macos) - fix for cpu fallback 2022-10-07 10:36:45 -04:00
Lincoln Stein
9c9cb71544 rebuild frontend package 2022-10-07 10:20:02 -04:00
spezialspezial
a7515624b2 remove duplicated code 2022-10-07 08:12:55 -04:00
Lincoln Stein
9f34ddfcea fix crash on len(Nonetype) in k_sampler 2022-10-07 08:05:13 -04:00
Lincoln Stein
c6a7be63b8 fix crash in generate._transparency_check_and_warning() 2022-10-06 21:00:27 -04:00
Lincoln Stein
75165957c9 Revert "realesrgan inherits precision setting from main program"
This reverts commit 5f42d08945.

This fix was intended to solve issue #939, in which ESRGAN generates
dark images when upscaling 4X on certain GTX cards. However, the fix
apparently causes conflicts with some versions of the ESRGAN library,
and this fix will have to wait until after release of 2.0.
2022-10-06 20:52:38 -04:00
Lincoln Stein
d60df54f69 fix k_samplers in img2img - probably correct now 2022-10-06 18:53:54 -04:00
Lincoln Stein
82481a6f9c Merge branch 'release-candidate-2' of github.com:invoke-ai/InvokeAI into release-candidate-2 2022-10-06 13:58:53 -04:00
Lincoln Stein
90d64388ab Merge branch 'release-candidate-2' into release-candidate-2
- This includes #949 "Bug fixes for new Threshold and Perlin Options"
2022-10-06 13:57:43 -04:00
Lincoln Stein
3444c8e6b8 Merge branch 'release-candidate-2' into release-candidate-2 2022-10-06 13:53:27 -04:00
psychedelicious
d84321e080 Adds hotkeys to modal 2022-10-06 13:49:09 -04:00
psychedelicious
6542556ebd Adds next/prev image buttons/hotkeys 2022-10-06 13:48:59 -04:00
blessedcoolant
70bbb670ec Add Basic Hotkey Support 2022-10-06 13:27:42 -04:00
Lincoln Stein
5f42d08945 realesrgan inherits precision setting from main program 2022-10-06 12:23:30 -04:00
blessedcoolant
911c99f125 Fix WebUI CORS Issue 2022-10-06 11:17:48 -04:00
Lincoln Stein
2154dd2349 prevent crashes due to uninitialized free_gpu_mem 2022-10-06 10:54:05 -04:00
Lincoln Stein
f3050fefce bug and warning message fixes
- txt2img2img back to using DDIM as img2img sampler; results produced
  by some k* samplers are just not reliable enough for good user
  experience
- img2img progress message clarifies why img2img steps taken != steps requested
- warn of potential problems when user tries to run img2img on a small init image
2022-10-06 10:39:08 -04:00
Lincoln Stein
183b98384f set perlin & threshold to zero on generator initialization 2022-10-06 09:35:04 -04:00
Peter Baylies
6d475ee290 * Bug fixes for new Threshold and Perlin options 2022-10-06 08:46:27 -04:00
Lincoln Stein
2f29b78a00 enable --hires to use k* samplers 2022-10-05 17:18:32 -04:00
ArDiouscuros
bcb6e2e506 Fix for crashes in txt2img hires fix mode 2022-10-05 17:13:43 -04:00
Lincoln Stein
194b875cf3 Update IMG2IMG.md
Added information on the small initial image size bug.
2022-10-05 15:55:38 -04:00
Lincoln Stein
b2cd98259d rename img files with colons 2022-10-05 12:56:57 -04:00
41 changed files with 1220 additions and 630 deletions

View File

@@ -53,17 +53,14 @@ class InvokeAIWebServer:
cors_allowed_origins = [
'http://127.0.0.1:5173',
'http://localhost:5173',
'http://localhost:9090'
]
additional_allowed_origins = (
opt.cors if opt.cors else []
) # additional CORS allowed origins
if self.host == '127.0.0.1':
cors_allowed_origins.extend(
[
f'http://{self.host}:{self.port}',
f'http://localhost:{self.port}',
]
)
cors_allowed_origins.append(f'http://{self.host}:{self.port}')
if self.host == '127.0.0.1' or self.host == '0.0.0.0':
cors_allowed_origins.append(f'http://localhost:{self.port}')
cors_allowed_origins = (
cors_allowed_origins + additional_allowed_origins
)

View File

Before

Width:  |  Height:  |  Size: 501 KiB

After

Width:  |  Height:  |  Size: 501 KiB

View File

Before

Width:  |  Height:  |  Size: 473 KiB

After

Width:  |  Height:  |  Size: 473 KiB

View File

Before

Width:  |  Height:  |  Size: 618 KiB

After

Width:  |  Height:  |  Size: 618 KiB

View File

Before

Width:  |  Height:  |  Size: 557 KiB

After

Width:  |  Height:  |  Size: 557 KiB

View File

@@ -10,18 +10,39 @@ top of the image you provide, preserving the original's basic shape and layout.
the `--init_img` option as shown here:
```commandline
dream> "waterfall and rainbow" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
tree on a hill with a river, nature photograph, national geographic -I./test-pictures/tree-and-river-sketch.png -f 0.85
```
This will take the original image shown here:
<img src="https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png" width=350>
and generate a new image based on it as shown here:
<img src="https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png" width=350>
The `--init_img (-I)` option gives the path to the seed picture. `--strength (-f)` controls how much
the original will be modified, ranging from `0.0` (keep the original intact), to `1.0` (ignore the
original completely). The default is `0.75`, and ranges from `0.25-0.75` give interesting results.
original completely). The default is `0.75`, and ranges from `0.25-0.90` give interesting results.
Other relevant options include `-C` (classification free guidance scale), and `-s` (steps). Unlike `txt2img`,
adding steps will continuously change the resulting image and it will not converge.
You may also pass a `-v<variation_amount>` option to generate `-n<iterations>` count variants on
the original image. This is done by passing the first generated image
back into img2img the requested number of times. It generates
interesting variants.
Note that the prompt makes a big difference. For example, this slight variation on the prompt produces
a very different image:
`photograph of a tree on a hill with a river`
<img src="https://user-images.githubusercontent.com/111189/194135220-16b62181-b60c-4248-8989-4834a8fd7fbd.png" width=350>
(When designing prompts, think about how the images scraped from the internet were captioned. Very few photographs will
be labeled "photograph" or "photorealistic." They will, however, be captioned with the publication, photographer, camera
model, or film settings.)
If the initial image contains transparent regions, then Stable Diffusion will only draw within the
transparent regions, a process called "inpainting". However, for this to work correctly, the color
information underneath the transparent needs to be preserved, not erased.
@@ -29,6 +50,14 @@ information underneath the transparent needs to be preserved, not erased.
More details can be found here:
[Creating Transparent Images For Inpainting](./INPAINTING.md#creating-transparent-regions-for-inpainting)
**IMPORTANT ISSUE** `img2img` does not work properly on initial images smaller than 512x512. Please scale your
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
GPU card. To fix this, use the --fit option, which downscales the initial image to fit within the box specified
by width x height:
~~~
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
~~~
## How does it actually work, though?
The main difference between `img2img` and `prompt2img` is the starting point. While `prompt2img` always starts with pure

View File

@@ -114,7 +114,7 @@ is depth there, so the enclosing frame is actually a cube.
### "blue sphere:0.25 red cube:0.75 hybrid"
<img src="../assets/prompt-blending/blue-sphere:0.25-red-cube:0.75-hybrid.png" width=256>
<img src="../assets/prompt-blending/blue-sphere-0.25-red-cube-0.75-hybrid.png" width=256>
Now that's interesting. We get neither a blue sphere nor a red cube,
but a red sphere embedded in a brick wall, which represents a melding
@@ -123,14 +123,14 @@ representations. Where is Ludwig Wittgenstein when you need him?
### "blue sphere:0.75 red cube:0.25 hybrid"
<img src="../assets/prompt-blending/blue-sphere:0.75-red-cube:0.25-hybrid.png" width=256>
<img src="../assets/prompt-blending/blue-sphere-0.75-red-cube-0.25-hybrid.png" width=256>
Definitely more blue-spherey. The cube is gone entirely, but it's
really cool abstract art.
### "blue sphere:0.5 red cube:0.5 hybrid"
<img src="../assets/prompt-blending/blue-sphere:0.5-red-cube:0.5-hybrid.png" width=256>
<img src="../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5-hybrid.png" width=256>
Whoa...! I see blue and red, but no spheres or cubes. Is the word
"hybrid" summoning up the concept of some sort of scifi creature?
@@ -138,7 +138,7 @@ Let's find out.
### "blue sphere:0.5 red cube:0.5"
<img src="../assets/prompt-blending/blue-sphere:0.5-red-cube:0.5.png" width=256>
<img src="../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5.png" width=256>
Indeed, removing the word "hybrid" produces an image that is more like
what we'd expect.

483
frontend/dist/assets/index.3a9574b7.js vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -6,8 +6,8 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
<script type="module" crossorigin src="/assets/index.d9916e7a.js"></script>
<link rel="stylesheet" href="/assets/index.853a336f.css">
<script type="module" crossorigin src="/assets/index.3a9574b7.js"></script>
<link rel="stylesheet" href="/assets/index.60ca0ee5.css">
</head>
<body>

View File

@@ -23,6 +23,7 @@
"react": "^18.2.0",
"react-dom": "^18.2.0",
"react-dropzone": "^14.2.2",
"react-hotkeys-hook": "^3.4.7",
"react-icons": "^4.4.0",
"react-redux": "^8.0.2",
"redux-persist": "^6.0.0",

View File

@@ -19,6 +19,8 @@ import { MdDelete, MdFace, MdHd, MdImage, MdInfo } from 'react-icons/md';
import InvokePopover from './InvokePopover';
import UpscaleOptions from '../options/AdvancedOptions/Upscale/UpscaleOptions';
import FaceRestoreOptions from '../options/AdvancedOptions/FaceRestore/FaceRestoreOptions';
import { useHotkeys } from 'react-hotkeys-hook';
import { useToast } from '@chakra-ui/react';
const systemSelector = createSelector(
(state: RootState) => state.system,
@@ -54,6 +56,8 @@ const CurrentImageButtons = ({
}: CurrentImageButtonsProps) => {
const dispatch = useAppDispatch();
const toast = useToast();
const intermediateImage = useAppSelector(
(state: RootState) => state.gallery.intermediateImage
);
@@ -71,19 +75,163 @@ const CurrentImageButtons = ({
const handleClickUseAsInitialImage = () =>
dispatch(setInitialImagePath(image.url));
useHotkeys(
'shift+i',
() => {
if (image) {
handleClickUseAsInitialImage();
toast({
title: 'Sent To Image To Image',
status: 'success',
duration: 2500,
isClosable: true,
});
} else {
toast({
title: 'No Image Loaded',
description: 'No image found to send to image to image module.',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[image]
);
const handleClickUseAllParameters = () =>
dispatch(setAllParameters(image.metadata));
useHotkeys(
'a',
() => {
if (['txt2img', 'img2img'].includes(image?.metadata?.image?.type)) {
handleClickUseAllParameters();
toast({
title: 'Parameters Set',
status: 'success',
duration: 2500,
isClosable: true,
});
} else {
toast({
title: 'Parameters Not Set',
description: 'No metadata found for this image.',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[image]
);
// Non-null assertion: this button is disabled if there is no seed.
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const handleClickUseSeed = () => dispatch(setSeed(image.metadata.image.seed));
useHotkeys(
's',
() => {
if (image?.metadata?.image?.seed) {
handleClickUseSeed();
toast({
title: 'Seed Set',
status: 'success',
duration: 2500,
isClosable: true,
});
} else {
toast({
title: 'Seed Not Set',
description: 'Could not find seed for this image.',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[image]
);
const handleClickUpscale = () => dispatch(runESRGAN(image));
useHotkeys(
'u',
() => {
if (
isESRGANAvailable &&
Boolean(!intermediateImage) &&
isConnected &&
!isProcessing &&
upscalingLevel
) {
handleClickUpscale();
} else {
toast({
title: 'Upscaling Failed',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[
image,
isESRGANAvailable,
intermediateImage,
isConnected,
isProcessing,
upscalingLevel,
]
);
const handleClickFixFaces = () => dispatch(runGFPGAN(image));
useHotkeys(
'r',
() => {
if (
isGFPGANAvailable &&
Boolean(!intermediateImage) &&
isConnected &&
!isProcessing &&
gfpganStrength
) {
handleClickFixFaces();
} else {
toast({
title: 'Face Restoration Failed',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[
image,
isGFPGANAvailable,
intermediateImage,
isConnected,
isProcessing,
gfpganStrength,
]
);
const handleClickShowImageDetails = () =>
setShouldShowImageDetails(!shouldShowImageDetails);
useHotkeys(
'i',
() => {
if (image) {
handleClickShowImageDetails();
} else {
toast({
title: 'Failed to load metadata',
status: 'error',
duration: 2500,
isClosable: true,
});
}
},
[image, shouldShowImageDetails]
);
return (
<div className="current-image-options">

View File

@@ -67,6 +67,44 @@
}
}
.current-image-next-prev-buttons {
position: absolute;
top: 0;
left: 0;
display: flex;
align-items: center;
justify-content: space-between;
width: calc(100% - 2rem);
padding: 0.5rem;
margin-left: 1rem;
z-index: 1;
height: calc($app-metadata-height - 1rem);
pointer-events: none;
}
.next-prev-button-trigger-area {
width: 7rem;
height: 100%;
display: flex;
align-items: center;
pointer-events: auto;
&.prev-button-trigger-area {
justify-content: flex-start;
}
&.next-button-trigger-area {
justify-content: flex-end;
}
}
.next-prev-button {
font-size: 5rem;
fill: var(--text-color-secondary);
filter: drop-shadow(0 0 1rem var(--text-color-secondary));
opacity: 70%;
}
.current-image-metadata-viewer {
border-radius: 0.5rem;
position: absolute;

View File

@@ -1,15 +1,21 @@
import { Image } from '@chakra-ui/react';
import { useAppSelector } from '../../app/store';
import { IconButton, Image } from '@chakra-ui/react';
import { useAppDispatch, useAppSelector } from '../../app/store';
import { RootState } from '../../app/store';
import { useState } from 'react';
import ImageMetadataViewer from './ImageMetadataViewer';
import CurrentImageButtons from './CurrentImageButtons';
import { MdPhoto } from 'react-icons/md';
import { FaAngleLeft, FaAngleRight } from 'react-icons/fa';
import { selectNextImage, selectPrevImage } from './gallerySlice';
/**
* Displays the current image if there is one, plus associated actions.
*/
const CurrentImageDisplay = () => {
const dispatch = useAppDispatch();
const [shouldShowNextPrevButtons, setShouldShowNextPrevButtons] =
useState<boolean>(false);
const { currentImage, intermediateImage } = useAppSelector(
(state: RootState) => state.gallery
);
@@ -19,6 +25,22 @@ const CurrentImageDisplay = () => {
const imageToDisplay = intermediateImage || currentImage;
const handleCurrentImagePreviewMouseOver = () => {
setShouldShowNextPrevButtons(true);
};
const handleCurrentImagePreviewMouseOut = () => {
setShouldShowNextPrevButtons(false);
};
const handleClickPrevButton = () => {
dispatch(selectPrevImage());
};
const handleClickNextButton = () => {
dispatch(selectNextImage());
};
return imageToDisplay ? (
<div className="current-image-display">
<div className="current-image-tools">
@@ -40,6 +62,38 @@ const CurrentImageDisplay = () => {
<ImageMetadataViewer image={imageToDisplay} />
</div>
)}
{!shouldShowImageDetails && (
<div className="current-image-next-prev-buttons">
<div
className="next-prev-button-trigger-area prev-button-trigger-area"
onMouseOver={handleCurrentImagePreviewMouseOver}
onMouseOut={handleCurrentImagePreviewMouseOut}
>
{shouldShowNextPrevButtons && (
<IconButton
aria-label="Previous image"
icon={<FaAngleLeft className="next-prev-button" />}
variant="unstyled"
onClick={handleClickPrevButton}
/>
)}
</div>
<div
className="next-prev-button-trigger-area next-button-trigger-area"
onMouseOver={handleCurrentImagePreviewMouseOver}
onMouseOut={handleCurrentImagePreviewMouseOut}
>
{shouldShowNextPrevButtons && (
<IconButton
aria-label="Next image"
icon={<FaAngleRight className="next-prev-button" />}
variant="unstyled"
onClick={handleClickNextButton}
/>
)}
</div>
</div>
)}
</div>
</div>
) : (

View File

@@ -27,6 +27,7 @@ import { deleteImage } from '../../app/socketio/actions';
import { RootState } from '../../app/store';
import { setShouldConfirmOnDelete, SystemState } from '../system/systemSlice';
import * as InvokeAI from '../../app/invokeai';
import { useHotkeys } from 'react-hotkeys-hook';
interface DeleteImageModalProps {
/**
@@ -67,6 +68,14 @@ const DeleteImageModal = forwardRef(
onClose();
};
useHotkeys(
'del',
() => {
shouldConfirmOnDelete ? onOpen() : handleDelete();
},
[image, shouldConfirmOnDelete]
);
const handleChangeShouldConfirmOnDelete = (
e: ChangeEvent<HTMLInputElement>
) => dispatch(setShouldConfirmOnDelete(!e.target.checked));

View File

@@ -1,8 +1,10 @@
import { Button } from '@chakra-ui/react';
import { useHotkeys } from 'react-hotkeys-hook';
import { MdPhotoLibrary } from 'react-icons/md';
import { requestImages } from '../../app/socketio/actions';
import { RootState, useAppDispatch } from '../../app/store';
import { useAppSelector } from '../../app/store';
import { selectNextImage, selectPrevImage } from './gallerySlice';
import HoverableImage from './HoverableImage';
/**
@@ -25,6 +27,22 @@ const ImageGallery = () => {
dispatch(requestImages());
};
useHotkeys(
'left',
() => {
dispatch(selectPrevImage());
},
[]
);
useHotkeys(
'right',
() => {
dispatch(selectNextImage());
},
[]
);
return (
<div className="image-gallery-container">
{images.length ? (

View File

@@ -1,6 +1,6 @@
import { createSlice } from '@reduxjs/toolkit';
import type { PayloadAction } from '@reduxjs/toolkit';
import { clamp } from 'lodash';
import _, { clamp } from 'lodash';
import * as InvokeAI from '../../app/invokeai';
export interface GalleryState {
@@ -85,6 +85,32 @@ export const gallerySlice = createSlice({
clearIntermediateImage: (state) => {
state.intermediateImage = undefined;
},
selectNextImage: (state) => {
const { images, currentImage } = state;
if (currentImage) {
const currentImageIndex = images.findIndex(
(i) => i.uuid === currentImage.uuid
);
if (_.inRange(currentImageIndex, 0, images.length)) {
const newCurrentImage = images[currentImageIndex + 1];
state.currentImage = newCurrentImage;
state.currentImageUuid = newCurrentImage.uuid;
}
}
},
selectPrevImage: (state) => {
const { images, currentImage } = state;
if (currentImage) {
const currentImageIndex = images.findIndex(
(i) => i.uuid === currentImage.uuid
);
if (_.inRange(currentImageIndex, 1, images.length + 1)) {
const newCurrentImage = images[currentImageIndex - 1];
state.currentImage = newCurrentImage;
state.currentImageUuid = newCurrentImage.uuid;
}
}
},
addGalleryImages: (
state,
action: PayloadAction<{
@@ -122,6 +148,8 @@ export const {
setCurrentImage,
addGalleryImages,
setIntermediateImage,
selectNextImage,
selectPrevImage,
} = gallerySlice.actions;
export default gallerySlice.reducer;

View File

@@ -18,6 +18,8 @@ const SeedOptions = () => {
</Flex>
<Flex gap={2}>
<Threshold />
</Flex>
<Flex gap={2}>
<Perlin />
</Flex>
</Flex>

View File

@@ -4,12 +4,23 @@ import { cancelProcessing } from '../../../app/socketio/actions';
import { useAppDispatch, useAppSelector } from '../../../app/store';
import IAIIconButton from '../../../common/components/IAIIconButton';
import { systemSelector } from '../../../common/hooks/useCheckParameters';
import { useHotkeys } from 'react-hotkeys-hook';
export default function CancelButton() {
const dispatch = useAppDispatch();
const { isProcessing, isConnected } = useAppSelector(systemSelector);
const handleClickCancel = () => dispatch(cancelProcessing());
useHotkeys(
'shift+x',
() => {
if (isConnected || isProcessing) {
handleClickCancel();
}
},
[isConnected, isProcessing]
);
return (
<IAIIconButton
icon={<MdCancel />}

View File

@@ -1,5 +1,5 @@
import { FormControl, Textarea } from '@chakra-ui/react';
import { ChangeEvent, KeyboardEvent } from 'react';
import { ChangeEvent, KeyboardEvent, useRef } from 'react';
import { RootState, useAppDispatch, useAppSelector } from '../../../app/store';
import { generateImage } from '../../../app/socketio/actions';
@@ -9,6 +9,7 @@ import { isEqual } from 'lodash';
import useCheckParameters, {
systemSelector,
} from '../../../common/hooks/useCheckParameters';
import { useHotkeys } from 'react-hotkeys-hook';
export const optionsSelector = createSelector(
(state: RootState) => state.options,
@@ -28,6 +29,7 @@ export const optionsSelector = createSelector(
* Prompt input text area.
*/
const PromptInput = () => {
const promptRef = useRef<HTMLTextAreaElement>(null);
const { prompt } = useAppSelector(optionsSelector);
const { isProcessing } = useAppSelector(systemSelector);
const dispatch = useAppDispatch();
@@ -37,6 +39,24 @@ const PromptInput = () => {
dispatch(setPrompt(e.target.value));
};
useHotkeys(
'ctrl+enter',
() => {
if (isReady) {
dispatch(generateImage());
}
},
[isReady]
);
useHotkeys(
'alt+a',
() => {
promptRef.current?.focus();
},
[]
);
const handleKeyDown = (e: KeyboardEvent<HTMLTextAreaElement>) => {
if (e.key === 'Enter' && e.shiftKey === false && isReady) {
e.preventDefault();
@@ -60,6 +80,7 @@ const PromptInput = () => {
onKeyDown={handleKeyDown}
resize="vertical"
height={30}
ref={promptRef}
/>
</FormControl>
</div>

View File

@@ -246,7 +246,9 @@ export const optionsSlice = createSlice({
if (steps) state.steps = steps;
if (cfg_scale) state.cfgScale = cfg_scale;
if (threshold) state.threshold = threshold;
if (typeof threshold === 'undefined') state.threshold = 0;
if (perlin) state.perlin = perlin;
if (typeof perlin === 'undefined') state.perlin = 0;
if (typeof seamless === 'boolean') state.seamless = seamless;
if (width) state.width = width;
if (height) state.height = height;

View File

@@ -0,0 +1,53 @@
@use '../../../styles/Mixins/' as *;
.hotkeys-modal {
display: grid;
padding: 1rem;
background-color: var(--settings-modal-bg) !important;
row-gap: 1rem;
font-family: Inter;
h1 {
font-size: 1.2rem;
font-weight: bold;
}
}
.hotkeys-modal-items {
display: grid;
row-gap: 0.5rem;
max-height: 32rem;
overflow-y: scroll;
@include HideScrollbar;
}
.hotkey-modal-item {
display: grid;
grid-template-columns: auto max-content;
justify-content: space-between;
align-items: center;
background-color: var(--background-color);
padding: 0.5rem 1rem;
border-radius: 0.3rem;
.hotkey-info {
display: grid;
.hotkey-title {
font-weight: bold;
}
.hotkey-description {
font-size: 0.9rem;
color: var(--text-color-secondary);
}
}
.hotkey-key {
font-size: 0.8rem;
font-weight: bold;
border: 2px solid var(--settings-modal-bg);
padding: 0.2rem 0.5rem;
border-radius: 0.3rem;
}
}

View File

@@ -0,0 +1,98 @@
import {
Modal,
ModalCloseButton,
ModalContent,
ModalOverlay,
useDisclosure,
} from '@chakra-ui/react';
import React, { cloneElement, ReactElement } from 'react';
import HotkeysModalItem from './HotkeysModalItem';
type HotkeysModalProps = {
/* The button to open the Settings Modal */
children: ReactElement;
};
export default function HotkeysModal({ children }: HotkeysModalProps) {
const {
isOpen: isHotkeyModalOpen,
onOpen: onHotkeysModalOpen,
onClose: onHotkeysModalClose,
} = useDisclosure();
const hotkeys = [
{ title: 'Invoke', desc: 'Generate an image', hotkey: 'Ctrl+Enter' },
{ title: 'Cancel', desc: 'Cancel image generation', hotkey: 'Shift+X' },
{
title: 'Set Seed',
desc: 'Use the seed of the current image',
hotkey: 'S',
},
{
title: 'Set Parameters',
desc: 'Use all parameters of the current image',
hotkey: 'A',
},
{ title: 'Restore Faces', desc: 'Restore the current image', hotkey: 'R' },
{ title: 'Upscale', desc: 'Upscale the current image', hotkey: 'U' },
{
title: 'Show Info',
desc: 'Show metadata info of the current image',
hotkey: 'I',
},
{
title: 'Send To Image To Image',
desc: 'Send the current image to Image to Image module',
hotkey: 'Shift+I',
},
{ title: 'Delete Image', desc: 'Delete the current image', hotkey: 'Del' },
{
title: 'Focus Prompt',
desc: 'Focus the prompt input area',
hotkey: 'Alt+A',
},
{
title: 'Previous Image',
desc: 'Display the previous image in the gallery',
hotkey: 'Arrow left',
},
{
title: 'Next Image',
desc: 'Display the next image in the gallery',
hotkey: 'Arrow right',
},
];
const renderHotkeyModalItems = () => {
const hotkeyModalItemsToRender: ReactElement[] = [];
hotkeys.forEach((hotkey, i) => {
hotkeyModalItemsToRender.push(
<HotkeysModalItem
key={i}
title={hotkey.title}
description={hotkey.desc}
hotkey={hotkey.hotkey}
/>
);
});
return hotkeyModalItemsToRender;
};
return (
<>
{cloneElement(children, {
onClick: onHotkeysModalOpen,
})}
<Modal isOpen={isHotkeyModalOpen} onClose={onHotkeysModalClose}>
<ModalOverlay />
<ModalContent className="hotkeys-modal">
<ModalCloseButton />
<h1>Keyboard Shorcuts</h1>
<div className="hotkeys-modal-items">{renderHotkeyModalItems()}</div>
</ModalContent>
</Modal>
</>
);
}

View File

@@ -0,0 +1,20 @@
import React from 'react';
interface HotkeysModalProps {
hotkey: string;
title: string;
description?: string;
}
export default function HotkeysModalItem(props: HotkeysModalProps) {
const { title, hotkey, description } = props;
return (
<div className="hotkey-modal-item">
<div className="hotkey-info">
<p className="hotkey-title">{title}</p>
{description && <p className="hotkey-description">{description}</p>}
</div>
<div className="hotkey-key">{hotkey}</div>
</div>
);
}

View File

@@ -2,6 +2,7 @@
.settings-modal {
background-color: var(--settings-modal-bg) !important;
font-family: Inter;
.settings-modal-content {
display: grid;

View File

@@ -21,7 +21,7 @@
.site-header-right-side {
display: grid;
grid-template-columns: repeat(5, max-content);
grid-template-columns: repeat(6, max-content);
align-items: center;
column-gap: 0.5rem;
}

View File

@@ -1,9 +1,11 @@
import { IconButton, Link, useColorMode } from '@chakra-ui/react';
import { FaSun, FaMoon, FaGithub } from 'react-icons/fa';
import { MdHelp, MdSettings } from 'react-icons/md';
import { MdHelp, MdKeyboard, MdSettings } from 'react-icons/md';
import InvokeAILogo from '../../assets/images/logo.png';
import HotkeysModal from './HotkeysModal/HotkeysModal';
import SettingsModal from './SettingsModal/SettingsModal';
import StatusIndicator from './StatusIndicator';
@@ -40,6 +42,16 @@ const SiteHeader = () => {
/>
</SettingsModal>
<HotkeysModal>
<IconButton
aria-label="Hotkeys"
variant="link"
fontSize={24}
size={'sm'}
icon={<MdKeyboard />}
/>
</HotkeysModal>
<IconButton
aria-label="Link to Github Issues"
variant="link"

View File

@@ -11,6 +11,7 @@
@use '../features/system/SiteHeader.scss';
@use '../features/system/StatusIndicator.scss';
@use '../features/system/SettingsModal/SettingsModal.scss';
@use '../features/system/HotkeysModal/HotkeysModal.scss';
@use '../features/system/Console.scss';
// options

View File

@@ -1582,6 +1582,11 @@ balanced-match@^1.0.0:
resolved "https://registry.yarnpkg.com/balanced-match/-/balanced-match-1.0.2.tgz#e83e3a7e3f300b34cb9d87f615fa0cbf357690ee"
integrity sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==
base64id@2.0.0, base64id@~2.0.0:
version "2.0.0"
resolved "https://registry.yarnpkg.com/base64id/-/base64id-2.0.0.tgz#2770ac6bc47d312af97a8bf9a634342e0cd25cb6"
integrity sha512-lGe34o6EHj9y3Kts9R4ZYs/Gr+6N7MCaMlIFA3F1R2O5/m7K06AxfSeO5530PEERE6/WyEg3lsuyw4GHlPZHog==
binary-extensions@^2.0.0:
version "2.2.0"
resolved "https://registry.yarnpkg.com/binary-extensions/-/binary-extensions-2.2.0.tgz#75f502eeaf9ffde42fc98829645be4ea76bd9e2d"
@@ -2359,6 +2364,11 @@ hoist-non-react-statics@^3.3.0, hoist-non-react-statics@^3.3.1, hoist-non-react-
dependencies:
react-is "^16.7.0"
hotkeys-js@3.9.4:
version "3.9.4"
resolved "https://registry.yarnpkg.com/hotkeys-js/-/hotkeys-js-3.9.4.tgz#ce1aa4c3a132b6a63a9dd5644fc92b8a9b9cbfb9"
integrity sha512-2zuLt85Ta+gIyvs4N88pCYskNrxf1TFv3LR9t5mdAZIX8BcgQQ48F2opUptvHa6m8zsy5v/a0i9mWzTrlNWU0Q==
ignore@^5.2.0:
version "5.2.0"
resolved "https://registry.yarnpkg.com/ignore/-/ignore-5.2.0.tgz#6d3bac8fa7fe0d45d9f9be7bac2fc279577e345a"
@@ -2618,7 +2628,7 @@ normalize-path@^3.0.0, normalize-path@~3.0.0:
resolved "https://registry.yarnpkg.com/normalize-path/-/normalize-path-3.0.0.tgz#0dcd69ff23a1c9b11fd0978316644a0388216a65"
integrity sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==
object-assign@^4.1.1:
object-assign@^4, object-assign@^4.1.1:
version "4.1.1"
resolved "https://registry.yarnpkg.com/object-assign/-/object-assign-4.1.1.tgz#2109adc7965887cfc05cbbd442cac8bfbb360863"
integrity sha512-rJgTQnkUnH1sFw8yT6VSU3zD3sWmu6sZhIseY8VX+GRu3P6F7Fu+JNDoXfklElbLJSnc3FUQHVe4cU5hj+BcUg==
@@ -2818,6 +2828,13 @@ react-focus-lock@^2.9.1:
use-callback-ref "^1.3.0"
use-sidecar "^1.1.2"
react-hotkeys-hook@^3.4.7:
version "3.4.7"
resolved "https://registry.yarnpkg.com/react-hotkeys-hook/-/react-hotkeys-hook-3.4.7.tgz#e16a0a85f59feed9f48d12cfaf166d7df4c96b7a"
integrity sha512-+bbPmhPAl6ns9VkXkNNyxlmCAIyDAcWbB76O4I0ntr3uWCRuIQf/aRLartUahe9chVMPj+OEzzfk3CQSjclUEQ==
dependencies:
hotkeys-js "3.9.4"
react-icons@^4.4.0:
version "4.4.0"
resolved "https://registry.yarnpkg.com/react-icons/-/react-icons-4.4.0.tgz#a13a8a20c254854e1ec9aecef28a95cdf24ef703"
@@ -3044,6 +3061,18 @@ socket.io-parser@~4.2.0:
"@socket.io/component-emitter" "~3.1.0"
debug "~4.3.1"
socket.io@^4.5.2:
version "4.5.2"
resolved "https://registry.yarnpkg.com/socket.io/-/socket.io-4.5.2.tgz#1eb25fd380ab3d63470aa8279f8e48d922d443ac"
integrity sha512-6fCnk4ARMPZN448+SQcnn1u8OHUC72puJcNtSgg2xS34Cu7br1gQ09YKkO1PFfDn/wyUE9ZgMAwosJed003+NQ==
dependencies:
accepts "~1.3.4"
base64id "~2.0.0"
debug "~4.3.2"
engine.io "~6.2.0"
socket.io-adapter "~2.4.0"
socket.io-parser "~4.2.0"
"source-map-js@>=0.6.2 <2.0.0", source-map-js@^1.0.2:
version "1.0.2"
resolved "https://registry.yarnpkg.com/source-map-js/-/source-map-js-1.0.2.tgz#adbc361d9c62df380125e7f161f71c826f1e490c"

View File

@@ -21,6 +21,8 @@ class Generator():
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.perlin = 0.0
self.threshold = 0
self.variation_amount = 0
self.with_variations = []
@@ -122,8 +124,8 @@ class Generator():
raise NotImplementedError("get_noise() must be implemented in a descendent class")
def get_perlin_noise(self,width,height):
return torch.stack([rand_perlin_2d((height, width), (8, 8)).to(self.model.device) for _ in range(self.latent_channels)], dim=0)
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
return torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
def new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)

View File

@@ -49,6 +49,7 @@ class Img2Img(Generator):
img_callback = step_callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
init_latent = self.init_latent, # changes how noising is performed in ksampler
)
return self.sample_to_image(samples)

View File

@@ -27,7 +27,7 @@ class Inpaint(Img2Img):
# klms samplers not supported yet, so ignore previous sampler
if isinstance(sampler,KSampler):
print(
f">> sampler '{sampler.__class__.__name__}' is not yet supported for inpainting, using DDIMSampler instead."
f">> Using recommended DDIM sampler for inpainting."
)
sampler = DDIMSampler(self.model, device=self.model.device)

View File

@@ -40,7 +40,12 @@ class Txt2Img2Img(Generator):
init_width // self.downsampling_factor,
]
x = self.get_noise(init_width, init_height)
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
#x = self.get_noise(init_width, init_height)
x = x_T
if self.free_gpu_mem and self.model.model.device != self.model.device:
self.model.model.to(self.model.device)
@@ -59,7 +64,7 @@ class Txt2Img2Img(Generator):
)
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height}"
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
# resizing
@@ -70,29 +75,19 @@ class Txt2Img2Img(Generator):
)
t_enc = int(strength * steps)
x = None
# Other samplers not supported yet, so ignore previous sampler
if not isinstance(sampler,DDIMSampler):
print(
f"\n>> Sampler '{sampler.__class__.__name__}' is not yet supported for img2img. Using DDIM sampler"
)
img_sampler = DDIMSampler(self.model, device=self.model.device)
img_sampler.make_schedule(
ddim_sampler = DDIMSampler(self.model, device=self.model.device)
ddim_sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
else:
img_sampler = sampler
z_enc = img_sampler.stochastic_encode(
)
z_enc = ddim_sampler.stochastic_encode(
samples,
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
noise=self.get_noise(width,height,False)
)
# decode it
samples = img_sampler.decode(
samples = ddim_sampler.decode(
z_enc,
c,
t_enc,
@@ -110,17 +105,28 @@ class Txt2Img2Img(Generator):
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
def get_noise(self,width,height,scale = True):
# print(f"Get noise: {width}x{height}")
if scale:
trained_square = 512 * 512
actual_square = width * height
scale = math.sqrt(trained_square / actual_square)
scaled_width = math.ceil(scale * width / 64) * 64
scaled_height = math.ceil(scale * height / 64) * 64
else:
scaled_width = width
scaled_height = height
device = self.model.device
if device.type == 'mps':
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device='cpu').to(device)
else:
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device=device)

View File

@@ -13,8 +13,6 @@ class Outpaint(object):
seed = old_opt.seed
prompt = old_opt.prompt
print(f'DEBUG: old seed={seed}, old prompt = {prompt}')
def wrapped_callback(img,seed,**kwargs):
image_callback(img,seed,use_prefix=prefix,**kwargs)

View File

@@ -34,23 +34,7 @@ from ldm.dream.image_util import InitImageResizer
from ldm.dream.devices import choose_torch_device, choose_precision
from ldm.dream.conditioning import get_uc_and_c
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
def new_func(*args, **kw):
device = kw.get("device", "mps")
kw["device"]="cpu"
return orig(*args, **kw).to(device)
return new_func
return orig
torch.rand = fix_func(torch.rand)
torch.rand_like = fix_func(torch.rand_like)
torch.randn = fix_func(torch.randn)
torch.randn_like = fix_func(torch.randn_like)
torch.randint = fix_func(torch.randint)
torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
@@ -70,23 +54,7 @@ torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
def new_func(*args, **kw):
device = kw.get("device", "mps")
kw["device"]="cpu"
return orig(*args, **kw).to(device)
return new_func
return orig
torch.rand = fix_func(torch.rand)
torch.rand_like = fix_func(torch.rand_like)
torch.randn = fix_func(torch.randn)
torch.randn_like = fix_func(torch.randn_like)
torch.randint = fix_func(torch.randint)
torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)
"""Simplified text to image API for stable diffusion/latent diffusion
@@ -174,7 +142,8 @@ class Generate:
config = None,
gfpgan=None,
codeformer=None,
esrgan=None
esrgan=None,
free_gpu_mem=False,
):
models = OmegaConf.load(conf)
mconfig = models[model]
@@ -201,6 +170,7 @@ class Generate:
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.free_gpu_mem = free_gpu_mem
# Note that in previous versions, there was an option to pass the
# device to Generate(). However the device was then ignored, so
@@ -417,7 +387,8 @@ class Generate:
generator = self._make_txt2img()
generator.set_variation(
self.seed, variation_amount, with_variations)
self.seed, variation_amount, with_variations
)
results = generator.generate(
prompt,
iterations=iterations,
@@ -626,18 +597,14 @@ class Generate:
height,
)
if image.width < self.width and image.height < self.height:
print(f'>> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions')
# if image has a transparent area and no mask was provided, then try to generate mask
if self._has_transparency(image) and not mask:
print(
'>> Initial image has transparent areas. Will inpaint in these regions.')
if self._check_for_erasure(image):
print(
'>> WARNING: Colors underneath the transparent region seem to have been erased.\n',
'>> Inpainting will be suboptimal. Please preserve the colors when making\n',
'>> a transparency mask, or provide mask explicitly using --init_mask (-M).'
)
if self._has_transparency(image):
self._transparency_check_and_warning(image, mask)
# this returns a torch tensor
init_mask = self._create_init_mask(image,width,height,fit=fit)
init_mask = self._create_init_mask(image, width, height, fit=fit)
if (image.width * image.height) > (self.width * self.height):
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
@@ -881,6 +848,7 @@ class Generate:
print(
f'>> loaded input image of size {image.width}x{image.height}'
)
image = ImageOps.exif_transpose(image)
return image
def _create_init_image(self, image, width, height, fit=True):
@@ -889,7 +857,6 @@ class Generate:
image = self._fit_image(image, (width, height))
else:
image = self._squeeze_image(image)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
@@ -906,7 +873,6 @@ class Generate:
image = self._fit_image(image, (width, height))
else:
image = self._squeeze_image(image)
image = image.resize((image.width//downsampling, image.height //
downsampling), resample=Image.Resampling.NEAREST)
image = np.array(image)
@@ -953,6 +919,17 @@ class Generate:
colored += 1
return colored == 0
def _transparency_check_and_warning(self,image, mask):
if not mask:
print(
'>> Initial image has transparent areas. Will inpaint in these regions.')
if self._check_for_erasure(image):
print(
'>> WARNING: Colors underneath the transparent region seem to have been erased.\n',
'>> Inpainting will be suboptimal. Please preserve the colors when making\n',
'>> a transparency mask, or provide mask explicitly using --init_mask (-M).'
)
def _squeeze_image(self, image):
x, y, resize_needed = self._resolution_check(image.width, image.height)
if resize_needed:

View File

@@ -5,6 +5,12 @@ import torch.nn as nn
from ldm.dream.devices import choose_torch_device
from ldm.models.diffusion.sampler import Sampler
from ldm.util import rand_perlin_2d
from ldm.modules.diffusionmodules.util import (
make_ddim_sampling_parameters,
make_ddim_timesteps,
noise_like,
extract_into_tensor,
)
def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
if threshold <= 0.0:
@@ -51,8 +57,9 @@ class KSampler(Sampler):
schedule,
steps=model.num_timesteps,
)
self.ds = None
self.s_in = None
self.sigmas = None
self.ds = None
self.s_in = None
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
@@ -81,13 +88,54 @@ class KSampler(Sampler):
)
self.model = outer_model
self.ddim_num_steps = ddim_num_steps
sigmas = self.model.get_sigmas(ddim_num_steps)
self.sigmas = sigmas
# we don't need both of these sigmas, but storing them here to make
# comparison easier later on
self.model_sigmas = self.model.get_sigmas(ddim_num_steps)
self.karras_sigmas = K.sampling.get_sigmas_karras(
n=ddim_num_steps,
sigma_min=self.model.sigmas[0].item(),
sigma_max=self.model.sigmas[-1].item(),
rho=7.,
device=self.device,
)
self.sigmas = self.karras_sigmas
# ALERT: We are completely overriding the sample() method in the base class, which
# means that inpainting will (probably?) not work correctly. To get this to work
# we need to be able to modify the inner loop of k_heun, k_lms, etc, as is done
# in an ugly way in the lstein/k-diffusion branch.
# means that inpainting will not work. To get this to work we need to be able to
# modify the inner loop of k_heun, k_lms, etc, as is done in an ugly way
# in the lstein/k-diffusion branch.
@torch.no_grad()
def decode(
self,
z_enc,
cond,
t_enc,
img_callback=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_original_steps=False,
init_latent = None,
mask = None,
):
samples,_ = self.sample(
batch_size = 1,
S = t_enc,
x_T = z_enc,
shape = z_enc.shape[1:],
conditioning = cond,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning = unconditional_conditioning,
img_callback = img_callback,
x0 = init_latent,
mask = mask
)
return samples
# this is a no-op, provided here for compatibility with ddim and plms samplers
@torch.no_grad()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
return x0
# Most of these arguments are ignored and are only present for compatibility with
# other samples
@@ -123,24 +171,27 @@ class KSampler(Sampler):
if img_callback is not None:
img_callback(k_callback_values['x'],k_callback_values['i'])
# sigmas = self.model.get_sigmas(S)
# sigmas are now set up in make_schedule - we take the last steps items
# sigmas are set up in make_schedule - we take the last steps items
total_steps = len(self.sigmas)
sigmas = self.sigmas[-S-1:]
# x_T is variation noise. When an init image is provided (in x0) we need to add
# more randomness to the starting image.
if x_T is not None:
x = x_T * sigmas[0]
if x0 is not None:
x = x_T + torch.randn_like(x0, device=self.device) * sigmas[0]
else:
x = x_T * sigmas[0]
else:
x = (
torch.randn([batch_size, *shape], device=self.device)
* sigmas[0]
) # for GPU draw
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
extra_args = {
'cond': conditioning,
'uncond': unconditional_conditioning,
'cond_scale': unconditional_guidance_scale,
}
print(f'>> Sampling with k_{self.schedule}')
print(f'>> Sampling with k_{self.schedule} starting at step {len(self.sigmas)-S-1} of {len(self.sigmas)-1} ({S} new sampling steps)')
return (
K.sampling.__dict__[f'sample_{self.schedule}'](
model_wrap_cfg, x, sigmas, extra_args=extra_args,
@@ -149,6 +200,8 @@ class KSampler(Sampler):
None,
)
# this code will support inpainting if and when ksampler API modified or
# a workaround is found.
@torch.no_grad()
def p_sample(
self,
@@ -196,10 +249,12 @@ class KSampler(Sampler):
return img, None, None
def get_initial_image(self,x_T,shape,steps):
print(f'WARNING: ksampler.get_initial_image(): get_initial_image needs testing')
x = (torch.randn(shape, device=self.device) * self.sigmas[0])
if x_T is not None:
return x_T + x_T * self.sigmas[0]
else:
return (torch.randn(shape, device=self.device) * self.sigmas[0])
return x
def prepare_to_sample(self,t_enc):
self.t_enc = t_enc
@@ -213,29 +268,3 @@ class KSampler(Sampler):
'''
return self.model.inner_model.q_sample(x0,ts)
@torch.no_grad()
def decode(
self,
z_enc,
cond,
t_enc,
img_callback=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_original_steps=False,
init_latent = None,
mask = None,
):
samples,_ = self.sample(
batch_size = 1,
S = t_enc,
x_T = z_enc,
shape = z_enc.shape[1:],
conditioning = cond,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning = unconditional_conditioning,
img_callback = img_callback,
x0 = init_latent,
mask = mask
)
return samples

View File

@@ -39,6 +39,7 @@ class Sampler(object):
ddim_eta=0.0,
verbose=False,
):
self.total_steps = ddim_num_steps
self.ddim_timesteps = make_ddim_timesteps(
ddim_discr_method=ddim_discretize,
num_ddim_timesteps=ddim_num_steps,
@@ -211,6 +212,7 @@ class Sampler(object):
if ddim_use_original_steps
else np.flip(timesteps)
)
total_steps=steps
iterator = tqdm(
@@ -305,7 +307,7 @@ class Sampler(object):
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
print(f'>> Running {self.__class__.__name__} Sampling with {total_steps} timesteps')
print(f'>> Running {self.__class__.__name__} sampling starting at step {self.total_steps - t_start} of {self.total_steps} ({total_steps} new sampling steps)')
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
x_dec = x_latent

View File

@@ -214,15 +214,19 @@ def parallel_data_prefetch(
else:
return gather_res
def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1) % 1
angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1)
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1
rand_val = torch.rand(res[0]+1, res[1]+1)
angles = 2*math.pi*rand_val
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1)
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])

View File

@@ -75,7 +75,8 @@ def main():
precision = opt.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan
esrgan=esrgan,
free_gpu_mem=opt.free_gpu_mem,
)
except (FileNotFoundError, IOError, KeyError) as e:
print(f'{e}. Aborting.')
@@ -104,8 +105,6 @@ def main():
# preload the model
gen.load_model()
#set additional option
gen.free_gpu_mem = opt.free_gpu_mem
# web server loops forever
if opt.web or opt.gui: