mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 08:28:14 -05:00
Compare commits
316 Commits
test/node-
...
releases/v
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cfe8708996 | ||
|
|
4a0a1c30db | ||
|
|
3432fd72f8 | ||
|
|
05a43c41f9 | ||
|
|
bb48617101 | ||
|
|
aa2f68f608 | ||
|
|
fbccce7573 | ||
|
|
a35087ee6e | ||
|
|
03e463dc89 | ||
|
|
d467e138a4 | ||
|
|
ba4aaea45b | ||
|
|
53eb23b8b6 | ||
|
|
8b969053e7 | ||
|
|
98a076260b | ||
|
|
b3f4f28d76 | ||
|
|
acee4bd282 | ||
|
|
50d254fdb7 | ||
|
|
0cfc1c5f86 | ||
|
|
1419977e89 | ||
|
|
a953944894 | ||
|
|
a4cdaa245e | ||
|
|
105a4234b0 | ||
|
|
34c563060f | ||
|
|
d45c47db81 | ||
|
|
c771a4027f | ||
|
|
3fd27b1aa9 | ||
|
|
d59e534cad | ||
|
|
0c97a1e7e7 | ||
|
|
c8b109f52e | ||
|
|
a2613948d8 | ||
|
|
f8392b2f78 | ||
|
|
358116bc22 | ||
|
|
1e3590111d | ||
|
|
063b800280 | ||
|
|
3935bf92c8 | ||
|
|
066e09b517 | ||
|
|
869b4a8d49 | ||
|
|
13919ff300 | ||
|
|
634e5652ef | ||
|
|
9bdc718df5 | ||
|
|
73ca8ccdb3 | ||
|
|
f37ffda966 | ||
|
|
5a9777d443 | ||
|
|
8072c05ee0 | ||
|
|
75ff4f4ca3 | ||
|
|
30df123221 | ||
|
|
06193ddbe8 | ||
|
|
ce5122f87c | ||
|
|
43ebd68313 | ||
|
|
ec19fcafb1 | ||
|
|
6fcc7d4c4b | ||
|
|
912087e4dc | ||
|
|
593fb95213 | ||
|
|
6d821b32d3 | ||
|
|
297f96c16b | ||
|
|
0e53b27655 | ||
|
|
35ae9f6e71 | ||
|
|
a1d9e6b871 | ||
|
|
f05379f965 | ||
|
|
e34e6d6e80 | ||
|
|
86cb53342a | ||
|
|
e3de996525 | ||
|
|
25a71a1791 | ||
|
|
d16583ad1c | ||
|
|
46db1dd18f | ||
|
|
4c9344b0ee | ||
|
|
cba31efd78 | ||
|
|
4d01b5c0f2 | ||
|
|
e02af8f518 | ||
|
|
c485cf568b | ||
|
|
51451cbf21 | ||
|
|
0363a06963 | ||
|
|
cc280cbef1 | ||
|
|
7544eadd48 | ||
|
|
7d683b4db6 | ||
|
|
60b3c6a201 | ||
|
|
88c8cb61f0 | ||
|
|
43fbac26df | ||
|
|
627444e17c | ||
|
|
5601858f4f | ||
|
|
b152fbf72f | ||
|
|
f95111772a | ||
|
|
14ce7cf09c | ||
|
|
28a1a6939f | ||
|
|
6d2b4013f8 | ||
|
|
ca7a7b57bb | ||
|
|
c5d0e65a24 | ||
|
|
6cc7b55ec5 | ||
|
|
883e9973ec | ||
|
|
9e7d829906 | ||
|
|
456a0a59e0 | ||
|
|
4f2bf7e7e8 | ||
|
|
77e93888cf | ||
|
|
fa54974bff | ||
|
|
7ac99d6bc3 | ||
|
|
aa82f9360c | ||
|
|
5aefa49d7d | ||
|
|
b6e9cd4fe2 | ||
|
|
6d1057c560 | ||
|
|
b4790002c7 | ||
|
|
e02700a782 | ||
|
|
83ce8ef1ec | ||
|
|
19e487b5ee | ||
|
|
aa4b56baf2 | ||
|
|
d3a2be69f1 | ||
|
|
02c087ee37 | ||
|
|
cab8d9bb20 | ||
|
|
28e6a7139b | ||
|
|
1625854eaf | ||
|
|
3940371851 | ||
|
|
34213acd39 | ||
|
|
d3d42d4278 | ||
|
|
9638c321f5 | ||
|
|
f87b042162 | ||
|
|
183e2c3ee0 | ||
|
|
098d506b95 | ||
|
|
7aa33c352b | ||
|
|
bf62553150 | ||
|
|
2b08d9e53b | ||
|
|
8954953eca | ||
|
|
eb2fcbe28a | ||
|
|
e78b36a9f7 | ||
|
|
144ede031e | ||
|
|
8ca37bba33 | ||
|
|
a608340c89 | ||
|
|
7fecebf7db | ||
|
|
b915d74127 | ||
|
|
6ec347bd41 | ||
|
|
e54843acc9 | ||
|
|
0960518088 | ||
|
|
21de74fac4 | ||
|
|
8ce9b6c51e | ||
|
|
b64ade586d | ||
|
|
3c44a74ba5 | ||
|
|
24d0901d8e | ||
|
|
b1b5f70ea6 | ||
|
|
6392098961 | ||
|
|
2c39aec22d | ||
|
|
d066bc6d19 | ||
|
|
e487bcd0f7 | ||
|
|
e0f8274f49 | ||
|
|
69e3513e90 | ||
|
|
7e706f02cb | ||
|
|
41dad2013a | ||
|
|
3f554d6824 | ||
|
|
202c5a48c6 | ||
|
|
2d71f6f4b8 | ||
|
|
0420874f56 | ||
|
|
f222b871e9 | ||
|
|
8b8d589033 | ||
|
|
f4c895257a | ||
|
|
10af5a26f2 | ||
|
|
1088adeb0a | ||
|
|
ad49380cd1 | ||
|
|
b2fe24c401 | ||
|
|
b128db1d58 | ||
|
|
f7f0630d97 | ||
|
|
5075e9c899 | ||
|
|
3c1549cf5c | ||
|
|
9faa53ceb1 | ||
|
|
32672cfeda | ||
|
|
b5266f89ad | ||
|
|
7a3b467ce0 | ||
|
|
bdfdf854fc | ||
|
|
1c38cce16d | ||
|
|
4cdca45228 | ||
|
|
bfed08673a | ||
|
|
c1aa2b82eb | ||
|
|
0a09f84b07 | ||
|
|
b7938d9ca9 | ||
|
|
977e348a35 | ||
|
|
864f2270c3 | ||
|
|
8b44d83859 | ||
|
|
0b6315de71 | ||
|
|
578e682562 | ||
|
|
92b49e45bb | ||
|
|
b05b8ef677 | ||
|
|
382e2139bd | ||
|
|
d7ebe3f048 | ||
|
|
5c2bdf626b | ||
|
|
390a1c9fbb | ||
|
|
c46d9b8768 | ||
|
|
ef8d9843dd | ||
|
|
dc2e1a42bc | ||
|
|
2a3909da94 | ||
|
|
e0dddbd38e | ||
|
|
231b7a5000 | ||
|
|
b7773c9962 | ||
|
|
11c501fc80 | ||
|
|
7be5743011 | ||
|
|
c48e648cbb | ||
|
|
29b4ddcc7f | ||
|
|
7ee13879e3 | ||
|
|
ced297ed21 | ||
|
|
3e813ead1f | ||
|
|
820ec08e9a | ||
|
|
4dd289b337 | ||
|
|
b60b1e359e | ||
|
|
208286e97a | ||
|
|
f7b64304ae | ||
|
|
834751e877 | ||
|
|
e7a10d310f | ||
|
|
2ce07a4730 | ||
|
|
45d5ab20ec | ||
|
|
343df03a92 | ||
|
|
b57acb7353 | ||
|
|
7bf7c16a5d | ||
|
|
56340c24c8 | ||
|
|
afe9756667 | ||
|
|
fcea65770f | ||
|
|
16664da5b6 | ||
|
|
c104807201 | ||
|
|
990ce9a1da | ||
|
|
18095ecc44 | ||
|
|
fe19f11abf | ||
|
|
c2f074dc2f | ||
|
|
e02a557454 | ||
|
|
fca60862e2 | ||
|
|
94c186bb4c | ||
|
|
a22c8cb3a1 | ||
|
|
781e8521d5 | ||
|
|
d114d0ba95 | ||
|
|
cc8b7a74da | ||
|
|
388554448a | ||
|
|
cadc0839a6 | ||
|
|
d5160648d0 | ||
|
|
6d0ea42a94 | ||
|
|
2c1100509f | ||
|
|
c34b359c36 | ||
|
|
77d135967f | ||
|
|
ebf26687cb | ||
|
|
1c8991a3df | ||
|
|
3d52656176 | ||
|
|
a2777decd4 | ||
|
|
d219167849 | ||
|
|
090db1ab3a | ||
|
|
468253aa14 | ||
|
|
3ee9a21647 | ||
|
|
0d823901ef | ||
|
|
7ee55489bb | ||
|
|
163ece9aee | ||
|
|
7b2e6deaf1 | ||
|
|
63f94579c5 | ||
|
|
3dfff278aa | ||
|
|
aa7d945b23 | ||
|
|
88db094cf2 | ||
|
|
50a0691514 | ||
|
|
a255624984 | ||
|
|
2630fe3608 | ||
|
|
dee6f86d5e | ||
|
|
6ca6cf713c | ||
|
|
3f7d5b4e0f | ||
|
|
91596d9527 | ||
|
|
d669f0855d | ||
|
|
b2d5b53b5f | ||
|
|
ddc148b70b | ||
|
|
c2d43f007b | ||
|
|
7703bf2ca1 | ||
|
|
b5e1ba34b3 | ||
|
|
23fdf0156f | ||
|
|
cdbf40c9b2 | ||
|
|
46c9dcb113 | ||
|
|
6df79045fa | ||
|
|
d776e0a0a9 | ||
|
|
94ec3da7b5 | ||
|
|
f44496a579 | ||
|
|
99fe95ab03 | ||
|
|
95ecb1a0c1 | ||
|
|
bd15874cf6 | ||
|
|
30ab81b6bb | ||
|
|
78195491bc | ||
|
|
58aa159a50 | ||
|
|
d8f7c19030 | ||
|
|
c63390f6e1 | ||
|
|
cbd451c610 | ||
|
|
b0f91f2e75 | ||
|
|
3ac68cde66 | ||
|
|
a69b1cd598 | ||
|
|
65a76a086b | ||
|
|
07381e5a26 | ||
|
|
6bb378a101 | ||
|
|
7df67d077a | ||
|
|
b761807219 | ||
|
|
fb1b03960e | ||
|
|
74bfb5e1f9 | ||
|
|
bc1bce18b0 | ||
|
|
942ecbbde4 | ||
|
|
79db0e9e93 | ||
|
|
0c17f8604f | ||
|
|
054edc4077 | ||
|
|
5a9993772d | ||
|
|
f2cd9e9ae2 | ||
|
|
9f86cfa471 | ||
|
|
8c1390166f | ||
|
|
1ad98ce999 | ||
|
|
5f4a62810e | ||
|
|
35b7ae90ae | ||
|
|
9ed4d487d2 | ||
|
|
69d37217b8 | ||
|
|
7afdefb0e5 | ||
|
|
24132a7950 | ||
|
|
dff466244d | ||
|
|
45d172d5a8 | ||
|
|
f5d95ffed5 | ||
|
|
6f9c1c6d4e | ||
|
|
811c82a677 | ||
|
|
4f0e43ec1b | ||
|
|
26a7b7b66d | ||
|
|
8611ffe32d | ||
|
|
3cb6d333f6 | ||
|
|
4570702dd0 | ||
|
|
1d107f30e5 | ||
|
|
79084e9e20 | ||
|
|
fc9b4539a3 | ||
|
|
09ef57718e | ||
|
|
cab8239ba8 |
@@ -159,7 +159,7 @@ groups in `invokeia.yaml`:
|
||||
| `host` | `localhost` | Name or IP address of the network interface that the web server will listen on |
|
||||
| `port` | `9090` | Network port number that the web server will listen on |
|
||||
| `allow_origins` | `[]` | A list of host names or IP addresses that are allowed to connect to the InvokeAI API in the format `['host1','host2',...]` |
|
||||
| `allow_credentials | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
|
||||
| `allow_credentials` | `true` | Require credentials for a foreign host to access the InvokeAI API (don't change this) |
|
||||
| `allow_methods` | `*` | List of HTTP methods ("GET", "POST") that the web server is allowed to use when accessing the API |
|
||||
| `allow_headers` | `*` | List of HTTP headers that the web server will accept when accessing the API |
|
||||
|
||||
|
||||
336
docs/features/UTILITIES.md
Normal file
336
docs/features/UTILITIES.md
Normal file
@@ -0,0 +1,336 @@
|
||||
---
|
||||
title: Command-line Utilities
|
||||
---
|
||||
|
||||
# :material-file-document: Utilities
|
||||
|
||||
# Command-line Utilities
|
||||
|
||||
InvokeAI comes with several scripts that are accessible via the
|
||||
command line. To access these commands, start the "developer's
|
||||
console" from the launcher (`invoke.bat` menu item [8]). Users who are
|
||||
familiar with Python can alternatively activate InvokeAI's virtual
|
||||
environment (typically, but not necessarily `invokeai/.venv`).
|
||||
|
||||
In the developer's console, type the script's name to run it. To get a
|
||||
synopsis of what a utility does and the command-line arguments it
|
||||
accepts, pass it the `-h` argument, e.g.
|
||||
|
||||
```bash
|
||||
invokeai-merge -h
|
||||
```
|
||||
## **invokeai-web**
|
||||
|
||||
This script launches the web server and is effectively identical to
|
||||
selecting option [1] in the launcher. An advantage of launching the
|
||||
server from the command line is that you can override any setting
|
||||
configuration option in `invokeai.yaml` using like-named command-line
|
||||
arguments. For example, to temporarily change the size of the RAM
|
||||
cache to 7 GB, you can launch as follows:
|
||||
|
||||
```bash
|
||||
invokeai-web --ram 7
|
||||
```
|
||||
|
||||
## **invokeai-merge**
|
||||
|
||||
This is the model merge script, the same as launcher option [4]. Call
|
||||
it with the `--gui` command-line argument to start the interactive
|
||||
console-based GUI. Alternatively, you can run it non-interactively
|
||||
using command-line arguments as illustrated in the example below which
|
||||
merges models named `stable-diffusion-1.5` and `inkdiffusion` into a new model named
|
||||
`my_new_model`:
|
||||
|
||||
```bash
|
||||
invokeai-merge --force --base-model sd-1 --models stable-diffusion-1.5 inkdiffusion --merged_model_name my_new_model
|
||||
```
|
||||
|
||||
## **invokeai-ti**
|
||||
|
||||
This is the textual inversion training script that is run by launcher
|
||||
option [3]. Call it with `--gui` to run the interactive console-based
|
||||
front end. It can also be run non-interactively. It has about a
|
||||
zillion arguments, but a typical training session can be launched
|
||||
with:
|
||||
|
||||
```bash
|
||||
invokeai-ti --model stable-diffusion-1.5 \
|
||||
--placeholder_token 'jello' \
|
||||
--learnable_property object \
|
||||
--num_train_epochs 50 \
|
||||
--train_data_dir /path/to/training/images \
|
||||
--output_dir /path/to/trained/model
|
||||
```
|
||||
|
||||
(Note that \\ is the Linux/Mac long-line continuation character. Use ^
|
||||
in Windows).
|
||||
|
||||
## **invokeai-install**
|
||||
|
||||
This is the console-based model install script that is run by launcher
|
||||
option [5]. If called without arguments, it will launch the
|
||||
interactive console-based interface. It can also be used
|
||||
non-interactively to list, add and remove models as shown by these
|
||||
examples:
|
||||
|
||||
* This will download and install three models from CivitAI, HuggingFace,
|
||||
and local disk:
|
||||
|
||||
```bash
|
||||
invokeai-install --add https://civitai.com/api/download/models/161302 ^
|
||||
gsdf/Counterfeit-V3.0 ^
|
||||
D:\Models\merge_model_two.safetensors
|
||||
```
|
||||
(Note that ^ is the Windows long-line continuation character. Use \\ on
|
||||
Linux/Mac).
|
||||
|
||||
* This will list installed models of type `main`:
|
||||
|
||||
```bash
|
||||
invokeai-model-install --list-models main
|
||||
```
|
||||
|
||||
* This will delete the models named `voxel-ish` and `realisticVision`:
|
||||
|
||||
```bash
|
||||
invokeai-model-install --delete voxel-ish realisticVision
|
||||
```
|
||||
|
||||
## **invokeai-configure**
|
||||
|
||||
This is the console-based configure script that ran when InvokeAI was
|
||||
first installed. You can run it again at any time to change the
|
||||
configuration, repair a broken install.
|
||||
|
||||
Called without any arguments, `invokeai-configure` enters interactive
|
||||
mode with two screens. The first screen is a form that provides access
|
||||
to most of InvokeAI's configuration options. The second screen lets
|
||||
you download, add, and delete models interactively. When you exit the
|
||||
second screen, the script will add any missing "support models"
|
||||
needed for core functionality, and any selected "sd weights" which are
|
||||
the model checkpoint/diffusers files.
|
||||
|
||||
This behavior can be changed via a series of command-line
|
||||
arguments. Here are some of the useful ones:
|
||||
|
||||
* `invokeai-configure --skip-sd-weights --skip-support-models`
|
||||
This will run just the configuration part of the utility, skipping
|
||||
downloading of support models and stable diffusion weights.
|
||||
|
||||
* `invokeai-configure --yes`
|
||||
This will run the configure script non-interactively. It will set the
|
||||
configuration options to their default values, install/repair support
|
||||
models, and download the "recommended" set of SD models.
|
||||
|
||||
* `invokeai-configure --yes --default_only`
|
||||
This will run the configure script non-interactively. In contrast to
|
||||
the previous command, it will only download the default SD model,
|
||||
Stable Diffusion v1.5
|
||||
|
||||
* `invokeai-configure --yes --default_only --skip-sd-weights`
|
||||
This is similar to the previous command, but will not download any
|
||||
SD models at all. It is usually used to repair a broken install.
|
||||
|
||||
By default, `invokeai-configure` runs on the currently active InvokeAI
|
||||
root folder. To run it against a different root, pass it the `--root
|
||||
</path/to/root>` argument.
|
||||
|
||||
Lastly, you can use `invokeai-configure` to create a working root
|
||||
directory entirely from scratch. Assuming you wish to make a root directory
|
||||
named `InvokeAI-New`, run this command:
|
||||
|
||||
```bash
|
||||
invokeai-configure --root InvokeAI-New --yes --default_only
|
||||
```
|
||||
This will create a minimally functional root directory. You can now
|
||||
launch the web server against it with `invokeai-web --root InvokeAI-New`.
|
||||
|
||||
## **invokeai-update**
|
||||
|
||||
This is the interactive console-based script that is run by launcher
|
||||
menu item [9] to update to a new version of InvokeAI. It takes no
|
||||
command-line arguments.
|
||||
|
||||
## **invokeai-metadata**
|
||||
|
||||
This is a script which takes a list of InvokeAI-generated images and
|
||||
outputs their metadata in the same JSON format that you get from the
|
||||
`</>` button in the Web GUI. For example:
|
||||
|
||||
```bash
|
||||
$ invokeai-metadata ffe2a115-b492-493c-afff-7679aa034b50.png
|
||||
ffe2a115-b492-493c-afff-7679aa034b50.png:
|
||||
{
|
||||
"app_version": "3.1.0",
|
||||
"cfg_scale": 8.0,
|
||||
"clip_skip": 0,
|
||||
"controlnets": [],
|
||||
"generation_mode": "sdxl_txt2img",
|
||||
"height": 1024,
|
||||
"loras": [],
|
||||
"model": {
|
||||
"base_model": "sdxl",
|
||||
"model_name": "stable-diffusion-xl-base-1.0",
|
||||
"model_type": "main"
|
||||
},
|
||||
"negative_prompt": "",
|
||||
"negative_style_prompt": "",
|
||||
"positive_prompt": "military grade sushi dinner for shock troopers",
|
||||
"positive_style_prompt": "",
|
||||
"rand_device": "cpu",
|
||||
"refiner_cfg_scale": 7.5,
|
||||
"refiner_model": {
|
||||
"base_model": "sdxl-refiner",
|
||||
"model_name": "sd_xl_refiner_1.0",
|
||||
"model_type": "main"
|
||||
},
|
||||
"refiner_negative_aesthetic_score": 2.5,
|
||||
"refiner_positive_aesthetic_score": 6.0,
|
||||
"refiner_scheduler": "euler",
|
||||
"refiner_start": 0.8,
|
||||
"refiner_steps": 20,
|
||||
"scheduler": "euler",
|
||||
"seed": 387129902,
|
||||
"steps": 25,
|
||||
"width": 1024
|
||||
}
|
||||
```
|
||||
|
||||
You may list multiple files on the command line.
|
||||
|
||||
## **invokeai-import-images**
|
||||
|
||||
InvokeAI uses a database to store information about images it
|
||||
generated, and just copying the image files from one InvokeAI root
|
||||
directory to another does not automatically import those images into
|
||||
the destination's gallery. This script allows you to bulk import
|
||||
images generated by one instance of InvokeAI into a gallery maintained
|
||||
by another. It also works on images generated by older versions of
|
||||
InvokeAI, going way back to version 1.
|
||||
|
||||
This script has an interactive mode only. The following example shows
|
||||
it in action:
|
||||
|
||||
```bash
|
||||
$ invokeai-import-images
|
||||
===============================================================================
|
||||
This script will import images generated by earlier versions of
|
||||
InvokeAI into the currently installed root directory:
|
||||
/home/XXXX/invokeai-main
|
||||
If this is not what you want to do, type ctrl-C now to cancel.
|
||||
===============================================================================
|
||||
= Configuration & Settings
|
||||
Found invokeai.yaml file at /home/XXXX/invokeai-main/invokeai.yaml:
|
||||
Database : /home/XXXX/invokeai-main/databases/invokeai.db
|
||||
Outputs : /home/XXXX/invokeai-main/outputs/images
|
||||
|
||||
Use these paths for import (yes) or choose different ones (no) [Yn]:
|
||||
Inputs: Specify absolute path containing InvokeAI .png images to import: /home/XXXX/invokeai-2.3/outputs/images/
|
||||
Include files from subfolders recursively [yN]?
|
||||
|
||||
Options for board selection for imported images:
|
||||
1) Select an existing board name. (found 4)
|
||||
2) Specify a board name to create/add to.
|
||||
3) Create/add to board named 'IMPORT'.
|
||||
4) Create/add to board named 'IMPORT' with the current datetime string appended (.e.g IMPORT_20230919T203519Z).
|
||||
5) Create/add to board named 'IMPORT' with a the original file app_version appended (.e.g IMPORT_2.2.5).
|
||||
Specify desired board option: 3
|
||||
|
||||
===============================================================================
|
||||
= Import Settings Confirmation
|
||||
|
||||
Database File Path : /home/XXXX/invokeai-main/databases/invokeai.db
|
||||
Outputs/Images Directory : /home/XXXX/invokeai-main/outputs/images
|
||||
Import Image Source Directory : /home/XXXX/invokeai-2.3/outputs/images/
|
||||
Recurse Source SubDirectories : No
|
||||
Count of .png file(s) found : 5785
|
||||
Board name option specified : IMPORT
|
||||
Database backup will be taken at : /home/XXXX/invokeai-main/databases/backup
|
||||
|
||||
Notes about the import process:
|
||||
- Source image files will not be modified, only copied to the outputs directory.
|
||||
- If the same file name already exists in the destination, the file will be skipped.
|
||||
- If the same file name already has a record in the database, the file will be skipped.
|
||||
- Invoke AI metadata tags will be updated/written into the imported copy only.
|
||||
- On the imported copy, only Invoke AI known tags (latest and legacy) will be retained (dream, sd-metadata, invokeai, invokeai_metadata)
|
||||
- A property 'imported_app_version' will be added to metadata that can be viewed in the UI's metadata viewer.
|
||||
- The new 3.x InvokeAI outputs folder structure is flat so recursively found source imges will all be placed into the single outputs/images folder.
|
||||
|
||||
Do you wish to continue with the import [Yn] ?
|
||||
|
||||
Making DB Backup at /home/lstein/invokeai-main/databases/backup/backup-20230919T203519Z-invokeai.db...Done!
|
||||
|
||||
===============================================================================
|
||||
Importing /home/XXXX/invokeai-2.3/outputs/images/17d09907-297d-4db3-a18a-60b337feac66.png
|
||||
... (5785 more lines) ...
|
||||
===============================================================================
|
||||
= Import Complete - Elpased Time: 0.28 second(s)
|
||||
|
||||
Source File(s) : 5785
|
||||
Total Imported : 5783
|
||||
Skipped b/c file already exists on disk : 1
|
||||
Skipped b/c file already exists in db : 0
|
||||
Errors during import : 1
|
||||
```
|
||||
## **invokeai-db-maintenance**
|
||||
|
||||
This script helps maintain the integrity of your InvokeAI database by
|
||||
finding and fixing three problems that can arise over time:
|
||||
|
||||
1. An image was manually deleted from the outputs directory, leaving a
|
||||
dangling image record in the InvokeAI database. This will cause a
|
||||
black image to appear in the gallery. This is an "orphaned database
|
||||
image record." The script can fix this by running a "clean"
|
||||
operation on the database, removing the orphaned entries.
|
||||
|
||||
2. An image is present in the outputs directory but there is no
|
||||
corresponding entry in the database. This can happen when the image
|
||||
is added manually to the outputs directory, or if a crash occurred
|
||||
after the image was generated but before the database was
|
||||
completely updated. The symptom is that the image is present in the
|
||||
outputs folder but doesn't appear in the InvokeAI gallery. This is
|
||||
called an "orphaned image file." The script can fix this problem by
|
||||
running an "archive" operation in which orphaned files are moved
|
||||
into a directory named `outputs/images-archive`. If you wish, you
|
||||
can then run `invokeai-image-import` to reimport these images back
|
||||
into the database.
|
||||
|
||||
3. The thumbnail for an image is missing, again causing a black
|
||||
gallery thumbnail. This is fixed by running the "thumbnaiils"
|
||||
operation, which simply regenerates and re-registers the missing
|
||||
thumbnail.
|
||||
|
||||
You can find and fix all three of these problems in a single go by
|
||||
executing this command:
|
||||
|
||||
```bash
|
||||
invokeai-db-maintenance --operation all
|
||||
```
|
||||
|
||||
Or you can run just the clean and thumbnail operations like this:
|
||||
|
||||
```bash
|
||||
invokeai-db-maintenance -operation clean, thumbnail
|
||||
```
|
||||
|
||||
If called without any arguments, the script will ask you which
|
||||
operations you wish to perform.
|
||||
|
||||
## **invokeai-migrate3**
|
||||
|
||||
This script will migrate settings and models (but not images!) from an
|
||||
InvokeAI v2.3 root folder to an InvokeAI 3.X folder. Call it with the
|
||||
source and destination root folders like this:
|
||||
|
||||
```bash
|
||||
invokeai-migrate3 --from ~/invokeai-2.3 --to invokeai-3.1.1
|
||||
```
|
||||
|
||||
Both directories must previously have been properly created and
|
||||
initialized by `invokeai-configure`. If you wish to migrate the images
|
||||
contained in the older root as well, you can use the
|
||||
`invokeai-image-migrate` script described earlier.
|
||||
|
||||
---
|
||||
|
||||
Copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team
|
||||
@@ -51,6 +51,9 @@ Prevent InvokeAI from displaying unwanted racy images.
|
||||
### * [Controlling Logging](LOGGING.md)
|
||||
Control how InvokeAI logs status messages.
|
||||
|
||||
### * [Command-line Utilities](UTILITIES.md)
|
||||
A list of the command-line utilities available with InvokeAI.
|
||||
|
||||
<!-- OUT OF DATE
|
||||
### * [Miscellaneous](OTHER.md)
|
||||
Run InvokeAI on Google Colab, generate images with repeating patterns,
|
||||
|
||||
@@ -147,6 +147,7 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
|
||||
|
||||
### InvokeAI Configuration
|
||||
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
|
||||
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
|
||||
|
||||
## :octicons-log-16: Important Changes Since Version 2.3
|
||||
|
||||
|
||||
@@ -296,8 +296,18 @@ code for InvokeAI. For this to work, you will need to install the
|
||||
on your system, please see the [Git Installation
|
||||
Guide](https://github.com/git-guides/install-git)
|
||||
|
||||
You will also need to install the [frontend development toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md).
|
||||
|
||||
If you have a "normal" installation, you should create a totally separate virtual environment for the git-based installation, else the two may interfere.
|
||||
|
||||
> **Why do I need the frontend toolchain**?
|
||||
>
|
||||
> The InvokeAI project uses trunk-based development. That means our `main` branch is the development branch, and releases are tags on that branch. Because development is very active, we don't keep an updated build of the UI in `main` - we only build it for production releases.
|
||||
>
|
||||
> That means that between releases, to have a functioning application when running directly from the repo, you will need to run the UI in dev mode or build it regularly (any time the UI code changes).
|
||||
|
||||
1. Create a fork of the InvokeAI repository through the GitHub UI or [this link](https://github.com/invoke-ai/InvokeAI/fork)
|
||||
1. From the command line, run this command:
|
||||
2. From the command line, run this command:
|
||||
```bash
|
||||
git clone https://github.com/<your_github_username>/InvokeAI.git
|
||||
```
|
||||
@@ -305,10 +315,10 @@ Guide](https://github.com/git-guides/install-git)
|
||||
This will create a directory named `InvokeAI` and populate it with the
|
||||
full source code from your fork of the InvokeAI repository.
|
||||
|
||||
2. Activate the InvokeAI virtual environment as per step (4) of the manual
|
||||
3. Activate the InvokeAI virtual environment as per step (4) of the manual
|
||||
installation protocol (important!)
|
||||
|
||||
3. Enter the InvokeAI repository directory and run one of these
|
||||
4. Enter the InvokeAI repository directory and run one of these
|
||||
commands, based on your GPU:
|
||||
|
||||
=== "CUDA (NVidia)"
|
||||
@@ -334,11 +344,15 @@ installation protocol (important!)
|
||||
Be sure to pass `-e` (for an editable install) and don't forget the
|
||||
dot ("."). It is part of the command.
|
||||
|
||||
You can now run `invokeai` and its related commands. The code will be
|
||||
5. Install the [frontend toolchain](https://github.com/invoke-ai/InvokeAI/blob/main/docs/contributing/contribution_guides/contributingToFrontend.md) and do a production build of the UI as described.
|
||||
|
||||
6. You can now run `invokeai` and its related commands. The code will be
|
||||
read from the repository, so that you can edit the .py source files
|
||||
and watch the code's behavior change.
|
||||
|
||||
4. If you wish to contribute to the InvokeAI project, you are
|
||||
When you pull in new changes to the repo, be sure to re-build the UI.
|
||||
|
||||
7. If you wish to contribute to the InvokeAI project, you are
|
||||
encouraged to establish a GitHub account and "fork"
|
||||
https://github.com/invoke-ai/InvokeAI into your own copy of the
|
||||
repository. You can then use GitHub functions to create and submit
|
||||
|
||||
@@ -121,18 +121,6 @@ To be imported, an .obj must use triangulated meshes, so make sure to enable tha
|
||||
**Example Usage:**
|
||||

|
||||
|
||||
--------------------------------
|
||||
### Enhance Image (simple adjustments)
|
||||
|
||||
**Description:** Boost or reduce color saturation, contrast, brightness, sharpness, or invert colors of any image at any stage with this simple wrapper for pillow [PIL]'s ImageEnhance module.
|
||||
|
||||
Color inversion is toggled with a simple switch, while each of the four enhancer modes are activated by entering a value other than 1 in each corresponding input field. Values less than 1 will reduce the corresponding property, while values greater than 1 will enhance it.
|
||||
|
||||
**Node Link:** https://github.com/dwringer/image-enhance-node
|
||||
|
||||
**Example Usage:**
|
||||

|
||||
|
||||
--------------------------------
|
||||
### Generative Grammar-Based Prompt Nodes
|
||||
|
||||
@@ -153,16 +141,26 @@ This includes 3 Nodes:
|
||||
|
||||
**Description:** This is a pack of nodes for composing masks and images, including a simple text mask creator and both image and latent offset nodes. The offsets wrap around, so these can be used in conjunction with the Seamless node to progressively generate centered on different parts of the seamless tiling.
|
||||
|
||||
This includes 4 Nodes:
|
||||
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
|
||||
This includes 14 Nodes:
|
||||
- *Adjust Image Hue Plus* - Rotate the hue of an image in one of several different color spaces.
|
||||
- *Blend Latents/Noise (Masked)* - Use a mask to blend part of one latents tensor [including Noise outputs] into another. Can be used to "renoise" sections during a multi-stage [masked] denoising process.
|
||||
- *Enhance Image* - Boost or reduce color saturation, contrast, brightness, sharpness, or invert colors of any image at any stage with this simple wrapper for pillow [PIL]'s ImageEnhance module.
|
||||
- *Equivalent Achromatic Lightness* - Calculates image lightness accounting for Helmholtz-Kohlrausch effect based on a method described by High, Green, and Nussbaum (2023).
|
||||
- *Text to Mask (Clipseg)* - Input a prompt and an image to generate a mask representing areas of the image matched by the prompt.
|
||||
- *Text to Mask Advanced (Clipseg)* - Output up to four prompt masks combined with logical "and", logical "or", or as separate channels of an RGBA image.
|
||||
- *Image Layer Blend* - Perform a layered blend of two images using alpha compositing. Opacity of top layer is selectable, with optional mask and several different blend modes/color spaces.
|
||||
- *Image Compositor* - Take a subject from an image with a flat backdrop and layer it on another image using a chroma key or flood select background removal.
|
||||
- *Image Dilate or Erode* - Dilate or expand a mask (or any image!). This is equivalent to an expand/contract operation.
|
||||
- *Image Value Thresholds* - Clip an image to pure black/white beyond specified thresholds.
|
||||
- *Offset Latents* - Offset a latents tensor in the vertical and/or horizontal dimensions, wrapping it around.
|
||||
- *Offset Image* - Offset an image in the vertical and/or horizontal dimensions, wrapping it around.
|
||||
- *Shadows/Highlights/Midtones* - Extract three masks (with adjustable hard or soft thresholds) representing shadows, midtones, and highlights regions of an image.
|
||||
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
|
||||
|
||||
**Node Link:** https://github.com/dwringer/composition-nodes
|
||||
|
||||
**Example Usage:**
|
||||

|
||||
**Nodes and Output Examples:**
|
||||

|
||||
|
||||
--------------------------------
|
||||
### Size Stepper Nodes
|
||||
@@ -196,6 +194,40 @@ Results after using the depth controlnet
|
||||
|
||||
--------------------------------
|
||||
|
||||
### Prompt Tools
|
||||
|
||||
**Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These where written to accompany the PromptsFromFile node and other prompt generation nodes.
|
||||
|
||||
1. PromptJoin - Joins to prompts into one.
|
||||
2. PromptReplace - performs a search and replace on a prompt. With the option of using regex.
|
||||
3. PromptSplitNeg - splits a prompt into positive and negative using the old V2 method of [] for negative.
|
||||
4. PromptToFile - saves a prompt or collection of prompts to a file. one per line. There is an append/overwrite option.
|
||||
5. PTFieldsCollect - Converts image generation fields into a Json format string that can be passed to Prompt to file.
|
||||
6. PTFieldsExpand - Takes Json string and converts it to individual generation parameters This can be fed from the Prompts to file node.
|
||||
7. PromptJoinThree - Joins 3 prompt together.
|
||||
8. PromptStrength - This take a string and float and outputs another string in the format of (string)strength like the weighted format of compel.
|
||||
9. PromptStrengthCombine - This takes a collection of prompt strength strings and outputs a string in the .and() or .blend() format that can be fed into a proper prompt node.
|
||||
|
||||
See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/main/README.md
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes
|
||||
|
||||
--------------------------------
|
||||
|
||||
### XY Image to Grid and Images to Grids nodes
|
||||
|
||||
**Description:** Image to grid nodes and supporting tools.
|
||||
|
||||
1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then mutilple grids will be created until it runs out of images.
|
||||
2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporoting nodes. See example node setups for more details.
|
||||
|
||||
|
||||
See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/XYGrid_nodes
|
||||
|
||||
--------------------------------
|
||||
|
||||
### Example Node Template
|
||||
|
||||
**Description:** This node allows you to do super cool things with InvokeAI.
|
||||
|
||||
@@ -332,6 +332,7 @@ class InvokeAiInstance:
|
||||
Configure the InvokeAI runtime directory
|
||||
"""
|
||||
|
||||
auto_install = False
|
||||
# set sys.argv to a consistent state
|
||||
new_argv = [sys.argv[0]]
|
||||
for i in range(1, len(sys.argv)):
|
||||
@@ -340,13 +341,17 @@ class InvokeAiInstance:
|
||||
new_argv.append(el)
|
||||
new_argv.append(sys.argv[i + 1])
|
||||
elif el in ["-y", "--yes", "--yes-to-all"]:
|
||||
new_argv.append(el)
|
||||
auto_install = True
|
||||
sys.argv = new_argv
|
||||
|
||||
import messages
|
||||
import requests # to catch download exceptions
|
||||
from messages import introduction
|
||||
|
||||
introduction()
|
||||
auto_install = auto_install or messages.user_wants_auto_configuration()
|
||||
if auto_install:
|
||||
sys.argv.append("--yes")
|
||||
else:
|
||||
messages.introduction()
|
||||
|
||||
from invokeai.frontend.install.invokeai_configure import invokeai_configure
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ import os
|
||||
import platform
|
||||
from pathlib import Path
|
||||
|
||||
from prompt_toolkit import prompt
|
||||
from prompt_toolkit import HTML, prompt
|
||||
from prompt_toolkit.completion import PathCompleter
|
||||
from prompt_toolkit.validation import Validator
|
||||
from rich import box, print
|
||||
@@ -65,17 +65,50 @@ def confirm_install(dest: Path) -> bool:
|
||||
if dest.exists():
|
||||
print(f":exclamation: Directory {dest} already exists :exclamation:")
|
||||
dest_confirmed = Confirm.ask(
|
||||
":stop_sign: Are you sure you want to (re)install in this location?",
|
||||
":stop_sign: (re)install in this location?",
|
||||
default=False,
|
||||
)
|
||||
else:
|
||||
print(f"InvokeAI will be installed in {dest}")
|
||||
dest_confirmed = not Confirm.ask("Would you like to pick a different location?", default=False)
|
||||
dest_confirmed = Confirm.ask("Use this location?", default=True)
|
||||
console.line()
|
||||
|
||||
return dest_confirmed
|
||||
|
||||
|
||||
def user_wants_auto_configuration() -> bool:
|
||||
"""Prompt the user to choose between manual and auto configuration."""
|
||||
console.rule("InvokeAI Configuration Section")
|
||||
console.print(
|
||||
Panel(
|
||||
Group(
|
||||
"\n".join(
|
||||
[
|
||||
"Libraries are installed and InvokeAI will now set up its root directory and configuration. Choose between:",
|
||||
"",
|
||||
" * AUTOMATIC configuration: install reasonable defaults and a minimal set of starter models.",
|
||||
" * MANUAL configuration: manually inspect and adjust configuration options and pick from a larger set of starter models.",
|
||||
"",
|
||||
"Later you can fine tune your configuration by selecting option [6] 'Change InvokeAI startup options' from the invoke.bat/invoke.sh launcher script.",
|
||||
]
|
||||
),
|
||||
),
|
||||
box=box.MINIMAL,
|
||||
padding=(1, 1),
|
||||
)
|
||||
)
|
||||
choice = (
|
||||
prompt(
|
||||
HTML("Choose <b><a></b>utomatic or <b><m></b>anual configuration [a/m] (a): "),
|
||||
validator=Validator.from_callable(
|
||||
lambda n: n == "" or n.startswith(("a", "A", "m", "M")), error_message="Please select 'a' or 'm'"
|
||||
),
|
||||
)
|
||||
or "a"
|
||||
)
|
||||
return choice.lower().startswith("a")
|
||||
|
||||
|
||||
def dest_path(dest=None) -> Path:
|
||||
"""
|
||||
Prompt the user for the destination path and create the path
|
||||
|
||||
@@ -17,9 +17,10 @@ echo 6. Change InvokeAI startup options
|
||||
echo 7. Re-run the configure script to fix a broken install or to complete a major upgrade
|
||||
echo 8. Open the developer console
|
||||
echo 9. Update InvokeAI
|
||||
echo 10. Command-line help
|
||||
echo 10. Run the InvokeAI image database maintenance script
|
||||
echo 11. Command-line help
|
||||
echo Q - Quit
|
||||
set /P choice="Please enter 1-10, Q: [1] "
|
||||
set /P choice="Please enter 1-11, Q: [1] "
|
||||
if not defined choice set choice=1
|
||||
IF /I "%choice%" == "1" (
|
||||
echo Starting the InvokeAI browser-based UI..
|
||||
@@ -58,8 +59,11 @@ IF /I "%choice%" == "1" (
|
||||
echo Running invokeai-update...
|
||||
python -m invokeai.frontend.install.invokeai_update
|
||||
) ELSE IF /I "%choice%" == "10" (
|
||||
echo Running the db maintenance script...
|
||||
python .venv\Scripts\invokeai-db-maintenance.exe
|
||||
) ELSE IF /I "%choice%" == "11" (
|
||||
echo Displaying command line help...
|
||||
python .venv\Scripts\invokeai.exe --help %*
|
||||
python .venv\Scripts\invokeai-web.exe --help %*
|
||||
pause
|
||||
exit /b
|
||||
) ELSE IF /I "%choice%" == "q" (
|
||||
|
||||
@@ -97,13 +97,13 @@ do_choice() {
|
||||
;;
|
||||
10)
|
||||
clear
|
||||
printf "Command-line help\n"
|
||||
invokeai --help
|
||||
printf "Running the db maintenance script\n"
|
||||
invokeai-db-maintenance --root ${INVOKEAI_ROOT}
|
||||
;;
|
||||
"HELP 1")
|
||||
11)
|
||||
clear
|
||||
printf "Command-line help\n"
|
||||
invokeai --help
|
||||
invokeai-web --help
|
||||
;;
|
||||
*)
|
||||
clear
|
||||
@@ -125,7 +125,10 @@ do_dialog() {
|
||||
6 "Change InvokeAI startup options"
|
||||
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
|
||||
8 "Open the developer console"
|
||||
9 "Update InvokeAI")
|
||||
9 "Update InvokeAI"
|
||||
10 "Run the InvokeAI image database maintenance script"
|
||||
11 "Command-line help"
|
||||
)
|
||||
|
||||
choice=$(dialog --clear \
|
||||
--backtitle "\Zb\Zu\Z3InvokeAI" \
|
||||
@@ -157,9 +160,10 @@ do_line_input() {
|
||||
printf "7: Re-run the configure script to fix a broken install\n"
|
||||
printf "8: Open the developer console\n"
|
||||
printf "9: Update InvokeAI\n"
|
||||
printf "10: Command-line help\n"
|
||||
printf "10: Run the InvokeAI image database maintenance script\n"
|
||||
printf "11: Command-line help\n"
|
||||
printf "Q: Quit\n\n"
|
||||
read -p "Please enter 1-10, Q: [1] " yn
|
||||
read -p "Please enter 1-11, Q: [1] " yn
|
||||
choice=${yn:='1'}
|
||||
do_choice $choice
|
||||
clear
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import sqlite3
|
||||
from logging import Logger
|
||||
|
||||
from invokeai.app.services.board_image_record_storage import SqliteBoardImageRecordStorage
|
||||
@@ -9,7 +10,10 @@ from invokeai.app.services.boards import BoardService, BoardServiceDependencies
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
|
||||
from invokeai.app.services.images import ImageService, ImageServiceDependencies
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
from invokeai.app.services.resource_name import SimpleNameService
|
||||
from invokeai.app.services.session_processor.session_processor_default import DefaultSessionProcessor
|
||||
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from invokeai.app.services.urls import LocalUrlService
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.version.invokeai_version import __version__
|
||||
@@ -25,6 +29,7 @@ from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsSto
|
||||
from ..services.model_manager_service import ModelManagerService
|
||||
from ..services.processor import DefaultInvocationProcessor
|
||||
from ..services.sqlite import SqliteItemStorage
|
||||
from ..services.thread import lock
|
||||
from .events import FastAPIEventService
|
||||
|
||||
|
||||
@@ -44,7 +49,7 @@ def check_internet() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
logger = InvokeAILogger.getLogger()
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
class ApiDependencies:
|
||||
@@ -63,22 +68,32 @@ class ApiDependencies:
|
||||
output_folder = config.output_path
|
||||
|
||||
# TODO: build a file/path manager?
|
||||
db_path = config.db_path
|
||||
db_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
db_location = str(db_path)
|
||||
if config.use_memory_db:
|
||||
db_location = ":memory:"
|
||||
else:
|
||||
db_path = config.db_path
|
||||
db_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
db_location = str(db_path)
|
||||
|
||||
logger.info(f"Using database at {db_location}")
|
||||
db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
|
||||
|
||||
if config.log_sql:
|
||||
db_conn.set_trace_callback(print)
|
||||
db_conn.execute("PRAGMA foreign_keys = ON;")
|
||||
|
||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
|
||||
filename=db_location, table_name="graph_executions"
|
||||
conn=db_conn, table_name="graph_executions", lock=lock
|
||||
)
|
||||
|
||||
urls = LocalUrlService()
|
||||
image_record_storage = SqliteImageRecordStorage(db_location)
|
||||
image_record_storage = SqliteImageRecordStorage(conn=db_conn, lock=lock)
|
||||
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
|
||||
names = SimpleNameService()
|
||||
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
||||
|
||||
board_record_storage = SqliteBoardRecordStorage(db_location)
|
||||
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
|
||||
board_record_storage = SqliteBoardRecordStorage(conn=db_conn, lock=lock)
|
||||
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn, lock=lock)
|
||||
|
||||
boards = BoardService(
|
||||
services=BoardServiceDependencies(
|
||||
@@ -120,18 +135,29 @@ class ApiDependencies:
|
||||
boards=boards,
|
||||
board_images=board_images,
|
||||
queue=MemoryInvocationQueue(),
|
||||
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
|
||||
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, lock=lock, table_name="graphs"),
|
||||
graph_execution_manager=graph_execution_manager,
|
||||
processor=DefaultInvocationProcessor(),
|
||||
configuration=config,
|
||||
performance_statistics=InvocationStatsService(graph_execution_manager),
|
||||
logger=logger,
|
||||
session_queue=SqliteSessionQueue(conn=db_conn, lock=lock),
|
||||
session_processor=DefaultSessionProcessor(),
|
||||
invocation_cache=MemoryInvocationCache(max_cache_size=config.node_cache_size),
|
||||
)
|
||||
|
||||
create_system_graphs(services.graph_library)
|
||||
|
||||
ApiDependencies.invoker = Invoker(services)
|
||||
|
||||
try:
|
||||
lock.acquire()
|
||||
db_conn.execute("VACUUM;")
|
||||
db_conn.commit()
|
||||
logger.info("Cleaned database")
|
||||
finally:
|
||||
lock.release()
|
||||
|
||||
@staticmethod
|
||||
def shutdown():
|
||||
if ApiDependencies.invoker:
|
||||
|
||||
@@ -7,6 +7,7 @@ from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.upscale import ESRGAN_MODELS
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.patchmatch import PatchMatch
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
@@ -103,3 +104,43 @@ async def set_log_level(
|
||||
"""Sets the log verbosity level"""
|
||||
ApiDependencies.invoker.services.logger.setLevel(level)
|
||||
return LogLevel(ApiDependencies.invoker.services.logger.level)
|
||||
|
||||
|
||||
@app_router.delete(
|
||||
"/invocation_cache",
|
||||
operation_id="clear_invocation_cache",
|
||||
responses={200: {"description": "The operation was successful"}},
|
||||
)
|
||||
async def clear_invocation_cache() -> None:
|
||||
"""Clears the invocation cache"""
|
||||
ApiDependencies.invoker.services.invocation_cache.clear()
|
||||
|
||||
|
||||
@app_router.put(
|
||||
"/invocation_cache/enable",
|
||||
operation_id="enable_invocation_cache",
|
||||
responses={200: {"description": "The operation was successful"}},
|
||||
)
|
||||
async def enable_invocation_cache() -> None:
|
||||
"""Clears the invocation cache"""
|
||||
ApiDependencies.invoker.services.invocation_cache.enable()
|
||||
|
||||
|
||||
@app_router.put(
|
||||
"/invocation_cache/disable",
|
||||
operation_id="disable_invocation_cache",
|
||||
responses={200: {"description": "The operation was successful"}},
|
||||
)
|
||||
async def disable_invocation_cache() -> None:
|
||||
"""Clears the invocation cache"""
|
||||
ApiDependencies.invoker.services.invocation_cache.disable()
|
||||
|
||||
|
||||
@app_router.get(
|
||||
"/invocation_cache/status",
|
||||
operation_id="get_invocation_cache_status",
|
||||
responses={200: {"model": InvocationCacheStatus}},
|
||||
)
|
||||
async def get_invocation_cache_status() -> InvocationCacheStatus:
|
||||
"""Clears the invocation cache"""
|
||||
return ApiDependencies.invoker.services.invocation_cache.get_status()
|
||||
|
||||
@@ -146,7 +146,8 @@ async def update_model(
|
||||
async def import_model(
|
||||
location: str = Body(description="A model path, repo_id or URL to import"),
|
||||
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
|
||||
description="Prediction type for SDv2 checkpoint files", default="v_prediction"
|
||||
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
|
||||
default=None,
|
||||
),
|
||||
) -> ImportModelResponse:
|
||||
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
|
||||
|
||||
247
invokeai/app/api/routers/session_queue.py
Normal file
247
invokeai/app/api/routers/session_queue.py
Normal file
@@ -0,0 +1,247 @@
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import Body, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
EnqueueGraphResult,
|
||||
PruneResult,
|
||||
SessionQueueItem,
|
||||
SessionQueueItemDTO,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.models import CursorPaginatedResults
|
||||
|
||||
from ...services.graph import Graph
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
|
||||
|
||||
|
||||
class SessionQueueAndProcessorStatus(BaseModel):
|
||||
"""The overall status of session queue and processor"""
|
||||
|
||||
queue: SessionQueueStatus
|
||||
processor: SessionProcessorStatus
|
||||
|
||||
|
||||
@session_queue_router.post(
|
||||
"/{queue_id}/enqueue_graph",
|
||||
operation_id="enqueue_graph",
|
||||
responses={
|
||||
201: {"model": EnqueueGraphResult},
|
||||
},
|
||||
)
|
||||
async def enqueue_graph(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
graph: Graph = Body(description="The graph to enqueue"),
|
||||
prepend: bool = Body(default=False, description="Whether or not to prepend this batch in the queue"),
|
||||
) -> EnqueueGraphResult:
|
||||
"""Enqueues a graph for single execution."""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.enqueue_graph(queue_id=queue_id, graph=graph, prepend=prepend)
|
||||
|
||||
|
||||
@session_queue_router.post(
|
||||
"/{queue_id}/enqueue_batch",
|
||||
operation_id="enqueue_batch",
|
||||
responses={
|
||||
201: {"model": EnqueueBatchResult},
|
||||
},
|
||||
)
|
||||
async def enqueue_batch(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
batch: Batch = Body(description="Batch to process"),
|
||||
prepend: bool = Body(default=False, description="Whether or not to prepend this batch in the queue"),
|
||||
) -> EnqueueBatchResult:
|
||||
"""Processes a batch and enqueues the output graphs for execution."""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.enqueue_batch(queue_id=queue_id, batch=batch, prepend=prepend)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/list",
|
||||
operation_id="list_queue_items",
|
||||
responses={
|
||||
200: {"model": CursorPaginatedResults[SessionQueueItemDTO]},
|
||||
},
|
||||
)
|
||||
async def list_queue_items(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
limit: int = Query(default=50, description="The number of items to fetch"),
|
||||
status: Optional[QUEUE_ITEM_STATUS] = Query(default=None, description="The status of items to fetch"),
|
||||
cursor: Optional[int] = Query(default=None, description="The pagination cursor"),
|
||||
priority: int = Query(default=0, description="The pagination cursor priority"),
|
||||
) -> CursorPaginatedResults[SessionQueueItemDTO]:
|
||||
"""Gets all queue items (without graphs)"""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.list_queue_items(
|
||||
queue_id=queue_id, limit=limit, status=status, cursor=cursor, priority=priority
|
||||
)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/processor/resume",
|
||||
operation_id="resume",
|
||||
responses={200: {"model": SessionProcessorStatus}},
|
||||
)
|
||||
async def resume(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionProcessorStatus:
|
||||
"""Resumes session processor"""
|
||||
return ApiDependencies.invoker.services.session_processor.resume()
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/processor/pause",
|
||||
operation_id="pause",
|
||||
responses={200: {"model": SessionProcessorStatus}},
|
||||
)
|
||||
async def Pause(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionProcessorStatus:
|
||||
"""Pauses session processor"""
|
||||
return ApiDependencies.invoker.services.session_processor.pause()
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/cancel_by_batch_ids",
|
||||
operation_id="cancel_by_batch_ids",
|
||||
responses={200: {"model": CancelByBatchIDsResult}},
|
||||
)
|
||||
async def cancel_by_batch_ids(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
batch_ids: list[str] = Body(description="The list of batch_ids to cancel all queue items for", embed=True),
|
||||
) -> CancelByBatchIDsResult:
|
||||
"""Immediately cancels all queue items from the given batch ids"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/clear",
|
||||
operation_id="clear",
|
||||
responses={
|
||||
200: {"model": ClearResult},
|
||||
},
|
||||
)
|
||||
async def clear(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> ClearResult:
|
||||
"""Clears the queue entirely, immediately canceling the currently-executing session"""
|
||||
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
if queue_item is not None:
|
||||
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
|
||||
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
|
||||
return clear_result
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/prune",
|
||||
operation_id="prune",
|
||||
responses={
|
||||
200: {"model": PruneResult},
|
||||
},
|
||||
)
|
||||
async def prune(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> PruneResult:
|
||||
"""Prunes all completed or errored queue items"""
|
||||
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/current",
|
||||
operation_id="get_current_queue_item",
|
||||
responses={
|
||||
200: {"model": Optional[SessionQueueItem]},
|
||||
},
|
||||
)
|
||||
async def get_current_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> Optional[SessionQueueItem]:
|
||||
"""Gets the currently execution queue item"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/next",
|
||||
operation_id="get_next_queue_item",
|
||||
responses={
|
||||
200: {"model": Optional[SessionQueueItem]},
|
||||
},
|
||||
)
|
||||
async def get_next_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> Optional[SessionQueueItem]:
|
||||
"""Gets the next queue item, without executing it"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/status",
|
||||
operation_id="get_queue_status",
|
||||
responses={
|
||||
200: {"model": SessionQueueAndProcessorStatus},
|
||||
},
|
||||
)
|
||||
async def get_queue_status(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionQueueAndProcessorStatus:
|
||||
"""Gets the status of the session queue"""
|
||||
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
|
||||
processor = ApiDependencies.invoker.services.session_processor.get_status()
|
||||
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/b/{batch_id}/status",
|
||||
operation_id="get_batch_status",
|
||||
responses={
|
||||
200: {"model": BatchStatus},
|
||||
},
|
||||
)
|
||||
async def get_batch_status(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
batch_id: str = Path(description="The batch to get the status of"),
|
||||
) -> BatchStatus:
|
||||
"""Gets the status of the session queue"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
"/{queue_id}/i/{item_id}",
|
||||
operation_id="get_queue_item",
|
||||
responses={
|
||||
200: {"model": SessionQueueItem},
|
||||
},
|
||||
)
|
||||
async def get_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
item_id: int = Path(description="The queue item to get"),
|
||||
) -> SessionQueueItem:
|
||||
"""Gets a queue item"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
"/{queue_id}/i/{item_id}/cancel",
|
||||
operation_id="cancel_queue_item",
|
||||
responses={
|
||||
200: {"model": SessionQueueItem},
|
||||
},
|
||||
)
|
||||
async def cancel_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
item_id: int = Path(description="The queue item to cancel"),
|
||||
) -> SessionQueueItem:
|
||||
"""Deletes a queue item"""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
|
||||
@@ -23,12 +23,14 @@ session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
|
||||
200: {"model": GraphExecutionState},
|
||||
400: {"description": "Invalid json"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def create_session(
|
||||
graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with")
|
||||
queue_id: str = Query(default="", description="The id of the queue to associate the session with"),
|
||||
graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with"),
|
||||
) -> GraphExecutionState:
|
||||
"""Creates a new session, optionally initializing it with an invocation graph"""
|
||||
session = ApiDependencies.invoker.create_execution_state(graph)
|
||||
session = ApiDependencies.invoker.create_execution_state(queue_id=queue_id, graph=graph)
|
||||
return session
|
||||
|
||||
|
||||
@@ -36,6 +38,7 @@ async def create_session(
|
||||
"/",
|
||||
operation_id="list_sessions",
|
||||
responses={200: {"model": PaginatedResults[GraphExecutionState]}},
|
||||
deprecated=True,
|
||||
)
|
||||
async def list_sessions(
|
||||
page: int = Query(default=0, description="The page of results to get"),
|
||||
@@ -57,6 +60,7 @@ async def list_sessions(
|
||||
200: {"model": GraphExecutionState},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def get_session(
|
||||
session_id: str = Path(description="The id of the session to get"),
|
||||
@@ -77,6 +81,7 @@ async def get_session(
|
||||
400: {"description": "Invalid node or link"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def add_node(
|
||||
session_id: str = Path(description="The id of the session"),
|
||||
@@ -109,6 +114,7 @@ async def add_node(
|
||||
400: {"description": "Invalid node or link"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def update_node(
|
||||
session_id: str = Path(description="The id of the session"),
|
||||
@@ -142,6 +148,7 @@ async def update_node(
|
||||
400: {"description": "Invalid node or link"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def delete_node(
|
||||
session_id: str = Path(description="The id of the session"),
|
||||
@@ -172,6 +179,7 @@ async def delete_node(
|
||||
400: {"description": "Invalid node or link"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def add_edge(
|
||||
session_id: str = Path(description="The id of the session"),
|
||||
@@ -203,6 +211,7 @@ async def add_edge(
|
||||
400: {"description": "Invalid node or link"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def delete_edge(
|
||||
session_id: str = Path(description="The id of the session"),
|
||||
@@ -241,8 +250,10 @@ async def delete_edge(
|
||||
400: {"description": "The session has no invocations ready to invoke"},
|
||||
404: {"description": "Session not found"},
|
||||
},
|
||||
deprecated=True,
|
||||
)
|
||||
async def invoke_session(
|
||||
queue_id: str = Query(description="The id of the queue to associate the session with"),
|
||||
session_id: str = Path(description="The id of the session to invoke"),
|
||||
all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
|
||||
) -> Response:
|
||||
@@ -254,7 +265,7 @@ async def invoke_session(
|
||||
if session.is_complete():
|
||||
raise HTTPException(status_code=400)
|
||||
|
||||
ApiDependencies.invoker.invoke(session, invoke_all=all)
|
||||
ApiDependencies.invoker.invoke(queue_id, session, invoke_all=all)
|
||||
return Response(status_code=202)
|
||||
|
||||
|
||||
@@ -262,6 +273,7 @@ async def invoke_session(
|
||||
"/{session_id}/invoke",
|
||||
operation_id="cancel_session_invoke",
|
||||
responses={202: {"description": "The invocation is canceled"}},
|
||||
deprecated=True,
|
||||
)
|
||||
async def cancel_session_invoke(
|
||||
session_id: str = Path(description="The id of the session to cancel"),
|
||||
|
||||
41
invokeai/app/api/routers/utilities.py
Normal file
41
invokeai/app/api/routers/utilities.py
Normal file
@@ -0,0 +1,41 @@
|
||||
from typing import Optional
|
||||
|
||||
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
|
||||
from fastapi import Body
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel
|
||||
from pyparsing import ParseException
|
||||
|
||||
utilities_router = APIRouter(prefix="/v1/utilities", tags=["utilities"])
|
||||
|
||||
|
||||
class DynamicPromptsResponse(BaseModel):
|
||||
prompts: list[str]
|
||||
error: Optional[str] = None
|
||||
|
||||
|
||||
@utilities_router.post(
|
||||
"/dynamicprompts",
|
||||
operation_id="parse_dynamicprompts",
|
||||
responses={
|
||||
200: {"model": DynamicPromptsResponse},
|
||||
},
|
||||
)
|
||||
async def parse_dynamicprompts(
|
||||
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
|
||||
max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
|
||||
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
|
||||
) -> DynamicPromptsResponse:
|
||||
"""Creates a batch process"""
|
||||
try:
|
||||
error: Optional[str] = None
|
||||
if combinatorial:
|
||||
generator = CombinatorialPromptGenerator()
|
||||
prompts = generator.generate(prompt, max_prompts=max_prompts)
|
||||
else:
|
||||
generator = RandomPromptGenerator()
|
||||
prompts = generator.generate(prompt, num_images=max_prompts)
|
||||
except ParseException as e:
|
||||
prompts = [prompt]
|
||||
error = str(e)
|
||||
return DynamicPromptsResponse(prompts=prompts if prompts else [""], error=error)
|
||||
@@ -3,34 +3,35 @@
|
||||
from fastapi import FastAPI
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.typing import Event
|
||||
from fastapi_socketio import SocketManager
|
||||
from socketio import ASGIApp, AsyncServer
|
||||
|
||||
from ..services.events import EventServiceBase
|
||||
|
||||
|
||||
class SocketIO:
|
||||
__sio: SocketManager
|
||||
__sio: AsyncServer
|
||||
__app: ASGIApp
|
||||
|
||||
def __init__(self, app: FastAPI):
|
||||
self.__sio = SocketManager(app=app)
|
||||
self.__sio.on("subscribe", handler=self._handle_sub)
|
||||
self.__sio.on("unsubscribe", handler=self._handle_unsub)
|
||||
self.__sio = AsyncServer(async_mode="asgi", cors_allowed_origins="*")
|
||||
self.__app = ASGIApp(socketio_server=self.__sio, socketio_path="socket.io")
|
||||
app.mount("/ws", self.__app)
|
||||
|
||||
local_handler.register(event_name=EventServiceBase.session_event, _func=self._handle_session_event)
|
||||
self.__sio.on("subscribe_queue", handler=self._handle_sub_queue)
|
||||
self.__sio.on("unsubscribe_queue", handler=self._handle_unsub_queue)
|
||||
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._handle_queue_event)
|
||||
|
||||
async def _handle_session_event(self, event: Event):
|
||||
async def _handle_queue_event(self, event: Event):
|
||||
await self.__sio.emit(
|
||||
event=event[1]["event"],
|
||||
data=event[1]["data"],
|
||||
room=event[1]["data"]["graph_execution_state_id"],
|
||||
room=event[1]["data"]["queue_id"],
|
||||
)
|
||||
|
||||
async def _handle_sub(self, sid, data, *args, **kwargs):
|
||||
if "session" in data:
|
||||
self.__sio.enter_room(sid, data["session"])
|
||||
async def _handle_sub_queue(self, sid, data, *args, **kwargs):
|
||||
if "queue_id" in data:
|
||||
self.__sio.enter_room(sid, data["queue_id"])
|
||||
|
||||
# @app.sio.on('unsubscribe')
|
||||
|
||||
async def _handle_unsub(self, sid, data, *args, **kwargs):
|
||||
if "session" in data:
|
||||
self.__sio.leave_room(sid, data["session"])
|
||||
async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
|
||||
if "queue_id" in data:
|
||||
self.__sio.enter_room(sid, data["queue_id"])
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
# Copyright (c) 2022-2023 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
from .services.config import InvokeAIAppConfig
|
||||
|
||||
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
|
||||
@@ -9,7 +8,6 @@ app_config.parse_args()
|
||||
|
||||
if True: # hack to make flake8 happy with imports coming after setting up the config
|
||||
import asyncio
|
||||
import logging
|
||||
import mimetypes
|
||||
import socket
|
||||
from inspect import signature
|
||||
@@ -33,7 +31,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
||||
|
||||
from ..backend.util.logging import InvokeAILogger
|
||||
from .api.dependencies import ApiDependencies
|
||||
from .api.routers import app_info, board_images, boards, images, models, sessions
|
||||
from .api.routers import app_info, board_images, boards, images, models, session_queue, sessions, utilities
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField
|
||||
|
||||
@@ -42,7 +40,9 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
||||
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
||||
|
||||
|
||||
logger = InvokeAILogger.getLogger(config=app_config)
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
app_config.parse_args()
|
||||
logger = InvokeAILogger.get_logger(config=app_config)
|
||||
|
||||
# fix for windows mimetypes registry entries being borked
|
||||
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
|
||||
@@ -92,6 +92,8 @@ async def shutdown_event():
|
||||
|
||||
app.include_router(sessions.session_router, prefix="/api")
|
||||
|
||||
app.include_router(utilities.utilities_router, prefix="/api")
|
||||
|
||||
app.include_router(models.models_router, prefix="/api")
|
||||
|
||||
app.include_router(images.images_router, prefix="/api")
|
||||
@@ -102,6 +104,8 @@ app.include_router(board_images.board_images_router, prefix="/api")
|
||||
|
||||
app.include_router(app_info.app_router, prefix="/api")
|
||||
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
|
||||
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
@@ -220,7 +224,7 @@ def invoke_api():
|
||||
exc_info=e,
|
||||
)
|
||||
else:
|
||||
jurigged.watch(logger=InvokeAILogger.getLogger(name="jurigged").info)
|
||||
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
|
||||
|
||||
port = find_port(app_config.port)
|
||||
if port != app_config.port:
|
||||
@@ -239,7 +243,7 @@ def invoke_api():
|
||||
|
||||
# replace uvicorn's loggers with InvokeAI's for consistent appearance
|
||||
for logname in ["uvicorn.access", "uvicorn"]:
|
||||
log = logging.getLogger(logname)
|
||||
log = InvokeAILogger.get_logger(logname)
|
||||
log.handlers.clear()
|
||||
for ch in logger.handlers:
|
||||
log.addHandler(ch)
|
||||
|
||||
@@ -1,17 +1,18 @@
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
||||
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
||||
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
|
||||
|
||||
from .services.config import InvokeAIAppConfig
|
||||
|
||||
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
|
||||
# which are imported/used before parse_args() is called will get the default config values instead of the
|
||||
# values from the command line or config file.
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
|
||||
if True: # hack to make flake8 happy with imports coming after setting up the config
|
||||
import argparse
|
||||
import re
|
||||
import shlex
|
||||
import sqlite3
|
||||
import sys
|
||||
import time
|
||||
from typing import Optional, Union, get_type_hints
|
||||
@@ -58,8 +59,9 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
||||
if torch.backends.mps.is_available():
|
||||
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
||||
|
||||
|
||||
logger = InvokeAILogger().getLogger(config=config)
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
logger = InvokeAILogger().get_logger(config=config)
|
||||
|
||||
|
||||
class CliCommand(BaseModel):
|
||||
@@ -249,19 +251,18 @@ def invoke_cli():
|
||||
db_location = config.db_path
|
||||
db_location.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
|
||||
logger.info(f'InvokeAI database location is "{db_location}"')
|
||||
|
||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
|
||||
filename=db_location, table_name="graph_executions"
|
||||
)
|
||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](conn=db_conn, table_name="graph_executions")
|
||||
|
||||
urls = LocalUrlService()
|
||||
image_record_storage = SqliteImageRecordStorage(db_location)
|
||||
image_record_storage = SqliteImageRecordStorage(conn=db_conn)
|
||||
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
|
||||
names = SimpleNameService()
|
||||
|
||||
board_record_storage = SqliteBoardRecordStorage(db_location)
|
||||
board_image_record_storage = SqliteBoardImageRecordStorage(db_location)
|
||||
board_record_storage = SqliteBoardRecordStorage(conn=db_conn)
|
||||
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn)
|
||||
|
||||
boards = BoardService(
|
||||
services=BoardServiceDependencies(
|
||||
@@ -303,12 +304,13 @@ def invoke_cli():
|
||||
boards=boards,
|
||||
board_images=board_images,
|
||||
queue=MemoryInvocationQueue(),
|
||||
graph_library=SqliteItemStorage[LibraryGraph](filename=db_location, table_name="graphs"),
|
||||
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, table_name="graphs"),
|
||||
graph_execution_manager=graph_execution_manager,
|
||||
processor=DefaultInvocationProcessor(),
|
||||
performance_statistics=InvocationStatsService(graph_execution_manager),
|
||||
logger=logger,
|
||||
configuration=config,
|
||||
invocation_cache=MemoryInvocationCache(max_cache_size=config.node_cache_size),
|
||||
)
|
||||
|
||||
system_graphs = create_system_graphs(services.graph_library)
|
||||
|
||||
@@ -67,6 +67,7 @@ class FieldDescriptions:
|
||||
width = "Width of output (px)"
|
||||
height = "Height of output (px)"
|
||||
control = "ControlNet(s) to apply"
|
||||
ip_adapter = "IP-Adapter to apply"
|
||||
denoised_latents = "Denoised latents tensor"
|
||||
latents = "Latents tensor"
|
||||
strength = "Strength of denoising (proportional to steps)"
|
||||
@@ -87,6 +88,12 @@ class FieldDescriptions:
|
||||
num_1 = "The first number"
|
||||
num_2 = "The second number"
|
||||
mask = "The mask to use for the operation"
|
||||
board = "The board to save the image to"
|
||||
image = "The image to process"
|
||||
tile_size = "Tile size"
|
||||
inclusive_low = "The inclusive low value"
|
||||
exclusive_high = "The exclusive high value"
|
||||
decimal_places = "The number of decimal places to round to"
|
||||
|
||||
|
||||
class Input(str, Enum):
|
||||
@@ -155,6 +162,7 @@ class UIType(str, Enum):
|
||||
VaeModel = "VaeModelField"
|
||||
LoRAModel = "LoRAModelField"
|
||||
ControlNetModel = "ControlNetModelField"
|
||||
IPAdapterModel = "IPAdapterModelField"
|
||||
UNet = "UNetField"
|
||||
Vae = "VaeField"
|
||||
CLIP = "ClipField"
|
||||
@@ -171,6 +179,7 @@ class UIType(str, Enum):
|
||||
WorkflowField = "WorkflowField"
|
||||
IsIntermediate = "IsIntermediate"
|
||||
MetadataField = "MetadataField"
|
||||
BoardField = "BoardField"
|
||||
# endregion
|
||||
|
||||
|
||||
@@ -417,12 +426,27 @@ class UIConfigBase(BaseModel):
|
||||
|
||||
|
||||
class InvocationContext:
|
||||
"""Initialized and provided to on execution of invocations."""
|
||||
|
||||
services: InvocationServices
|
||||
graph_execution_state_id: str
|
||||
queue_id: str
|
||||
queue_item_id: int
|
||||
queue_batch_id: str
|
||||
|
||||
def __init__(self, services: InvocationServices, graph_execution_state_id: str):
|
||||
def __init__(
|
||||
self,
|
||||
services: InvocationServices,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
):
|
||||
self.services = services
|
||||
self.graph_execution_state_id = graph_execution_state_id
|
||||
self.queue_id = queue_id
|
||||
self.queue_item_id = queue_item_id
|
||||
self.queue_batch_id = queue_batch_id
|
||||
|
||||
|
||||
class BaseInvocationOutput(BaseModel):
|
||||
@@ -520,6 +544,9 @@ class BaseInvocation(ABC, BaseModel):
|
||||
return signature(cls.invoke).return_annotation
|
||||
|
||||
class Config:
|
||||
validate_assignment = True
|
||||
validate_all = True
|
||||
|
||||
@staticmethod
|
||||
def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
||||
uiconfig = getattr(model_class, "UIConfig", None)
|
||||
@@ -568,7 +595,29 @@ class BaseInvocation(ABC, BaseModel):
|
||||
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
|
||||
elif _input == Input.Any:
|
||||
raise MissingInputException(self.__fields__["type"].default, field_name)
|
||||
return self.invoke(context)
|
||||
|
||||
# skip node cache codepath if it's disabled
|
||||
if context.services.configuration.node_cache_size == 0:
|
||||
return self.invoke(context)
|
||||
|
||||
output: BaseInvocationOutput
|
||||
if self.use_cache:
|
||||
key = context.services.invocation_cache.create_key(self)
|
||||
cached_value = context.services.invocation_cache.get(key)
|
||||
if cached_value is None:
|
||||
context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
|
||||
output = self.invoke(context)
|
||||
context.services.invocation_cache.save(key, output)
|
||||
return output
|
||||
else:
|
||||
context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
|
||||
return cached_value
|
||||
else:
|
||||
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
||||
return self.invoke(context)
|
||||
|
||||
def get_type(self) -> str:
|
||||
return self.__fields__["type"].default
|
||||
|
||||
id: str = Field(
|
||||
description="The id of this instance of an invocation. Must be unique among all instances of invocations."
|
||||
@@ -581,6 +630,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
description="The workflow to save with the image",
|
||||
ui_type=UIType.WorkflowField,
|
||||
)
|
||||
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
|
||||
|
||||
@validator("workflow", pre=True)
|
||||
def validate_workflow_is_json(cls, v):
|
||||
@@ -604,6 +654,7 @@ def invocation(
|
||||
tags: Optional[list[str]] = None,
|
||||
category: Optional[str] = None,
|
||||
version: Optional[str] = None,
|
||||
use_cache: Optional[bool] = True,
|
||||
) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]:
|
||||
"""
|
||||
Adds metadata to an invocation.
|
||||
@@ -612,6 +663,8 @@ def invocation(
|
||||
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
|
||||
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
|
||||
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
||||
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
||||
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
||||
"""
|
||||
|
||||
def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]:
|
||||
@@ -636,6 +689,8 @@ def invocation(
|
||||
except ValueError as e:
|
||||
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
||||
cls.UIConfig.version = version
|
||||
if use_cache is not None:
|
||||
cls.__fields__["use_cache"].default = use_cache
|
||||
|
||||
# Add the invocation type to the pydantic model of the invocation
|
||||
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
||||
|
||||
@@ -56,6 +56,7 @@ class RangeOfSizeInvocation(BaseInvocation):
|
||||
tags=["range", "integer", "random", "collection"],
|
||||
category="collections",
|
||||
version="1.0.0",
|
||||
use_cache=False,
|
||||
)
|
||||
class RandomRangeInvocation(BaseInvocation):
|
||||
"""Creates a collection of random numbers"""
|
||||
|
||||
@@ -7,14 +7,14 @@ from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
|
||||
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
|
||||
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import (
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ExtraConditioningInfo,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
||||
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
@@ -99,14 +99,15 @@ class CompelInvocation(BaseInvocation):
|
||||
# print(traceback.format_exc())
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
|
||||
with ModelPatcher.apply_lora_text_encoder(
|
||||
text_encoder_info.context.model, _lora_loader()
|
||||
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
), ModelPatcher.apply_clip_skip(
|
||||
text_encoder_info.context.model, self.clip.skipped_layers
|
||||
), text_encoder_info as text_encoder:
|
||||
with (
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
||||
text_encoder_info as text_encoder,
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
@@ -122,7 +123,7 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
||||
|
||||
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||
ec = ExtraConditioningInfo(
|
||||
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
|
||||
cross_attention_control_args=options.get("cross_attention_control", None),
|
||||
)
|
||||
@@ -213,14 +214,15 @@ class SDXLPromptInvocationBase:
|
||||
# print(traceback.format_exc())
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
|
||||
with ModelPatcher.apply_lora(
|
||||
text_encoder_info.context.model, _lora_loader(), lora_prefix
|
||||
), ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
), ModelPatcher.apply_clip_skip(
|
||||
text_encoder_info.context.model, clip_field.skipped_layers
|
||||
), text_encoder_info as text_encoder:
|
||||
with (
|
||||
ModelPatcher.apply_lora(text_encoder_info.context.model, _lora_loader(), lora_prefix),
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
||||
text_encoder_info as text_encoder,
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
@@ -244,7 +246,7 @@ class SDXLPromptInvocationBase:
|
||||
else:
|
||||
c_pooled = None
|
||||
|
||||
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||
ec = ExtraConditioningInfo(
|
||||
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
|
||||
cross_attention_control_args=options.get("cross_attention_control", None),
|
||||
)
|
||||
@@ -436,9 +438,11 @@ def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, trun
|
||||
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
|
||||
|
||||
text_fragments = [
|
||||
x.text
|
||||
if type(x) is Fragment
|
||||
else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x))
|
||||
(
|
||||
x.text
|
||||
if type(x) is Fragment
|
||||
else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x))
|
||||
)
|
||||
for x in parsed_prompt.children
|
||||
]
|
||||
text = " ".join(text_fragments)
|
||||
|
||||
@@ -38,7 +38,6 @@ from .baseinvocation import (
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
@@ -100,7 +99,7 @@ class ControlNetInvocation(BaseInvocation):
|
||||
image: ImageField = InputField(description="The control image")
|
||||
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
|
||||
control_weight: Union[float, List[float]] = InputField(
|
||||
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
|
||||
default=1.0, description="The weight given to the ControlNet"
|
||||
)
|
||||
begin_step_percent: float = InputField(
|
||||
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
|
||||
@@ -560,3 +559,33 @@ class SamDetectorReproducibleColors(SamDetector):
|
||||
img[:, :] = ann_color
|
||||
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m * 255)))
|
||||
return np.array(final_img, dtype=np.uint8)
|
||||
|
||||
|
||||
@invocation(
|
||||
"color_map_image_processor",
|
||||
title="Color Map Processor",
|
||||
tags=["controlnet"],
|
||||
category="controlnet",
|
||||
version="1.0.0",
|
||||
)
|
||||
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
||||
"""Generates a color map from the provided image"""
|
||||
|
||||
color_map_tile_size: int = InputField(default=64, ge=0, description=FieldDescriptions.tile_size)
|
||||
|
||||
def run_processor(self, image: Image.Image):
|
||||
image = image.convert("RGB")
|
||||
image = np.array(image, dtype=np.uint8)
|
||||
height, width = image.shape[:2]
|
||||
|
||||
width_tile_size = min(self.color_map_tile_size, width)
|
||||
height_tile_size = min(self.color_map_tile_size, height)
|
||||
|
||||
color_map = cv2.resize(
|
||||
image,
|
||||
(width // width_tile_size, height // height_tile_size),
|
||||
interpolation=cv2.INTER_CUBIC,
|
||||
)
|
||||
color_map = cv2.resize(color_map, (width, height), interpolation=cv2.INTER_NEAREST)
|
||||
color_map = Image.fromarray(color_map)
|
||||
return color_map
|
||||
|
||||
@@ -8,12 +8,12 @@ import numpy
|
||||
from PIL import Image, ImageChops, ImageFilter, ImageOps
|
||||
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
|
||||
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
|
||||
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
|
||||
from invokeai.backend.image_util.safety_checker import SafetyChecker
|
||||
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
|
||||
@@ -965,3 +965,44 @@ class ImageChannelMultiplyInvocation(BaseInvocation):
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"save_image",
|
||||
title="Save Image",
|
||||
tags=["primitives", "image"],
|
||||
category="primitives",
|
||||
version="1.0.1",
|
||||
use_cache=False,
|
||||
)
|
||||
class SaveImageInvocation(BaseInvocation):
|
||||
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
|
||||
|
||||
image: ImageField = InputField(description=FieldDescriptions.image)
|
||||
board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
|
||||
metadata: CoreMetadata = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.core_metadata,
|
||||
ui_hidden=True,
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get_pil_image(self.image.image_name)
|
||||
|
||||
image_dto = context.services.images.create(
|
||||
image=image,
|
||||
image_origin=ResourceOrigin.INTERNAL,
|
||||
image_category=ImageCategory.GENERAL,
|
||||
board_id=self.board.board_id if self.board else None,
|
||||
node_id=self.id,
|
||||
session_id=context.graph_execution_state_id,
|
||||
is_intermediate=self.is_intermediate,
|
||||
metadata=self.metadata.dict() if self.metadata else None,
|
||||
workflow=self.workflow,
|
||||
)
|
||||
|
||||
return ImageOutput(
|
||||
image=ImageField(image_name=image_dto.image_name),
|
||||
width=image_dto.width,
|
||||
height=image_dto.height,
|
||||
)
|
||||
|
||||
103
invokeai/app/invocations/ip_adapter.py
Normal file
103
invokeai/app/invocations/ip_adapter.py
Normal file
@@ -0,0 +1,103 @@
|
||||
import os
|
||||
from builtins import float
|
||||
from typing import List, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
|
||||
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
||||
|
||||
|
||||
class IPAdapterModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the IP-Adapter model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
|
||||
class CLIPVisionModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the CLIP Vision image encoder model")
|
||||
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
|
||||
|
||||
|
||||
class IPAdapterField(BaseModel):
|
||||
image: ImageField = Field(description="The IP-Adapter image prompt.")
|
||||
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
|
||||
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
|
||||
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
||||
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
|
||||
begin_step_percent: float = Field(
|
||||
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
||||
)
|
||||
end_step_percent: float = Field(
|
||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||
)
|
||||
|
||||
|
||||
@invocation_output("ip_adapter_output")
|
||||
class IPAdapterOutput(BaseInvocationOutput):
|
||||
# Outputs
|
||||
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
|
||||
|
||||
|
||||
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.0.0")
|
||||
class IPAdapterInvocation(BaseInvocation):
|
||||
"""Collects IP-Adapter info to pass to other nodes."""
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The IP-Adapter image prompt.")
|
||||
ip_adapter_model: IPAdapterModelField = InputField(
|
||||
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
|
||||
)
|
||||
|
||||
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
|
||||
weight: Union[float, List[float]] = InputField(
|
||||
default=1, ge=0, description="The weight given to the IP-Adapter", ui_type=UIType.Float, title="Weight"
|
||||
)
|
||||
|
||||
begin_step_percent: float = InputField(
|
||||
default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
|
||||
)
|
||||
end_step_percent: float = InputField(
|
||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
||||
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
||||
ip_adapter_info = context.services.model_manager.model_info(
|
||||
self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter
|
||||
)
|
||||
# HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model
|
||||
# directly, and 2) we are reading from disk every time this invocation is called without caching the result.
|
||||
# A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this
|
||||
# is currently messy due to differences between how the model info is generated when installing a model from
|
||||
# disk vs. downloading the model.
|
||||
image_encoder_model_id = get_ip_adapter_image_encoder_model_id(
|
||||
os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info["path"])
|
||||
)
|
||||
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
|
||||
image_encoder_model = CLIPVisionModelField(
|
||||
model_name=image_encoder_model_name,
|
||||
base_model=BaseModelType.Any,
|
||||
)
|
||||
return IPAdapterOutput(
|
||||
ip_adapter=IPAdapterField(
|
||||
image=self.image,
|
||||
ip_adapter_model=self.ip_adapter_model,
|
||||
image_encoder_model=image_encoder_model,
|
||||
weight=self.weight,
|
||||
begin_step_percent=self.begin_step_percent,
|
||||
end_step_percent=self.end_step_percent,
|
||||
),
|
||||
)
|
||||
@@ -1,13 +1,16 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
from contextlib import ExitStack
|
||||
from functools import singledispatchmethod
|
||||
from typing import List, Literal, Optional, Union
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from diffusers import AutoencoderKL, AutoencoderTiny
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models import UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import (
|
||||
AttnProcessor2_0,
|
||||
LoRAAttnProcessor2_0,
|
||||
@@ -19,6 +22,7 @@ from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import validator
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.ip_adapter import IPAdapterField
|
||||
from invokeai.app.invocations.metadata import CoreMetadata
|
||||
from invokeai.app.invocations.primitives import (
|
||||
DenoiseMaskField,
|
||||
@@ -31,15 +35,17 @@ from invokeai.app.invocations.primitives import (
|
||||
)
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import BaseModelType
|
||||
from ...backend.model_management.seamless import set_seamless
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
ConditioningData,
|
||||
ControlNetData,
|
||||
IPAdapterData,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
image_resized_to_grid_as_tensor,
|
||||
)
|
||||
@@ -68,7 +74,6 @@ if choose_torch_device() == torch.device("mps"):
|
||||
|
||||
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
|
||||
|
||||
|
||||
@@ -191,7 +196,7 @@ def get_scheduler(
|
||||
title="Denoise Latents",
|
||||
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class DenoiseLatentsInvocation(BaseInvocation):
|
||||
"""Denoises noisy latents to decodable images"""
|
||||
@@ -205,7 +210,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
|
||||
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: Union[float, List[float]] = InputField(
|
||||
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, ui_type=UIType.Float, title="CFG Scale"
|
||||
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
|
||||
)
|
||||
denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
@@ -215,13 +220,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
|
||||
control: Union[ControlField, list[ControlField]] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.control,
|
||||
input=Input.Connection,
|
||||
ui_order=5,
|
||||
)
|
||||
ip_adapter: Optional[IPAdapterField] = InputField(
|
||||
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6
|
||||
)
|
||||
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=6
|
||||
default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=7
|
||||
)
|
||||
|
||||
@validator("cfg_scale")
|
||||
@@ -323,8 +330,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
def prep_control_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
# really only need model for dtype and device
|
||||
model: StableDiffusionGeneratorPipeline,
|
||||
control_input: Union[ControlField, List[ControlField]],
|
||||
latents_shape: List[int],
|
||||
exit_stack: ExitStack,
|
||||
@@ -344,57 +349,107 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
else:
|
||||
control_list = None
|
||||
if control_list is None:
|
||||
control_data = None
|
||||
# from above handling, any control that is not None should now be of type list[ControlField]
|
||||
else:
|
||||
# FIXME: add checks to skip entry if model or image is None
|
||||
# and if weight is None, populate with default 1.0?
|
||||
control_data = []
|
||||
control_models = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(
|
||||
context.services.model_manager.get_model(
|
||||
model_name=control_info.control_model.model_name,
|
||||
model_type=ModelType.ControlNet,
|
||||
base_model=control_info.control_model.base_model,
|
||||
context=context,
|
||||
)
|
||||
)
|
||||
return None
|
||||
# After above handling, any control that is not None should now be of type list[ControlField].
|
||||
|
||||
control_models.append(control_model)
|
||||
control_image_field = control_info.image
|
||||
input_image = context.services.images.get_pil_image(control_image_field.image_name)
|
||||
# self.image.image_type, self.image.image_name
|
||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||
# and add in batch_size, num_images_per_prompt?
|
||||
# and do real check for classifier_free_guidance?
|
||||
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
|
||||
control_image = prepare_control_image(
|
||||
image=input_image,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
width=control_width_resize,
|
||||
height=control_height_resize,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
control_mode=control_info.control_mode,
|
||||
resize_mode=control_info.resize_mode,
|
||||
# FIXME: add checks to skip entry if model or image is None
|
||||
# and if weight is None, populate with default 1.0?
|
||||
controlnet_data = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(
|
||||
context.services.model_manager.get_model(
|
||||
model_name=control_info.control_model.model_name,
|
||||
model_type=ModelType.ControlNet,
|
||||
base_model=control_info.control_model.base_model,
|
||||
context=context,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model,
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
end_step_percent=control_info.end_step_percent,
|
||||
control_mode=control_info.control_mode,
|
||||
# any resizing needed should currently be happening in prepare_control_image(),
|
||||
# but adding resize_mode to ControlNetData in case needed in the future
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_data.append(control_item)
|
||||
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
|
||||
return control_data
|
||||
)
|
||||
|
||||
# control_models.append(control_model)
|
||||
control_image_field = control_info.image
|
||||
input_image = context.services.images.get_pil_image(control_image_field.image_name)
|
||||
# self.image.image_type, self.image.image_name
|
||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||
# and add in batch_size, num_images_per_prompt?
|
||||
# and do real check for classifier_free_guidance?
|
||||
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
|
||||
control_image = prepare_control_image(
|
||||
image=input_image,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
width=control_width_resize,
|
||||
height=control_height_resize,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
control_mode=control_info.control_mode,
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model, # model object
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
end_step_percent=control_info.end_step_percent,
|
||||
control_mode=control_info.control_mode,
|
||||
# any resizing needed should currently be happening in prepare_control_image(),
|
||||
# but adding resize_mode to ControlNetData in case needed in the future
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
controlnet_data.append(control_item)
|
||||
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
|
||||
|
||||
return controlnet_data
|
||||
|
||||
def prep_ip_adapter_data(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
ip_adapter: Optional[IPAdapterField],
|
||||
conditioning_data: ConditioningData,
|
||||
unet: UNet2DConditionModel,
|
||||
exit_stack: ExitStack,
|
||||
) -> Optional[IPAdapterData]:
|
||||
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
|
||||
to the `conditioning_data` (in-place).
|
||||
"""
|
||||
if ip_adapter is None:
|
||||
return None
|
||||
|
||||
image_encoder_model_info = context.services.model_manager.get_model(
|
||||
model_name=ip_adapter.image_encoder_model.model_name,
|
||||
model_type=ModelType.CLIPVision,
|
||||
base_model=ip_adapter.image_encoder_model.base_model,
|
||||
context=context,
|
||||
)
|
||||
|
||||
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
|
||||
context.services.model_manager.get_model(
|
||||
model_name=ip_adapter.ip_adapter_model.model_name,
|
||||
model_type=ModelType.IPAdapter,
|
||||
base_model=ip_adapter.ip_adapter_model.base_model,
|
||||
context=context,
|
||||
)
|
||||
)
|
||||
|
||||
input_image = context.services.images.get_pil_image(ip_adapter.image.image_name)
|
||||
|
||||
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
|
||||
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
|
||||
with image_encoder_model_info as image_encoder_model:
|
||||
# Get image embeddings from CLIP and ImageProjModel.
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
|
||||
input_image, image_encoder_model
|
||||
)
|
||||
conditioning_data.ip_adapter_conditioning = IPAdapterConditioningInfo(
|
||||
image_prompt_embeds, uncond_image_prompt_embeds
|
||||
)
|
||||
|
||||
return IPAdapterData(
|
||||
ip_adapter_model=ip_adapter_model,
|
||||
weight=ip_adapter.weight,
|
||||
begin_step_percent=ip_adapter.begin_step_percent,
|
||||
end_step_percent=ip_adapter.end_step_percent,
|
||||
)
|
||||
|
||||
# original idea by https://github.com/AmericanPresidentJimmyCarter
|
||||
# TODO: research more for second order schedulers timesteps
|
||||
@@ -488,9 +543,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
**self.unet.unet.dict(),
|
||||
context=context,
|
||||
)
|
||||
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
|
||||
unet_info.context.model, _lora_loader()
|
||||
), set_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet:
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),
|
||||
set_seamless(unet_info.context.model, self.unet.seamless_axes),
|
||||
unet_info as unet,
|
||||
):
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
@@ -509,8 +567,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
pipeline = self.create_pipeline(unet, scheduler)
|
||||
conditioning_data = self.get_conditioning_data(context, scheduler, unet, seed)
|
||||
|
||||
control_data = self.prep_control_data(
|
||||
model=pipeline,
|
||||
controlnet_data = self.prep_control_data(
|
||||
context=context,
|
||||
control_input=self.control,
|
||||
latents_shape=latents.shape,
|
||||
@@ -519,6 +576,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
ip_adapter_data = self.prep_ip_adapter_data(
|
||||
context=context,
|
||||
ip_adapter=self.ip_adapter,
|
||||
conditioning_data=conditioning_data,
|
||||
unet=unet,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep = self.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
@@ -537,7 +602,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
masked_latents=masked_latents,
|
||||
num_inference_steps=num_inference_steps,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=control_data, # list[ControlNetData]
|
||||
control_data=controlnet_data, # list[ControlNetData],
|
||||
ip_adapter_data=ip_adapter_data, # IPAdapterData,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
@@ -792,8 +858,7 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
# non_noised_latents_from_image
|
||||
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
|
||||
with torch.inference_mode():
|
||||
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
||||
latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
|
||||
latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor)
|
||||
|
||||
latents = vae.config.scaling_factor * latents
|
||||
latents = latents.to(dtype=orig_dtype)
|
||||
@@ -820,6 +885,18 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
context.services.latents.save(name, latents)
|
||||
return build_latents_output(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
image_tensor_dist = vae.encode(image_tensor).latent_dist
|
||||
latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
|
||||
return latents
|
||||
|
||||
@_encode_to_tensor.register
|
||||
@staticmethod
|
||||
def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||||
return vae.encode(image_tensor).latents
|
||||
|
||||
|
||||
@invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0")
|
||||
class BlendLatentsInvocation(BaseInvocation):
|
||||
|
||||
@@ -54,17 +54,38 @@ class DivideInvocation(BaseInvocation):
|
||||
return IntegerOutput(value=int(self.a / self.b))
|
||||
|
||||
|
||||
@invocation("rand_int", title="Random Integer", tags=["math", "random"], category="math", version="1.0.0")
|
||||
@invocation(
|
||||
"rand_int",
|
||||
title="Random Integer",
|
||||
tags=["math", "random"],
|
||||
category="math",
|
||||
version="1.0.0",
|
||||
use_cache=False,
|
||||
)
|
||||
class RandomIntInvocation(BaseInvocation):
|
||||
"""Outputs a single random integer."""
|
||||
|
||||
low: int = InputField(default=0, description="The inclusive low value")
|
||||
high: int = InputField(default=np.iinfo(np.int32).max, description="The exclusive high value")
|
||||
low: int = InputField(default=0, description=FieldDescriptions.inclusive_low)
|
||||
high: int = InputField(default=np.iinfo(np.int32).max, description=FieldDescriptions.exclusive_high)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IntegerOutput:
|
||||
return IntegerOutput(value=np.random.randint(self.low, self.high))
|
||||
|
||||
|
||||
@invocation("rand_float", title="Random Float", tags=["math", "float", "random"], category="math", version="1.0.0")
|
||||
class RandomFloatInvocation(BaseInvocation):
|
||||
"""Outputs a single random float"""
|
||||
|
||||
low: float = InputField(default=0.0, description=FieldDescriptions.inclusive_low)
|
||||
high: float = InputField(default=1.0, description=FieldDescriptions.exclusive_high)
|
||||
decimals: int = InputField(default=2, description=FieldDescriptions.decimal_places)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FloatOutput:
|
||||
random_float = np.random.uniform(self.low, self.high)
|
||||
rounded_float = round(random_float, self.decimals)
|
||||
return FloatOutput(value=rounded_float)
|
||||
|
||||
|
||||
@invocation(
|
||||
"float_to_int",
|
||||
title="Float To Integer",
|
||||
|
||||
@@ -42,7 +42,8 @@ class CoreMetadata(BaseModelExcludeNull):
|
||||
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
||||
steps: int = Field(description="The number of steps used for inference")
|
||||
scheduler: str = Field(description="The scheduler used for inference")
|
||||
clip_skip: int = Field(
|
||||
clip_skip: Optional[int] = Field(
|
||||
default=None,
|
||||
description="The number of skipped CLIP layers",
|
||||
)
|
||||
model: MainModelField = Field(description="The main model used for inference")
|
||||
@@ -116,7 +117,8 @@ class MetadataAccumulatorInvocation(BaseInvocation):
|
||||
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
|
||||
steps: int = InputField(description="The number of steps used for inference")
|
||||
scheduler: str = InputField(description="The scheduler used for inference")
|
||||
clip_skip: int = InputField(
|
||||
clip_skip: Optional[int] = Field(
|
||||
default=None,
|
||||
description="The number of skipped CLIP layers",
|
||||
)
|
||||
model: MainModelField = InputField(description="The main model used for inference")
|
||||
|
||||
@@ -95,9 +95,10 @@ class ONNXPromptInvocation(BaseInvocation):
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
if loras or ti_list:
|
||||
text_encoder.release_session()
|
||||
with ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras), ONNXModelPatcher.apply_ti(
|
||||
orig_tokenizer, text_encoder, ti_list
|
||||
) as (tokenizer, ti_manager):
|
||||
with (
|
||||
ONNXModelPatcher.apply_lora_text_encoder(text_encoder, loras),
|
||||
ONNXModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager),
|
||||
):
|
||||
text_encoder.create_session()
|
||||
|
||||
# copy from
|
||||
@@ -165,7 +166,6 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
|
||||
default=7.5,
|
||||
ge=1,
|
||||
description=FieldDescriptions.cfg_scale,
|
||||
ui_type=UIType.Float,
|
||||
)
|
||||
scheduler: SAMPLER_NAME_VALUES = InputField(
|
||||
default="euler", description=FieldDescriptions.scheduler, input=Input.Direct, ui_type=UIType.Scheduler
|
||||
@@ -178,7 +178,6 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
|
||||
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.control,
|
||||
ui_type=UIType.Control,
|
||||
)
|
||||
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||
|
||||
@@ -226,6 +226,12 @@ class ImageField(BaseModel):
|
||||
image_name: str = Field(description="The name of the image")
|
||||
|
||||
|
||||
class BoardField(BaseModel):
|
||||
"""A board primitive field"""
|
||||
|
||||
board_id: str = Field(description="The id of the board")
|
||||
|
||||
|
||||
@invocation_output("image_output")
|
||||
class ImageOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single image"""
|
||||
|
||||
@@ -10,7 +10,14 @@ from invokeai.app.invocations.primitives import StringCollectionOutput
|
||||
from .baseinvocation import BaseInvocation, InputField, InvocationContext, UIComponent, invocation
|
||||
|
||||
|
||||
@invocation("dynamic_prompt", title="Dynamic Prompt", tags=["prompt", "collection"], category="prompt", version="1.0.0")
|
||||
@invocation(
|
||||
"dynamic_prompt",
|
||||
title="Dynamic Prompt",
|
||||
tags=["prompt", "collection"],
|
||||
category="prompt",
|
||||
version="1.0.0",
|
||||
use_cache=False,
|
||||
)
|
||||
class DynamicPromptInvocation(BaseInvocation):
|
||||
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
|
||||
|
||||
|
||||
@@ -53,24 +53,20 @@ class BoardImageRecordStorageBase(ABC):
|
||||
|
||||
|
||||
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
|
||||
_filename: str
|
||||
_conn: sqlite3.Connection
|
||||
_cursor: sqlite3.Cursor
|
||||
_lock: threading.Lock
|
||||
|
||||
def __init__(self, filename: str) -> None:
|
||||
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
|
||||
super().__init__()
|
||||
self._filename = filename
|
||||
self._conn = sqlite3.connect(filename, check_same_thread=False)
|
||||
self._conn = conn
|
||||
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
|
||||
self._conn.row_factory = sqlite3.Row
|
||||
self._cursor = self._conn.cursor()
|
||||
self._lock = threading.Lock()
|
||||
self._lock = lock
|
||||
|
||||
try:
|
||||
self._lock.acquire()
|
||||
# Enable foreign keys
|
||||
self._conn.execute("PRAGMA foreign_keys = ON;")
|
||||
self._create_tables()
|
||||
self._conn.commit()
|
||||
finally:
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import sqlite3
|
||||
import threading
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
@@ -8,6 +7,7 @@ from pydantic import BaseModel, Extra, Field
|
||||
|
||||
from invokeai.app.services.image_record_storage import OffsetPaginatedResults
|
||||
from invokeai.app.services.models.board_record import BoardRecord, deserialize_board_record
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class BoardChanges(BaseModel, extra=Extra.forbid):
|
||||
@@ -87,24 +87,20 @@ class BoardRecordStorageBase(ABC):
|
||||
|
||||
|
||||
class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
_filename: str
|
||||
_conn: sqlite3.Connection
|
||||
_cursor: sqlite3.Cursor
|
||||
_lock: threading.Lock
|
||||
|
||||
def __init__(self, filename: str) -> None:
|
||||
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
|
||||
super().__init__()
|
||||
self._filename = filename
|
||||
self._conn = sqlite3.connect(filename, check_same_thread=False)
|
||||
self._conn = conn
|
||||
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
|
||||
self._conn.row_factory = sqlite3.Row
|
||||
self._cursor = self._conn.cursor()
|
||||
self._lock = threading.Lock()
|
||||
self._lock = lock
|
||||
|
||||
try:
|
||||
self._lock.acquire()
|
||||
# Enable foreign keys
|
||||
self._conn.execute("PRAGMA foreign_keys = ON;")
|
||||
self._create_tables()
|
||||
self._conn.commit()
|
||||
finally:
|
||||
@@ -174,7 +170,7 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
|
||||
board_name: str,
|
||||
) -> BoardRecord:
|
||||
try:
|
||||
board_id = str(uuid.uuid4())
|
||||
board_id = uuid_string()
|
||||
self._lock.acquire()
|
||||
self._cursor.execute(
|
||||
"""--sql
|
||||
|
||||
@@ -16,7 +16,7 @@ import pydoc
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
from pathlib import Path
|
||||
from typing import ClassVar, Dict, List, Literal, Union, get_args, get_origin, get_type_hints
|
||||
from typing import ClassVar, Dict, List, Literal, Optional, Union, get_args, get_origin, get_type_hints
|
||||
|
||||
from omegaconf import DictConfig, ListConfig, OmegaConf
|
||||
from pydantic import BaseSettings
|
||||
@@ -39,10 +39,10 @@ class InvokeAISettings(BaseSettings):
|
||||
read from an omegaconf .yaml file.
|
||||
"""
|
||||
|
||||
initconf: ClassVar[DictConfig] = None
|
||||
initconf: ClassVar[Optional[DictConfig]] = None
|
||||
argparse_groups: ClassVar[Dict] = {}
|
||||
|
||||
def parse_args(self, argv: list = sys.argv[1:]):
|
||||
def parse_args(self, argv: Optional[list] = sys.argv[1:]):
|
||||
parser = self.get_parser()
|
||||
opt, unknown_opts = parser.parse_known_args(argv)
|
||||
if len(unknown_opts) > 0:
|
||||
@@ -83,7 +83,8 @@ class InvokeAISettings(BaseSettings):
|
||||
else:
|
||||
settings_stanza = "Uncategorized"
|
||||
|
||||
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
|
||||
env_prefix = getattr(cls.Config, "env_prefix", None)
|
||||
env_prefix = env_prefix if env_prefix is not None else settings_stanza.upper()
|
||||
|
||||
initconf = (
|
||||
cls.initconf.get(settings_stanza)
|
||||
@@ -116,8 +117,8 @@ class InvokeAISettings(BaseSettings):
|
||||
field.default = current_default
|
||||
|
||||
@classmethod
|
||||
def cmd_name(self, command_field: str = "type") -> str:
|
||||
hints = get_type_hints(self)
|
||||
def cmd_name(cls, command_field: str = "type") -> str:
|
||||
hints = get_type_hints(cls)
|
||||
if command_field in hints:
|
||||
return get_args(hints[command_field])[0]
|
||||
else:
|
||||
@@ -133,16 +134,12 @@ class InvokeAISettings(BaseSettings):
|
||||
return parser
|
||||
|
||||
@classmethod
|
||||
def add_subparser(cls, parser: argparse.ArgumentParser):
|
||||
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
|
||||
|
||||
@classmethod
|
||||
def _excluded(self) -> List[str]:
|
||||
def _excluded(cls) -> List[str]:
|
||||
# internal fields that shouldn't be exposed as command line options
|
||||
return ["type", "initconf"]
|
||||
|
||||
@classmethod
|
||||
def _excluded_from_yaml(self) -> List[str]:
|
||||
def _excluded_from_yaml(cls) -> List[str]:
|
||||
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
|
||||
return [
|
||||
"type",
|
||||
|
||||
@@ -194,8 +194,8 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
setting environment variables INVOKEAI_<setting>.
|
||||
"""
|
||||
|
||||
singleton_config: ClassVar[InvokeAIAppConfig] = None
|
||||
singleton_init: ClassVar[Dict] = None
|
||||
singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None
|
||||
singleton_init: ClassVar[Optional[Dict]] = None
|
||||
|
||||
# fmt: off
|
||||
type: Literal["InvokeAI"] = "InvokeAI"
|
||||
@@ -234,29 +234,35 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
|
||||
log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
|
||||
log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
|
||||
log_sql : bool = Field(default=False, description="Log SQL queries", category="Logging")
|
||||
|
||||
dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", category="Development")
|
||||
|
||||
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
|
||||
|
||||
# CACHE
|
||||
ram : Union[float, Literal["auto"]] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
|
||||
ram : Union[float, Literal["auto"]] = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", )
|
||||
vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", )
|
||||
lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", )
|
||||
|
||||
# DEVICE
|
||||
device : Literal[tuple(["auto", "cpu", "cuda", "cuda:1", "mps"])] = Field(default="auto", description="Generation device", category="Device", )
|
||||
precision: Literal[tuple(["auto", "float16", "float32", "autocast"])] = Field(default="auto", description="Floating point precision", category="Device", )
|
||||
device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", category="Device", )
|
||||
precision : Literal["auto", "float16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", category="Device", )
|
||||
|
||||
# GENERATION
|
||||
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", )
|
||||
attention_type : Literal[tuple(["auto", "normal", "xformers", "sliced", "torch-sdp"])] = Field(default="auto", description="Attention type", category="Generation", )
|
||||
attention_slice_size: Literal[tuple(["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8])] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
|
||||
attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", category="Generation", )
|
||||
attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", )
|
||||
force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
|
||||
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",)
|
||||
|
||||
# QUEUE
|
||||
max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", category="Queue", )
|
||||
|
||||
# NODES
|
||||
allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", category="Nodes")
|
||||
deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", category="Nodes")
|
||||
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", category="Nodes", )
|
||||
|
||||
# DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES
|
||||
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
|
||||
@@ -271,8 +277,9 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
|
||||
class Config:
|
||||
validate_assignment = True
|
||||
env_prefix = "INVOKEAI"
|
||||
|
||||
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
|
||||
def parse_args(self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber=False):
|
||||
"""
|
||||
Update settings with contents of init file, environment, and
|
||||
command-line settings.
|
||||
@@ -283,12 +290,16 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
# Set the runtime root directory. We parse command-line switches here
|
||||
# in order to pick up the --root_dir option.
|
||||
super().parse_args(argv)
|
||||
loaded_conf = None
|
||||
if conf is None:
|
||||
try:
|
||||
conf = OmegaConf.load(self.root_dir / INIT_FILE)
|
||||
loaded_conf = OmegaConf.load(self.root_dir / INIT_FILE)
|
||||
except Exception:
|
||||
pass
|
||||
InvokeAISettings.initconf = conf
|
||||
if isinstance(loaded_conf, DictConfig):
|
||||
InvokeAISettings.initconf = loaded_conf
|
||||
else:
|
||||
InvokeAISettings.initconf = conf
|
||||
|
||||
# parse args again in order to pick up settings in configuration file
|
||||
super().parse_args(argv)
|
||||
@@ -376,13 +387,6 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
"""
|
||||
return self._resolve(self.models_dir)
|
||||
|
||||
@property
|
||||
def autoconvert_path(self) -> Path:
|
||||
"""
|
||||
Path to the directory containing models to be imported automatically at startup.
|
||||
"""
|
||||
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
|
||||
|
||||
# the following methods support legacy calls leftover from the Globals era
|
||||
@property
|
||||
def full_precision(self) -> bool:
|
||||
@@ -405,11 +409,11 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
return True
|
||||
|
||||
@property
|
||||
def ram_cache_size(self) -> float:
|
||||
def ram_cache_size(self) -> Union[Literal["auto"], float]:
|
||||
return self.max_cache_size or self.ram
|
||||
|
||||
@property
|
||||
def vram_cache_size(self) -> float:
|
||||
def vram_cache_size(self) -> Union[Literal["auto"], float]:
|
||||
return self.max_vram_cache_size or self.vram
|
||||
|
||||
@property
|
||||
|
||||
@@ -10,57 +10,58 @@ default_text_to_image_graph_id = "539b2af5-2b4d-4d8c-8071-e54a3255fc74"
|
||||
|
||||
|
||||
def create_text_to_image() -> LibraryGraph:
|
||||
graph = Graph(
|
||||
nodes={
|
||||
"width": IntegerInvocation(id="width", value=512),
|
||||
"height": IntegerInvocation(id="height", value=512),
|
||||
"seed": IntegerInvocation(id="seed", value=-1),
|
||||
"3": NoiseInvocation(id="3"),
|
||||
"4": CompelInvocation(id="4"),
|
||||
"5": CompelInvocation(id="5"),
|
||||
"6": DenoiseLatentsInvocation(id="6"),
|
||||
"7": LatentsToImageInvocation(id="7"),
|
||||
"8": ImageNSFWBlurInvocation(id="8"),
|
||||
},
|
||||
edges=[
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="width", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="width"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="height", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="height"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="seed", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="seed"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="3", field="noise"),
|
||||
destination=EdgeConnection(node_id="6", field="noise"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="6", field="latents"),
|
||||
destination=EdgeConnection(node_id="7", field="latents"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="4", field="conditioning"),
|
||||
destination=EdgeConnection(node_id="6", field="positive_conditioning"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="5", field="conditioning"),
|
||||
destination=EdgeConnection(node_id="6", field="negative_conditioning"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="7", field="image"),
|
||||
destination=EdgeConnection(node_id="8", field="image"),
|
||||
),
|
||||
],
|
||||
)
|
||||
return LibraryGraph(
|
||||
id=default_text_to_image_graph_id,
|
||||
name="t2i",
|
||||
description="Converts text to an image",
|
||||
graph=Graph(
|
||||
nodes={
|
||||
"width": IntegerInvocation(id="width", value=512),
|
||||
"height": IntegerInvocation(id="height", value=512),
|
||||
"seed": IntegerInvocation(id="seed", value=-1),
|
||||
"3": NoiseInvocation(id="3"),
|
||||
"4": CompelInvocation(id="4"),
|
||||
"5": CompelInvocation(id="5"),
|
||||
"6": DenoiseLatentsInvocation(id="6"),
|
||||
"7": LatentsToImageInvocation(id="7"),
|
||||
"8": ImageNSFWBlurInvocation(id="8"),
|
||||
},
|
||||
edges=[
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="width", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="width"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="height", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="height"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="seed", field="value"),
|
||||
destination=EdgeConnection(node_id="3", field="seed"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="3", field="noise"),
|
||||
destination=EdgeConnection(node_id="6", field="noise"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="6", field="latents"),
|
||||
destination=EdgeConnection(node_id="7", field="latents"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="4", field="conditioning"),
|
||||
destination=EdgeConnection(node_id="6", field="positive_conditioning"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="5", field="conditioning"),
|
||||
destination=EdgeConnection(node_id="6", field="negative_conditioning"),
|
||||
),
|
||||
Edge(
|
||||
source=EdgeConnection(node_id="7", field="image"),
|
||||
destination=EdgeConnection(node_id="8", field="image"),
|
||||
),
|
||||
],
|
||||
),
|
||||
graph=graph,
|
||||
exposed_inputs=[
|
||||
ExposedNodeInput(node_path="4", field="prompt", alias="positive_prompt"),
|
||||
ExposedNodeInput(node_path="5", field="prompt", alias="negative_prompt"),
|
||||
|
||||
@@ -4,21 +4,23 @@ from typing import Any, Optional
|
||||
|
||||
from invokeai.app.models.image import ProgressImage
|
||||
from invokeai.app.services.model_manager_service import BaseModelType, ModelInfo, ModelType, SubModelType
|
||||
from invokeai.app.services.session_queue.session_queue_common import EnqueueBatchResult, SessionQueueItem
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
|
||||
|
||||
class EventServiceBase:
|
||||
session_event: str = "session_event"
|
||||
queue_event: str = "queue_event"
|
||||
|
||||
"""Basic event bus, to have an empty stand-in when not needed"""
|
||||
|
||||
def dispatch(self, event_name: str, payload: Any) -> None:
|
||||
pass
|
||||
|
||||
def __emit_session_event(self, event_name: str, payload: dict) -> None:
|
||||
def __emit_queue_event(self, event_name: str, payload: dict) -> None:
|
||||
"""Queue events are emitted to a room with queue_id as the room name"""
|
||||
payload["timestamp"] = get_timestamp()
|
||||
self.dispatch(
|
||||
event_name=EventServiceBase.session_event,
|
||||
event_name=EventServiceBase.queue_event,
|
||||
payload=dict(event=event_name, data=payload),
|
||||
)
|
||||
|
||||
@@ -26,6 +28,9 @@ class EventServiceBase:
|
||||
# This will make them easier to integrate until we find a schema generator.
|
||||
def emit_generator_progress(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
@@ -35,11 +40,14 @@ class EventServiceBase:
|
||||
total_steps: int,
|
||||
) -> None:
|
||||
"""Emitted when there is generation progress"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="generator_progress",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
node_id=node.get("id"),
|
||||
source_node_id=source_node_id,
|
||||
progress_image=progress_image.dict() if progress_image is not None else None,
|
||||
step=step,
|
||||
@@ -50,15 +58,21 @@ class EventServiceBase:
|
||||
|
||||
def emit_invocation_complete(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
result: dict,
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
) -> None:
|
||||
"""Emitted when an invocation has completed"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="invocation_complete",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
@@ -68,6 +82,9 @@ class EventServiceBase:
|
||||
|
||||
def emit_invocation_error(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
@@ -75,9 +92,12 @@ class EventServiceBase:
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when an invocation has completed"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="invocation_error",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
@@ -86,28 +106,47 @@ class EventServiceBase:
|
||||
),
|
||||
)
|
||||
|
||||
def emit_invocation_started(self, graph_execution_state_id: str, node: dict, source_node_id: str) -> None:
|
||||
def emit_invocation_started(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
) -> None:
|
||||
"""Emitted when an invocation has started"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="invocation_started",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_graph_execution_complete(self, graph_execution_state_id: str) -> None:
|
||||
def emit_graph_execution_complete(
|
||||
self, queue_id: str, queue_item_id: int, queue_batch_id: str, graph_execution_state_id: str
|
||||
) -> None:
|
||||
"""Emitted when a session has completed all invocations"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="graph_execution_state_complete",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_model_load_started(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
@@ -115,9 +154,12 @@ class EventServiceBase:
|
||||
submodel: SubModelType,
|
||||
) -> None:
|
||||
"""Emitted when a model is requested"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="model_load_started",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
@@ -128,6 +170,9 @@ class EventServiceBase:
|
||||
|
||||
def emit_model_load_completed(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
@@ -136,9 +181,12 @@ class EventServiceBase:
|
||||
model_info: ModelInfo,
|
||||
) -> None:
|
||||
"""Emitted when a model is correctly loaded (returns model info)"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="model_load_completed",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
@@ -152,14 +200,20 @@ class EventServiceBase:
|
||||
|
||||
def emit_session_retrieval_error(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when session retrieval fails"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="session_retrieval_error",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
error_type=error_type,
|
||||
error=error,
|
||||
@@ -168,18 +222,78 @@ class EventServiceBase:
|
||||
|
||||
def emit_invocation_retrieval_error(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
node_id: str,
|
||||
error_type: str,
|
||||
error: str,
|
||||
) -> None:
|
||||
"""Emitted when invocation retrieval fails"""
|
||||
self.__emit_session_event(
|
||||
self.__emit_queue_event(
|
||||
event_name="invocation_retrieval_error",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
node_id=node_id,
|
||||
error_type=error_type,
|
||||
error=error,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_session_canceled(
|
||||
self,
|
||||
queue_id: str,
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
) -> None:
|
||||
"""Emitted when a session is canceled"""
|
||||
self.__emit_queue_event(
|
||||
event_name="session_canceled",
|
||||
payload=dict(
|
||||
queue_id=queue_id,
|
||||
queue_item_id=queue_item_id,
|
||||
queue_batch_id=queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state_id,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_queue_item_status_changed(self, session_queue_item: SessionQueueItem) -> None:
|
||||
"""Emitted when a queue item's status changes"""
|
||||
self.__emit_queue_event(
|
||||
event_name="queue_item_status_changed",
|
||||
payload=dict(
|
||||
queue_id=session_queue_item.queue_id,
|
||||
queue_item_id=session_queue_item.item_id,
|
||||
status=session_queue_item.status,
|
||||
batch_id=session_queue_item.batch_id,
|
||||
session_id=session_queue_item.session_id,
|
||||
error=session_queue_item.error,
|
||||
created_at=str(session_queue_item.created_at) if session_queue_item.created_at else None,
|
||||
updated_at=str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
|
||||
started_at=str(session_queue_item.started_at) if session_queue_item.started_at else None,
|
||||
completed_at=str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_batch_enqueued(self, enqueue_result: EnqueueBatchResult) -> None:
|
||||
"""Emitted when a batch is enqueued"""
|
||||
self.__emit_queue_event(
|
||||
event_name="batch_enqueued",
|
||||
payload=dict(
|
||||
queue_id=enqueue_result.queue_id,
|
||||
batch_id=enqueue_result.batch.batch_id,
|
||||
enqueued=enqueue_result.enqueued,
|
||||
),
|
||||
)
|
||||
|
||||
def emit_queue_cleared(self, queue_id: str) -> None:
|
||||
"""Emitted when the queue is cleared"""
|
||||
self.__emit_queue_event(
|
||||
event_name="queue_cleared",
|
||||
payload=dict(queue_id=queue_id),
|
||||
)
|
||||
|
||||
@@ -2,13 +2,14 @@
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
import uuid
|
||||
from typing import Annotated, Any, Optional, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Annotated, Any, Optional, Union, cast, get_args, get_origin, get_type_hints
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import BaseModel, root_validator, validator
|
||||
from pydantic.fields import Field
|
||||
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
# Importing * is bad karma but needed here for node detection
|
||||
from ..invocations import * # noqa: F401 F403
|
||||
from ..invocations.baseinvocation import (
|
||||
@@ -116,6 +117,10 @@ def are_connection_types_compatible(from_type: Any, to_type: Any) -> bool:
|
||||
if from_type is int and to_type is float:
|
||||
return True
|
||||
|
||||
# allow int|float -> str, pydantic will cast for us
|
||||
if (from_type is int or from_type is float) and to_type is str:
|
||||
return True
|
||||
|
||||
# if not issubclass(from_type, to_type):
|
||||
if not is_union_subtype(from_type, to_type):
|
||||
return False
|
||||
@@ -137,19 +142,31 @@ def are_connections_compatible(
|
||||
return are_connection_types_compatible(from_node_field, to_node_field)
|
||||
|
||||
|
||||
class NodeAlreadyInGraphError(Exception):
|
||||
class NodeAlreadyInGraphError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class InvalidEdgeError(Exception):
|
||||
class InvalidEdgeError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class NodeNotFoundError(Exception):
|
||||
class NodeNotFoundError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class NodeAlreadyExecutedError(Exception):
|
||||
class NodeAlreadyExecutedError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class DuplicateNodeIdError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class NodeFieldNotFoundError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
class NodeIdMismatchError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
@@ -227,7 +244,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
|
||||
|
||||
|
||||
class Graph(BaseModel):
|
||||
id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
|
||||
id: str = Field(description="The id of this graph", default_factory=uuid_string)
|
||||
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
|
||||
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
|
||||
description="The nodes in this graph", default_factory=dict
|
||||
@@ -237,6 +254,59 @@ class Graph(BaseModel):
|
||||
default_factory=list,
|
||||
)
|
||||
|
||||
@root_validator
|
||||
def validate_nodes_and_edges(cls, values):
|
||||
"""Validates that all edges match nodes in the graph"""
|
||||
nodes = cast(Optional[dict[str, BaseInvocation]], values.get("nodes"))
|
||||
edges = cast(Optional[list[Edge]], values.get("edges"))
|
||||
|
||||
if nodes is not None:
|
||||
# Validate that all node ids are unique
|
||||
node_ids = [n.id for n in nodes.values()]
|
||||
duplicate_node_ids = set([node_id for node_id in node_ids if node_ids.count(node_id) >= 2])
|
||||
if duplicate_node_ids:
|
||||
raise DuplicateNodeIdError(f"Node ids must be unique, found duplicates {duplicate_node_ids}")
|
||||
|
||||
# Validate that all node ids match the keys in the nodes dict
|
||||
for k, v in nodes.items():
|
||||
if k != v.id:
|
||||
raise NodeIdMismatchError(f"Node ids must match, got {k} and {v.id}")
|
||||
|
||||
if edges is not None and nodes is not None:
|
||||
# Validate that all edges match nodes in the graph
|
||||
node_ids = set([e.source.node_id for e in edges] + [e.destination.node_id for e in edges])
|
||||
missing_node_ids = [node_id for node_id in node_ids if node_id not in nodes]
|
||||
if missing_node_ids:
|
||||
raise NodeNotFoundError(
|
||||
f"All edges must reference nodes in the graph, missing nodes: {missing_node_ids}"
|
||||
)
|
||||
|
||||
# Validate that all edge fields match node fields in the graph
|
||||
for edge in edges:
|
||||
source_node = nodes.get(edge.source.node_id, None)
|
||||
if source_node is None:
|
||||
raise NodeFieldNotFoundError(f"Edge source node {edge.source.node_id} does not exist in the graph")
|
||||
|
||||
destination_node = nodes.get(edge.destination.node_id, None)
|
||||
if destination_node is None:
|
||||
raise NodeFieldNotFoundError(
|
||||
f"Edge destination node {edge.destination.node_id} does not exist in the graph"
|
||||
)
|
||||
|
||||
# output fields are not on the node object directly, they are on the output type
|
||||
if edge.source.field not in source_node.get_output_type().__fields__:
|
||||
raise NodeFieldNotFoundError(
|
||||
f"Edge source field {edge.source.field} does not exist in node {edge.source.node_id}"
|
||||
)
|
||||
|
||||
# input fields are on the node
|
||||
if edge.destination.field not in destination_node.__fields__:
|
||||
raise NodeFieldNotFoundError(
|
||||
f"Edge destination field {edge.destination.field} does not exist in node {edge.destination.node_id}"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def add_node(self, node: BaseInvocation) -> None:
|
||||
"""Adds a node to a graph
|
||||
|
||||
@@ -697,8 +767,7 @@ class Graph(BaseModel):
|
||||
class GraphExecutionState(BaseModel):
|
||||
"""Tracks the state of a graph execution"""
|
||||
|
||||
id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
|
||||
|
||||
id: str = Field(description="The id of the execution state", default_factory=uuid_string)
|
||||
# TODO: Store a reference to the graph instead of the actual graph?
|
||||
graph: Graph = Field(description="The graph being executed")
|
||||
|
||||
@@ -847,7 +916,7 @@ class GraphExecutionState(BaseModel):
|
||||
new_node = copy.deepcopy(node)
|
||||
|
||||
# Create the node id (use a random uuid)
|
||||
new_node.id = str(uuid.uuid4())
|
||||
new_node.id = uuid_string()
|
||||
|
||||
# Set the iteration index for iteration invocations
|
||||
if isinstance(new_node, IterateInvocation):
|
||||
@@ -1082,7 +1151,7 @@ class ExposedNodeOutput(BaseModel):
|
||||
|
||||
|
||||
class LibraryGraph(BaseModel):
|
||||
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
|
||||
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid_string)
|
||||
graph: Graph = Field(description="The graph")
|
||||
name: str = Field(description="The name of the graph")
|
||||
description: str = Field(description="The description of the graph")
|
||||
|
||||
@@ -148,24 +148,20 @@ class ImageRecordStorageBase(ABC):
|
||||
|
||||
|
||||
class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
_filename: str
|
||||
_conn: sqlite3.Connection
|
||||
_cursor: sqlite3.Cursor
|
||||
_lock: threading.Lock
|
||||
|
||||
def __init__(self, filename: str) -> None:
|
||||
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
|
||||
super().__init__()
|
||||
self._filename = filename
|
||||
self._conn = sqlite3.connect(filename, check_same_thread=False)
|
||||
self._conn = conn
|
||||
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
|
||||
self._conn.row_factory = sqlite3.Row
|
||||
self._cursor = self._conn.cursor()
|
||||
self._lock = threading.Lock()
|
||||
self._lock = lock
|
||||
|
||||
try:
|
||||
self._lock.acquire()
|
||||
# Enable foreign keys
|
||||
self._conn.execute("PRAGMA foreign_keys = ON;")
|
||||
self._create_tables()
|
||||
self._conn.commit()
|
||||
finally:
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from logging import Logger
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
from typing import TYPE_CHECKING, Callable, Optional
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
@@ -38,6 +38,29 @@ if TYPE_CHECKING:
|
||||
class ImageServiceABC(ABC):
|
||||
"""High-level service for image management."""
|
||||
|
||||
_on_changed_callbacks: list[Callable[[ImageDTO], None]]
|
||||
_on_deleted_callbacks: list[Callable[[str], None]]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._on_changed_callbacks = list()
|
||||
self._on_deleted_callbacks = list()
|
||||
|
||||
def on_changed(self, on_changed: Callable[[ImageDTO], None]) -> None:
|
||||
"""Register a callback for when an image is changed"""
|
||||
self._on_changed_callbacks.append(on_changed)
|
||||
|
||||
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
|
||||
"""Register a callback for when an image is deleted"""
|
||||
self._on_deleted_callbacks.append(on_deleted)
|
||||
|
||||
def _on_changed(self, item: ImageDTO) -> None:
|
||||
for callback in self._on_changed_callbacks:
|
||||
callback(item)
|
||||
|
||||
def _on_deleted(self, item_id: str) -> None:
|
||||
for callback in self._on_deleted_callbacks:
|
||||
callback(item_id)
|
||||
|
||||
@abstractmethod
|
||||
def create(
|
||||
self,
|
||||
@@ -161,6 +184,7 @@ class ImageService(ImageServiceABC):
|
||||
_services: ImageServiceDependencies
|
||||
|
||||
def __init__(self, services: ImageServiceDependencies):
|
||||
super().__init__()
|
||||
self._services = services
|
||||
|
||||
def create(
|
||||
@@ -217,6 +241,7 @@ class ImageService(ImageServiceABC):
|
||||
self._services.image_files.save(image_name=image_name, image=image, metadata=metadata, workflow=workflow)
|
||||
image_dto = self.get_dto(image_name)
|
||||
|
||||
self._on_changed(image_dto)
|
||||
return image_dto
|
||||
except ImageRecordSaveException:
|
||||
self._services.logger.error("Failed to save image record")
|
||||
@@ -235,7 +260,9 @@ class ImageService(ImageServiceABC):
|
||||
) -> ImageDTO:
|
||||
try:
|
||||
self._services.image_records.update(image_name, changes)
|
||||
return self.get_dto(image_name)
|
||||
image_dto = self.get_dto(image_name)
|
||||
self._on_changed(image_dto)
|
||||
return image_dto
|
||||
except ImageRecordSaveException:
|
||||
self._services.logger.error("Failed to update image record")
|
||||
raise
|
||||
@@ -374,6 +401,7 @@ class ImageService(ImageServiceABC):
|
||||
try:
|
||||
self._services.image_files.delete(image_name)
|
||||
self._services.image_records.delete(image_name)
|
||||
self._on_deleted(image_name)
|
||||
except ImageRecordDeleteException:
|
||||
self._services.logger.error("Failed to delete image record")
|
||||
raise
|
||||
@@ -390,6 +418,8 @@ class ImageService(ImageServiceABC):
|
||||
for image_name in image_names:
|
||||
self._services.image_files.delete(image_name)
|
||||
self._services.image_records.delete_many(image_names)
|
||||
for image_name in image_names:
|
||||
self._on_deleted(image_name)
|
||||
except ImageRecordDeleteException:
|
||||
self._services.logger.error("Failed to delete image records")
|
||||
raise
|
||||
@@ -406,6 +436,7 @@ class ImageService(ImageServiceABC):
|
||||
count = len(image_names)
|
||||
for image_name in image_names:
|
||||
self._services.image_files.delete(image_name)
|
||||
self._on_deleted(image_name)
|
||||
return count
|
||||
except ImageRecordDeleteException:
|
||||
self._services.logger.error("Failed to delete image records")
|
||||
|
||||
0
invokeai/app/services/invocation_cache/__init__.py
Normal file
0
invokeai/app/services/invocation_cache/__init__.py
Normal file
@@ -0,0 +1,62 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional, Union
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
|
||||
|
||||
class InvocationCacheBase(ABC):
|
||||
"""
|
||||
Base class for invocation caches.
|
||||
When an invocation is executed, it is hashed and its output stored in the cache.
|
||||
When new invocations are executed, if they are flagged with `use_cache`, they
|
||||
will attempt to pull their value from the cache before executing.
|
||||
|
||||
Implementations should register for the `on_deleted` event of the `images` and `latents`
|
||||
services, and delete any cached outputs that reference the deleted image or latent.
|
||||
|
||||
See the memory implementation for an example.
|
||||
|
||||
Implementations should respect the `node_cache_size` configuration value, and skip all
|
||||
cache logic if the value is set to 0.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get(self, key: Union[int, str]) -> Optional[BaseInvocationOutput]:
|
||||
"""Retrieves an invocation output from the cache"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def save(self, key: Union[int, str], invocation_output: BaseInvocationOutput) -> None:
|
||||
"""Stores an invocation output in the cache"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def delete(self, key: Union[int, str]) -> None:
|
||||
"""Deletes an invocation output from the cache"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def clear(self) -> None:
|
||||
"""Clears the cache"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def create_key(self, invocation: BaseInvocation) -> int:
|
||||
"""Gets the key for the invocation's cache item"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def disable(self) -> None:
|
||||
"""Disables the cache, overriding the max cache size"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def enable(self) -> None:
|
||||
"""Enables the cache, letting the the max cache size take effect"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_status(self) -> InvocationCacheStatus:
|
||||
"""Returns the status of the cache"""
|
||||
pass
|
||||
@@ -0,0 +1,9 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class InvocationCacheStatus(BaseModel):
|
||||
size: int = Field(description="The current size of the invocation cache")
|
||||
hits: int = Field(description="The number of cache hits")
|
||||
misses: int = Field(description="The number of cache misses")
|
||||
enabled: bool = Field(description="Whether the invocation cache is enabled")
|
||||
max_size: int = Field(description="The maximum size of the invocation cache")
|
||||
@@ -0,0 +1,126 @@
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field
|
||||
from threading import Lock
|
||||
from typing import Optional, Union
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
|
||||
|
||||
@dataclass(order=True)
|
||||
class CachedItem:
|
||||
invocation_output: BaseInvocationOutput = field(compare=False)
|
||||
invocation_output_json: str = field(compare=False)
|
||||
|
||||
|
||||
class MemoryInvocationCache(InvocationCacheBase):
|
||||
_cache: OrderedDict[Union[int, str], CachedItem]
|
||||
_max_cache_size: int
|
||||
_disabled: bool
|
||||
_hits: int
|
||||
_misses: int
|
||||
_invoker: Invoker
|
||||
_lock: Lock
|
||||
|
||||
def __init__(self, max_cache_size: int = 0) -> None:
|
||||
self._cache = OrderedDict()
|
||||
self._max_cache_size = max_cache_size
|
||||
self._disabled = False
|
||||
self._hits = 0
|
||||
self._misses = 0
|
||||
self._lock = Lock()
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self._invoker = invoker
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
self._invoker.services.images.on_deleted(self._delete_by_match)
|
||||
self._invoker.services.latents.on_deleted(self._delete_by_match)
|
||||
|
||||
def get(self, key: Union[int, str]) -> Optional[BaseInvocationOutput]:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0 or self._disabled:
|
||||
return None
|
||||
item = self._cache.get(key, None)
|
||||
if item is not None:
|
||||
self._hits += 1
|
||||
self._cache.move_to_end(key)
|
||||
return item.invocation_output
|
||||
self._misses += 1
|
||||
return None
|
||||
|
||||
def save(self, key: Union[int, str], invocation_output: BaseInvocationOutput) -> None:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0 or self._disabled or key in self._cache:
|
||||
return
|
||||
# If the cache is full, we need to remove the least used
|
||||
number_to_delete = len(self._cache) + 1 - self._max_cache_size
|
||||
self._delete_oldest_access(number_to_delete)
|
||||
self._cache[key] = CachedItem(invocation_output, invocation_output.json())
|
||||
|
||||
def _delete_oldest_access(self, number_to_delete: int) -> None:
|
||||
number_to_delete = min(number_to_delete, len(self._cache))
|
||||
for _ in range(number_to_delete):
|
||||
self._cache.popitem(last=False)
|
||||
|
||||
def _delete(self, key: Union[int, str]) -> None:
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
if key in self._cache:
|
||||
del self._cache[key]
|
||||
|
||||
def delete(self, key: Union[int, str]) -> None:
|
||||
with self._lock:
|
||||
return self._delete(key)
|
||||
|
||||
def clear(self, *args, **kwargs) -> None:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
self._cache.clear()
|
||||
self._misses = 0
|
||||
self._hits = 0
|
||||
|
||||
@staticmethod
|
||||
def create_key(invocation: BaseInvocation) -> int:
|
||||
return hash(invocation.json(exclude={"id"}))
|
||||
|
||||
def disable(self) -> None:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
self._disabled = True
|
||||
|
||||
def enable(self) -> None:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
self._disabled = False
|
||||
|
||||
def get_status(self) -> InvocationCacheStatus:
|
||||
with self._lock:
|
||||
return InvocationCacheStatus(
|
||||
hits=self._hits,
|
||||
misses=self._misses,
|
||||
enabled=not self._disabled and self._max_cache_size > 0,
|
||||
size=len(self._cache),
|
||||
max_size=self._max_cache_size,
|
||||
)
|
||||
|
||||
def _delete_by_match(self, to_match: str) -> None:
|
||||
with self._lock:
|
||||
if self._max_cache_size == 0:
|
||||
return
|
||||
keys_to_delete = set()
|
||||
for key, cached_item in self._cache.items():
|
||||
if to_match in cached_item.invocation_output_json:
|
||||
keys_to_delete.add(key)
|
||||
if not keys_to_delete:
|
||||
return
|
||||
for key in keys_to_delete:
|
||||
self._delete(key)
|
||||
self._invoker.services.logger.debug(
|
||||
f"Deleted {len(keys_to_delete)} cached invocation outputs for {to_match}"
|
||||
)
|
||||
@@ -11,6 +11,13 @@ from pydantic import BaseModel, Field
|
||||
class InvocationQueueItem(BaseModel):
|
||||
graph_execution_state_id: str = Field(description="The ID of the graph execution state")
|
||||
invocation_id: str = Field(description="The ID of the node being invoked")
|
||||
session_queue_id: str = Field(description="The ID of the session queue from which this invocation queue item came")
|
||||
session_queue_item_id: int = Field(
|
||||
description="The ID of session queue item from which this invocation queue item came"
|
||||
)
|
||||
session_queue_batch_id: str = Field(
|
||||
description="The ID of the session batch from which this invocation queue item came"
|
||||
)
|
||||
invoke_all: bool = Field(default=False)
|
||||
timestamp: float = Field(default_factory=time.time)
|
||||
|
||||
|
||||
@@ -12,12 +12,15 @@ if TYPE_CHECKING:
|
||||
from invokeai.app.services.events import EventServiceBase
|
||||
from invokeai.app.services.graph import GraphExecutionState, LibraryGraph
|
||||
from invokeai.app.services.images import ImageServiceABC
|
||||
from invokeai.app.services.invocation_cache.invocation_cache_base import InvocationCacheBase
|
||||
from invokeai.app.services.invocation_queue import InvocationQueueABC
|
||||
from invokeai.app.services.invocation_stats import InvocationStatsServiceBase
|
||||
from invokeai.app.services.invoker import InvocationProcessorABC
|
||||
from invokeai.app.services.item_storage import ItemStorageABC
|
||||
from invokeai.app.services.latent_storage import LatentsStorageBase
|
||||
from invokeai.app.services.model_manager_service import ModelManagerServiceBase
|
||||
from invokeai.app.services.session_processor.session_processor_base import SessionProcessorBase
|
||||
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
|
||||
|
||||
|
||||
class InvocationServices:
|
||||
@@ -28,8 +31,8 @@ class InvocationServices:
|
||||
boards: "BoardServiceABC"
|
||||
configuration: "InvokeAIAppConfig"
|
||||
events: "EventServiceBase"
|
||||
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"]
|
||||
graph_library: "ItemStorageABC"["LibraryGraph"]
|
||||
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
|
||||
graph_library: "ItemStorageABC[LibraryGraph]"
|
||||
images: "ImageServiceABC"
|
||||
latents: "LatentsStorageBase"
|
||||
logger: "Logger"
|
||||
@@ -37,6 +40,9 @@ class InvocationServices:
|
||||
processor: "InvocationProcessorABC"
|
||||
performance_statistics: "InvocationStatsServiceBase"
|
||||
queue: "InvocationQueueABC"
|
||||
session_queue: "SessionQueueBase"
|
||||
session_processor: "SessionProcessorBase"
|
||||
invocation_cache: "InvocationCacheBase"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -44,8 +50,8 @@ class InvocationServices:
|
||||
boards: "BoardServiceABC",
|
||||
configuration: "InvokeAIAppConfig",
|
||||
events: "EventServiceBase",
|
||||
graph_execution_manager: "ItemStorageABC"["GraphExecutionState"],
|
||||
graph_library: "ItemStorageABC"["LibraryGraph"],
|
||||
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
|
||||
graph_library: "ItemStorageABC[LibraryGraph]",
|
||||
images: "ImageServiceABC",
|
||||
latents: "LatentsStorageBase",
|
||||
logger: "Logger",
|
||||
@@ -53,10 +59,12 @@ class InvocationServices:
|
||||
processor: "InvocationProcessorABC",
|
||||
performance_statistics: "InvocationStatsServiceBase",
|
||||
queue: "InvocationQueueABC",
|
||||
session_queue: "SessionQueueBase",
|
||||
session_processor: "SessionProcessorBase",
|
||||
invocation_cache: "InvocationCacheBase",
|
||||
):
|
||||
self.board_images = board_images
|
||||
self.boards = boards
|
||||
self.boards = boards
|
||||
self.configuration = configuration
|
||||
self.events = events
|
||||
self.graph_execution_manager = graph_execution_manager
|
||||
@@ -68,3 +76,6 @@ class InvocationServices:
|
||||
self.processor = processor
|
||||
self.performance_statistics = performance_statistics
|
||||
self.queue = queue
|
||||
self.session_queue = session_queue
|
||||
self.session_processor = session_processor
|
||||
self.invocation_cache = invocation_cache
|
||||
|
||||
@@ -17,7 +17,14 @@ class Invoker:
|
||||
self.services = services
|
||||
self._start()
|
||||
|
||||
def invoke(self, graph_execution_state: GraphExecutionState, invoke_all: bool = False) -> Optional[str]:
|
||||
def invoke(
|
||||
self,
|
||||
session_queue_id: str,
|
||||
session_queue_item_id: int,
|
||||
session_queue_batch_id: str,
|
||||
graph_execution_state: GraphExecutionState,
|
||||
invoke_all: bool = False,
|
||||
) -> Optional[str]:
|
||||
"""Determines the next node to invoke and enqueues it, preparing if needed.
|
||||
Returns the id of the queued node, or `None` if there are no nodes left to enqueue."""
|
||||
|
||||
@@ -32,7 +39,9 @@ class Invoker:
|
||||
# Queue the invocation
|
||||
self.services.queue.put(
|
||||
InvocationQueueItem(
|
||||
# session_id = session.id,
|
||||
session_queue_id=session_queue_id,
|
||||
session_queue_item_id=session_queue_item_id,
|
||||
session_queue_batch_id=session_queue_batch_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
invocation_id=invocation.id,
|
||||
invoke_all=invoke_all,
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from typing import Dict, Optional, Union
|
||||
from typing import Callable, Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
@@ -11,6 +11,13 @@ import torch
|
||||
class LatentsStorageBase(ABC):
|
||||
"""Responsible for storing and retrieving latents."""
|
||||
|
||||
_on_changed_callbacks: list[Callable[[torch.Tensor], None]]
|
||||
_on_deleted_callbacks: list[Callable[[str], None]]
|
||||
|
||||
def __init__(self) -> None:
|
||||
self._on_changed_callbacks = list()
|
||||
self._on_deleted_callbacks = list()
|
||||
|
||||
@abstractmethod
|
||||
def get(self, name: str) -> torch.Tensor:
|
||||
pass
|
||||
@@ -23,6 +30,22 @@ class LatentsStorageBase(ABC):
|
||||
def delete(self, name: str) -> None:
|
||||
pass
|
||||
|
||||
def on_changed(self, on_changed: Callable[[torch.Tensor], None]) -> None:
|
||||
"""Register a callback for when an item is changed"""
|
||||
self._on_changed_callbacks.append(on_changed)
|
||||
|
||||
def on_deleted(self, on_deleted: Callable[[str], None]) -> None:
|
||||
"""Register a callback for when an item is deleted"""
|
||||
self._on_deleted_callbacks.append(on_deleted)
|
||||
|
||||
def _on_changed(self, item: torch.Tensor) -> None:
|
||||
for callback in self._on_changed_callbacks:
|
||||
callback(item)
|
||||
|
||||
def _on_deleted(self, item_id: str) -> None:
|
||||
for callback in self._on_deleted_callbacks:
|
||||
callback(item_id)
|
||||
|
||||
|
||||
class ForwardCacheLatentsStorage(LatentsStorageBase):
|
||||
"""Caches the latest N latents in memory, writing-thorugh to and reading from underlying storage"""
|
||||
@@ -33,6 +56,7 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
|
||||
__underlying_storage: LatentsStorageBase
|
||||
|
||||
def __init__(self, underlying_storage: LatentsStorageBase, max_cache_size: int = 20):
|
||||
super().__init__()
|
||||
self.__underlying_storage = underlying_storage
|
||||
self.__cache = dict()
|
||||
self.__cache_ids = Queue()
|
||||
@@ -50,11 +74,13 @@ class ForwardCacheLatentsStorage(LatentsStorageBase):
|
||||
def save(self, name: str, data: torch.Tensor) -> None:
|
||||
self.__underlying_storage.save(name, data)
|
||||
self.__set_cache(name, data)
|
||||
self._on_changed(data)
|
||||
|
||||
def delete(self, name: str) -> None:
|
||||
self.__underlying_storage.delete(name)
|
||||
if name in self.__cache:
|
||||
del self.__cache[name]
|
||||
self._on_deleted(name)
|
||||
|
||||
def __get_cache(self, name: str) -> Optional[torch.Tensor]:
|
||||
return None if name not in self.__cache else self.__cache[name]
|
||||
|
||||
@@ -525,7 +525,7 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
|
||||
def _emit_load_event(
|
||||
self,
|
||||
context,
|
||||
context: InvocationContext,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
@@ -537,6 +537,9 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
|
||||
if model_info:
|
||||
context.services.events.emit_model_load_completed(
|
||||
queue_id=context.queue_id,
|
||||
queue_item_id=context.queue_item_id,
|
||||
queue_batch_id=context.queue_batch_id,
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
@@ -546,6 +549,9 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
)
|
||||
else:
|
||||
context.services.events.emit_model_load_started(
|
||||
queue_id=context.queue_id,
|
||||
queue_item_id=context.queue_item_id,
|
||||
queue_batch_id=context.queue_batch_id,
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import time
|
||||
import traceback
|
||||
from threading import BoundedSemaphore, Event, Thread
|
||||
from typing import Optional
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
@@ -37,10 +38,11 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
try:
|
||||
self.__threadLimit.acquire()
|
||||
statistics: InvocationStatsServiceBase = self.__invoker.services.performance_statistics
|
||||
queue_item: Optional[InvocationQueueItem] = None
|
||||
|
||||
while not stop_event.is_set():
|
||||
try:
|
||||
queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
|
||||
queue_item = self.__invoker.services.queue.get()
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Exception while getting from queue:\n%s" % e)
|
||||
|
||||
@@ -48,7 +50,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
# do not hammer the queue
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
try:
|
||||
graph_execution_state = self.__invoker.services.graph_execution_manager.get(
|
||||
queue_item.graph_execution_state_id
|
||||
@@ -56,6 +57,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Exception while retrieving session:\n%s" % e)
|
||||
self.__invoker.services.events.emit_session_retrieval_error(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=queue_item.graph_execution_state_id,
|
||||
error_type=e.__class__.__name__,
|
||||
error=traceback.format_exc(),
|
||||
@@ -67,6 +71,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Exception while retrieving invocation:\n%s" % e)
|
||||
self.__invoker.services.events.emit_invocation_retrieval_error(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=queue_item.graph_execution_state_id,
|
||||
node_id=queue_item.invocation_id,
|
||||
error_type=e.__class__.__name__,
|
||||
@@ -79,6 +86,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
|
||||
# Send starting event
|
||||
self.__invoker.services.events.emit_invocation_started(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
@@ -89,13 +99,17 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
graph_id = graph_execution_state.id
|
||||
model_manager = self.__invoker.services.model_manager
|
||||
with statistics.collect_stats(invocation, graph_id, model_manager):
|
||||
# use the internal invoke_internal(), which wraps the node's invoke() method in
|
||||
# this accomodates nodes which require a value, but get it only from a
|
||||
# connection
|
||||
# use the internal invoke_internal(), which wraps the node's invoke() method,
|
||||
# which handles a few things:
|
||||
# - nodes that require a value, but get it only from a connection
|
||||
# - referencing the invocation cache instead of executing the node
|
||||
outputs = invocation.invoke_internal(
|
||||
InvocationContext(
|
||||
services=self.__invoker.services,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -111,6 +125,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
|
||||
# Send complete event
|
||||
self.__invoker.services.events.emit_invocation_complete(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
@@ -138,6 +155,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
||||
# Send error event
|
||||
self.__invoker.services.events.emit_invocation_error(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
@@ -155,10 +175,19 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
is_complete = graph_execution_state.is_complete()
|
||||
if queue_item.invoke_all and not is_complete:
|
||||
try:
|
||||
self.__invoker.invoke(graph_execution_state, invoke_all=True)
|
||||
self.__invoker.invoke(
|
||||
session_queue_batch_id=queue_item.session_queue_batch_id,
|
||||
session_queue_item_id=queue_item.session_queue_item_id,
|
||||
session_queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state=graph_execution_state,
|
||||
invoke_all=True,
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Error while invoking:\n%s" % e)
|
||||
self.__invoker.services.events.emit_invocation_error(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
node=invocation.dict(),
|
||||
source_node_id=source_node_id,
|
||||
@@ -166,7 +195,12 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
||||
error=traceback.format_exc(),
|
||||
)
|
||||
elif is_complete:
|
||||
self.__invoker.services.events.emit_graph_execution_complete(graph_execution_state.id)
|
||||
self.__invoker.services.events.emit_graph_execution_complete(
|
||||
queue_batch_id=queue_item.session_queue_batch_id,
|
||||
queue_item_id=queue_item.session_queue_item_id,
|
||||
queue_id=queue_item.session_queue_id,
|
||||
graph_execution_state_id=graph_execution_state.id,
|
||||
)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import uuid
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum, EnumMeta
|
||||
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
|
||||
class ResourceType(str, Enum, metaclass=EnumMeta):
|
||||
"""Enum for resource types."""
|
||||
@@ -25,6 +26,6 @@ class SimpleNameService(NameServiceBase):
|
||||
|
||||
# TODO: Add customizable naming schemes
|
||||
def create_image_name(self) -> str:
|
||||
uuid_str = str(uuid.uuid4())
|
||||
uuid_str = uuid_string()
|
||||
filename = f"{uuid_str}.png"
|
||||
return filename
|
||||
|
||||
0
invokeai/app/services/session_processor/__init__.py
Normal file
0
invokeai/app/services/session_processor/__init__.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from invokeai.app.services.session_processor.session_processor_common import SessionProcessorStatus
|
||||
|
||||
|
||||
class SessionProcessorBase(ABC):
|
||||
"""
|
||||
Base class for session processor.
|
||||
|
||||
The session processor is responsible for executing sessions. It runs a simple polling loop,
|
||||
checking the session queue for new sessions to execute. It must coordinate with the
|
||||
invocation queue to ensure only one session is executing at a time.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def resume(self) -> SessionProcessorStatus:
|
||||
"""Starts or resumes the session processor"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def pause(self) -> SessionProcessorStatus:
|
||||
"""Pauses the session processor"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_status(self) -> SessionProcessorStatus:
|
||||
"""Gets the status of the session processor"""
|
||||
pass
|
||||
@@ -0,0 +1,6 @@
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class SessionProcessorStatus(BaseModel):
|
||||
is_started: bool = Field(description="Whether the session processor is started")
|
||||
is_processing: bool = Field(description="Whether a session is being processed")
|
||||
@@ -0,0 +1,135 @@
|
||||
from threading import BoundedSemaphore
|
||||
from threading import Event as ThreadEvent
|
||||
from threading import Thread
|
||||
from typing import Optional
|
||||
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.typing import Event as FastAPIEvent
|
||||
|
||||
from invokeai.app.services.events import EventServiceBase
|
||||
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
|
||||
|
||||
from ..invoker import Invoker
|
||||
from .session_processor_base import SessionProcessorBase
|
||||
from .session_processor_common import SessionProcessorStatus
|
||||
|
||||
POLLING_INTERVAL = 1
|
||||
THREAD_LIMIT = 1
|
||||
|
||||
|
||||
class DefaultSessionProcessor(SessionProcessorBase):
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self.__invoker: Invoker = invoker
|
||||
self.__queue_item: Optional[SessionQueueItem] = None
|
||||
|
||||
self.__resume_event = ThreadEvent()
|
||||
self.__stop_event = ThreadEvent()
|
||||
self.__poll_now_event = ThreadEvent()
|
||||
|
||||
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_queue_event)
|
||||
|
||||
self.__threadLimit = BoundedSemaphore(THREAD_LIMIT)
|
||||
self.__thread = Thread(
|
||||
name="session_processor",
|
||||
target=self.__process,
|
||||
kwargs=dict(
|
||||
stop_event=self.__stop_event, poll_now_event=self.__poll_now_event, resume_event=self.__resume_event
|
||||
),
|
||||
)
|
||||
self.__thread.start()
|
||||
|
||||
def stop(self, *args, **kwargs) -> None:
|
||||
self.__stop_event.set()
|
||||
|
||||
def _poll_now(self) -> None:
|
||||
self.__poll_now_event.set()
|
||||
|
||||
async def _on_queue_event(self, event: FastAPIEvent) -> None:
|
||||
event_name = event[1]["event"]
|
||||
|
||||
# This was a match statement, but match is not supported on python 3.9
|
||||
if event_name in [
|
||||
"graph_execution_state_complete",
|
||||
"invocation_error",
|
||||
"session_retrieval_error",
|
||||
"invocation_retrieval_error",
|
||||
]:
|
||||
self.__queue_item = None
|
||||
self._poll_now()
|
||||
elif (
|
||||
event_name == "session_canceled"
|
||||
and self.__queue_item is not None
|
||||
and self.__queue_item.session_id == event[1]["data"]["graph_execution_state_id"]
|
||||
):
|
||||
self.__queue_item = None
|
||||
self._poll_now()
|
||||
elif event_name == "batch_enqueued":
|
||||
self._poll_now()
|
||||
elif event_name == "queue_cleared":
|
||||
self.__queue_item = None
|
||||
self._poll_now()
|
||||
|
||||
def resume(self) -> SessionProcessorStatus:
|
||||
if not self.__resume_event.is_set():
|
||||
self.__resume_event.set()
|
||||
return self.get_status()
|
||||
|
||||
def pause(self) -> SessionProcessorStatus:
|
||||
if self.__resume_event.is_set():
|
||||
self.__resume_event.clear()
|
||||
return self.get_status()
|
||||
|
||||
def get_status(self) -> SessionProcessorStatus:
|
||||
return SessionProcessorStatus(
|
||||
is_started=self.__resume_event.is_set(),
|
||||
is_processing=self.__queue_item is not None,
|
||||
)
|
||||
|
||||
def __process(
|
||||
self,
|
||||
stop_event: ThreadEvent,
|
||||
poll_now_event: ThreadEvent,
|
||||
resume_event: ThreadEvent,
|
||||
):
|
||||
try:
|
||||
stop_event.clear()
|
||||
resume_event.set()
|
||||
self.__threadLimit.acquire()
|
||||
queue_item: Optional[SessionQueueItem] = None
|
||||
self.__invoker.services.logger
|
||||
while not stop_event.is_set():
|
||||
poll_now_event.clear()
|
||||
try:
|
||||
# do not dequeue if there is already a session running
|
||||
if self.__queue_item is None and resume_event.is_set():
|
||||
queue_item = self.__invoker.services.session_queue.dequeue()
|
||||
|
||||
if queue_item is not None:
|
||||
self.__invoker.services.logger.debug(f"Executing queue item {queue_item.item_id}")
|
||||
self.__queue_item = queue_item
|
||||
self.__invoker.services.graph_execution_manager.set(queue_item.session)
|
||||
self.__invoker.invoke(
|
||||
session_queue_batch_id=queue_item.batch_id,
|
||||
session_queue_id=queue_item.queue_id,
|
||||
session_queue_item_id=queue_item.item_id,
|
||||
graph_execution_state=queue_item.session,
|
||||
invoke_all=True,
|
||||
)
|
||||
queue_item = None
|
||||
|
||||
if queue_item is None:
|
||||
self.__invoker.services.logger.debug("Waiting for next polling interval or event")
|
||||
poll_now_event.wait(POLLING_INTERVAL)
|
||||
continue
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error(f"Error in session processor: {e}")
|
||||
poll_now_event.wait(POLLING_INTERVAL)
|
||||
continue
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error(f"Fatal Error in session processor: {e}")
|
||||
pass
|
||||
finally:
|
||||
stop_event.clear()
|
||||
poll_now_event.clear()
|
||||
self.__queue_item = None
|
||||
self.__threadLimit.release()
|
||||
0
invokeai/app/services/session_queue/__init__.py
Normal file
0
invokeai/app/services/session_queue/__init__.py
Normal file
112
invokeai/app/services/session_queue/session_queue_base.py
Normal file
112
invokeai/app/services/session_queue/session_queue_base.py
Normal file
@@ -0,0 +1,112 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.services.graph import Graph
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByQueueIDResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
EnqueueGraphResult,
|
||||
IsEmptyResult,
|
||||
IsFullResult,
|
||||
PruneResult,
|
||||
SessionQueueItem,
|
||||
SessionQueueItemDTO,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.models import CursorPaginatedResults
|
||||
|
||||
|
||||
class SessionQueueBase(ABC):
|
||||
"""Base class for session queue"""
|
||||
|
||||
@abstractmethod
|
||||
def dequeue(self) -> Optional[SessionQueueItem]:
|
||||
"""Dequeues the next session queue item."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def enqueue_graph(self, queue_id: str, graph: Graph, prepend: bool) -> EnqueueGraphResult:
|
||||
"""Enqueues a single graph for execution."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
|
||||
"""Enqueues all permutations of a batch for execution."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_current(self, queue_id: str) -> Optional[SessionQueueItem]:
|
||||
"""Gets the currently-executing session queue item"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_next(self, queue_id: str) -> Optional[SessionQueueItem]:
|
||||
"""Gets the next session queue item (does not dequeue it)"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def clear(self, queue_id: str) -> ClearResult:
|
||||
"""Deletes all session queue items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def prune(self, queue_id: str) -> PruneResult:
|
||||
"""Deletes all completed and errored session queue items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_empty(self, queue_id: str) -> IsEmptyResult:
|
||||
"""Checks if the queue is empty"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def is_full(self, queue_id: str) -> IsFullResult:
|
||||
"""Checks if the queue is empty"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_queue_status(self, queue_id: str) -> SessionQueueStatus:
|
||||
"""Gets the status of the queue"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_batch_status(self, queue_id: str, batch_id: str) -> BatchStatus:
|
||||
"""Gets the status of a batch"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
"""Cancels a session queue item"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
|
||||
"""Cancels all queue items with matching batch IDs"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
|
||||
"""Cancels all queue items with matching queue ID"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def list_queue_items(
|
||||
self,
|
||||
queue_id: str,
|
||||
limit: int,
|
||||
priority: int,
|
||||
cursor: Optional[int] = None,
|
||||
status: Optional[QUEUE_ITEM_STATUS] = None,
|
||||
) -> CursorPaginatedResults[SessionQueueItemDTO]:
|
||||
"""Gets a page of session queue items"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
"""Gets a session queue item by ID"""
|
||||
pass
|
||||
418
invokeai/app/services/session_queue/session_queue_common.py
Normal file
418
invokeai/app/services/session_queue/session_queue_common.py
Normal file
@@ -0,0 +1,418 @@
|
||||
import datetime
|
||||
import json
|
||||
from itertools import chain, product
|
||||
from typing import Generator, Iterable, Literal, NamedTuple, Optional, TypeAlias, Union, cast
|
||||
|
||||
from pydantic import BaseModel, Field, StrictStr, parse_raw_as, root_validator, validator
|
||||
from pydantic.json import pydantic_encoder
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.graph import Graph, GraphExecutionState, NodeNotFoundError
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
# region Errors
|
||||
|
||||
|
||||
class BatchZippedLengthError(ValueError):
|
||||
"""Raise when a batch has items of different lengths."""
|
||||
|
||||
|
||||
class BatchItemsTypeError(TypeError):
|
||||
"""Raise when a batch has items of different types."""
|
||||
|
||||
|
||||
class BatchDuplicateNodeFieldError(ValueError):
|
||||
"""Raise when a batch has duplicate node_path and field_name."""
|
||||
|
||||
|
||||
class TooManySessionsError(ValueError):
|
||||
"""Raise when too many sessions are requested."""
|
||||
|
||||
|
||||
class SessionQueueItemNotFoundError(ValueError):
|
||||
"""Raise when a queue item is not found."""
|
||||
|
||||
|
||||
# endregion
|
||||
|
||||
|
||||
# region Batch
|
||||
|
||||
BatchDataType = Union[
|
||||
StrictStr,
|
||||
float,
|
||||
int,
|
||||
]
|
||||
|
||||
|
||||
class NodeFieldValue(BaseModel):
|
||||
node_path: str = Field(description="The node into which this batch data item will be substituted.")
|
||||
field_name: str = Field(description="The field into which this batch data item will be substituted.")
|
||||
value: BatchDataType = Field(description="The value to substitute into the node/field.")
|
||||
|
||||
|
||||
class BatchDatum(BaseModel):
|
||||
node_path: str = Field(description="The node into which this batch data collection will be substituted.")
|
||||
field_name: str = Field(description="The field into which this batch data collection will be substituted.")
|
||||
items: list[BatchDataType] = Field(
|
||||
default_factory=list, description="The list of items to substitute into the node/field."
|
||||
)
|
||||
|
||||
|
||||
BatchDataCollection: TypeAlias = list[list[BatchDatum]]
|
||||
|
||||
|
||||
class Batch(BaseModel):
|
||||
batch_id: str = Field(default_factory=uuid_string, description="The ID of the batch")
|
||||
data: Optional[BatchDataCollection] = Field(default=None, description="The batch data collection.")
|
||||
graph: Graph = Field(description="The graph to initialize the session with")
|
||||
runs: int = Field(
|
||||
default=1, ge=1, description="Int stating how many times to iterate through all possible batch indices"
|
||||
)
|
||||
|
||||
@validator("data")
|
||||
def validate_lengths(cls, v: Optional[BatchDataCollection]):
|
||||
if v is None:
|
||||
return v
|
||||
for batch_data_list in v:
|
||||
first_item_length = len(batch_data_list[0].items) if batch_data_list and batch_data_list[0].items else 0
|
||||
for i in batch_data_list:
|
||||
if len(i.items) != first_item_length:
|
||||
raise BatchZippedLengthError("Zipped batch items must all have the same length")
|
||||
return v
|
||||
|
||||
@validator("data")
|
||||
def validate_types(cls, v: Optional[BatchDataCollection]):
|
||||
if v is None:
|
||||
return v
|
||||
for batch_data_list in v:
|
||||
for datum in batch_data_list:
|
||||
# Get the type of the first item in the list
|
||||
first_item_type = type(datum.items[0]) if datum.items else None
|
||||
for item in datum.items:
|
||||
if type(item) is not first_item_type:
|
||||
raise BatchItemsTypeError("All items in a batch must have the same type")
|
||||
return v
|
||||
|
||||
@validator("data")
|
||||
def validate_unique_field_mappings(cls, v: Optional[BatchDataCollection]):
|
||||
if v is None:
|
||||
return v
|
||||
paths: set[tuple[str, str]] = set()
|
||||
for batch_data_list in v:
|
||||
for datum in batch_data_list:
|
||||
pair = (datum.node_path, datum.field_name)
|
||||
if pair in paths:
|
||||
raise BatchDuplicateNodeFieldError("Each batch data must have unique node_id and field_name")
|
||||
paths.add(pair)
|
||||
return v
|
||||
|
||||
@root_validator(skip_on_failure=True)
|
||||
def validate_batch_nodes_and_edges(cls, values):
|
||||
batch_data_collection = cast(Optional[BatchDataCollection], values["data"])
|
||||
if batch_data_collection is None:
|
||||
return values
|
||||
graph = cast(Graph, values["graph"])
|
||||
for batch_data_list in batch_data_collection:
|
||||
for batch_data in batch_data_list:
|
||||
try:
|
||||
node = cast(BaseInvocation, graph.get_node(batch_data.node_path))
|
||||
except NodeNotFoundError:
|
||||
raise NodeNotFoundError(f"Node {batch_data.node_path} not found in graph")
|
||||
if batch_data.field_name not in node.__fields__:
|
||||
raise NodeNotFoundError(f"Field {batch_data.field_name} not found in node {batch_data.node_path}")
|
||||
return values
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"required": [
|
||||
"graph",
|
||||
"runs",
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
# endregion Batch
|
||||
|
||||
|
||||
# region Queue Items
|
||||
|
||||
DEFAULT_QUEUE_ID = "default"
|
||||
|
||||
QUEUE_ITEM_STATUS = Literal["pending", "in_progress", "completed", "failed", "canceled"]
|
||||
|
||||
|
||||
def get_field_values(queue_item_dict: dict) -> Optional[list[NodeFieldValue]]:
|
||||
field_values_raw = queue_item_dict.get("field_values", None)
|
||||
return parse_raw_as(list[NodeFieldValue], field_values_raw) if field_values_raw is not None else None
|
||||
|
||||
|
||||
def get_session(queue_item_dict: dict) -> GraphExecutionState:
|
||||
session_raw = queue_item_dict.get("session", "{}")
|
||||
return parse_raw_as(GraphExecutionState, session_raw)
|
||||
|
||||
|
||||
class SessionQueueItemWithoutGraph(BaseModel):
|
||||
"""Session queue item without the full graph. Used for serialization."""
|
||||
|
||||
item_id: int = Field(description="The identifier of the session queue item")
|
||||
status: QUEUE_ITEM_STATUS = Field(default="pending", description="The status of this queue item")
|
||||
priority: int = Field(default=0, description="The priority of this queue item")
|
||||
batch_id: str = Field(description="The ID of the batch associated with this queue item")
|
||||
session_id: str = Field(
|
||||
description="The ID of the session associated with this queue item. The session doesn't exist in graph_executions until the queue item is executed."
|
||||
)
|
||||
error: Optional[str] = Field(default=None, description="The error message if this queue item errored")
|
||||
created_at: Union[datetime.datetime, str] = Field(description="When this queue item was created")
|
||||
updated_at: Union[datetime.datetime, str] = Field(description="When this queue item was updated")
|
||||
started_at: Optional[Union[datetime.datetime, str]] = Field(description="When this queue item was started")
|
||||
completed_at: Optional[Union[datetime.datetime, str]] = Field(description="When this queue item was completed")
|
||||
queue_id: str = Field(description="The id of the queue with which this item is associated")
|
||||
field_values: Optional[list[NodeFieldValue]] = Field(
|
||||
default=None, description="The field values that were used for this queue item"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO":
|
||||
# must parse these manually
|
||||
queue_item_dict["field_values"] = get_field_values(queue_item_dict)
|
||||
return SessionQueueItemDTO(**queue_item_dict)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"required": [
|
||||
"item_id",
|
||||
"status",
|
||||
"batch_id",
|
||||
"queue_id",
|
||||
"session_id",
|
||||
"priority",
|
||||
"session_id",
|
||||
"created_at",
|
||||
"updated_at",
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
|
||||
pass
|
||||
|
||||
|
||||
class SessionQueueItem(SessionQueueItemWithoutGraph):
|
||||
session: GraphExecutionState = Field(description="The fully-populated session to be executed")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, queue_item_dict: dict) -> "SessionQueueItem":
|
||||
# must parse these manually
|
||||
queue_item_dict["field_values"] = get_field_values(queue_item_dict)
|
||||
queue_item_dict["session"] = get_session(queue_item_dict)
|
||||
return SessionQueueItem(**queue_item_dict)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"required": [
|
||||
"item_id",
|
||||
"status",
|
||||
"batch_id",
|
||||
"queue_id",
|
||||
"session_id",
|
||||
"session",
|
||||
"priority",
|
||||
"session_id",
|
||||
"created_at",
|
||||
"updated_at",
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
# endregion Queue Items
|
||||
|
||||
# region Query Results
|
||||
|
||||
|
||||
class SessionQueueStatus(BaseModel):
|
||||
queue_id: str = Field(..., description="The ID of the queue")
|
||||
item_id: Optional[int] = Field(description="The current queue item id")
|
||||
batch_id: Optional[str] = Field(description="The current queue item's batch id")
|
||||
session_id: Optional[str] = Field(description="The current queue item's session id")
|
||||
pending: int = Field(..., description="Number of queue items with status 'pending'")
|
||||
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
|
||||
completed: int = Field(..., description="Number of queue items with status 'complete'")
|
||||
failed: int = Field(..., description="Number of queue items with status 'error'")
|
||||
canceled: int = Field(..., description="Number of queue items with status 'canceled'")
|
||||
total: int = Field(..., description="Total number of queue items")
|
||||
|
||||
|
||||
class BatchStatus(BaseModel):
|
||||
queue_id: str = Field(..., description="The ID of the queue")
|
||||
batch_id: str = Field(..., description="The ID of the batch")
|
||||
pending: int = Field(..., description="Number of queue items with status 'pending'")
|
||||
in_progress: int = Field(..., description="Number of queue items with status 'in_progress'")
|
||||
completed: int = Field(..., description="Number of queue items with status 'complete'")
|
||||
failed: int = Field(..., description="Number of queue items with status 'error'")
|
||||
canceled: int = Field(..., description="Number of queue items with status 'canceled'")
|
||||
total: int = Field(..., description="Total number of queue items")
|
||||
|
||||
|
||||
class EnqueueBatchResult(BaseModel):
|
||||
queue_id: str = Field(description="The ID of the queue")
|
||||
enqueued: int = Field(description="The total number of queue items enqueued")
|
||||
requested: int = Field(description="The total number of queue items requested to be enqueued")
|
||||
batch: Batch = Field(description="The batch that was enqueued")
|
||||
priority: int = Field(description="The priority of the enqueued batch")
|
||||
|
||||
|
||||
class EnqueueGraphResult(BaseModel):
|
||||
enqueued: int = Field(description="The total number of queue items enqueued")
|
||||
requested: int = Field(description="The total number of queue items requested to be enqueued")
|
||||
batch: Batch = Field(description="The batch that was enqueued")
|
||||
priority: int = Field(description="The priority of the enqueued batch")
|
||||
queue_item: SessionQueueItemDTO = Field(description="The queue item that was enqueued")
|
||||
|
||||
|
||||
class ClearResult(BaseModel):
|
||||
"""Result of clearing the session queue"""
|
||||
|
||||
deleted: int = Field(..., description="Number of queue items deleted")
|
||||
|
||||
|
||||
class PruneResult(ClearResult):
|
||||
"""Result of pruning the session queue"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class CancelByBatchIDsResult(BaseModel):
|
||||
"""Result of canceling by list of batch ids"""
|
||||
|
||||
canceled: int = Field(..., description="Number of queue items canceled")
|
||||
|
||||
|
||||
class CancelByQueueIDResult(CancelByBatchIDsResult):
|
||||
"""Result of canceling by queue id"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class IsEmptyResult(BaseModel):
|
||||
"""Result of checking if the session queue is empty"""
|
||||
|
||||
is_empty: bool = Field(..., description="Whether the session queue is empty")
|
||||
|
||||
|
||||
class IsFullResult(BaseModel):
|
||||
"""Result of checking if the session queue is full"""
|
||||
|
||||
is_full: bool = Field(..., description="Whether the session queue is full")
|
||||
|
||||
|
||||
# endregion Query Results
|
||||
|
||||
|
||||
# region Util
|
||||
|
||||
|
||||
def populate_graph(graph: Graph, node_field_values: Iterable[NodeFieldValue]) -> Graph:
|
||||
"""
|
||||
Populates the given graph with the given batch data items.
|
||||
"""
|
||||
graph_clone = graph.copy(deep=True)
|
||||
for item in node_field_values:
|
||||
node = graph_clone.get_node(item.node_path)
|
||||
if node is None:
|
||||
continue
|
||||
setattr(node, item.field_name, item.value)
|
||||
graph_clone.update_node(item.node_path, node)
|
||||
return graph_clone
|
||||
|
||||
|
||||
def create_session_nfv_tuples(
|
||||
batch: Batch, maximum: int
|
||||
) -> Generator[tuple[GraphExecutionState, list[NodeFieldValue]], None, None]:
|
||||
"""
|
||||
Create all graph permutations from the given batch data and graph. Yields tuples
|
||||
of the form (graph, batch_data_items) where batch_data_items is the list of BatchDataItems
|
||||
that was applied to the graph.
|
||||
"""
|
||||
|
||||
# TODO: Should this be a class method on Batch?
|
||||
|
||||
data: list[list[tuple[NodeFieldValue]]] = []
|
||||
batch_data_collection = batch.data if batch.data is not None else []
|
||||
for batch_datum_list in batch_data_collection:
|
||||
# each batch_datum_list needs to be convered to NodeFieldValues and then zipped
|
||||
|
||||
node_field_values_to_zip: list[list[NodeFieldValue]] = []
|
||||
for batch_datum in batch_datum_list:
|
||||
node_field_values = [
|
||||
NodeFieldValue(node_path=batch_datum.node_path, field_name=batch_datum.field_name, value=item)
|
||||
for item in batch_datum.items
|
||||
]
|
||||
node_field_values_to_zip.append(node_field_values)
|
||||
data.append(list(zip(*node_field_values_to_zip)))
|
||||
|
||||
# create generator to yield session,nfv tuples
|
||||
count = 0
|
||||
for _ in range(batch.runs):
|
||||
for d in product(*data):
|
||||
if count >= maximum:
|
||||
return
|
||||
flat_node_field_values = list(chain.from_iterable(d))
|
||||
graph = populate_graph(batch.graph, flat_node_field_values)
|
||||
yield (GraphExecutionState(graph=graph), flat_node_field_values)
|
||||
count += 1
|
||||
|
||||
|
||||
def calc_session_count(batch: Batch) -> int:
|
||||
"""
|
||||
Calculates the number of sessions that would be created by the batch, without incurring
|
||||
the overhead of actually generating them. Adapted from `create_sessions().
|
||||
"""
|
||||
# TODO: Should this be a class method on Batch?
|
||||
if not batch.data:
|
||||
return batch.runs
|
||||
data = []
|
||||
for batch_datum_list in batch.data:
|
||||
to_zip = []
|
||||
for batch_datum in batch_datum_list:
|
||||
batch_data_items = range(len(batch_datum.items))
|
||||
to_zip.append(batch_data_items)
|
||||
data.append(list(zip(*to_zip)))
|
||||
data_product = list(product(*data))
|
||||
return len(data_product) * batch.runs
|
||||
|
||||
|
||||
class SessionQueueValueToInsert(NamedTuple):
|
||||
"""A tuple of values to insert into the session_queue table"""
|
||||
|
||||
queue_id: str # queue_id
|
||||
session: str # session json
|
||||
session_id: str # session_id
|
||||
batch_id: str # batch_id
|
||||
field_values: Optional[str] # field_values json
|
||||
priority: int # priority
|
||||
|
||||
|
||||
ValuesToInsert: TypeAlias = list[SessionQueueValueToInsert]
|
||||
|
||||
|
||||
def prepare_values_to_insert(queue_id: str, batch: Batch, priority: int, max_new_queue_items: int) -> ValuesToInsert:
|
||||
values_to_insert: ValuesToInsert = []
|
||||
for session, field_values in create_session_nfv_tuples(batch, max_new_queue_items):
|
||||
# sessions must have unique id
|
||||
session.id = uuid_string()
|
||||
values_to_insert.append(
|
||||
SessionQueueValueToInsert(
|
||||
queue_id, # queue_id
|
||||
session.json(), # session (json)
|
||||
session.id, # session_id
|
||||
batch.batch_id, # batch_id
|
||||
# must use pydantic_encoder bc field_values is a list of models
|
||||
json.dumps(field_values, default=pydantic_encoder) if field_values else None, # field_values (json)
|
||||
priority, # priority
|
||||
)
|
||||
)
|
||||
return values_to_insert
|
||||
|
||||
|
||||
# endregion Util
|
||||
816
invokeai/app/services/session_queue/session_queue_sqlite.py
Normal file
816
invokeai/app/services/session_queue/session_queue_sqlite.py
Normal file
@@ -0,0 +1,816 @@
|
||||
import sqlite3
|
||||
import threading
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from fastapi_events.handlers.local import local_handler
|
||||
from fastapi_events.typing import Event as FastAPIEvent
|
||||
|
||||
from invokeai.app.services.events import EventServiceBase
|
||||
from invokeai.app.services.graph import Graph
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.session_queue.session_queue_base import SessionQueueBase
|
||||
from invokeai.app.services.session_queue.session_queue_common import (
|
||||
DEFAULT_QUEUE_ID,
|
||||
QUEUE_ITEM_STATUS,
|
||||
Batch,
|
||||
BatchStatus,
|
||||
CancelByBatchIDsResult,
|
||||
CancelByQueueIDResult,
|
||||
ClearResult,
|
||||
EnqueueBatchResult,
|
||||
EnqueueGraphResult,
|
||||
IsEmptyResult,
|
||||
IsFullResult,
|
||||
PruneResult,
|
||||
SessionQueueItem,
|
||||
SessionQueueItemDTO,
|
||||
SessionQueueItemNotFoundError,
|
||||
SessionQueueStatus,
|
||||
calc_session_count,
|
||||
prepare_values_to_insert,
|
||||
)
|
||||
from invokeai.app.services.shared.models import CursorPaginatedResults
|
||||
|
||||
|
||||
class SqliteSessionQueue(SessionQueueBase):
|
||||
__invoker: Invoker
|
||||
__conn: sqlite3.Connection
|
||||
__cursor: sqlite3.Cursor
|
||||
__lock: threading.Lock
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
self.__invoker = invoker
|
||||
self._set_in_progress_to_canceled()
|
||||
prune_result = self.prune(DEFAULT_QUEUE_ID)
|
||||
local_handler.register(event_name=EventServiceBase.queue_event, _func=self._on_session_event)
|
||||
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
|
||||
|
||||
def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
|
||||
super().__init__()
|
||||
self.__conn = conn
|
||||
# Enable row factory to get rows as dictionaries (must be done before making the cursor!)
|
||||
self.__conn.row_factory = sqlite3.Row
|
||||
self.__cursor = self.__conn.cursor()
|
||||
self.__lock = lock
|
||||
self._create_tables()
|
||||
|
||||
def _match_event_name(self, event: FastAPIEvent, match_in: list[str]) -> bool:
|
||||
return event[1]["event"] in match_in
|
||||
|
||||
async def _on_session_event(self, event: FastAPIEvent) -> FastAPIEvent:
|
||||
event_name = event[1]["event"]
|
||||
|
||||
# This was a match statement, but match is not supported on python 3.9
|
||||
if event_name == "graph_execution_state_complete":
|
||||
await self._handle_complete_event(event)
|
||||
elif event_name in ["invocation_error", "session_retrieval_error", "invocation_retrieval_error"]:
|
||||
await self._handle_error_event(event)
|
||||
elif event_name == "session_canceled":
|
||||
await self._handle_cancel_event(event)
|
||||
return event
|
||||
|
||||
async def _handle_complete_event(self, event: FastAPIEvent) -> None:
|
||||
try:
|
||||
item_id = event[1]["data"]["queue_item_id"]
|
||||
# When a queue item has an error, we get an error event, then a completed event.
|
||||
# Mark the queue item completed only if it isn't already marked completed, e.g.
|
||||
# by a previously-handled error event.
|
||||
queue_item = self.get_queue_item(item_id)
|
||||
if queue_item.status not in ["completed", "failed", "canceled"]:
|
||||
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="completed")
|
||||
except SessionQueueItemNotFoundError:
|
||||
return
|
||||
|
||||
async def _handle_error_event(self, event: FastAPIEvent) -> None:
|
||||
try:
|
||||
item_id = event[1]["data"]["queue_item_id"]
|
||||
error = event[1]["data"]["error"]
|
||||
queue_item = self.get_queue_item(item_id)
|
||||
# always set to failed if have an error, even if previously the item was marked completed or canceled
|
||||
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="failed", error=error)
|
||||
except SessionQueueItemNotFoundError:
|
||||
return
|
||||
|
||||
async def _handle_cancel_event(self, event: FastAPIEvent) -> None:
|
||||
try:
|
||||
item_id = event[1]["data"]["queue_item_id"]
|
||||
queue_item = self.get_queue_item(item_id)
|
||||
if queue_item.status not in ["completed", "failed", "canceled"]:
|
||||
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="canceled")
|
||||
except SessionQueueItemNotFoundError:
|
||||
return
|
||||
|
||||
def _create_tables(self) -> None:
|
||||
"""Creates the session queue tables, indicies, and triggers"""
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE TABLE IF NOT EXISTS session_queue (
|
||||
item_id INTEGER PRIMARY KEY AUTOINCREMENT, -- used for ordering, cursor pagination
|
||||
batch_id TEXT NOT NULL, -- identifier of the batch this queue item belongs to
|
||||
queue_id TEXT NOT NULL, -- identifier of the queue this queue item belongs to
|
||||
session_id TEXT NOT NULL UNIQUE, -- duplicated data from the session column, for ease of access
|
||||
field_values TEXT, -- NULL if no values are associated with this queue item
|
||||
session TEXT NOT NULL, -- the session to be executed
|
||||
status TEXT NOT NULL DEFAULT 'pending', -- the status of the queue item, one of 'pending', 'in_progress', 'completed', 'failed', 'canceled'
|
||||
priority INTEGER NOT NULL DEFAULT 0, -- the priority, higher is more important
|
||||
error TEXT, -- any errors associated with this queue item
|
||||
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')), -- updated via trigger
|
||||
started_at DATETIME, -- updated via trigger
|
||||
completed_at DATETIME -- updated via trigger, completed items are cleaned up on application startup
|
||||
-- Ideally this is a FK, but graph_executions uses INSERT OR REPLACE, and REPLACE triggers the ON DELETE CASCADE...
|
||||
-- FOREIGN KEY (session_id) REFERENCES graph_executions (id) ON DELETE CASCADE
|
||||
);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_item_id ON session_queue(item_id);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE UNIQUE INDEX IF NOT EXISTS idx_session_queue_session_id ON session_queue(session_id);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE INDEX IF NOT EXISTS idx_session_queue_batch_id ON session_queue(batch_id);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE INDEX IF NOT EXISTS idx_session_queue_created_priority ON session_queue(priority);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE INDEX IF NOT EXISTS idx_session_queue_created_status ON session_queue(status);
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE TRIGGER IF NOT EXISTS tg_session_queue_completed_at
|
||||
AFTER UPDATE OF status ON session_queue
|
||||
FOR EACH ROW
|
||||
WHEN
|
||||
NEW.status = 'completed'
|
||||
OR NEW.status = 'failed'
|
||||
OR NEW.status = 'canceled'
|
||||
BEGIN
|
||||
UPDATE session_queue
|
||||
SET completed_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
|
||||
WHERE item_id = NEW.item_id;
|
||||
END;
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE TRIGGER IF NOT EXISTS tg_session_queue_started_at
|
||||
AFTER UPDATE OF status ON session_queue
|
||||
FOR EACH ROW
|
||||
WHEN
|
||||
NEW.status = 'in_progress'
|
||||
BEGIN
|
||||
UPDATE session_queue
|
||||
SET started_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
|
||||
WHERE item_id = NEW.item_id;
|
||||
END;
|
||||
"""
|
||||
)
|
||||
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
CREATE TRIGGER IF NOT EXISTS tg_session_queue_updated_at
|
||||
AFTER UPDATE
|
||||
ON session_queue FOR EACH ROW
|
||||
BEGIN
|
||||
UPDATE session_queue
|
||||
SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
|
||||
WHERE item_id = old.item_id;
|
||||
END;
|
||||
"""
|
||||
)
|
||||
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
|
||||
def _set_in_progress_to_canceled(self) -> None:
|
||||
"""
|
||||
Sets all in_progress queue items to canceled. Run on app startup, not associated with any queue.
|
||||
This is necessary because the invoker may have been killed while processing a queue item.
|
||||
"""
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = 'canceled'
|
||||
WHERE status = 'in_progress';
|
||||
"""
|
||||
)
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
|
||||
def _get_current_queue_size(self, queue_id: str) -> int:
|
||||
"""Gets the current number of pending queue items"""
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT count(*)
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND status = 'pending'
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
return cast(int, self.__cursor.fetchone()[0])
|
||||
|
||||
def _get_highest_priority(self, queue_id: str) -> int:
|
||||
"""Gets the highest priority value in the queue"""
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT MAX(priority)
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND status = 'pending'
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
return cast(Union[int, None], self.__cursor.fetchone()[0]) or 0
|
||||
|
||||
def enqueue_graph(self, queue_id: str, graph: Graph, prepend: bool) -> EnqueueGraphResult:
|
||||
enqueue_result = self.enqueue_batch(queue_id=queue_id, batch=Batch(graph=graph), prepend=prepend)
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
AND batch_id = ?
|
||||
""",
|
||||
(queue_id, enqueue_result.batch.batch_id),
|
||||
)
|
||||
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
if result is None:
|
||||
raise SessionQueueItemNotFoundError(f"No queue item with batch id {enqueue_result.batch.batch_id}")
|
||||
return EnqueueGraphResult(
|
||||
**enqueue_result.dict(),
|
||||
queue_item=SessionQueueItemDTO.from_dict(dict(result)),
|
||||
)
|
||||
|
||||
def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
|
||||
# TODO: how does this work in a multi-user scenario?
|
||||
current_queue_size = self._get_current_queue_size(queue_id)
|
||||
max_queue_size = self.__invoker.services.configuration.get_config().max_queue_size
|
||||
max_new_queue_items = max_queue_size - current_queue_size
|
||||
|
||||
priority = 0
|
||||
if prepend:
|
||||
priority = self._get_highest_priority(queue_id) + 1
|
||||
|
||||
requested_count = calc_session_count(batch)
|
||||
values_to_insert = prepare_values_to_insert(
|
||||
queue_id=queue_id,
|
||||
batch=batch,
|
||||
priority=priority,
|
||||
max_new_queue_items=max_new_queue_items,
|
||||
)
|
||||
enqueued_count = len(values_to_insert)
|
||||
|
||||
if requested_count > enqueued_count:
|
||||
values_to_insert = values_to_insert[:max_new_queue_items]
|
||||
|
||||
self.__cursor.executemany(
|
||||
"""--sql
|
||||
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority)
|
||||
VALUES (?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
values_to_insert,
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
enqueue_result = EnqueueBatchResult(
|
||||
queue_id=queue_id,
|
||||
requested=requested_count,
|
||||
enqueued=enqueued_count,
|
||||
batch=batch,
|
||||
priority=priority,
|
||||
)
|
||||
self.__invoker.services.events.emit_batch_enqueued(enqueue_result)
|
||||
return enqueue_result
|
||||
|
||||
def dequeue(self) -> Optional[SessionQueueItem]:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM session_queue
|
||||
WHERE status = 'pending'
|
||||
ORDER BY
|
||||
priority DESC,
|
||||
item_id ASC
|
||||
LIMIT 1
|
||||
"""
|
||||
)
|
||||
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
if result is None:
|
||||
return None
|
||||
queue_item = SessionQueueItem.from_dict(dict(result))
|
||||
queue_item = self._set_queue_item_status(item_id=queue_item.item_id, status="in_progress")
|
||||
return queue_item
|
||||
|
||||
def get_next(self, queue_id: str) -> Optional[SessionQueueItem]:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND status = 'pending'
|
||||
ORDER BY
|
||||
priority DESC,
|
||||
created_at ASC
|
||||
LIMIT 1
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
if result is None:
|
||||
return None
|
||||
return SessionQueueItem.from_dict(dict(result))
|
||||
|
||||
def get_current(self, queue_id: str) -> Optional[SessionQueueItem]:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT *
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND status = 'in_progress'
|
||||
LIMIT 1
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
if result is None:
|
||||
return None
|
||||
return SessionQueueItem.from_dict(dict(result))
|
||||
|
||||
def _set_queue_item_status(
|
||||
self, item_id: int, status: QUEUE_ITEM_STATUS, error: Optional[str] = None
|
||||
) -> SessionQueueItem:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = ?, error = ?
|
||||
WHERE item_id = ?
|
||||
""",
|
||||
(status, error, item_id),
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
queue_item = self.get_queue_item(item_id)
|
||||
self.__invoker.services.events.emit_queue_item_status_changed(queue_item)
|
||||
return queue_item
|
||||
|
||||
def is_empty(self, queue_id: str) -> IsEmptyResult:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT count(*)
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
is_empty = cast(int, self.__cursor.fetchone()[0]) == 0
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return IsEmptyResult(is_empty=is_empty)
|
||||
|
||||
def is_full(self, queue_id: str) -> IsFullResult:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT count(*)
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
max_queue_size = self.__invoker.services.configuration.max_queue_size
|
||||
is_full = cast(int, self.__cursor.fetchone()[0]) >= max_queue_size
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return IsFullResult(is_full=is_full)
|
||||
|
||||
def delete_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
queue_item = self.get_queue_item(item_id=item_id)
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
DELETE FROM session_queue
|
||||
WHERE
|
||||
item_id = ?
|
||||
""",
|
||||
(item_id,),
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return queue_item
|
||||
|
||||
def clear(self, queue_id: str) -> ClearResult:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
DELETE
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
self.__invoker.services.events.emit_queue_cleared(queue_id)
|
||||
return ClearResult(deleted=count)
|
||||
|
||||
def prune(self, queue_id: str) -> PruneResult:
|
||||
try:
|
||||
where = """--sql
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND (
|
||||
status = 'completed'
|
||||
OR status = 'failed'
|
||||
OR status = 'canceled'
|
||||
)
|
||||
"""
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
DELETE
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
self.__conn.commit()
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return PruneResult(deleted=count)
|
||||
|
||||
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
queue_item = self.get_queue_item(item_id)
|
||||
if queue_item.status not in ["canceled", "failed", "completed"]:
|
||||
queue_item = self._set_queue_item_status(item_id=item_id, status="canceled")
|
||||
self.__invoker.services.queue.cancel(queue_item.session_id)
|
||||
self.__invoker.services.events.emit_session_canceled(
|
||||
queue_item_id=queue_item.item_id,
|
||||
queue_id=queue_item.queue_id,
|
||||
queue_batch_id=queue_item.batch_id,
|
||||
graph_execution_state_id=queue_item.session_id,
|
||||
)
|
||||
return queue_item
|
||||
|
||||
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
|
||||
try:
|
||||
current_queue_item = self.get_current(queue_id)
|
||||
self.__lock.acquire()
|
||||
placeholders = ", ".join(["?" for _ in batch_ids])
|
||||
where = f"""--sql
|
||||
WHERE
|
||||
queue_id == ?
|
||||
AND batch_id IN ({placeholders})
|
||||
AND status != 'canceled'
|
||||
AND status != 'completed'
|
||||
AND status != 'failed'
|
||||
"""
|
||||
params = [queue_id] + batch_ids
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
tuple(params),
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = 'canceled'
|
||||
{where};
|
||||
""",
|
||||
tuple(params),
|
||||
)
|
||||
self.__conn.commit()
|
||||
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
|
||||
self.__invoker.services.queue.cancel(current_queue_item.session_id)
|
||||
self.__invoker.services.events.emit_session_canceled(
|
||||
queue_item_id=current_queue_item.item_id,
|
||||
queue_id=current_queue_item.queue_id,
|
||||
queue_batch_id=current_queue_item.batch_id,
|
||||
graph_execution_state_id=current_queue_item.session_id,
|
||||
)
|
||||
self.__invoker.services.events.emit_queue_item_status_changed(current_queue_item)
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return CancelByBatchIDsResult(canceled=count)
|
||||
|
||||
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
|
||||
try:
|
||||
current_queue_item = self.get_current(queue_id)
|
||||
self.__lock.acquire()
|
||||
where = """--sql
|
||||
WHERE
|
||||
queue_id is ?
|
||||
AND status != 'canceled'
|
||||
AND status != 'completed'
|
||||
AND status != 'failed'
|
||||
"""
|
||||
params = [queue_id]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM session_queue
|
||||
{where};
|
||||
""",
|
||||
tuple(params),
|
||||
)
|
||||
count = self.__cursor.fetchone()[0]
|
||||
self.__cursor.execute(
|
||||
f"""--sql
|
||||
UPDATE session_queue
|
||||
SET status = 'canceled'
|
||||
{where};
|
||||
""",
|
||||
tuple(params),
|
||||
)
|
||||
self.__conn.commit()
|
||||
if current_queue_item is not None and current_queue_item.queue_id == queue_id:
|
||||
self.__invoker.services.queue.cancel(current_queue_item.session_id)
|
||||
self.__invoker.services.events.emit_session_canceled(
|
||||
queue_item_id=current_queue_item.item_id,
|
||||
queue_id=current_queue_item.queue_id,
|
||||
queue_batch_id=current_queue_item.batch_id,
|
||||
graph_execution_state_id=current_queue_item.session_id,
|
||||
)
|
||||
self.__invoker.services.events.emit_queue_item_status_changed(current_queue_item)
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return CancelByQueueIDResult(canceled=count)
|
||||
|
||||
def get_queue_item(self, item_id: int) -> SessionQueueItem:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT * FROM session_queue
|
||||
WHERE
|
||||
item_id = ?
|
||||
""",
|
||||
(item_id,),
|
||||
)
|
||||
result = cast(Union[sqlite3.Row, None], self.__cursor.fetchone())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
if result is None:
|
||||
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
|
||||
return SessionQueueItem.from_dict(dict(result))
|
||||
|
||||
def list_queue_items(
|
||||
self,
|
||||
queue_id: str,
|
||||
limit: int,
|
||||
priority: int,
|
||||
cursor: Optional[int] = None,
|
||||
status: Optional[QUEUE_ITEM_STATUS] = None,
|
||||
) -> CursorPaginatedResults[SessionQueueItemDTO]:
|
||||
try:
|
||||
item_id = cursor
|
||||
self.__lock.acquire()
|
||||
query = """--sql
|
||||
SELECT item_id,
|
||||
status,
|
||||
priority,
|
||||
field_values,
|
||||
error,
|
||||
created_at,
|
||||
updated_at,
|
||||
completed_at,
|
||||
started_at,
|
||||
session_id,
|
||||
batch_id,
|
||||
queue_id
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
"""
|
||||
params: list[Union[str, int]] = [queue_id]
|
||||
|
||||
if status is not None:
|
||||
query += """--sql
|
||||
AND status = ?
|
||||
"""
|
||||
params.append(status)
|
||||
|
||||
if item_id is not None:
|
||||
query += """--sql
|
||||
AND (priority < ?) OR (priority = ? AND item_id > ?)
|
||||
"""
|
||||
params.extend([priority, priority, item_id])
|
||||
|
||||
query += """--sql
|
||||
ORDER BY
|
||||
priority DESC,
|
||||
item_id ASC
|
||||
LIMIT ?
|
||||
"""
|
||||
params.append(limit + 1)
|
||||
self.__cursor.execute(query, params)
|
||||
results = cast(list[sqlite3.Row], self.__cursor.fetchall())
|
||||
items = [SessionQueueItemDTO.from_dict(dict(result)) for result in results]
|
||||
has_more = False
|
||||
if len(items) > limit:
|
||||
# remove the extra item
|
||||
items.pop()
|
||||
has_more = True
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
return CursorPaginatedResults(items=items, limit=limit, has_more=has_more)
|
||||
|
||||
def get_queue_status(self, queue_id: str) -> SessionQueueStatus:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT status, count(*)
|
||||
FROM session_queue
|
||||
WHERE queue_id = ?
|
||||
GROUP BY status
|
||||
""",
|
||||
(queue_id,),
|
||||
)
|
||||
counts_result = cast(list[sqlite3.Row], self.__cursor.fetchall())
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
|
||||
current_item = self.get_current(queue_id=queue_id)
|
||||
total = sum(row[1] for row in counts_result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
|
||||
return SessionQueueStatus(
|
||||
queue_id=queue_id,
|
||||
item_id=current_item.item_id if current_item else None,
|
||||
session_id=current_item.session_id if current_item else None,
|
||||
batch_id=current_item.batch_id if current_item else None,
|
||||
pending=counts.get("pending", 0),
|
||||
in_progress=counts.get("in_progress", 0),
|
||||
completed=counts.get("completed", 0),
|
||||
failed=counts.get("failed", 0),
|
||||
canceled=counts.get("canceled", 0),
|
||||
total=total,
|
||||
)
|
||||
|
||||
def get_batch_status(self, queue_id: str, batch_id: str) -> BatchStatus:
|
||||
try:
|
||||
self.__lock.acquire()
|
||||
self.__cursor.execute(
|
||||
"""--sql
|
||||
SELECT status, count(*)
|
||||
FROM session_queue
|
||||
WHERE
|
||||
queue_id = ?
|
||||
AND batch_id = ?
|
||||
GROUP BY status
|
||||
""",
|
||||
(queue_id, batch_id),
|
||||
)
|
||||
result = cast(list[sqlite3.Row], self.__cursor.fetchall())
|
||||
total = sum(row[1] for row in result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in result}
|
||||
except Exception:
|
||||
self.__conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.__lock.release()
|
||||
|
||||
return BatchStatus(
|
||||
batch_id=batch_id,
|
||||
queue_id=queue_id,
|
||||
pending=counts.get("pending", 0),
|
||||
in_progress=counts.get("in_progress", 0),
|
||||
completed=counts.get("completed", 0),
|
||||
failed=counts.get("failed", 0),
|
||||
canceled=counts.get("canceled", 0),
|
||||
total=total,
|
||||
)
|
||||
14
invokeai/app/services/shared/models.py
Normal file
14
invokeai/app/services/shared/models.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from typing import Generic, TypeVar
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.generics import GenericModel
|
||||
|
||||
GenericBaseModel = TypeVar("GenericBaseModel", bound=BaseModel)
|
||||
|
||||
|
||||
class CursorPaginatedResults(GenericModel, Generic[GenericBaseModel]):
|
||||
"""Cursor-paginated results"""
|
||||
|
||||
limit: int = Field(..., description="Limit of items to get")
|
||||
has_more: bool = Field(..., description="Whether there are more items available")
|
||||
items: list[GenericBaseModel] = Field(..., description="Items")
|
||||
@@ -1,5 +1,5 @@
|
||||
import sqlite3
|
||||
from threading import Lock
|
||||
import threading
|
||||
from typing import Generic, Optional, TypeVar, get_args
|
||||
|
||||
from pydantic import BaseModel, parse_raw_as
|
||||
@@ -12,23 +12,19 @@ sqlite_memory = ":memory:"
|
||||
|
||||
|
||||
class SqliteItemStorage(ItemStorageABC, Generic[T]):
|
||||
_filename: str
|
||||
_table_name: str
|
||||
_conn: sqlite3.Connection
|
||||
_cursor: sqlite3.Cursor
|
||||
_id_field: str
|
||||
_lock: Lock
|
||||
_lock: threading.Lock
|
||||
|
||||
def __init__(self, filename: str, table_name: str, id_field: str = "id"):
|
||||
def __init__(self, conn: sqlite3.Connection, table_name: str, lock: threading.Lock, id_field: str = "id"):
|
||||
super().__init__()
|
||||
|
||||
self._filename = filename
|
||||
self._table_name = table_name
|
||||
self._id_field = id_field # TODO: validate that T has this field
|
||||
self._lock = Lock()
|
||||
self._conn = sqlite3.connect(
|
||||
self._filename, check_same_thread=False
|
||||
) # TODO: figure out a better threading solution
|
||||
self._lock = lock
|
||||
self._conn = conn
|
||||
self._cursor = self._conn.cursor()
|
||||
|
||||
self._create_table()
|
||||
@@ -49,8 +45,7 @@ class SqliteItemStorage(ItemStorageABC, Generic[T]):
|
||||
|
||||
def _parse_item(self, item: str) -> T:
|
||||
item_type = get_args(self.__orig_class__)[0]
|
||||
parsed = parse_raw_as(item_type, item)
|
||||
return parsed
|
||||
return parse_raw_as(item_type, item)
|
||||
|
||||
def set(self, item: T):
|
||||
try:
|
||||
|
||||
3
invokeai/app/services/thread.py
Normal file
3
invokeai/app/services/thread.py
Normal file
@@ -0,0 +1,3 @@
|
||||
import threading
|
||||
|
||||
lock = threading.Lock()
|
||||
@@ -1,4 +1,5 @@
|
||||
import datetime
|
||||
import uuid
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -21,3 +22,8 @@ SEED_MAX = np.iinfo(np.uint32).max
|
||||
def get_random_seed():
|
||||
rng = np.random.default_rng(seed=None)
|
||||
return int(rng.integers(0, SEED_MAX))
|
||||
|
||||
|
||||
def uuid_string():
|
||||
res = uuid.uuid4()
|
||||
return str(res)
|
||||
|
||||
@@ -110,6 +110,9 @@ def stable_diffusion_step_callback(
|
||||
dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
context.services.events.emit_generator_progress(
|
||||
queue_id=context.queue_id,
|
||||
queue_item_id=context.queue_item_id,
|
||||
queue_batch_id=context.queue_batch_id,
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
|
||||
46
invokeai/backend/image_util/invoke_metadata.py
Normal file
46
invokeai/backend/image_util/invoke_metadata.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
|
||||
"""Very simple functions to fetch and print metadata from InvokeAI-generated images."""
|
||||
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def get_invokeai_metadata(image_path: Path) -> Dict[str, Any]:
|
||||
"""
|
||||
Retrieve "invokeai_metadata" field from png image.
|
||||
|
||||
:param image_path: Path to the image to read metadata from.
|
||||
May raise:
|
||||
OSError -- image path not found
|
||||
KeyError -- image doesn't contain the metadata field
|
||||
"""
|
||||
image: Image = Image.open(image_path)
|
||||
return json.loads(image.text["invokeai_metadata"])
|
||||
|
||||
|
||||
def print_invokeai_metadata(image_path: Path):
|
||||
"""Pretty-print the metadata."""
|
||||
try:
|
||||
metadata = get_invokeai_metadata(image_path)
|
||||
print(f"{image_path}:\n{json.dumps(metadata, sort_keys=True, indent=4)}")
|
||||
except OSError:
|
||||
print(f"{image_path}:\nNo file found.")
|
||||
except KeyError:
|
||||
print(f"{image_path}:\nNo metadata found.")
|
||||
print()
|
||||
|
||||
|
||||
def main():
|
||||
"""Run the command-line utility."""
|
||||
image_paths = sys.argv[1:]
|
||||
if not image_paths:
|
||||
print(f"Usage: {Path(sys.argv[0]).name} image1 image2 image3 ...")
|
||||
print("\nPretty-print InvokeAI image metadata from the listed png files.")
|
||||
sys.exit(-1)
|
||||
for img in image_paths:
|
||||
print_invokeai_metadata(img)
|
||||
@@ -70,7 +70,6 @@ def get_literal_fields(field) -> list[Any]:
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
|
||||
Model_dir = "models"
|
||||
|
||||
Default_config_file = config.model_conf_path
|
||||
SD_Configs = config.legacy_conf_path
|
||||
|
||||
@@ -93,7 +92,7 @@ INIT_FILE_PREAMBLE = """# InvokeAI initialization file
|
||||
# or renaming it and then running invokeai-configure again.
|
||||
"""
|
||||
|
||||
logger = InvokeAILogger.getLogger()
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
class DummyWidgetValue(Enum):
|
||||
@@ -458,7 +457,7 @@ Use cursor arrows to make a checkbox selection, and space to toggle.
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
npyscreen.TitleFixedText,
|
||||
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model.",
|
||||
name="Model RAM cache size (GB). Make this at least large enough to hold a single full model (2GB for SD-1, 6GB for SDXL).",
|
||||
begin_entry_at=0,
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
@@ -651,8 +650,19 @@ def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Nam
|
||||
return editApp.new_opts()
|
||||
|
||||
|
||||
def default_ramcache() -> float:
|
||||
"""Run a heuristic for the default RAM cache based on installed RAM."""
|
||||
|
||||
# Note that on my 64 GB machine, psutil.virtual_memory().total gives 62 GB,
|
||||
# So we adjust everthing down a bit.
|
||||
return (
|
||||
15.0 if MAX_RAM >= 60 else 7.5 if MAX_RAM >= 30 else 4 if MAX_RAM >= 14 else 2.1
|
||||
) # 2.1 is just large enough for sd 1.5 ;-)
|
||||
|
||||
|
||||
def default_startup_options(init_file: Path) -> Namespace:
|
||||
opts = InvokeAIAppConfig.get_config()
|
||||
opts.ram = default_ramcache()
|
||||
return opts
|
||||
|
||||
|
||||
@@ -894,7 +904,7 @@ def main():
|
||||
if opt.full_precision:
|
||||
invoke_args.extend(["--precision", "float32"])
|
||||
config.parse_args(invoke_args)
|
||||
logger = InvokeAILogger().getLogger(config=config)
|
||||
logger = InvokeAILogger().get_logger(config=config)
|
||||
|
||||
errors = set()
|
||||
|
||||
|
||||
@@ -30,7 +30,7 @@ warnings.filterwarnings("ignore")
|
||||
|
||||
# --------------------------globals-----------------------
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
logger = InvokeAILogger.getLogger(name="InvokeAI")
|
||||
logger = InvokeAILogger.get_logger(name="InvokeAI")
|
||||
|
||||
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
||||
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
||||
@@ -47,8 +47,14 @@ Config_preamble = """
|
||||
|
||||
LEGACY_CONFIGS = {
|
||||
BaseModelType.StableDiffusion1: {
|
||||
ModelVariantType.Normal: "v1-inference.yaml",
|
||||
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
|
||||
ModelVariantType.Normal: {
|
||||
SchedulerPredictionType.Epsilon: "v1-inference.yaml",
|
||||
SchedulerPredictionType.VPrediction: "v1-inference-v.yaml",
|
||||
},
|
||||
ModelVariantType.Inpaint: {
|
||||
SchedulerPredictionType.Epsilon: "v1-inpainting-inference.yaml",
|
||||
SchedulerPredictionType.VPrediction: "v1-inpainting-inference-v.yaml",
|
||||
},
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
ModelVariantType.Normal: {
|
||||
@@ -69,14 +75,6 @@ LEGACY_CONFIGS = {
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelInstallList:
|
||||
"""Class for listing models to be installed/removed"""
|
||||
|
||||
install_models: List[str] = field(default_factory=list)
|
||||
remove_models: List[str] = field(default_factory=list)
|
||||
|
||||
|
||||
@dataclass
|
||||
class InstallSelections:
|
||||
install_models: List[str] = field(default_factory=list)
|
||||
@@ -94,6 +92,7 @@ class ModelLoadInfo:
|
||||
installed: bool = False
|
||||
recommended: bool = False
|
||||
default: bool = False
|
||||
requires: Optional[List[str]] = field(default_factory=list)
|
||||
|
||||
|
||||
class ModelInstall(object):
|
||||
@@ -131,8 +130,6 @@ class ModelInstall(object):
|
||||
|
||||
# supplement with entries in models.yaml
|
||||
installed_models = [x for x in self.mgr.list_models()]
|
||||
# suppresses autoloaded models
|
||||
# installed_models = [x for x in self.mgr.list_models() if not self._is_autoloaded(x)]
|
||||
|
||||
for md in installed_models:
|
||||
base = md["base_model"]
|
||||
@@ -164,9 +161,12 @@ class ModelInstall(object):
|
||||
|
||||
def list_models(self, model_type):
|
||||
installed = self.mgr.list_models(model_type=model_type)
|
||||
print()
|
||||
print(f"Installed models of type `{model_type}`:")
|
||||
print(f"{'Model Key':50} Model Path")
|
||||
for i in installed:
|
||||
print(f"{i['model_name']}\t{i['base_model']}\t{i['path']}")
|
||||
print(f"{'/'.join([i['base_model'],i['model_type'],i['model_name']]):50} {i['path']}")
|
||||
print()
|
||||
|
||||
# logic here a little reversed to maintain backward compatibility
|
||||
def starter_models(self, all_models: bool = False) -> Set[str]:
|
||||
@@ -204,6 +204,8 @@ class ModelInstall(object):
|
||||
job += 1
|
||||
|
||||
# add requested models
|
||||
self._remove_installed(selections.install_models)
|
||||
self._add_required_models(selections.install_models)
|
||||
for path in selections.install_models:
|
||||
logger.info(f"Installing {path} [{job}/{jobs}]")
|
||||
try:
|
||||
@@ -263,6 +265,26 @@ class ModelInstall(object):
|
||||
|
||||
return models_installed
|
||||
|
||||
def _remove_installed(self, model_list: List[str]):
|
||||
all_models = self.all_models()
|
||||
for path in model_list:
|
||||
key = self.reverse_paths.get(path)
|
||||
if key and all_models[key].installed:
|
||||
logger.warning(f"{path} already installed. Skipping.")
|
||||
model_list.remove(path)
|
||||
|
||||
def _add_required_models(self, model_list: List[str]):
|
||||
additional_models = []
|
||||
all_models = self.all_models()
|
||||
for path in model_list:
|
||||
if not (key := self.reverse_paths.get(path)):
|
||||
continue
|
||||
for requirement in all_models[key].requires:
|
||||
requirement_key = self.reverse_paths.get(requirement)
|
||||
if not all_models[requirement_key].installed:
|
||||
additional_models.append(requirement)
|
||||
model_list.extend(additional_models)
|
||||
|
||||
# install a model from a local path. The optional info parameter is there to prevent
|
||||
# the model from being probed twice in the event that it has already been probed.
|
||||
def _install_path(self, path: Path, info: ModelProbeInfo = None) -> AddModelResult:
|
||||
@@ -286,7 +308,7 @@ class ModelInstall(object):
|
||||
location = download_with_resume(url, Path(staging))
|
||||
if not location:
|
||||
logger.error(f"Unable to download {url}. Skipping.")
|
||||
info = ModelProbe().heuristic_probe(location)
|
||||
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
|
||||
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
models_path = shutil.move(location, dest)
|
||||
@@ -326,6 +348,16 @@ class ModelInstall(object):
|
||||
elif f"learned_embeds.{suffix}" in files:
|
||||
location = self._download_hf_model(repo_id, [f"learned_embeds.{suffix}"], staging)
|
||||
break
|
||||
elif "image_encoder.txt" in files and f"ip_adapter.{suffix}" in files: # IP-Adapter
|
||||
files = ["image_encoder.txt", f"ip_adapter.{suffix}"]
|
||||
location = self._download_hf_model(repo_id, files, staging)
|
||||
break
|
||||
elif f"model.{suffix}" in files and "config.json" in files:
|
||||
# This elif-condition is pretty fragile, but it is intended to handle CLIP Vision models hosted
|
||||
# by InvokeAI for use with IP-Adapters.
|
||||
files = ["config.json", f"model.{suffix}"]
|
||||
location = self._download_hf_model(repo_id, files, staging)
|
||||
break
|
||||
if not location:
|
||||
logger.warning(f"Could not determine type of repo {repo_id}. Skipping install.")
|
||||
return {}
|
||||
@@ -383,7 +415,7 @@ class ModelInstall(object):
|
||||
possible_conf = path.with_suffix(".yaml")
|
||||
if possible_conf.exists():
|
||||
legacy_conf = str(self.relative_to_root(possible_conf))
|
||||
elif info.base_type == BaseModelType.StableDiffusion2:
|
||||
elif info.base_type in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
legacy_conf = Path(
|
||||
self.config.legacy_conf_dir,
|
||||
LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type],
|
||||
@@ -482,7 +514,7 @@ def yes_or_no(prompt: str, default_yes=True):
|
||||
|
||||
# ---------------------------------------------
|
||||
def hf_download_from_pretrained(model_class: object, model_name: str, destination: Path, **kwargs):
|
||||
logger = InvokeAILogger.getLogger("InvokeAI")
|
||||
logger = InvokeAILogger.get_logger("InvokeAI")
|
||||
logger.addFilter(lambda x: "fp16 is not a valid" not in x.getMessage())
|
||||
|
||||
model = model_class.from_pretrained(
|
||||
@@ -534,14 +566,17 @@ def hf_download_with_resume(
|
||||
logger.info(f"{model_name}: Downloading...")
|
||||
|
||||
try:
|
||||
with open(model_dest, open_mode) as file, tqdm(
|
||||
desc=model_name,
|
||||
initial=exist_size,
|
||||
total=total + exist_size,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
) as bar:
|
||||
with (
|
||||
open(model_dest, open_mode) as file,
|
||||
tqdm(
|
||||
desc=model_name,
|
||||
initial=exist_size,
|
||||
total=total + exist_size,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
) as bar,
|
||||
):
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
|
||||
45
invokeai/backend/ip_adapter/README.md
Normal file
45
invokeai/backend/ip_adapter/README.md
Normal file
@@ -0,0 +1,45 @@
|
||||
# IP-Adapter Model Formats
|
||||
|
||||
The official IP-Adapter models are released here: [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter)
|
||||
|
||||
This official model repo does not integrate well with InvokeAI's current approach to model management, so we have defined a new file structure for IP-Adapter models. The InvokeAI format is described below.
|
||||
|
||||
## CLIP Vision Models
|
||||
|
||||
CLIP Vision models are organized in `diffusers`` format. The expected directory structure is:
|
||||
|
||||
```bash
|
||||
ip_adapter_sd_image_encoder/
|
||||
├── config.json
|
||||
└── model.safetensors
|
||||
```
|
||||
|
||||
## IP-Adapter Models
|
||||
|
||||
IP-Adapter models are stored in a directory containing two files
|
||||
- `image_encoder.txt`: A text file containing the model identifier for the CLIP Vision encoder that is intended to be used with this IP-Adapter model.
|
||||
- `ip_adapter.bin`: The IP-Adapter weights.
|
||||
|
||||
Sample directory structure:
|
||||
```bash
|
||||
ip_adapter_sd15/
|
||||
├── image_encoder.txt
|
||||
└── ip_adapter.bin
|
||||
```
|
||||
|
||||
### Why save the weights in a .safetensors file?
|
||||
|
||||
The weights in `ip_adapter.bin` are stored in a nested dict, which is not supported by `safetensors`. This could be solved by splitting `ip_adapter.bin` into multiple files, but for now we have decided to maintain consistency with the checkpoint structure used in the official [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) repo.
|
||||
|
||||
## InvokeAI Hosted IP-Adapters
|
||||
|
||||
Image Encoders:
|
||||
- [InvokeAI/ip_adapter_sd_image_encoder](https://huggingface.co/InvokeAI/ip_adapter_sd_image_encoder)
|
||||
- [InvokeAI/ip_adapter_sdxl_image_encoder](https://huggingface.co/InvokeAI/ip_adapter_sdxl_image_encoder)
|
||||
|
||||
IP-Adapters:
|
||||
- [InvokeAI/ip_adapter_sd15](https://huggingface.co/InvokeAI/ip_adapter_sd15)
|
||||
- [InvokeAI/ip_adapter_plus_sd15](https://huggingface.co/InvokeAI/ip_adapter_plus_sd15)
|
||||
- [InvokeAI/ip_adapter_plus_face_sd15](https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15)
|
||||
- [InvokeAI/ip_adapter_sdxl](https://huggingface.co/InvokeAI/ip_adapter_sdxl)
|
||||
- [InvokeAI/ip_adapter_sdxl_vit_h](https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h)
|
||||
0
invokeai/backend/ip_adapter/__init__.py
Normal file
0
invokeai/backend/ip_adapter/__init__.py
Normal file
162
invokeai/backend/ip_adapter/attention_processor.py
Normal file
162
invokeai/backend/ip_adapter/attention_processor.py
Normal file
@@ -0,0 +1,162 @@
|
||||
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
|
||||
# and modified as needed
|
||||
|
||||
# tencent-ailab comment:
|
||||
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0
|
||||
|
||||
|
||||
# Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict
|
||||
# loading.
|
||||
class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module):
|
||||
def __init__(self):
|
||||
DiffusersAttnProcessor2_0.__init__(self)
|
||||
nn.Module.__init__(self)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
attention_mask=None,
|
||||
temb=None,
|
||||
ip_adapter_image_prompt_embeds=None,
|
||||
):
|
||||
"""Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the
|
||||
ip_adapter_image_prompt_embeds parameter.
|
||||
"""
|
||||
return DiffusersAttnProcessor2_0.__call__(
|
||||
self, attn, hidden_states, encoder_hidden_states, attention_mask, temb
|
||||
)
|
||||
|
||||
|
||||
class IPAttnProcessor2_0(torch.nn.Module):
|
||||
r"""
|
||||
Attention processor for IP-Adapater for PyTorch 2.0.
|
||||
Args:
|
||||
hidden_size (`int`):
|
||||
The hidden size of the attention layer.
|
||||
cross_attention_dim (`int`):
|
||||
The number of channels in the `encoder_hidden_states`.
|
||||
scale (`float`, defaults to 1.0):
|
||||
the weight scale of image prompt.
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.scale = scale
|
||||
|
||||
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
||||
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
attention_mask=None,
|
||||
temb=None,
|
||||
ip_adapter_image_prompt_embeds=None,
|
||||
):
|
||||
if encoder_hidden_states is not None:
|
||||
# If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case,
|
||||
# we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here.
|
||||
assert ip_adapter_image_prompt_embeds is not None
|
||||
# The batch dimensions should match.
|
||||
assert ip_adapter_image_prompt_embeds.shape[0] == encoder_hidden_states.shape[0]
|
||||
# The channel dimensions should match.
|
||||
assert ip_adapter_image_prompt_embeds.shape[2] == encoder_hidden_states.shape[2]
|
||||
ip_hidden_states = ip_adapter_image_prompt_embeds
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
if ip_hidden_states is not None:
|
||||
ip_key = self.to_k_ip(ip_hidden_states)
|
||||
ip_value = self.to_v_ip(ip_hidden_states)
|
||||
|
||||
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
ip_hidden_states = F.scaled_dot_product_attention(
|
||||
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
||||
|
||||
hidden_states = hidden_states + self.scale * ip_hidden_states
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
217
invokeai/backend/ip_adapter/ip_adapter.py
Normal file
217
invokeai/backend/ip_adapter/ip_adapter.py
Normal file
@@ -0,0 +1,217 @@
|
||||
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
|
||||
# and modified as needed
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from diffusers.models import UNet2DConditionModel
|
||||
from PIL import Image
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from .attention_processor import AttnProcessor2_0, IPAttnProcessor2_0
|
||||
from .resampler import Resampler
|
||||
|
||||
|
||||
class ImageProjModel(torch.nn.Module):
|
||||
"""Image Projection Model"""
|
||||
|
||||
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
||||
super().__init__()
|
||||
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.clip_extra_context_tokens = clip_extra_context_tokens
|
||||
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
||||
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
||||
|
||||
@classmethod
|
||||
def from_state_dict(cls, state_dict: dict[torch.Tensor], clip_extra_context_tokens=4):
|
||||
"""Initialize an ImageProjModel from a state_dict.
|
||||
|
||||
The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict.
|
||||
|
||||
Args:
|
||||
state_dict (dict[torch.Tensor]): The state_dict of model weights.
|
||||
clip_extra_context_tokens (int, optional): Defaults to 4.
|
||||
|
||||
Returns:
|
||||
ImageProjModel
|
||||
"""
|
||||
cross_attention_dim = state_dict["norm.weight"].shape[0]
|
||||
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
|
||||
|
||||
model = cls(cross_attention_dim, clip_embeddings_dim, clip_extra_context_tokens)
|
||||
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
def forward(self, image_embeds):
|
||||
embeds = image_embeds
|
||||
clip_extra_context_tokens = self.proj(embeds).reshape(
|
||||
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
||||
)
|
||||
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class IPAdapter:
|
||||
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
state_dict: dict[torch.Tensor],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype = torch.float16,
|
||||
num_tokens: int = 4,
|
||||
):
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
|
||||
self._num_tokens = num_tokens
|
||||
|
||||
self._clip_image_processor = CLIPImageProcessor()
|
||||
|
||||
self._state_dict = state_dict
|
||||
|
||||
self._image_proj_model = self._init_image_proj_model(self._state_dict["image_proj"])
|
||||
|
||||
# The _attn_processors will be initialized later when we have access to the UNet.
|
||||
self._attn_processors = None
|
||||
|
||||
def to(self, device: torch.device, dtype: Optional[torch.dtype] = None):
|
||||
self.device = device
|
||||
if dtype is not None:
|
||||
self.dtype = dtype
|
||||
|
||||
self._image_proj_model.to(device=self.device, dtype=self.dtype)
|
||||
if self._attn_processors is not None:
|
||||
torch.nn.ModuleList(self._attn_processors.values()).to(device=self.device, dtype=self.dtype)
|
||||
|
||||
def _init_image_proj_model(self, state_dict):
|
||||
return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype)
|
||||
|
||||
def _prepare_attention_processors(self, unet: UNet2DConditionModel):
|
||||
"""Prepare a dict of attention processors that can later be injected into a unet, and load the IP-Adapter
|
||||
attention weights into them.
|
||||
|
||||
Note that the `unet` param is only used to determine attention block dimensions and naming.
|
||||
TODO(ryand): As a future improvement, this could all be inferred from the state_dict when the IPAdapter is
|
||||
intialized.
|
||||
"""
|
||||
attn_procs = {}
|
||||
for name in unet.attn_processors.keys():
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
||||
if name.startswith("mid_block"):
|
||||
hidden_size = unet.config.block_out_channels[-1]
|
||||
elif name.startswith("up_blocks"):
|
||||
block_id = int(name[len("up_blocks.")])
|
||||
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
||||
elif name.startswith("down_blocks"):
|
||||
block_id = int(name[len("down_blocks.")])
|
||||
hidden_size = unet.config.block_out_channels[block_id]
|
||||
if cross_attention_dim is None:
|
||||
attn_procs[name] = AttnProcessor2_0()
|
||||
else:
|
||||
attn_procs[name] = IPAttnProcessor2_0(
|
||||
hidden_size=hidden_size,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
scale=1.0,
|
||||
).to(self.device, dtype=self.dtype)
|
||||
|
||||
ip_layers = torch.nn.ModuleList(attn_procs.values())
|
||||
ip_layers.load_state_dict(self._state_dict["ip_adapter"])
|
||||
self._attn_processors = attn_procs
|
||||
self._state_dict = None
|
||||
|
||||
# @genomancer: pushed scaling back out into its own method (like original Tencent implementation)
|
||||
# which makes implementing begin_step_percent and end_step_percent easier
|
||||
# but based on self._attn_processors (ala @Ryan) instead of original Tencent unet.attn_processors,
|
||||
# which should make it easier to implement multiple IPAdapters
|
||||
def set_scale(self, scale):
|
||||
if self._attn_processors is not None:
|
||||
for attn_processor in self._attn_processors.values():
|
||||
if isinstance(attn_processor, IPAttnProcessor2_0):
|
||||
attn_processor.scale = scale
|
||||
|
||||
@contextmanager
|
||||
def apply_ip_adapter_attention(self, unet: UNet2DConditionModel, scale: float):
|
||||
"""A context manager that patches `unet` with this IP-Adapter's attention processors while it is active.
|
||||
|
||||
Yields:
|
||||
None
|
||||
"""
|
||||
if self._attn_processors is None:
|
||||
# We only have to call _prepare_attention_processors(...) once, and then the result is cached and can be
|
||||
# used on any UNet model (with the same dimensions).
|
||||
self._prepare_attention_processors(unet)
|
||||
|
||||
# Set scale
|
||||
self.set_scale(scale)
|
||||
# for attn_processor in self._attn_processors.values():
|
||||
# if isinstance(attn_processor, IPAttnProcessor2_0):
|
||||
# attn_processor.scale = scale
|
||||
|
||||
orig_attn_processors = unet.attn_processors
|
||||
|
||||
# Make a (moderately-) shallow copy of the self._attn_processors dict, because unet.set_attn_processor(...)
|
||||
# actually pops elements from the passed dict.
|
||||
ip_adapter_attn_processors = {k: v for k, v in self._attn_processors.items()}
|
||||
|
||||
try:
|
||||
unet.set_attn_processor(ip_adapter_attn_processors)
|
||||
yield None
|
||||
finally:
|
||||
unet.set_attn_processor(orig_attn_processors)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
|
||||
if isinstance(pil_image, Image.Image):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds))
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
|
||||
|
||||
class IPAdapterPlus(IPAdapter):
|
||||
"""IP-Adapter with fine-grained features"""
|
||||
|
||||
def _init_image_proj_model(self, state_dict):
|
||||
return Resampler.from_state_dict(
|
||||
state_dict=state_dict,
|
||||
depth=4,
|
||||
dim_head=64,
|
||||
heads=12,
|
||||
num_queries=self._num_tokens,
|
||||
ff_mult=4,
|
||||
).to(self.device, dtype=self.dtype)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection):
|
||||
if isinstance(pil_image, Image.Image):
|
||||
pil_image = [pil_image]
|
||||
clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
||||
clip_image = clip_image.to(self.device, dtype=self.dtype)
|
||||
clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
||||
image_prompt_embeds = self._image_proj_model(clip_image_embeds)
|
||||
uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[
|
||||
-2
|
||||
]
|
||||
uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds)
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
|
||||
|
||||
def build_ip_adapter(
|
||||
ip_adapter_ckpt_path: str, device: torch.device, dtype: torch.dtype = torch.float16
|
||||
) -> Union[IPAdapter, IPAdapterPlus]:
|
||||
state_dict = torch.load(ip_adapter_ckpt_path, map_location="cpu")
|
||||
|
||||
# Determine if the state_dict is from an IPAdapter or IPAdapterPlus based on the image_proj weights that it
|
||||
# contains.
|
||||
is_plus = "proj.weight" not in state_dict["image_proj"]
|
||||
|
||||
if is_plus:
|
||||
return IPAdapterPlus(state_dict, device=device, dtype=dtype)
|
||||
else:
|
||||
return IPAdapter(state_dict, device=device, dtype=dtype)
|
||||
158
invokeai/backend/ip_adapter/resampler.py
Normal file
158
invokeai/backend/ip_adapter/resampler.py
Normal file
@@ -0,0 +1,158 @@
|
||||
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
|
||||
|
||||
# tencent ailab comment: modified from
|
||||
# https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# FFN
|
||||
def FeedForward(dim, mult=4):
|
||||
inner_dim = int(dim * mult)
|
||||
return nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, inner_dim, bias=False),
|
||||
nn.GELU(),
|
||||
nn.Linear(inner_dim, dim, bias=False),
|
||||
)
|
||||
|
||||
|
||||
def reshape_tensor(x, heads):
|
||||
bs, length, width = x.shape
|
||||
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
||||
x = x.view(bs, length, heads, -1)
|
||||
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
||||
x = x.transpose(1, 2)
|
||||
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
||||
x = x.reshape(bs, heads, length, -1)
|
||||
return x
|
||||
|
||||
|
||||
class PerceiverAttention(nn.Module):
|
||||
def __init__(self, *, dim, dim_head=64, heads=8):
|
||||
super().__init__()
|
||||
self.scale = dim_head**-0.5
|
||||
self.dim_head = dim_head
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
||||
|
||||
def forward(self, x, latents):
|
||||
"""
|
||||
Args:
|
||||
x (torch.Tensor): image features
|
||||
shape (b, n1, D)
|
||||
latent (torch.Tensor): latent features
|
||||
shape (b, n2, D)
|
||||
"""
|
||||
x = self.norm1(x)
|
||||
latents = self.norm2(latents)
|
||||
|
||||
b, l, _ = latents.shape
|
||||
|
||||
q = self.to_q(latents)
|
||||
kv_input = torch.cat((x, latents), dim=-2)
|
||||
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
||||
|
||||
q = reshape_tensor(q, self.heads)
|
||||
k = reshape_tensor(k, self.heads)
|
||||
v = reshape_tensor(v, self.heads)
|
||||
|
||||
# attention
|
||||
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
||||
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
out = weight @ v
|
||||
|
||||
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
||||
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class Resampler(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim=1024,
|
||||
depth=8,
|
||||
dim_head=64,
|
||||
heads=16,
|
||||
num_queries=8,
|
||||
embedding_dim=768,
|
||||
output_dim=1024,
|
||||
ff_mult=4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
||||
|
||||
self.proj_in = nn.Linear(embedding_dim, dim)
|
||||
|
||||
self.proj_out = nn.Linear(dim, output_dim)
|
||||
self.norm_out = nn.LayerNorm(output_dim)
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
||||
FeedForward(dim=dim, mult=ff_mult),
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_state_dict(cls, state_dict: dict[torch.Tensor], depth=8, dim_head=64, heads=16, num_queries=8, ff_mult=4):
|
||||
"""A convenience function that initializes a Resampler from a state_dict.
|
||||
|
||||
Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of
|
||||
writing, we did not have a need for inferring ALL of the shape parameters from the state_dict, but this would be
|
||||
possible if needed in the future.
|
||||
|
||||
Args:
|
||||
state_dict (dict[torch.Tensor]): The state_dict to load.
|
||||
depth (int, optional):
|
||||
dim_head (int, optional):
|
||||
heads (int, optional):
|
||||
ff_mult (int, optional):
|
||||
|
||||
Returns:
|
||||
Resampler
|
||||
"""
|
||||
dim = state_dict["latents"].shape[2]
|
||||
num_queries = state_dict["latents"].shape[1]
|
||||
embedding_dim = state_dict["proj_in.weight"].shape[-1]
|
||||
output_dim = state_dict["norm_out.weight"].shape[0]
|
||||
|
||||
model = cls(
|
||||
dim=dim,
|
||||
depth=depth,
|
||||
dim_head=dim_head,
|
||||
heads=heads,
|
||||
num_queries=num_queries,
|
||||
embedding_dim=embedding_dim,
|
||||
output_dim=output_dim,
|
||||
ff_mult=ff_mult,
|
||||
)
|
||||
model.load_state_dict(state_dict)
|
||||
return model
|
||||
|
||||
def forward(self, x):
|
||||
latents = self.latents.repeat(x.size(0), 1, 1)
|
||||
|
||||
x = self.proj_in(x)
|
||||
|
||||
for attn, ff in self.layers:
|
||||
latents = attn(x, latents) + latents
|
||||
latents = ff(latents) + latents
|
||||
|
||||
latents = self.proj_out(latents)
|
||||
return self.norm_out(latents)
|
||||
@@ -74,7 +74,7 @@ if is_accelerate_available():
|
||||
from accelerate import init_empty_weights
|
||||
from accelerate.utils import set_module_tensor_to_device
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
logger = InvokeAILogger.get_logger(__name__)
|
||||
CONVERT_MODEL_ROOT = InvokeAIAppConfig.get_config().models_path / "core/convert"
|
||||
|
||||
|
||||
@@ -1279,12 +1279,12 @@ def download_from_original_stable_diffusion_ckpt(
|
||||
extract_ema = original_config["model"]["params"]["use_ema"]
|
||||
|
||||
if (
|
||||
model_version == BaseModelType.StableDiffusion2
|
||||
model_version in [BaseModelType.StableDiffusion2, BaseModelType.StableDiffusion1]
|
||||
and original_config["model"]["params"].get("parameterization") == "v"
|
||||
):
|
||||
prediction_type = "v_prediction"
|
||||
upcast_attention = True
|
||||
image_size = 768
|
||||
image_size = 768 if model_version == BaseModelType.StableDiffusion2 else 512
|
||||
else:
|
||||
prediction_type = "epsilon"
|
||||
upcast_attention = False
|
||||
|
||||
@@ -25,6 +25,7 @@ Models are described using four attributes:
|
||||
ModelType.Lora -- a LoRA or LyCORIS fine-tune
|
||||
ModelType.TextualInversion -- a textual inversion embedding
|
||||
ModelType.ControlNet -- a ControlNet model
|
||||
ModelType.IPAdapter -- an IPAdapter model
|
||||
|
||||
3) BaseModelType -- an enum indicating the stable diffusion base model, one of:
|
||||
BaseModelType.StableDiffusion1
|
||||
@@ -1000,8 +1001,8 @@ class ModelManager(object):
|
||||
new_models_found = True
|
||||
except DuplicateModelException as e:
|
||||
self.logger.warning(e)
|
||||
except InvalidModelException:
|
||||
self.logger.warning(f"Not a valid model: {model_path}")
|
||||
except InvalidModelException as e:
|
||||
self.logger.warning(f"Not a valid model: {model_path}. {e}")
|
||||
except NotImplementedError as e:
|
||||
self.logger.warning(e)
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Callable, Dict, Literal, Optional, Union
|
||||
@@ -8,6 +9,8 @@ import torch
|
||||
from diffusers import ConfigMixin, ModelMixin
|
||||
from picklescan.scanner import scan_file_path
|
||||
|
||||
from invokeai.backend.model_management.models.ip_adapter import IPAdapterModelFormat
|
||||
|
||||
from .models import (
|
||||
BaseModelType,
|
||||
InvalidModelException,
|
||||
@@ -51,7 +54,9 @@ class ModelProbe(object):
|
||||
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
|
||||
"StableDiffusionXLInpaintPipeline": ModelType.Main,
|
||||
"AutoencoderKL": ModelType.Vae,
|
||||
"AutoencoderTiny": ModelType.Vae,
|
||||
"ControlNetModel": ModelType.ControlNet,
|
||||
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -85,8 +90,7 @@ class ModelProbe(object):
|
||||
to place it somewhere in the models directory hierarchy. If the model is
|
||||
already loaded into memory, you may provide it as model in order to avoid
|
||||
opening it a second time. The prediction_type_helper callable is a function that receives
|
||||
the path to the model and returns the BaseModelType. It is called to distinguish
|
||||
between V2-Base and V2-768 SD models.
|
||||
the path to the model and returns the SchedulerPredictionType.
|
||||
"""
|
||||
if model_path:
|
||||
format_type = "diffusers" if model_path.is_dir() else "checkpoint"
|
||||
@@ -118,14 +122,18 @@ class ModelProbe(object):
|
||||
and prediction_type == SchedulerPredictionType.VPrediction
|
||||
),
|
||||
format=format,
|
||||
image_size=1024
|
||||
if (base_type in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner})
|
||||
else 768
|
||||
if (
|
||||
base_type == BaseModelType.StableDiffusion2
|
||||
and prediction_type == SchedulerPredictionType.VPrediction
|
||||
)
|
||||
else 512,
|
||||
image_size=(
|
||||
1024
|
||||
if (base_type in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner})
|
||||
else (
|
||||
768
|
||||
if (
|
||||
base_type == BaseModelType.StableDiffusion2
|
||||
and prediction_type == SchedulerPredictionType.VPrediction
|
||||
)
|
||||
else 512
|
||||
)
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
raise
|
||||
@@ -170,6 +178,7 @@ class ModelProbe(object):
|
||||
Get the model type of a hugging-face style folder.
|
||||
"""
|
||||
class_name = None
|
||||
error_hint = None
|
||||
if model:
|
||||
class_name = model.__class__.__name__
|
||||
else:
|
||||
@@ -177,9 +186,10 @@ class ModelProbe(object):
|
||||
return ModelType.ONNX
|
||||
if (folder_path / "learned_embeds.bin").exists():
|
||||
return ModelType.TextualInversion
|
||||
|
||||
if (folder_path / "pytorch_lora_weights.bin").exists():
|
||||
return ModelType.Lora
|
||||
if (folder_path / "image_encoder.txt").exists():
|
||||
return ModelType.IPAdapter
|
||||
|
||||
i = folder_path / "model_index.json"
|
||||
c = folder_path / "config.json"
|
||||
@@ -188,13 +198,24 @@ class ModelProbe(object):
|
||||
if config_path:
|
||||
with open(config_path, "r") as file:
|
||||
conf = json.load(file)
|
||||
class_name = conf["_class_name"]
|
||||
if "_class_name" in conf:
|
||||
class_name = conf["_class_name"]
|
||||
elif "architectures" in conf:
|
||||
class_name = conf["architectures"][0]
|
||||
else:
|
||||
class_name = None
|
||||
else:
|
||||
error_hint = f"No model_index.json or config.json found in {folder_path}."
|
||||
|
||||
if class_name and (type := cls.CLASS2TYPE.get(class_name)):
|
||||
return type
|
||||
else:
|
||||
error_hint = f"class {class_name} is not one of the supported classes [{', '.join(cls.CLASS2TYPE.keys())}]"
|
||||
|
||||
# give up
|
||||
raise InvalidModelException(f"Unable to determine model type for {folder_path}")
|
||||
raise InvalidModelException(
|
||||
f"Unable to determine model type for {folder_path}" + (f"; {error_hint}" if error_hint else "")
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _scan_and_load_checkpoint(cls, model_path: Path) -> dict:
|
||||
@@ -283,25 +304,36 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
else:
|
||||
raise InvalidModelException("Cannot determine base type")
|
||||
|
||||
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
|
||||
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
|
||||
"""Return model prediction type."""
|
||||
# if there is a .yaml associated with this checkpoint, then we do not need
|
||||
# to probe for the prediction type as it will be ignored.
|
||||
if self.checkpoint_path and self.checkpoint_path.with_suffix(".yaml").exists():
|
||||
return None
|
||||
|
||||
type = self.get_base_type()
|
||||
if type == BaseModelType.StableDiffusion1:
|
||||
return SchedulerPredictionType.Epsilon
|
||||
checkpoint = self.checkpoint
|
||||
state_dict = self.checkpoint.get("state_dict") or checkpoint
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||
if "global_step" in checkpoint:
|
||||
if checkpoint["global_step"] == 220000:
|
||||
return SchedulerPredictionType.Epsilon
|
||||
elif checkpoint["global_step"] == 110000:
|
||||
return SchedulerPredictionType.VPrediction
|
||||
if (
|
||||
self.checkpoint_path and self.helper and not self.checkpoint_path.with_suffix(".yaml").exists()
|
||||
): # if a .yaml config file exists, then this step not needed
|
||||
return self.helper(self.checkpoint_path)
|
||||
else:
|
||||
return None
|
||||
if type == BaseModelType.StableDiffusion2:
|
||||
checkpoint = self.checkpoint
|
||||
state_dict = self.checkpoint.get("state_dict") or checkpoint
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||
if "global_step" in checkpoint:
|
||||
if checkpoint["global_step"] == 220000:
|
||||
return SchedulerPredictionType.Epsilon
|
||||
elif checkpoint["global_step"] == 110000:
|
||||
return SchedulerPredictionType.VPrediction
|
||||
if self.helper and self.checkpoint_path:
|
||||
if helper_guess := self.helper(self.checkpoint_path):
|
||||
return helper_guess
|
||||
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
|
||||
|
||||
elif type == BaseModelType.StableDiffusion1:
|
||||
if self.helper and self.checkpoint_path:
|
||||
if helper_guess := self.helper(self.checkpoint_path):
|
||||
return helper_guess
|
||||
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class VaeCheckpointProbe(CheckpointProbeBase):
|
||||
@@ -366,6 +398,16 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
|
||||
raise InvalidModelException("Unable to determine base type for {self.checkpoint_path}")
|
||||
|
||||
|
||||
class IPAdapterCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
########################################################
|
||||
# classes for probing folders
|
||||
#######################################################
|
||||
@@ -438,16 +480,32 @@ class PipelineFolderProbe(FolderProbeBase):
|
||||
|
||||
class VaeFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
if self._config_looks_like_sdxl():
|
||||
return BaseModelType.StableDiffusionXL
|
||||
elif self._name_looks_like_sdxl():
|
||||
# but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down
|
||||
# by a factor of 8), we can't necessarily tell them apart by config hyperparameters.
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
return BaseModelType.StableDiffusion1
|
||||
|
||||
def _config_looks_like_sdxl(self) -> bool:
|
||||
# config values that distinguish Stability's SD 1.x VAE from their SDXL VAE.
|
||||
config_file = self.folder_path / "config.json"
|
||||
if not config_file.exists():
|
||||
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
|
||||
with open(config_file, "r") as file:
|
||||
config = json.load(file)
|
||||
return (
|
||||
BaseModelType.StableDiffusionXL
|
||||
if config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
|
||||
else BaseModelType.StableDiffusion1
|
||||
)
|
||||
return config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
|
||||
|
||||
def _name_looks_like_sdxl(self) -> bool:
|
||||
return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE))
|
||||
|
||||
def _guess_name(self) -> str:
|
||||
name = self.folder_path.name
|
||||
if name == "vae":
|
||||
name = self.folder_path.parent.name
|
||||
return name
|
||||
|
||||
|
||||
class TextualInversionFolderProbe(FolderProbeBase):
|
||||
@@ -485,11 +543,13 @@ class ControlNetFolderProbe(FolderProbeBase):
|
||||
base_model = (
|
||||
BaseModelType.StableDiffusion1
|
||||
if dimension == 768
|
||||
else BaseModelType.StableDiffusion2
|
||||
if dimension == 1024
|
||||
else BaseModelType.StableDiffusionXL
|
||||
if dimension == 2048
|
||||
else None
|
||||
else (
|
||||
BaseModelType.StableDiffusion2
|
||||
if dimension == 1024
|
||||
else BaseModelType.StableDiffusionXL
|
||||
if dimension == 2048
|
||||
else None
|
||||
)
|
||||
)
|
||||
if not base_model:
|
||||
raise InvalidModelException(f"Unable to determine model base for {self.folder_path}")
|
||||
@@ -509,15 +569,47 @@ class LoRAFolderProbe(FolderProbeBase):
|
||||
return LoRACheckpointProbe(model_file, None).get_base_type()
|
||||
|
||||
|
||||
class IPAdapterFolderProbe(FolderProbeBase):
|
||||
def get_format(self) -> str:
|
||||
return IPAdapterModelFormat.InvokeAI.value
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
model_file = self.folder_path / "ip_adapter.bin"
|
||||
if not model_file.exists():
|
||||
raise InvalidModelException("Unknown IP-Adapter model format.")
|
||||
|
||||
state_dict = torch.load(model_file, map_location="cpu")
|
||||
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
|
||||
if cross_attention_dim == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif cross_attention_dim == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
elif cross_attention_dim == 2048:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
raise InvalidModelException(f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}.")
|
||||
|
||||
|
||||
class CLIPVisionFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
return BaseModelType.Any
|
||||
|
||||
|
||||
############## register probe classes ######
|
||||
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
|
||||
|
||||
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
|
||||
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
|
||||
|
||||
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)
|
||||
|
||||
@@ -71,7 +71,13 @@ class ModelSearch(ABC):
|
||||
if any(
|
||||
[
|
||||
(path / x).exists()
|
||||
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
|
||||
for x in {
|
||||
"config.json",
|
||||
"model_index.json",
|
||||
"learned_embeds.bin",
|
||||
"pytorch_lora_weights.bin",
|
||||
"image_encoder.txt",
|
||||
}
|
||||
]
|
||||
):
|
||||
try:
|
||||
@@ -79,7 +85,7 @@ class ModelSearch(ABC):
|
||||
self._models_found += 1
|
||||
self._scanned_dirs.add(path)
|
||||
except Exception as e:
|
||||
self.logger.warning(str(e))
|
||||
self.logger.warning(f"Failed to process '{path}': {e}")
|
||||
|
||||
for f in files:
|
||||
path = Path(root) / f
|
||||
@@ -90,7 +96,7 @@ class ModelSearch(ABC):
|
||||
self.on_model_found(path)
|
||||
self._models_found += 1
|
||||
except Exception as e:
|
||||
self.logger.warning(str(e))
|
||||
self.logger.warning(f"Failed to process '{path}': {e}")
|
||||
|
||||
|
||||
class FindModels(ModelSearch):
|
||||
|
||||
@@ -18,7 +18,9 @@ from .base import ( # noqa: F401
|
||||
SilenceWarnings,
|
||||
SubModelType,
|
||||
)
|
||||
from .clip_vision import CLIPVisionModel
|
||||
from .controlnet import ControlNetModel # TODO:
|
||||
from .ip_adapter import IPAdapterModel
|
||||
from .lora import LoRAModel
|
||||
from .sdxl import StableDiffusionXLModel
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
@@ -34,6 +36,8 @@ MODEL_CLASSES = {
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.IPAdapter: IPAdapterModel,
|
||||
ModelType.CLIPVision: CLIPVisionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusion2: {
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
@@ -42,6 +46,8 @@ MODEL_CLASSES = {
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.IPAdapter: IPAdapterModel,
|
||||
ModelType.CLIPVision: CLIPVisionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusionXL: {
|
||||
ModelType.Main: StableDiffusionXLModel,
|
||||
@@ -51,6 +57,8 @@ MODEL_CLASSES = {
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
ModelType.IPAdapter: IPAdapterModel,
|
||||
ModelType.CLIPVision: CLIPVisionModel,
|
||||
},
|
||||
BaseModelType.StableDiffusionXLRefiner: {
|
||||
ModelType.Main: StableDiffusionXLModel,
|
||||
@@ -60,6 +68,19 @@ MODEL_CLASSES = {
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
ModelType.IPAdapter: IPAdapterModel,
|
||||
ModelType.CLIPVision: CLIPVisionModel,
|
||||
},
|
||||
BaseModelType.Any: {
|
||||
ModelType.CLIPVision: CLIPVisionModel,
|
||||
# The following model types are not expected to be used with BaseModelType.Any.
|
||||
ModelType.ONNX: ONNXStableDiffusion2Model,
|
||||
ModelType.Main: StableDiffusion2Model,
|
||||
ModelType.Vae: VaeModel,
|
||||
ModelType.Lora: LoRAModel,
|
||||
ModelType.ControlNet: ControlNetModel,
|
||||
ModelType.TextualInversion: TextualInversionModel,
|
||||
ModelType.IPAdapter: IPAdapterModel,
|
||||
},
|
||||
# BaseModelType.Kandinsky2_1: {
|
||||
# ModelType.Main: Kandinsky2_1Model,
|
||||
|
||||
@@ -36,6 +36,7 @@ class ModelNotFoundException(Exception):
|
||||
|
||||
|
||||
class BaseModelType(str, Enum):
|
||||
Any = "any" # For models that are not associated with any particular base model.
|
||||
StableDiffusion1 = "sd-1"
|
||||
StableDiffusion2 = "sd-2"
|
||||
StableDiffusionXL = "sdxl"
|
||||
@@ -50,6 +51,8 @@ class ModelType(str, Enum):
|
||||
Lora = "lora"
|
||||
ControlNet = "controlnet" # used by model_probe
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ip_adapter"
|
||||
CLIPVision = "clip_vision"
|
||||
|
||||
|
||||
class SubModelType(str, Enum):
|
||||
|
||||
82
invokeai/backend/model_management/models/clip_vision.py
Normal file
82
invokeai/backend/model_management/models/clip_vision.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import os
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional
|
||||
|
||||
import torch
|
||||
from transformers import CLIPVisionModelWithProjection
|
||||
|
||||
from invokeai.backend.model_management.models.base import (
|
||||
BaseModelType,
|
||||
InvalidModelException,
|
||||
ModelBase,
|
||||
ModelConfigBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
calc_model_size_by_data,
|
||||
calc_model_size_by_fs,
|
||||
classproperty,
|
||||
)
|
||||
|
||||
|
||||
class CLIPVisionModelFormat(str, Enum):
|
||||
Diffusers = "diffusers"
|
||||
|
||||
|
||||
class CLIPVisionModel(ModelBase):
|
||||
class DiffusersConfig(ModelConfigBase):
|
||||
model_format: Literal[CLIPVisionModelFormat.Diffusers]
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.CLIPVision
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.model_size = calc_model_size_by_fs(self.model_path)
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str) -> str:
|
||||
if not os.path.exists(path):
|
||||
raise ModuleNotFoundError(f"No CLIP Vision model at path '{path}'.")
|
||||
|
||||
if os.path.isdir(path) and os.path.exists(os.path.join(path, "config.json")):
|
||||
return CLIPVisionModelFormat.Diffusers
|
||||
|
||||
raise InvalidModelException(f"Unexpected CLIP Vision model format: {path}")
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
return True
|
||||
|
||||
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in a CLIP Vision model.")
|
||||
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SubModelType] = None,
|
||||
) -> CLIPVisionModelWithProjection:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in a CLIP Vision model.")
|
||||
|
||||
model = CLIPVisionModelWithProjection.from_pretrained(self.model_path, torch_dtype=torch_dtype)
|
||||
|
||||
# Calculate a more accurate model size.
|
||||
self.model_size = calc_model_size_by_data(model)
|
||||
|
||||
return model
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
format = cls.detect_format(model_path)
|
||||
if format == CLIPVisionModelFormat.Diffusers:
|
||||
return model_path
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: '{format}'.")
|
||||
92
invokeai/backend/model_management/models/ip_adapter.py
Normal file
92
invokeai/backend/model_management/models/ip_adapter.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import os
|
||||
import typing
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus, build_ip_adapter
|
||||
from invokeai.backend.model_management.models.base import (
|
||||
BaseModelType,
|
||||
InvalidModelException,
|
||||
ModelBase,
|
||||
ModelConfigBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
classproperty,
|
||||
)
|
||||
|
||||
|
||||
class IPAdapterModelFormat(str, Enum):
|
||||
# The custom IP-Adapter model format defined by InvokeAI.
|
||||
InvokeAI = "invokeai"
|
||||
|
||||
|
||||
class IPAdapterModel(ModelBase):
|
||||
class InvokeAIConfig(ModelConfigBase):
|
||||
model_format: Literal[IPAdapterModelFormat.InvokeAI]
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.IPAdapter
|
||||
super().__init__(model_path, base_model, model_type)
|
||||
|
||||
self.model_size = os.path.getsize(self.model_path)
|
||||
|
||||
@classmethod
|
||||
def detect_format(cls, path: str) -> str:
|
||||
if not os.path.exists(path):
|
||||
raise ModuleNotFoundError(f"No IP-Adapter model at path '{path}'.")
|
||||
|
||||
if os.path.isdir(path):
|
||||
model_file = os.path.join(path, "ip_adapter.bin")
|
||||
image_encoder_config_file = os.path.join(path, "image_encoder.txt")
|
||||
if os.path.exists(model_file) and os.path.exists(image_encoder_config_file):
|
||||
return IPAdapterModelFormat.InvokeAI
|
||||
|
||||
raise InvalidModelException(f"Unexpected IP-Adapter model format: {path}")
|
||||
|
||||
@classproperty
|
||||
def save_to_config(cls) -> bool:
|
||||
return True
|
||||
|
||||
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
|
||||
return self.model_size
|
||||
|
||||
def get_model(
|
||||
self,
|
||||
torch_dtype: Optional[torch.dtype],
|
||||
child_type: Optional[SubModelType] = None,
|
||||
) -> typing.Union[IPAdapter, IPAdapterPlus]:
|
||||
if child_type is not None:
|
||||
raise ValueError("There are no child models in an IP-Adapter model.")
|
||||
|
||||
return build_ip_adapter(
|
||||
ip_adapter_ckpt_path=os.path.join(self.model_path, "ip_adapter.bin"), device="cpu", dtype=torch_dtype
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
cls,
|
||||
model_path: str,
|
||||
output_path: str,
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
format = cls.detect_format(model_path)
|
||||
if format == IPAdapterModelFormat.InvokeAI:
|
||||
return model_path
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: '{format}'.")
|
||||
|
||||
|
||||
def get_ip_adapter_image_encoder_model_id(model_path: str):
|
||||
"""Read the ID of the image encoder associated with the IP-Adapter at `model_path`."""
|
||||
image_encoder_config_file = os.path.join(model_path, "image_encoder.txt")
|
||||
|
||||
with open(image_encoder_config_file, "r") as f:
|
||||
image_encoder_model = f.readline().strip()
|
||||
|
||||
return image_encoder_model
|
||||
@@ -1,15 +1,6 @@
|
||||
"""
|
||||
Initialization file for the invokeai.backend.stable_diffusion package
|
||||
"""
|
||||
from .diffusers_pipeline import ( # noqa: F401
|
||||
ConditioningData,
|
||||
PipelineIntermediateState,
|
||||
StableDiffusionGeneratorPipeline,
|
||||
)
|
||||
from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401
|
||||
from .diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
from .diffusion.cross_attention_map_saving import AttentionMapSaver # noqa: F401
|
||||
from .diffusion.shared_invokeai_diffusion import ( # noqa: F401
|
||||
BasicConditioningInfo,
|
||||
PostprocessingSettings,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
import inspect
|
||||
from dataclasses import dataclass, field
|
||||
import math
|
||||
from contextlib import nullcontext
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, List, Optional, Union
|
||||
|
||||
import einops
|
||||
@@ -23,9 +23,11 @@ from pydantic import Field
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
|
||||
|
||||
from ..util import auto_detect_slice_size, normalize_device
|
||||
from .diffusion import AttentionMapSaver, BasicConditioningInfo, InvokeAIDiffuserComponent, PostprocessingSettings
|
||||
from .diffusion import AttentionMapSaver, InvokeAIDiffuserComponent
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -95,7 +97,7 @@ class AddsMaskGuidance:
|
||||
# Mask anything that has the same shape as prev_sample, return others as-is.
|
||||
return output_class(
|
||||
{
|
||||
k: (self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v)
|
||||
k: self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v
|
||||
for k, v in step_output.items()
|
||||
}
|
||||
)
|
||||
@@ -162,39 +164,13 @@ class ControlNetData:
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: BasicConditioningInfo
|
||||
text_embeddings: BasicConditioningInfo
|
||||
guidance_scale: Union[float, List[float]]
|
||||
"""
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
||||
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
|
||||
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
|
||||
"""
|
||||
extra: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo] = None
|
||||
scheduler_args: dict[str, Any] = field(default_factory=dict)
|
||||
"""
|
||||
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
|
||||
"""
|
||||
postprocessing_settings: Optional[PostprocessingSettings] = None
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.text_embeddings.dtype
|
||||
|
||||
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
|
||||
scheduler_args = dict(self.scheduler_args)
|
||||
step_method = inspect.signature(scheduler.step)
|
||||
for name, value in kwargs.items():
|
||||
try:
|
||||
step_method.bind_partial(**{name: value})
|
||||
except TypeError:
|
||||
# FIXME: don't silently discard arguments
|
||||
pass # debug("%s does not accept argument named %r", scheduler, name)
|
||||
else:
|
||||
scheduler_args[name] = value
|
||||
return dataclasses.replace(self, scheduler_args=scheduler_args)
|
||||
class IPAdapterData:
|
||||
ip_adapter_model: IPAdapter = Field(default=None)
|
||||
# TODO: change to polymorphic so can do different weights per step (once implemented...)
|
||||
weight: Union[float, List[float]] = Field(default=1.0)
|
||||
# weight: float = Field(default=1.0)
|
||||
begin_step_percent: float = Field(default=0.0)
|
||||
end_step_percent: float = Field(default=1.0)
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -277,6 +253,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward)
|
||||
self.control_model = control_model
|
||||
self.use_ip_adapter = False
|
||||
|
||||
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
|
||||
"""
|
||||
@@ -349,6 +326,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
additional_guidance: List[Callable] = None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
ip_adapter_data: Optional[IPAdapterData] = None,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
masked_latents: Optional[torch.Tensor] = None,
|
||||
seed: Optional[int] = None,
|
||||
@@ -400,6 +378,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
conditioning_data,
|
||||
additional_guidance=additional_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
callback=callback,
|
||||
)
|
||||
finally:
|
||||
@@ -419,6 +398,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
*,
|
||||
additional_guidance: List[Callable] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
ip_adapter_data: Optional[IPAdapterData] = None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
):
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
@@ -431,12 +411,26 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
if timesteps.shape[0] == 0:
|
||||
return latents, attention_map_saver
|
||||
|
||||
extra_conditioning_info = conditioning_data.extra
|
||||
with self.invokeai_diffuser.custom_attention_context(
|
||||
self.invokeai_diffuser.model,
|
||||
extra_conditioning_info=extra_conditioning_info,
|
||||
step_count=len(self.scheduler.timesteps),
|
||||
):
|
||||
if conditioning_data.extra is not None and conditioning_data.extra.wants_cross_attention_control:
|
||||
attn_ctx = self.invokeai_diffuser.custom_attention_context(
|
||||
self.invokeai_diffuser.model,
|
||||
extra_conditioning_info=conditioning_data.extra,
|
||||
step_count=len(self.scheduler.timesteps),
|
||||
)
|
||||
self.use_ip_adapter = False
|
||||
elif ip_adapter_data is not None:
|
||||
# TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active?
|
||||
# As it is now, the IP-Adapter will silently be skipped.
|
||||
weight = ip_adapter_data.weight[0] if isinstance(ip_adapter_data.weight, List) else ip_adapter_data.weight
|
||||
attn_ctx = ip_adapter_data.ip_adapter_model.apply_ip_adapter_attention(
|
||||
unet=self.invokeai_diffuser.model,
|
||||
scale=weight,
|
||||
)
|
||||
self.use_ip_adapter = True
|
||||
else:
|
||||
attn_ctx = nullcontext()
|
||||
|
||||
with attn_ctx:
|
||||
if callback is not None:
|
||||
callback(
|
||||
PipelineIntermediateState(
|
||||
@@ -459,6 +453,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
total_step_count=len(timesteps),
|
||||
additional_guidance=additional_guidance,
|
||||
control_data=control_data,
|
||||
ip_adapter_data=ip_adapter_data,
|
||||
)
|
||||
latents = step_output.prev_sample
|
||||
|
||||
@@ -504,6 +499,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
total_step_count: int,
|
||||
additional_guidance: List[Callable] = None,
|
||||
control_data: List[ControlNetData] = None,
|
||||
ip_adapter_data: Optional[IPAdapterData] = None,
|
||||
):
|
||||
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
||||
timestep = t[0]
|
||||
@@ -514,6 +510,24 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
# handle IP-Adapter
|
||||
if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer
|
||||
first_adapter_step = math.floor(ip_adapter_data.begin_step_percent * total_step_count)
|
||||
last_adapter_step = math.ceil(ip_adapter_data.end_step_percent * total_step_count)
|
||||
weight = (
|
||||
ip_adapter_data.weight[step_index]
|
||||
if isinstance(ip_adapter_data.weight, List)
|
||||
else ip_adapter_data.weight
|
||||
)
|
||||
if step_index >= first_adapter_step and step_index <= last_adapter_step:
|
||||
# only apply IP-Adapter if current step is within the IP-Adapter's begin/end step range
|
||||
# ip_adapter_data.ip_adapter_model.set_scale(ip_adapter_data.weight)
|
||||
ip_adapter_data.ip_adapter_model.set_scale(weight)
|
||||
else:
|
||||
# otherwise, set IP-Adapter scale to 0, so it has no effect
|
||||
ip_adapter_data.ip_adapter_model.set_scale(0.0)
|
||||
|
||||
# handle ControlNet(s)
|
||||
# default is no controlnet, so set controlnet processing output to None
|
||||
controlnet_down_block_samples, controlnet_mid_block_sample = None, None
|
||||
if control_data is not None:
|
||||
|
||||
@@ -3,9 +3,4 @@ Initialization file for invokeai.models.diffusion
|
||||
"""
|
||||
from .cross_attention_control import InvokeAICrossAttentionMixin # noqa: F401
|
||||
from .cross_attention_map_saving import AttentionMapSaver # noqa: F401
|
||||
from .shared_invokeai_diffusion import ( # noqa: F401
|
||||
BasicConditioningInfo,
|
||||
InvokeAIDiffuserComponent,
|
||||
PostprocessingSettings,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
|
||||
101
invokeai/backend/stable_diffusion/diffusion/conditioning_data.py
Normal file
101
invokeai/backend/stable_diffusion/diffusion/conditioning_data.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import dataclasses
|
||||
import inspect
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from .cross_attention_control import Arguments
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExtraConditioningInfo:
|
||||
tokens_count_including_eos_bos: int
|
||||
cross_attention_control_args: Optional[Arguments] = None
|
||||
|
||||
@property
|
||||
def wants_cross_attention_control(self):
|
||||
return self.cross_attention_control_args is not None
|
||||
|
||||
|
||||
@dataclass
|
||||
class BasicConditioningInfo:
|
||||
embeds: torch.Tensor
|
||||
# TODO(ryand): Right now we awkwardly copy the extra conditioning info from here up to `ConditioningData`. This
|
||||
# should only be stored in one place.
|
||||
extra_conditioning: Optional[ExtraConditioningInfo]
|
||||
# weight: float
|
||||
# mode: ConditioningAlgo
|
||||
|
||||
def to(self, device, dtype=None):
|
||||
self.embeds = self.embeds.to(device=device, dtype=dtype)
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
pooled_embeds: torch.Tensor
|
||||
add_time_ids: torch.Tensor
|
||||
|
||||
def to(self, device, dtype=None):
|
||||
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
|
||||
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
|
||||
return super().to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
warmup: float
|
||||
h_symmetry_time_pct: Optional[float]
|
||||
v_symmetry_time_pct: Optional[float]
|
||||
|
||||
|
||||
@dataclass
|
||||
class IPAdapterConditioningInfo:
|
||||
cond_image_prompt_embeds: torch.Tensor
|
||||
"""IP-Adapter image encoder conditioning embeddings.
|
||||
Shape: (batch_size, num_tokens, encoding_dim).
|
||||
"""
|
||||
uncond_image_prompt_embeds: torch.Tensor
|
||||
"""IP-Adapter image encoding embeddings to use for unconditional generation.
|
||||
Shape: (batch_size, num_tokens, encoding_dim).
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: BasicConditioningInfo
|
||||
text_embeddings: BasicConditioningInfo
|
||||
guidance_scale: Union[float, List[float]]
|
||||
"""
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
||||
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
|
||||
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
|
||||
"""
|
||||
extra: Optional[ExtraConditioningInfo] = None
|
||||
scheduler_args: dict[str, Any] = field(default_factory=dict)
|
||||
"""
|
||||
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
|
||||
"""
|
||||
postprocessing_settings: Optional[PostprocessingSettings] = None
|
||||
|
||||
ip_adapter_conditioning: Optional[IPAdapterConditioningInfo] = None
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.text_embeddings.dtype
|
||||
|
||||
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
|
||||
scheduler_args = dict(self.scheduler_args)
|
||||
step_method = inspect.signature(scheduler.step)
|
||||
for name, value in kwargs.items():
|
||||
try:
|
||||
step_method.bind_partial(**{name: value})
|
||||
except TypeError:
|
||||
# FIXME: don't silently discard arguments
|
||||
pass # debug("%s does not accept argument named %r", scheduler, name)
|
||||
else:
|
||||
scheduler_args[name] = value
|
||||
return dataclasses.replace(self, scheduler_args=scheduler_args)
|
||||
@@ -376,11 +376,11 @@ def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[
|
||||
# non-fatal error but .swap() won't work.
|
||||
logger.error(
|
||||
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
|
||||
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
|
||||
+ "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
|
||||
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
|
||||
+ "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
|
||||
+ "work properly until it is fixed."
|
||||
f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching "
|
||||
"failed or some assumption has changed about the structure of the model itself. Please fix the "
|
||||
f"monkey-patching, and/or update the {expected_count} above to an appropriate number, and/or find and "
|
||||
"inform someone who knows what it means. This error is non-fatal, but it is likely that .swap() and "
|
||||
"attention map display will not work properly until it is fixed."
|
||||
)
|
||||
return attention_module_tuples
|
||||
|
||||
@@ -577,6 +577,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
|
||||
attention_mask=None,
|
||||
# kwargs
|
||||
swap_cross_attn_context: SwapCrossAttnContext = None,
|
||||
**kwargs,
|
||||
):
|
||||
attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@ from __future__ import annotations
|
||||
|
||||
import math
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Callable, Optional, Union
|
||||
|
||||
import torch
|
||||
@@ -10,9 +9,14 @@ from diffusers import UNet2DConditionModel
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
ConditioningData,
|
||||
ExtraConditioningInfo,
|
||||
PostprocessingSettings,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
|
||||
from .cross_attention_control import (
|
||||
Arguments,
|
||||
Context,
|
||||
CrossAttentionType,
|
||||
SwapCrossAttnContext,
|
||||
@@ -31,37 +35,6 @@ ModelForwardCallback: TypeAlias = Union[
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class BasicConditioningInfo:
|
||||
embeds: torch.Tensor
|
||||
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
|
||||
# weight: float
|
||||
# mode: ConditioningAlgo
|
||||
|
||||
def to(self, device, dtype=None):
|
||||
self.embeds = self.embeds.to(device=device, dtype=dtype)
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
pooled_embeds: torch.Tensor
|
||||
add_time_ids: torch.Tensor
|
||||
|
||||
def to(self, device, dtype=None):
|
||||
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
|
||||
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
|
||||
return super().to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
warmup: float
|
||||
h_symmetry_time_pct: Optional[float]
|
||||
v_symmetry_time_pct: Optional[float]
|
||||
|
||||
|
||||
class InvokeAIDiffuserComponent:
|
||||
"""
|
||||
The aim of this component is to provide a single place for code that can be applied identically to
|
||||
@@ -75,15 +48,6 @@ class InvokeAIDiffuserComponent:
|
||||
debug_thresholding = False
|
||||
sequential_guidance = False
|
||||
|
||||
@dataclass
|
||||
class ExtraConditioningInfo:
|
||||
tokens_count_including_eos_bos: int
|
||||
cross_attention_control_args: Optional[Arguments] = None
|
||||
|
||||
@property
|
||||
def wants_cross_attention_control(self):
|
||||
return self.cross_attention_control_args is not None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
@@ -103,30 +67,26 @@ class InvokeAIDiffuserComponent:
|
||||
@contextmanager
|
||||
def custom_attention_context(
|
||||
self,
|
||||
unet: UNet2DConditionModel, # note: also may futz with the text encoder depending on requested LoRAs
|
||||
unet: UNet2DConditionModel,
|
||||
extra_conditioning_info: Optional[ExtraConditioningInfo],
|
||||
step_count: int,
|
||||
):
|
||||
old_attn_processors = None
|
||||
if extra_conditioning_info and (extra_conditioning_info.wants_cross_attention_control):
|
||||
old_attn_processors = unet.attn_processors
|
||||
# Load lora conditions into the model
|
||||
if extra_conditioning_info.wants_cross_attention_control:
|
||||
self.cross_attention_control_context = Context(
|
||||
arguments=extra_conditioning_info.cross_attention_control_args,
|
||||
step_count=step_count,
|
||||
)
|
||||
setup_cross_attention_control_attention_processors(
|
||||
unet,
|
||||
self.cross_attention_control_context,
|
||||
)
|
||||
old_attn_processors = unet.attn_processors
|
||||
|
||||
try:
|
||||
self.cross_attention_control_context = Context(
|
||||
arguments=extra_conditioning_info.cross_attention_control_args,
|
||||
step_count=step_count,
|
||||
)
|
||||
setup_cross_attention_control_attention_processors(
|
||||
unet,
|
||||
self.cross_attention_control_context,
|
||||
)
|
||||
|
||||
yield None
|
||||
finally:
|
||||
self.cross_attention_control_context = None
|
||||
if old_attn_processors is not None:
|
||||
unet.set_attn_processor(old_attn_processors)
|
||||
unet.set_attn_processor(old_attn_processors)
|
||||
# TODO resuscitate attention map saving
|
||||
# self.remove_attention_map_saving()
|
||||
|
||||
@@ -376,11 +336,24 @@ class InvokeAIDiffuserComponent:
|
||||
|
||||
# methods below are called from do_diffusion_step and should be considered private to this class.
|
||||
|
||||
def _apply_standard_conditioning(self, x, sigma, conditioning_data, **kwargs):
|
||||
# fast batched path
|
||||
def _apply_standard_conditioning(self, x, sigma, conditioning_data: ConditioningData, **kwargs):
|
||||
"""Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at
|
||||
the cost of higher memory usage.
|
||||
"""
|
||||
x_twice = torch.cat([x] * 2)
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": torch.cat(
|
||||
[
|
||||
conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds,
|
||||
conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds,
|
||||
]
|
||||
)
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
if type(conditioning_data.text_embeddings) is SDXLConditioningInfo:
|
||||
added_cond_kwargs = {
|
||||
@@ -408,6 +381,7 @@ class InvokeAIDiffuserComponent:
|
||||
x_twice,
|
||||
sigma_twice,
|
||||
both_conditionings,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
@@ -419,9 +393,12 @@ class InvokeAIDiffuserComponent:
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
conditioning_data,
|
||||
conditioning_data: ConditioningData,
|
||||
**kwargs,
|
||||
):
|
||||
"""Runs the conditioned and unconditioned UNet forward passes sequentially for lower memory usage at the cost of
|
||||
slower execution speed.
|
||||
"""
|
||||
# low-memory sequential path
|
||||
uncond_down_block, cond_down_block = None, None
|
||||
down_block_additional_residuals = kwargs.pop("down_block_additional_residuals", None)
|
||||
@@ -437,6 +414,13 @@ class InvokeAIDiffuserComponent:
|
||||
if mid_block_additional_residual is not None:
|
||||
uncond_mid_block, cond_mid_block = mid_block_additional_residual.chunk(2)
|
||||
|
||||
# Run unconditional UNet denoising.
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.uncond_image_prompt_embeds
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
is_sdxl = type(conditioning_data.text_embeddings) is SDXLConditioningInfo
|
||||
if is_sdxl:
|
||||
@@ -449,12 +433,21 @@ class InvokeAIDiffuserComponent:
|
||||
x,
|
||||
sigma,
|
||||
conditioning_data.unconditioned_embeddings.embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=uncond_down_block,
|
||||
mid_block_additional_residual=uncond_mid_block,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Run conditional UNet denoising.
|
||||
cross_attention_kwargs = None
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": conditioning_data.ip_adapter_conditioning.cond_image_prompt_embeds
|
||||
}
|
||||
|
||||
added_cond_kwargs = None
|
||||
if is_sdxl:
|
||||
added_cond_kwargs = {
|
||||
"text_embeds": conditioning_data.text_embeddings.pooled_embeds,
|
||||
@@ -465,6 +458,7 @@ class InvokeAIDiffuserComponent:
|
||||
x,
|
||||
sigma,
|
||||
conditioning_data.text_embeddings.embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
down_block_additional_residuals=cond_down_block,
|
||||
mid_block_additional_residual=cond_mid_block,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
|
||||
568
invokeai/backend/util/db_maintenance.py
Normal file
568
invokeai/backend/util/db_maintenance.py
Normal file
@@ -0,0 +1,568 @@
|
||||
# pylint: disable=line-too-long
|
||||
# pylint: disable=broad-exception-caught
|
||||
# pylint: disable=missing-function-docstring
|
||||
"""Script to peform db maintenance and outputs directory management."""
|
||||
|
||||
import argparse
|
||||
import datetime
|
||||
import enum
|
||||
import glob
|
||||
import locale
|
||||
import os
|
||||
import shutil
|
||||
import sqlite3
|
||||
from pathlib import Path
|
||||
|
||||
import PIL
|
||||
import PIL.ImageOps
|
||||
import PIL.PngImagePlugin
|
||||
import yaml
|
||||
|
||||
|
||||
class ConfigMapper:
|
||||
"""Configuration loader."""
|
||||
|
||||
def __init__(self): # noqa D107
|
||||
pass
|
||||
|
||||
TIMESTAMP_STRING = datetime.datetime.utcnow().strftime("%Y%m%dT%H%M%SZ")
|
||||
|
||||
INVOKE_DIRNAME = "invokeai"
|
||||
YAML_FILENAME = "invokeai.yaml"
|
||||
DATABASE_FILENAME = "invokeai.db"
|
||||
|
||||
database_path = None
|
||||
database_backup_dir = None
|
||||
outputs_path = None
|
||||
archive_path = None
|
||||
thumbnails_path = None
|
||||
thumbnails_archive_path = None
|
||||
|
||||
def load(self):
|
||||
"""Read paths from yaml config and validate."""
|
||||
root = "."
|
||||
|
||||
if not self.__load_from_root_config(os.path.abspath(root)):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def __load_from_root_config(self, invoke_root):
|
||||
"""Validate a yaml path exists, confirm the user wants to use it and load config."""
|
||||
yaml_path = os.path.join(invoke_root, self.YAML_FILENAME)
|
||||
if os.path.exists(yaml_path):
|
||||
db_dir, outdir = self.__load_paths_from_yaml_file(yaml_path)
|
||||
|
||||
if db_dir is None or outdir is None:
|
||||
print("The invokeai.yaml file was found but is missing the db_dir and/or outdir setting!")
|
||||
return False
|
||||
|
||||
if os.path.isabs(db_dir):
|
||||
self.database_path = os.path.join(db_dir, self.DATABASE_FILENAME)
|
||||
else:
|
||||
self.database_path = os.path.join(invoke_root, db_dir, self.DATABASE_FILENAME)
|
||||
|
||||
self.database_backup_dir = os.path.join(os.path.dirname(self.database_path), "backup")
|
||||
|
||||
if os.path.isabs(outdir):
|
||||
self.outputs_path = os.path.join(outdir, "images")
|
||||
self.archive_path = os.path.join(outdir, "images-archive")
|
||||
else:
|
||||
self.outputs_path = os.path.join(invoke_root, outdir, "images")
|
||||
self.archive_path = os.path.join(invoke_root, outdir, "images-archive")
|
||||
|
||||
self.thumbnails_path = os.path.join(self.outputs_path, "thumbnails")
|
||||
self.thumbnails_archive_path = os.path.join(self.archive_path, "thumbnails")
|
||||
|
||||
db_exists = os.path.exists(self.database_path)
|
||||
outdir_exists = os.path.exists(self.outputs_path)
|
||||
|
||||
text = f"Found {self.YAML_FILENAME} file at {yaml_path}:"
|
||||
text += f"\n Database : {self.database_path} - {'Exists!' if db_exists else 'Not Found!'}"
|
||||
text += f"\n Outputs : {self.outputs_path}- {'Exists!' if outdir_exists else 'Not Found!'}"
|
||||
print(text)
|
||||
|
||||
if db_exists and outdir_exists:
|
||||
return True
|
||||
else:
|
||||
print(
|
||||
"\nOne or more paths specified in invoke.yaml do not exist. Please inspect/correct the configuration and ensure the script is run in the developer console mode (option 8) from an Invoke AI root directory."
|
||||
)
|
||||
return False
|
||||
else:
|
||||
print(
|
||||
f"Auto-discovery of configuration failed! Could not find ({yaml_path})!\n\nPlease ensure the script is run in the developer console mode (option 8) from an Invoke AI root directory."
|
||||
)
|
||||
return False
|
||||
|
||||
def __load_paths_from_yaml_file(self, yaml_path):
|
||||
"""Load an Invoke AI yaml file and get the database and outputs paths."""
|
||||
try:
|
||||
with open(yaml_path, "rt", encoding=locale.getpreferredencoding()) as file:
|
||||
yamlinfo = yaml.safe_load(file)
|
||||
db_dir = yamlinfo.get("InvokeAI", {}).get("Paths", {}).get("db_dir", None)
|
||||
outdir = yamlinfo.get("InvokeAI", {}).get("Paths", {}).get("outdir", None)
|
||||
return db_dir, outdir
|
||||
except Exception:
|
||||
print(f"Failed to load paths from yaml file! {yaml_path}!")
|
||||
return None, None
|
||||
|
||||
|
||||
class MaintenanceStats:
|
||||
"""DTO for tracking work progress."""
|
||||
|
||||
def __init__(self): # noqa D107
|
||||
pass
|
||||
|
||||
time_start = datetime.datetime.utcnow()
|
||||
count_orphaned_db_entries_cleaned = 0
|
||||
count_orphaned_disk_files_cleaned = 0
|
||||
count_orphaned_thumbnails_cleaned = 0
|
||||
count_thumbnails_regenerated = 0
|
||||
count_errors = 0
|
||||
|
||||
@staticmethod
|
||||
def get_elapsed_time_string():
|
||||
"""Get a friendly time string for the time elapsed since processing start."""
|
||||
time_now = datetime.datetime.utcnow()
|
||||
total_seconds = (time_now - MaintenanceStats.time_start).total_seconds()
|
||||
hours = int((total_seconds) / 3600)
|
||||
minutes = int(((total_seconds) % 3600) / 60)
|
||||
seconds = total_seconds % 60
|
||||
out_str = f"{hours} hour(s) -" if hours > 0 else ""
|
||||
out_str += f"{minutes} minute(s) -" if minutes > 0 else ""
|
||||
out_str += f"{seconds:.2f} second(s)"
|
||||
return out_str
|
||||
|
||||
|
||||
class DatabaseMapper:
|
||||
"""Class to abstract database functionality."""
|
||||
|
||||
def __init__(self, database_path, database_backup_dir): # noqa D107
|
||||
self.database_path = database_path
|
||||
self.database_backup_dir = database_backup_dir
|
||||
self.connection = None
|
||||
self.cursor = None
|
||||
|
||||
def backup(self, timestamp_string):
|
||||
"""Take a backup of the database."""
|
||||
if not os.path.exists(self.database_backup_dir):
|
||||
print(f"Database backup directory {self.database_backup_dir} does not exist -> creating...", end="")
|
||||
os.makedirs(self.database_backup_dir)
|
||||
print("Done!")
|
||||
database_backup_path = os.path.join(self.database_backup_dir, f"backup-{timestamp_string}-invokeai.db")
|
||||
print(f"Making DB Backup at {database_backup_path}...", end="")
|
||||
shutil.copy2(self.database_path, database_backup_path)
|
||||
print("Done!")
|
||||
|
||||
def connect(self):
|
||||
"""Open connection to the database."""
|
||||
self.connection = sqlite3.connect(self.database_path)
|
||||
self.cursor = self.connection.cursor()
|
||||
|
||||
def get_all_image_files(self):
|
||||
"""Get the full list of image file names from the database."""
|
||||
sql_get_image_by_name = "SELECT image_name FROM images"
|
||||
self.cursor.execute(sql_get_image_by_name)
|
||||
rows = self.cursor.fetchall()
|
||||
db_files = []
|
||||
for row in rows:
|
||||
db_files.append(row[0])
|
||||
return db_files
|
||||
|
||||
def remove_image_file_record(self, filename: str):
|
||||
"""Remove an image file reference from the database by filename."""
|
||||
sanitized_filename = str.replace(filename, "'", "''") # prevent injection
|
||||
sql_command = f"DELETE FROM images WHERE image_name='{sanitized_filename}'"
|
||||
self.cursor.execute(sql_command)
|
||||
self.connection.commit()
|
||||
|
||||
def does_image_exist(self, image_filename):
|
||||
"""Check database if a image name already exists and return a boolean."""
|
||||
sanitized_filename = str.replace(image_filename, "'", "''") # prevent injection
|
||||
sql_get_image_by_name = f"SELECT image_name FROM images WHERE image_name='{sanitized_filename}'"
|
||||
self.cursor.execute(sql_get_image_by_name)
|
||||
rows = self.cursor.fetchall()
|
||||
return True if len(rows) > 0 else False
|
||||
|
||||
def disconnect(self):
|
||||
"""Disconnect from the db, cleaning up connections and cursors."""
|
||||
if self.cursor is not None:
|
||||
self.cursor.close()
|
||||
if self.connection is not None:
|
||||
self.connection.close()
|
||||
|
||||
|
||||
class PhysicalFileMapper:
|
||||
"""Containing class for script functionality."""
|
||||
|
||||
def __init__(self, outputs_path, thumbnails_path, archive_path, thumbnails_archive_path): # noqa D107
|
||||
self.outputs_path = outputs_path
|
||||
self.archive_path = archive_path
|
||||
self.thumbnails_path = thumbnails_path
|
||||
self.thumbnails_archive_path = thumbnails_archive_path
|
||||
|
||||
def create_archive_directories(self):
|
||||
"""Create the directory for archiving orphaned image files."""
|
||||
if not os.path.exists(self.archive_path):
|
||||
print(f"Image archive directory ({self.archive_path}) does not exist -> creating...", end="")
|
||||
os.makedirs(self.archive_path)
|
||||
print("Created!")
|
||||
if not os.path.exists(self.thumbnails_archive_path):
|
||||
print(
|
||||
f"Image thumbnails archive directory ({self.thumbnails_archive_path}) does not exist -> creating...",
|
||||
end="",
|
||||
)
|
||||
os.makedirs(self.thumbnails_archive_path)
|
||||
print("Created!")
|
||||
|
||||
def get_image_path_for_image_name(self, image_filename): # noqa D102
|
||||
return os.path.join(self.outputs_path, image_filename)
|
||||
|
||||
def image_file_exists(self, image_filename): # noqa D102
|
||||
return os.path.exists(self.get_image_path_for_image_name(image_filename))
|
||||
|
||||
def get_thumbnail_path_for_image(self, image_filename): # noqa D102
|
||||
return os.path.join(self.thumbnails_path, os.path.splitext(image_filename)[0]) + ".webp"
|
||||
|
||||
def get_image_name_from_thumbnail_path(self, thumbnail_path): # noqa D102
|
||||
return os.path.splitext(os.path.basename(thumbnail_path))[0] + ".png"
|
||||
|
||||
def thumbnail_exists_for_filename(self, image_filename): # noqa D102
|
||||
return os.path.exists(self.get_thumbnail_path_for_image(image_filename))
|
||||
|
||||
def archive_image(self, image_filename): # noqa D102
|
||||
if self.image_file_exists(image_filename):
|
||||
image_path = self.get_image_path_for_image_name(image_filename)
|
||||
shutil.move(image_path, self.archive_path)
|
||||
|
||||
def archive_thumbnail_by_image_filename(self, image_filename): # noqa D102
|
||||
if self.thumbnail_exists_for_filename(image_filename):
|
||||
thumbnail_path = self.get_thumbnail_path_for_image(image_filename)
|
||||
shutil.move(thumbnail_path, self.thumbnails_archive_path)
|
||||
|
||||
def get_all_png_filenames_in_directory(self, directory_path): # noqa D102
|
||||
filepaths = glob.glob(directory_path + "/*.png", recursive=False)
|
||||
filenames = []
|
||||
for filepath in filepaths:
|
||||
filenames.append(os.path.basename(filepath))
|
||||
return filenames
|
||||
|
||||
def get_all_thumbnails_with_full_path(self, thumbnails_directory): # noqa D102
|
||||
return glob.glob(thumbnails_directory + "/*.webp", recursive=False)
|
||||
|
||||
def generate_thumbnail_for_image_name(self, image_filename): # noqa D102
|
||||
# create thumbnail
|
||||
file_path = self.get_image_path_for_image_name(image_filename)
|
||||
thumb_path = self.get_thumbnail_path_for_image(image_filename)
|
||||
thumb_size = 256, 256
|
||||
with PIL.Image.open(file_path) as source_image:
|
||||
source_image.thumbnail(thumb_size)
|
||||
source_image.save(thumb_path, "webp")
|
||||
|
||||
|
||||
class MaintenanceOperation(str, enum.Enum):
|
||||
"""Enum class for operations."""
|
||||
|
||||
Ask = "ask"
|
||||
CleanOrphanedDbEntries = "clean"
|
||||
CleanOrphanedDiskFiles = "archive"
|
||||
ReGenerateThumbnails = "thumbnails"
|
||||
All = "all"
|
||||
|
||||
|
||||
class InvokeAIDatabaseMaintenanceApp:
|
||||
"""Main processor class for the application."""
|
||||
|
||||
_operation: MaintenanceOperation
|
||||
_headless: bool = False
|
||||
__stats: MaintenanceStats = MaintenanceStats()
|
||||
|
||||
def __init__(self, operation: MaintenanceOperation = MaintenanceOperation.Ask):
|
||||
"""Initialize maintenance app."""
|
||||
self._operation = MaintenanceOperation(operation)
|
||||
self._headless = operation != MaintenanceOperation.Ask
|
||||
|
||||
def ask_for_operation(self) -> MaintenanceOperation:
|
||||
"""Ask user to choose the operation to perform."""
|
||||
while True:
|
||||
print()
|
||||
print("It is recommennded to run these operations as ordered below to avoid additional")
|
||||
print("work being performed that will be discarded in a subsequent step.")
|
||||
print()
|
||||
print("Select maintenance operation:")
|
||||
print()
|
||||
print("1) Clean Orphaned Database Image Entries")
|
||||
print(" Cleans entries in the database where the matching file was removed from")
|
||||
print(" the outputs directory.")
|
||||
print("2) Archive Orphaned Image Files")
|
||||
print(" Files found in the outputs directory without an entry in the database are")
|
||||
print(" moved to an archive directory.")
|
||||
print("3) Re-Generate Missing Thumbnail Files")
|
||||
print(" For files found in the outputs directory, re-generate a thumbnail if it")
|
||||
print(" not found in the thumbnails directory.")
|
||||
print()
|
||||
print("(CTRL-C to quit)")
|
||||
|
||||
try:
|
||||
input_option = int(input("Specify desired operation number (1-3): "))
|
||||
|
||||
operations = [
|
||||
MaintenanceOperation.CleanOrphanedDbEntries,
|
||||
MaintenanceOperation.CleanOrphanedDiskFiles,
|
||||
MaintenanceOperation.ReGenerateThumbnails,
|
||||
]
|
||||
return operations[input_option - 1]
|
||||
except (IndexError, ValueError):
|
||||
print("\nInvalid selection!")
|
||||
|
||||
def ask_to_continue(self) -> bool:
|
||||
"""Ask user whether they want to continue with the operation."""
|
||||
while True:
|
||||
input_choice = input("Do you wish to continue? (Y or N)? ")
|
||||
if str.lower(input_choice) == "y":
|
||||
return True
|
||||
if str.lower(input_choice) == "n":
|
||||
return False
|
||||
|
||||
def clean_orphaned_db_entries(
|
||||
self, config: ConfigMapper, file_mapper: PhysicalFileMapper, db_mapper: DatabaseMapper
|
||||
):
|
||||
"""Clean dangling database entries that no longer point to a file in outputs."""
|
||||
if self._headless:
|
||||
print(f"Removing database references to images that no longer exist in {config.outputs_path}...")
|
||||
else:
|
||||
print()
|
||||
print("===============================================================================")
|
||||
print("= Clean Orphaned Database Entries")
|
||||
print()
|
||||
print("Perform this operation if you have removed files from the outputs/images")
|
||||
print("directory but the database was never updated. You may see this as empty imaages")
|
||||
print("in the app gallery, or images that only show an enlarged version of the")
|
||||
print("thumbnail.")
|
||||
print()
|
||||
print(f"Database File Path : {config.database_path}")
|
||||
print(f"Database backup will be taken at : {config.database_backup_dir}")
|
||||
print(f"Outputs/Images Directory : {config.outputs_path}")
|
||||
print(f"Outputs/Images Archive Directory : {config.archive_path}")
|
||||
|
||||
print("\nNotes about this operation:")
|
||||
print("- This operation will find database image file entries that do not exist in the")
|
||||
print(" outputs/images dir and remove those entries from the database.")
|
||||
print("- This operation will target all image types including intermediate files.")
|
||||
print("- If a thumbnail still exists in outputs/images/thumbnails matching the")
|
||||
print(" orphaned entry, it will be moved to the archive directory.")
|
||||
print()
|
||||
|
||||
if not self.ask_to_continue():
|
||||
raise KeyboardInterrupt
|
||||
|
||||
file_mapper.create_archive_directories()
|
||||
db_mapper.backup(config.TIMESTAMP_STRING)
|
||||
db_mapper.connect()
|
||||
db_files = db_mapper.get_all_image_files()
|
||||
for db_file in db_files:
|
||||
try:
|
||||
if not file_mapper.image_file_exists(db_file):
|
||||
print(f"Found orphaned image db entry {db_file}. Cleaning ...", end="")
|
||||
db_mapper.remove_image_file_record(db_file)
|
||||
print("Cleaned!")
|
||||
if file_mapper.thumbnail_exists_for_filename(db_file):
|
||||
print("A thumbnail was found, archiving ...", end="")
|
||||
file_mapper.archive_thumbnail_by_image_filename(db_file)
|
||||
print("Archived!")
|
||||
self.__stats.count_orphaned_db_entries_cleaned += 1
|
||||
except Exception as ex:
|
||||
print("An error occurred cleaning db entry, error was:")
|
||||
print(ex)
|
||||
self.__stats.count_errors += 1
|
||||
|
||||
def clean_orphaned_disk_files(
|
||||
self, config: ConfigMapper, file_mapper: PhysicalFileMapper, db_mapper: DatabaseMapper
|
||||
):
|
||||
"""Archive image files that no longer have entries in the database."""
|
||||
if self._headless:
|
||||
print(f"Archiving orphaned image files to {config.archive_path}...")
|
||||
else:
|
||||
print()
|
||||
print("===============================================================================")
|
||||
print("= Clean Orphaned Disk Files")
|
||||
print()
|
||||
print("Perform this operation if you have files that were copied into the outputs")
|
||||
print("directory which are not referenced by the database. This can happen if you")
|
||||
print("upgraded to a version with a fresh database, but re-used the outputs directory")
|
||||
print("and now new images are mixed with the files not in the db. The script will")
|
||||
print("archive these files so you can choose to delete them or re-import using the")
|
||||
print("official import script.")
|
||||
print()
|
||||
print(f"Database File Path : {config.database_path}")
|
||||
print(f"Database backup will be taken at : {config.database_backup_dir}")
|
||||
print(f"Outputs/Images Directory : {config.outputs_path}")
|
||||
print(f"Outputs/Images Archive Directory : {config.archive_path}")
|
||||
|
||||
print("\nNotes about this operation:")
|
||||
print("- This operation will find image files not referenced by the database and move to an")
|
||||
print(" archive directory.")
|
||||
print("- This operation will target all image types including intermediate references.")
|
||||
print("- The matching thumbnail will also be archived.")
|
||||
print("- Any remaining orphaned thumbnails will also be archived.")
|
||||
|
||||
if not self.ask_to_continue():
|
||||
raise KeyboardInterrupt
|
||||
|
||||
print()
|
||||
|
||||
file_mapper.create_archive_directories()
|
||||
db_mapper.backup(config.TIMESTAMP_STRING)
|
||||
db_mapper.connect()
|
||||
phys_files = file_mapper.get_all_png_filenames_in_directory(config.outputs_path)
|
||||
for phys_file in phys_files:
|
||||
try:
|
||||
if not db_mapper.does_image_exist(phys_file):
|
||||
print(f"Found orphaned file {phys_file}, archiving...", end="")
|
||||
file_mapper.archive_image(phys_file)
|
||||
print("Archived!")
|
||||
if file_mapper.thumbnail_exists_for_filename(phys_file):
|
||||
print("Related thumbnail exists, archiving...", end="")
|
||||
file_mapper.archive_thumbnail_by_image_filename(phys_file)
|
||||
print("Archived!")
|
||||
else:
|
||||
print("No matching thumbnail existed to be cleaned.")
|
||||
self.__stats.count_orphaned_disk_files_cleaned += 1
|
||||
except Exception as ex:
|
||||
print("Error found trying to archive file or thumbnail, error was:")
|
||||
print(ex)
|
||||
self.__stats.count_errors += 1
|
||||
|
||||
thumb_filepaths = file_mapper.get_all_thumbnails_with_full_path(config.thumbnails_path)
|
||||
# archive any remaining orphaned thumbnails
|
||||
for thumb_filepath in thumb_filepaths:
|
||||
try:
|
||||
thumb_src_image_name = file_mapper.get_image_name_from_thumbnail_path(thumb_filepath)
|
||||
if not file_mapper.image_file_exists(thumb_src_image_name):
|
||||
print(f"Found orphaned thumbnail {thumb_filepath}, archiving...", end="")
|
||||
file_mapper.archive_thumbnail_by_image_filename(thumb_src_image_name)
|
||||
print("Archived!")
|
||||
self.__stats.count_orphaned_thumbnails_cleaned += 1
|
||||
except Exception as ex:
|
||||
print("Error found trying to archive thumbnail, error was:")
|
||||
print(ex)
|
||||
self.__stats.count_errors += 1
|
||||
|
||||
def regenerate_thumbnails(self, config: ConfigMapper, file_mapper: PhysicalFileMapper, *args):
|
||||
"""Create missing thumbnails for any valid general images both in the db and on disk."""
|
||||
if self._headless:
|
||||
print("Regenerating missing image thumbnails...")
|
||||
else:
|
||||
print()
|
||||
print("===============================================================================")
|
||||
print("= Regenerate Thumbnails")
|
||||
print()
|
||||
print("This operation will find files that have no matching thumbnail on disk")
|
||||
print("and regenerate those thumbnail files.")
|
||||
print("NOTE: It is STRONGLY recommended that the user first clean/archive orphaned")
|
||||
print(" disk files from the previous menu to avoid wasting time regenerating")
|
||||
print(" thumbnails for orphaned files.")
|
||||
|
||||
print()
|
||||
print(f"Outputs/Images Directory : {config.outputs_path}")
|
||||
print(f"Outputs/Images Directory : {config.thumbnails_path}")
|
||||
|
||||
print("\nNotes about this operation:")
|
||||
print("- This operation will find image files both referenced in the db and on disk")
|
||||
print(" that do not have a matching thumbnail on disk and re-generate the thumbnail")
|
||||
print(" file.")
|
||||
|
||||
if not self.ask_to_continue():
|
||||
raise KeyboardInterrupt
|
||||
|
||||
print()
|
||||
|
||||
phys_files = file_mapper.get_all_png_filenames_in_directory(config.outputs_path)
|
||||
for phys_file in phys_files:
|
||||
try:
|
||||
if not file_mapper.thumbnail_exists_for_filename(phys_file):
|
||||
print(f"Found file without thumbnail {phys_file}...Regenerating Thumbnail...", end="")
|
||||
file_mapper.generate_thumbnail_for_image_name(phys_file)
|
||||
print("Done!")
|
||||
self.__stats.count_thumbnails_regenerated += 1
|
||||
except Exception as ex:
|
||||
print("Error found trying to regenerate thumbnail, error was:")
|
||||
print(ex)
|
||||
self.__stats.count_errors += 1
|
||||
|
||||
def main(self): # noqa D107
|
||||
print("\n===============================================================================")
|
||||
print("Database and outputs Maintenance for Invoke AI 3.0.0 +")
|
||||
print("===============================================================================\n")
|
||||
|
||||
config_mapper = ConfigMapper()
|
||||
if not config_mapper.load():
|
||||
print("\nInvalid configuration...exiting.\n")
|
||||
return
|
||||
|
||||
file_mapper = PhysicalFileMapper(
|
||||
config_mapper.outputs_path,
|
||||
config_mapper.thumbnails_path,
|
||||
config_mapper.archive_path,
|
||||
config_mapper.thumbnails_archive_path,
|
||||
)
|
||||
db_mapper = DatabaseMapper(config_mapper.database_path, config_mapper.database_backup_dir)
|
||||
|
||||
op = self._operation
|
||||
operations_to_perform = []
|
||||
|
||||
if op == MaintenanceOperation.Ask:
|
||||
op = self.ask_for_operation()
|
||||
|
||||
if op in [MaintenanceOperation.CleanOrphanedDbEntries, MaintenanceOperation.All]:
|
||||
operations_to_perform.append(self.clean_orphaned_db_entries)
|
||||
if op in [MaintenanceOperation.CleanOrphanedDiskFiles, MaintenanceOperation.All]:
|
||||
operations_to_perform.append(self.clean_orphaned_disk_files)
|
||||
if op in [MaintenanceOperation.ReGenerateThumbnails, MaintenanceOperation.All]:
|
||||
operations_to_perform.append(self.regenerate_thumbnails)
|
||||
|
||||
for operation in operations_to_perform:
|
||||
operation(config_mapper, file_mapper, db_mapper)
|
||||
|
||||
print("\n===============================================================================")
|
||||
print(f"= Maintenance Complete - Elapsed Time: {MaintenanceStats.get_elapsed_time_string()}")
|
||||
print()
|
||||
print(f"Orphaned db entries cleaned : {self.__stats.count_orphaned_db_entries_cleaned}")
|
||||
print(f"Orphaned disk files archived : {self.__stats.count_orphaned_disk_files_cleaned}")
|
||||
print(f"Orphaned thumbnail files archived : {self.__stats.count_orphaned_thumbnails_cleaned}")
|
||||
print(f"Thumbnails regenerated : {self.__stats.count_thumbnails_regenerated}")
|
||||
print(f"Errors during operation : {self.__stats.count_errors}")
|
||||
|
||||
print()
|
||||
|
||||
|
||||
def main(): # noqa D107
|
||||
parser = argparse.ArgumentParser(
|
||||
description="InvokeAI image database maintenance utility",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""Operations:
|
||||
ask Choose operation from a menu [default]
|
||||
all Run all maintenance operations
|
||||
clean Clean database of dangling entries
|
||||
archive Archive orphaned image files
|
||||
thumbnails Regenerate missing image thumbnails
|
||||
""",
|
||||
)
|
||||
parser.add_argument("--root", default=".", type=Path, help="InvokeAI root directory")
|
||||
parser.add_argument(
|
||||
"--operation", default="ask", choices=[x.value for x in MaintenanceOperation], help="Operation to perform."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
try:
|
||||
os.chdir(args.root)
|
||||
app = InvokeAIDatabaseMaintenanceApp(args.operation)
|
||||
app.main()
|
||||
except KeyboardInterrupt:
|
||||
print("\n\nUser cancelled execution.")
|
||||
except FileNotFoundError:
|
||||
print(f"Invalid root directory '{args.root}'.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -24,7 +24,7 @@ from invokeai.backend.util.logging import InvokeAILogger
|
||||
# Modified ControlNetModel with encoder_attention_mask argument added
|
||||
|
||||
|
||||
logger = InvokeAILogger.getLogger(__name__)
|
||||
logger = InvokeAILogger.get_logger(__name__)
|
||||
|
||||
|
||||
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
|
||||
|
||||
"""
|
||||
invokeai.backend.util.logging
|
||||
"""invokeai.backend.util.logging
|
||||
|
||||
Logging class for InvokeAI that produces console messages
|
||||
|
||||
@@ -9,9 +8,9 @@ Usage:
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
logger = InvokeAILogger.getLogger(name='InvokeAI') // Initialization
|
||||
logger = InvokeAILogger.get_logger(name='InvokeAI') // Initialization
|
||||
(or)
|
||||
logger = InvokeAILogger.getLogger(__name__) // To use the filename
|
||||
logger = InvokeAILogger.get_logger(__name__) // To use the filename
|
||||
logger.configure()
|
||||
|
||||
logger.critical('this is critical') // Critical Message
|
||||
@@ -34,13 +33,13 @@ IAILogger.debug('this is a debugging message')
|
||||
## Configuration
|
||||
|
||||
The default configuration will print to stderr on the console. To add
|
||||
additional logging handlers, call getLogger with an initialized InvokeAIAppConfig
|
||||
additional logging handlers, call get_logger with an initialized InvokeAIAppConfig
|
||||
object:
|
||||
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config.parse_args()
|
||||
logger = InvokeAILogger.getLogger(config=config)
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
|
||||
### Three command-line options control logging:
|
||||
|
||||
@@ -173,6 +172,7 @@ InvokeAI:
|
||||
log_level: info
|
||||
log_format: color
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
import logging.handlers
|
||||
@@ -193,39 +193,35 @@ except ImportError:
|
||||
|
||||
# module level functions
|
||||
def debug(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().debug(msg, *args, **kwargs)
|
||||
|
||||
|
||||
def info(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().info(msg, *args, **kwargs)
|
||||
|
||||
|
||||
def warning(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().warning(msg, *args, **kwargs)
|
||||
|
||||
|
||||
def error(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().error(msg, *args, **kwargs)
|
||||
|
||||
|
||||
def critical(msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().critical(msg, *args, **kwargs)
|
||||
|
||||
|
||||
def log(level, msg, *args, **kwargs):
|
||||
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
|
||||
InvokeAILogger.get_logger().log(level, msg, *args, **kwargs)
|
||||
|
||||
|
||||
def disable(level=logging.CRITICAL):
|
||||
InvokeAILogger.getLogger().disable(level)
|
||||
InvokeAILogger.get_logger().disable(level)
|
||||
|
||||
|
||||
def basicConfig(**kwargs):
|
||||
InvokeAILogger.getLogger().basicConfig(**kwargs)
|
||||
|
||||
|
||||
def getLogger(name: str = None) -> logging.Logger:
|
||||
return InvokeAILogger.getLogger(name)
|
||||
InvokeAILogger.get_logger().basicConfig(**kwargs)
|
||||
|
||||
|
||||
_FACILITY_MAP = (
|
||||
@@ -351,7 +347,7 @@ class InvokeAILogger(object):
|
||||
loggers = dict()
|
||||
|
||||
@classmethod
|
||||
def getLogger(
|
||||
def get_logger(
|
||||
cls, name: str = "InvokeAI", config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
|
||||
) -> logging.Logger:
|
||||
if name in cls.loggers:
|
||||
@@ -360,13 +356,13 @@ class InvokeAILogger(object):
|
||||
else:
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(config.log_level.upper()) # yes, strings work here
|
||||
for ch in cls.getLoggers(config):
|
||||
for ch in cls.get_loggers(config):
|
||||
logger.addHandler(ch)
|
||||
cls.loggers[name] = logger
|
||||
return cls.loggers[name]
|
||||
|
||||
@classmethod
|
||||
def getLoggers(cls, config: InvokeAIAppConfig) -> list[logging.Handler]:
|
||||
def get_loggers(cls, config: InvokeAIAppConfig) -> list[logging.Handler]:
|
||||
handler_strs = config.log_handlers
|
||||
handlers = list()
|
||||
for handler in handler_strs:
|
||||
|
||||
@@ -103,3 +103,35 @@ sd-1/lora/LowRA:
|
||||
recommended: True
|
||||
sd-1/lora/Ink scenery:
|
||||
path: https://civitai.com/api/download/models/83390
|
||||
sd-1/ip_adapter/ip_adapter_sd15:
|
||||
repo_id: InvokeAI/ip_adapter_sd15
|
||||
recommended: True
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: IP-Adapter for SD 1.5 models
|
||||
sd-1/ip_adapter/ip_adapter_plus_sd15:
|
||||
repo_id: InvokeAI/ip_adapter_plus_sd15
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: Refined IP-Adapter for SD 1.5 models
|
||||
sd-1/ip_adapter/ip_adapter_plus_face_sd15:
|
||||
repo_id: InvokeAI/ip_adapter_plus_face_sd15
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sd_image_encoder
|
||||
description: Refined IP-Adapter for SD 1.5 models, adapted for faces
|
||||
sdxl/ip_adapter/ip_adapter_sdxl:
|
||||
repo_id: InvokeAI/ip_adapter_sdxl
|
||||
recommended: False
|
||||
requires:
|
||||
- InvokeAI/ip_adapter_sdxl_image_encoder
|
||||
description: IP-Adapter for SDXL models
|
||||
any/clip_vision/ip_adapter_sd_image_encoder:
|
||||
repo_id: InvokeAI/ip_adapter_sd_image_encoder
|
||||
recommended: False
|
||||
description: Required model for using IP-Adapters with SD-1/2 models
|
||||
any/clip_vision/ip_adapter_sdxl_image_encoder:
|
||||
repo_id: InvokeAI/ip_adapter_sdxl_image_encoder
|
||||
recommended: False
|
||||
description: Required model for using IP-Adapters with SDXL models
|
||||
|
||||
80
invokeai/configs/stable-diffusion/v1-inference-v.yaml
Normal file
80
invokeai/configs/stable-diffusion/v1-inference-v.yaml
Normal file
@@ -0,0 +1,80 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
parameterization: "v"
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: invokeai.backend.stable_diffusion.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
personalization_config:
|
||||
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
|
||||
params:
|
||||
placeholder_strings: ["*"]
|
||||
initializer_words: ['sculpture']
|
||||
per_image_tokens: false
|
||||
num_vectors_per_token: 1
|
||||
progressive_words: False
|
||||
|
||||
unet_config:
|
||||
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: invokeai.backend.stable_diffusion.encoders.modules.WeightedFrozenCLIPEmbedder
|
||||
@@ -14,7 +14,6 @@ import os
|
||||
import re
|
||||
import shutil
|
||||
import sqlite3
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
|
||||
import PIL
|
||||
@@ -27,6 +26,7 @@ from prompt_toolkit.key_binding import KeyBindings
|
||||
from prompt_toolkit.shortcuts import message_dialog
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
|
||||
@@ -421,7 +421,7 @@ VALUES ('{filename}', 'internal', 'general', {width}, {height}, null, null, '{me
|
||||
return rows[0][0]
|
||||
else:
|
||||
board_date_string = datetime.datetime.utcnow().date().isoformat()
|
||||
new_board_id = str(uuid.uuid4())
|
||||
new_board_id = uuid_string()
|
||||
sql_insert_board = f"INSERT INTO boards (board_id, board_name, created_at, updated_at) VALUES ('{new_board_id}', '{board_name}', '{board_date_string}', '{board_date_string}')"
|
||||
self.cursor.execute(sql_insert_board)
|
||||
self.connection.commit()
|
||||
|
||||
@@ -45,7 +45,7 @@ from invokeai.frontend.install.widgets import (
|
||||
)
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
logger = InvokeAILogger.getLogger()
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
# build a table mapping all non-printable characters to None
|
||||
# for stripping control characters
|
||||
@@ -101,11 +101,12 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
"STARTER MODELS",
|
||||
"MAIN MODELS",
|
||||
"CONTROLNETS",
|
||||
"IP-ADAPTERS",
|
||||
"LORA/LYCORIS",
|
||||
"TEXTUAL INVERSION",
|
||||
],
|
||||
value=[self.current_tab],
|
||||
columns=5,
|
||||
columns=6,
|
||||
max_height=2,
|
||||
relx=8,
|
||||
scroll_exit=True,
|
||||
@@ -130,6 +131,13 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.ipadapter_models = self.add_model_widgets(
|
||||
model_type=ModelType.IPAdapter,
|
||||
window_width=window_width,
|
||||
)
|
||||
bottom_of_table = max(bottom_of_table, self.nextrely)
|
||||
|
||||
self.nextrely = top_of_table
|
||||
self.lora_models = self.add_model_widgets(
|
||||
model_type=ModelType.Lora,
|
||||
@@ -343,6 +351,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
self.controlnet_models,
|
||||
self.ipadapter_models,
|
||||
self.lora_models,
|
||||
self.ti_models,
|
||||
]
|
||||
@@ -532,6 +541,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
self.starter_pipelines,
|
||||
self.pipeline_models,
|
||||
self.controlnet_models,
|
||||
self.ipadapter_models,
|
||||
self.lora_models,
|
||||
self.ti_models,
|
||||
]
|
||||
@@ -553,6 +563,25 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
||||
if downloads := section.get("download_ids"):
|
||||
selections.install_models.extend(downloads.value.split())
|
||||
|
||||
# NOT NEEDED - DONE IN BACKEND NOW
|
||||
# # special case for the ipadapter_models. If any of the adapters are
|
||||
# # chosen, then we add the corresponding encoder(s) to the install list.
|
||||
# section = self.ipadapter_models
|
||||
# if section.get("models_selected"):
|
||||
# selected_adapters = [
|
||||
# self.all_models[section["models"][x]].name for x in section.get("models_selected").value
|
||||
# ]
|
||||
# encoders = []
|
||||
# if any(["sdxl" in x for x in selected_adapters]):
|
||||
# encoders.append("ip_adapter_sdxl_image_encoder")
|
||||
# if any(["sd15" in x for x in selected_adapters]):
|
||||
# encoders.append("ip_adapter_sd_image_encoder")
|
||||
# for encoder in encoders:
|
||||
# key = f"any/clip_vision/{encoder}"
|
||||
# repo_id = f"InvokeAI/{encoder}"
|
||||
# if key not in self.all_models:
|
||||
# selections.install_models.append(repo_id)
|
||||
|
||||
|
||||
class AddModelApplication(npyscreen.NPSAppManaged):
|
||||
def __init__(self, opt):
|
||||
@@ -652,7 +681,7 @@ def process_and_execute(
|
||||
translator = StderrToMessage(conn_out)
|
||||
sys.stderr = translator
|
||||
sys.stdout = translator
|
||||
logger = InvokeAILogger.getLogger()
|
||||
logger = InvokeAILogger.get_logger()
|
||||
logger.handlers.clear()
|
||||
logger.addHandler(logging.StreamHandler(translator))
|
||||
|
||||
@@ -765,7 +794,7 @@ def main():
|
||||
if opt.full_precision:
|
||||
invoke_args.extend(["--precision", "float32"])
|
||||
config.parse_args(invoke_args)
|
||||
logger = InvokeAILogger().getLogger(config=config)
|
||||
logger = InvokeAILogger().get_logger(config=config)
|
||||
|
||||
if not config.model_conf_path.exists():
|
||||
logger.info("Your InvokeAI root directory is not set up. Calling invokeai-configure.")
|
||||
|
||||
169
invokeai/frontend/web/dist/assets/App-d1567775.js
vendored
169
invokeai/frontend/web/dist/assets/App-d1567775.js
vendored
File diff suppressed because one or more lines are too long
169
invokeai/frontend/web/dist/assets/App-d1618477.js
vendored
Normal file
169
invokeai/frontend/web/dist/assets/App-d1618477.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
310
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-640fdd9b.js
vendored
Normal file
310
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-640fdd9b.js
vendored
Normal file
File diff suppressed because one or more lines are too long
128
invokeai/frontend/web/dist/assets/index-eb9fd29a.js
vendored
Normal file
128
invokeai/frontend/web/dist/assets/index-eb9fd29a.js
vendored
Normal file
File diff suppressed because one or more lines are too long
128
invokeai/frontend/web/dist/assets/index-f83c2c5c.js
vendored
128
invokeai/frontend/web/dist/assets/index-f83c2c5c.js
vendored
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user