Compare commits

...

98 Commits

Author SHA1 Message Date
Lincoln Stein
90d37eac03 update requirements to address #1149 2022-10-18 16:00:59 -04:00
Lincoln Stein
230de023ff resolve doc conflicts during merge 2022-10-18 08:27:33 -04:00
Lincoln Stein
e6fc8af249 Fix typo
Taken from `main` PR #1147 
Author: eltociear
2022-10-18 08:08:58 -04:00
mauwii
febf86dedf Merge branch 'fix-gh-actions' of github.com:mauwii/stable-diffusion into fix-gh-actions 2022-10-18 13:26:03 +02:00
mauwii
76ae17abac update cache steps
remove restore-keys, make keys uniuqe
2022-10-18 13:25:51 +02:00
mauwii
339ff4b464 fix conda pkg cache name
also change content of hashFile-function
2022-10-18 13:25:51 +02:00
mauwii
00c0e487dd move export behind the tests, upload with artifact
also switch to python between 3.9-3.10 and use conda-forge again
2022-10-18 13:25:50 +02:00
mauwii
5c8dfa38be readd pip dependencie in environment-ma.yml 2022-10-18 13:25:50 +02:00
mauwii
acf85c66a5 add current branch to push trigger 2022-10-18 13:25:50 +02:00
mauwii
3619918954 rename step to export conda env 2022-10-18 13:25:50 +02:00
mauwii
65b14683a8 unpin conda package versions in environment.yml 2022-10-18 13:25:50 +02:00
mauwii
f4fc02a3da switch to default channel in environment-mac.yml 2022-10-18 13:25:50 +02:00
mauwii
c334170a93 pin versions only for pip packages 2022-10-18 13:25:50 +02:00
mauwii
deab6c64fc export conda env instead of only print versions 2022-10-18 13:25:50 +02:00
mauwii
e1c9503951 list conda packages after activating env
also want to show how much faster it will run now with cached pkgs
2022-10-18 13:25:50 +02:00
mauwii
9a21812bf5 revert changes to environment.yml
@tildebyte this would not have been pointed out without PR-Validation
2022-10-18 13:25:50 +02:00
mauwii
347b5ce452 fix expression 2022-10-18 13:25:50 +02:00
mauwii
b39029521b use very short validation for Pull Requests 2022-10-18 13:25:49 +02:00
mauwii
97b26f3de2 remove doubled checkpoint cache 2022-10-18 13:25:49 +02:00
mauwii
e19a7a990d unpin versions in environment
as asked by @tildebyte
2022-10-18 13:25:49 +02:00
mauwii
3e424e1046 remove pip from dependencies 2022-10-18 13:25:49 +02:00
mauwii
db20b4af9c remove pr trigger 2022-10-18 13:25:15 +02:00
Matthias Wild
44ff8f8531 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-18 13:25:15 +02:00
Lincoln Stein
c974c95e2b Merge branch 'development' of github.com:invoke-ai/InvokeAI into development 2022-10-17 23:14:55 -04:00
Lincoln Stein
3b2590243c ^C at invoke> cmd line exits gracefully 2022-10-17 23:14:32 -04:00
wfng92
1c2bd275fe Fix img2img DDIM index out of bound
Added a [community solution](https://github.com/CompVis/stable-diffusion/issues/111#issuecomment-1229483511) to fix index out of bound when doing img2img generation with `ddim` sampler. Also, restored `steps_out` to be `ddim_timesteps + 1` since the removal was meant to fix the [1000 steps issue](https://github.com/CompVis/stable-diffusion/issues/111)
2022-10-17 22:32:15 -04:00
Lincoln Stein
0cf11ce488 add option to CLI and pngwriter that allows user to set PNG compression level
- In CLI: the argument is --png_compression <0..9> (-z<0..9>)
- In API, pass `compress_level` to PngWriter.save_image_and_prompt_to_png()

Compression ranges from 0 (no compression) to 9 (maximum compression).
Default value is 6 (as specified by Pillow package).

This addresses an issue first raised in #652.
2022-10-17 22:27:47 -04:00
mauwii
a8b794d7e0 update precision info 2022-10-17 22:27:27 -04:00
mauwii
f868362ca8 fix prompt in README.md 2022-10-17 22:27:27 -04:00
mauwii
8858f7e97c (re-) fix a lot in mkdocs 2022-10-17 22:27:27 -04:00
Matthias Wild
2db4969e18 Merge branch 'main' into fix-gh-actions 2022-10-17 23:41:36 +02:00
mauwii
2ecc1abf21 fix links to point to invoke-ai.github.io 2022-10-17 17:40:31 -04:00
mauwii
703bc9494a Merge remote-tracking branch 'upstream/main' into fix-gh-actions-fork 2022-10-17 21:40:16 +02:00
Lincoln Stein
e5ab07091d adding license using GitHub template
Did not attempt to add additional copyright information.
2022-10-17 12:09:24 -04:00
Lincoln Stein
891678b656 remove license files temporarily 2022-10-17 12:08:09 -04:00
Lincoln Stein
39ea2a257c remove additional copyrights from license file
Trying to get GitHub to recognize our MIT license. Perhaps the additional copyrights are confusing it.
2022-10-17 12:07:00 -04:00
Lincoln Stein
2d68eae16b Second try at getting GitHub to register license 2022-10-17 12:05:42 -04:00
spezialspezial
d65948c423 Update gitignore to ignore codeformer weights at new location
Eventually making it slightly more flexible
2022-10-17 11:54:45 -04:00
db3000
9e599c65c5 Only output facetool parameters if enhancing faces 2022-10-17 11:49:07 -04:00
majick
9910a0b004 Fix broken links to CLI.md
* Looks like there was a bad paste
2022-10-16 23:40:27 -04:00
majick
ff96358cb3 Correct typo in the subtitle of the project
* “Formally” means that there is a formality such as a rule or declaration, “formerly” refers to a prior state.  The latter is almost certainly what is meant here.
2022-10-16 23:40:27 -04:00
mauwii
edf471f655 update cache steps
remove restore-keys, make keys uniuqe
2022-10-17 04:43:06 +02:00
mauwii
5b02c8ca4a fix conda pkg cache name
also change content of hashFile-function
2022-10-17 04:02:38 +02:00
mauwii
e7688c53b8 move export behind the tests, upload with artifact
also switch to python between 3.9-3.10 and use conda-forge again
2022-10-17 03:27:15 +02:00
mauwii
87cada42db readd pip dependencie in environment-ma.yml 2022-10-17 02:22:19 +02:00
mauwii
6fe67ee426 add current branch to push trigger 2022-10-17 02:12:46 +02:00
mauwii
5fbc81885a rename step to export conda env 2022-10-17 02:08:08 +02:00
mauwii
25ba5451f2 unpin conda package versions in environment.yml 2022-10-17 02:07:17 +02:00
mauwii
138c9cf7a8 switch to default channel in environment-mac.yml 2022-10-17 02:05:59 +02:00
mauwii
87981306a3 pin versions only for pip packages 2022-10-17 01:50:19 +02:00
mauwii
f7893b3ea9 export conda env instead of only print versions 2022-10-17 01:48:22 +02:00
mauwii
87395fe6fe list conda packages after activating env
also want to show how much faster it will run now with cached pkgs
2022-10-16 22:48:53 +02:00
mauwii
15f876c66c revert changes to environment.yml
@tildebyte this would not have been pointed out without PR-Validation
2022-10-16 22:02:58 +02:00
mauwii
522c35ac5b fix expression 2022-10-16 21:52:49 +02:00
mauwii
bb2d6d640f use very short validation for Pull Requests 2022-10-16 21:50:57 +02:00
mauwii
2412d8dec1 remove doubled checkpoint cache 2022-10-16 20:53:07 +02:00
mauwii
2ab5a43663 unpin versions in environment
as asked by @tildebyte
2022-10-16 20:48:31 +02:00
mauwii
0ec3d6c10a remove pip from dependencies 2022-10-16 20:36:33 +02:00
mauwii
d208e1b0f5 Merge branch 'fix-gh-actions' of github.com:mauwii/stable-diffusion into fix-gh-actions 2022-10-16 20:35:57 +02:00
mauwii
8a6ba6a212 remove pr trigger 2022-10-16 13:56:45 -04:00
Matthias Wild
b793d69ff3 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-16 13:56:45 -04:00
mauwii
54f55471df remove pr trigger 2022-10-16 19:34:31 +02:00
Matthias Wild
cec7fb7dc6 squash merge update-gh-actions into fix-gh-actions
* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* remove 4gotten trigger

* Update-gh-actions (#6)

* fix mkdocs deployment

* update path to python bin

* add trigger for current branch

* change path to python_bin for mac as well

* try to use setup-python@v4 instead of setting env

* remove setup conda action

* try to use $CONDA

* remove overseen action

* change branch from master to main

* sort out if then else for faster syntax

* remove more if functions

* add updates to create-caches as well

* eliminate the rest of if functions

* try to unpin pytorch and torchvision

* restore pinned versions

* try switching from set-output to use env

* update test-invoke-conda as well

* fix env var creation

* quote variable

* add second equal to compare

* try another way to use outputs

* fix outputs

* pip install for mac before creating conda env

* fix output variable

* fix python bin path

* remove pip install for before creating conda env

* unpin streamlit version in conda mac env

* try to make git-workflows better readable

* use macos-latest

* try to update conda before creating mac env

* better conda update trial

* re-pin streamlit version

* re-added trigger to run workflow in current branch

* try to find out if conda mac env could be updated

* install cmake, protobuf and rust b4 conda

* add yes to conda update

* lets try anaconda3-2022.05

* try environment.yml for mac as well

* reenable conda mac env, add pip install
also fix gitignore by changing from dream to invoke

* remove
- unecesary virtualenv creation
- conda update

change != macos back to == linux

* remove cmake from brew install since pre-installed

* disable opencv-python pip requirement

* fixed commands to find latest package versions

* update requirements for mac env

* back to the roots - only install conda env
depending on runner_os with or without extra env variables

* check out macOS in azure-pipelines
since becoming kind of tired of the GitHub Runner which is broken as ...

* let's try to setup python and update conda env

* initialize conda before using it

* add trigger in azure-pipelines.yml

* And another go for update first ....

* update azure-pipelines.yml
- add caching
- add checkpoint download
- add paths to trigger
and more

* unquote checkpoint-url

* fix chekpoint-url variable

* mkdir before downloading model

* set pr trigger to main, rename anaconda cache

* unique cacheHitVariables

* try to use macos-latest instead of macos-12

* update test-invoke-conda.yml:
- remove unecesarry echo step
- use s-weigand/setup-conda@v1
- remove conda update from install deps step since updated with action

* update test-invoke-conda.yml:
- rename conda env cache from ldm to invokeai
- reorder steps:
  1. checkout sources
  2. setup python
  3. setup conda
  4. keep order after set platform variables

* change macos back to 12 since also fails with 11

* update condition in run the tests
make difference between main or not main

* fix path to cache invokeai conda env

* fix invokeai conda env cache path

* update mkdocs-flow.yml

* change conda-channel priority

* update create-caches

* update conda env also when cache was used

* os dependend conda env cache path

* use existing CONDA env pointing to conda root

* create CONDA_ROOT output from $CONDA

* use output variable to define test prompts

* use setup-python v4, get rid of PYTHON_BIN env

* add runner.os to result artifacts name

* update test-invoke-conda.yml:
- reuse macos-latest
- disable setup python 3.9
- setup conda with default python version
- create or update conda environment depending on cache success
- remove name parameter from conda update since name is set in env yml

* improve mkdocs-flow.yml

* disable cache-hugginface-torch
since preload_models.py downloads to more than one location

* update mkdocs-flow.yml with new name

* rename mkdocs action to mkdocs-material

* try to ignore error when creating conda env
maybe it would still be usable, lets see ;P

* remove bloat

* update environment-mac.yml
to match dependencies of invoke-ai/InvokeAI's main branch

* disable conda update, tweak prompt condition

* try to set some env vars for macOS to fix conda

* stop ignoring error, use env instead of outputs

* tweak `[[` connditions

* update python and pip dependencie
makes a difference of 1 sec per itteration compared to 3.9!!!
also I see no reason why using a old pip version would be beneficial

* remove unecesarry env for macOS
everything was pre-tested on my MacBook Air 2020 with M1

* update conda env in setup step

* activate conda env after installation

* update test-invoke-conda.yml
- set conda env dependent on matrix.os
- set CONDA_ENV_NAME to prevent breaking action when renaming conda env
- fix conda env activation

* fix activate conda env

* set bash -l as default shell

* use action to activate conda env

* add conda env file to env activation

* try to replace s-weigeand with conda-incubator

* remove azure-pipelines.yml
funniest part is that the macos runner is the same as the one on github!

* include environment-file in matrix
- also disable auto-activate-base and auto-update-conda
- include macos-latest and macos-12 for debugging purpose
- set miniforge-version in matrix

* fix miniforge-variant, set fail-fast to false

* add step to setup miniconda
- make default shell a matrix variable
- remove bloat

* use a mac env yml without pinned versions

* unpin nomkl, pytorch and torchvision
also removed opencv-pyhton

* cache conda pkgs dir instead of conda env

* use python 3.10, exclude macos-12 from cache

* fix expression

* prepare for PR

* fix doubled id

* reuse pinned versions in mac conda env
- updated python pip version
- unpined pytorch and torchvision
- removed opencv-python
- updated versions to most recent (tested locally)

* fix classical copy/paste error

* remove unused env from shell-block comment

* fix hashFiles function to determine restore-keys

* reenable caching `~.cache`, update create-caches

* unpin all versions in mac conda env file
this was the only way I got it working in the action, also works locally
tested on MacBook Air 2020 M1
remove environment-mac-unpinned.yml

* prepare merge by removing this branch from trigger

* include pull_request trigger for main and dev

* remove pull_request trigger
2022-10-16 19:19:49 +02:00
Lincoln Stein
b0b82efffe restore inline images
<div> around the inline images works great in gh-pages, but breaks plain old markdown in GitHub code display. This removes the <div>s, causing slight degradation in quality of gh-page appearance.
2022-10-16 12:07:21 -04:00
Lincoln Stein
e599604294 restore inline images
<div> seems to be messing with the ability of the plain-old markdown processor to display inline images. Slightly degrades appearance of gh-pages.
2022-10-16 12:05:33 -04:00
Lincoln Stein
b953f82346 Merge branch 'development' into fix-doc-typos 2022-10-16 11:28:59 -04:00
Eric Wolf
57a3ea9d7b Update 'ldm' env to 'invokeai' in troubleshooting steps 2022-10-16 11:23:00 -04:00
Lincoln Stein
ef2058824a add a strength value to inpaint_replace
- --inpaint_replace 0.X will cause inpainting to ignore what is under
  the masked region with a strength ranging from 0 (don't ignore at all)
  to 1.0 (ignore completely)
- sync with upstream development
- update docs
2022-10-16 10:06:47 -04:00
Lincoln Stein
6f93dc7712 cleanup inpainting and img2img
- add a `--inpaint_replace` option that fills masked regions with
  latent noise. This allows radical changes to inpainted regions
  at the cost of losing context.
- fix up readline, arg processing and metadata writing to accommodate
  this change
- fixed bug in storage and retrieval of variations, discovered incidentally
  during testing
- update documentation
2022-10-16 08:50:55 -04:00
Rupesh Sreeraman
a6e28d2eb7 Fixed documentation typos and resolved merge conflicts in the documentation. 2022-10-16 17:55:57 +05:30
Conor Reid
a3a50bb886 Update generate.py
Fixed spelling mistake (open source king)
2022-10-15 16:02:14 -04:00
Joseph Dries III
f6bc13736a Fix Typo, committed changing ldm environment to invokeai 2022-10-15 08:48:18 -04:00
Lincoln Stein
194d4c75b3 Update license again
Added back copyright statements from latent diffusion and stable diffusion repos.
2022-10-14 16:40:35 -04:00
Lincoln Stein
bc9c60ae71 Modifiy MIT License using GitHub's template
The license has been there all along, but didn't use GitHub's template and wasn't being picked up automatically
2022-10-14 16:37:18 -04:00
Lincoln Stein
fe2a2cfc8b Merge branch 'development' into model-switching 2022-10-14 13:18:59 -04:00
Lincoln Stein
32dab7d4bf close #1094, dangling gfpgan_strength reference 2022-10-14 07:45:10 -04:00
Lincoln Stein
1c501333e8 minor doc fixes 2022-10-14 07:30:26 -04:00
db3000
ce5e57d828 Generalize facetool strength argument 2022-10-14 00:03:06 -04:00
Lincoln Stein
e98fe9c22d fix noisy images at high step counts
At step counts greater than ~75, the ksamplers start producing noisy
images when using the Karras noise schedule. This PR reverts to using
the model's own noise schedule, which eliminates the problem at the
cost of slowing convergence at lower step counts.

This PR also introduces a new CLI `--save_intermediates <n>' argument,
which will save every nth intermediate image into a subdirectory
named `intermediates/<image_prefix>'.

Addresses issue #1083.
2022-10-14 00:01:59 -04:00
Lincoln Stein
6afc0f9b38 add ability to import and edit alternative models online
- !import_model <path/to/model/weights> will import a new model,
  prompt the user for its name and description, write it to the
  models.yaml file, and load it.

- !edit_model <model_name> will bring up a previously-defined model
  and prompt the user to edit its descriptive fields.

Example of !import_model

<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:

Name for this model: <b>waifu-diffusion</b>
Description of this model: <b>Waifu Diffusion v1.3</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu Diffusion v1.3
  height: 512
  weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
  width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
   | LatentDiffusion: Running in eps-prediction mode
   | DiffusionWrapper has 859.52 M params.
   | Making attention of type 'vanilla' with 512 in_channels
   | Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
   | Making attention of type 'vanilla' with 512 in_channels
   | Using faster float16 precision
</pre>

Example of !edit_model

<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512

>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu diffusion v1.4beta
  weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
  height: 512
  width: 512

OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
2022-10-13 23:48:07 -04:00
Lincoln Stein
916f5bfbb2 gracefully recover from failed model load 2022-10-13 12:27:04 -04:00
db3000
7f491fd2d2 Reword deprecation warning for dream.py 2022-10-13 12:12:05 -04:00
db3000
203a6d8a00 Forward dream.py to invoke.py using the same interpreter, add deprecation warning 2022-10-13 12:12:05 -04:00
Jan Skurovec
cac3f5fc61 fix for "1 leaked semaphore objects to clean up at shutdown" on M1
Implements fix by @Any-Winter-4079 referenced in https://github.com/invoke-ai/InvokeAI/issues/1016#issuecomment-1276825640
2022-10-13 13:33:59 +02:00
hipsterusername
7e33560010 Hires Addition
Updated ImageMetaDataViewer with correct values
Updated tooltip text
Add arguments for Hires & Seamless Metadata
2022-10-13 23:57:24 +13:00
Daniel Manzke
057fc95aa3 Print out the device type which is used
Print out the device type which is used for generating images.
2022-10-12 20:36:43 -04:00
Lincoln Stein
1c102c71fc final fixups to memory_cache
- fixed backwards calculation of minimum available memory
- only execute m.padding adjustment code once upon load
2022-10-12 15:56:06 -04:00
Lincoln Stein
aa6aa68753 proposed fix to work on mps systems 2022-10-12 11:08:27 -04:00
Lincoln Stein
b537e92789 move tokenizer into cpu cache as well 2022-10-12 03:03:29 -04:00
Lincoln Stein
7c06849c4d Merge branch 'model-switching' of github.com:invoke-ai/InvokeAI into model-switching 2022-10-12 02:39:57 -04:00
Lincoln Stein
488334710b enable fast switching between models in invoke.py
- This PR enables two new commands in the invoke.py script

 !models         -- list the available models and their cache status
 !switch <model> -- switch to the indicated model

Example:

 invoke> !models
   laion400m            not loaded  Latent Diffusion LAION400M model
   stable-diffusion-1.4     active  Stable Diffusion inference model version 1.4
   waifu-1.3                cached  Waifu anime model version 1.3
 invoke> !switch waifu-1.3
   >> Caching model stable-diffusion-1.4 in system RAM
   >> Retrieving model waifu-1.3 from system RAM cache

The name and descriptions of the models are taken from
`config/models.yaml`. A future enhancement to `model_cache.py` will be
to enable new model stanzas to be added to the file
programmatically. This will be useful for the WebGUI.

More details:

- Use fast switching algorithm described in PR #948
- Models are selected using their configuration stanza name
  given in models.yaml.
- To avoid filling up CPU RAM with cached models, this PR
  implements an LRU cache that monitors available CPU RAM.
- The caching code allows the minimum value of available RAM
  to be adjusted, but invoke.py does not currently have a
  command-line argument that allows you to set it. The
  minimum free RAM is arbitrarily set to 2 GB.
- Add optional description field to configs/models.yaml

Unrelated fixes:
- Added ">>" to CompViz model loading messages in order to make user experience
  more consistent.
- When generating an image greater than defaults, will only warn about possible
  VRAM filling the first time.
- Fixed bug that was causing help message to be printed twice. This involved
  moving the import line for the web backend into the section where it is
  called.

Coauthored by: @ArDiouscuros
2022-10-12 02:37:42 -04:00
Lincoln Stein
19341e95a6 enable fast switching between models in invoke.py
- This PR enables two new commands in the invoke.py script

 !models         -- list the available models and their cache status
 !switch <model> -- switch to the indicated model

Example:

 invoke> !models
   laion400m            not loaded  Latent Diffusion LAION400M model
   stable-diffusion-1.4     active  Stable Diffusion inference model version 1.4
   waifu-1.3                cached  Waifu anime model version 1.3
 invoke> !switch waifu-1.3
   >> Caching model stable-diffusion-1.4 in system RAM
   >> Retrieving model waifu-1.3 from system RAM cache

More details:

- Use fast switching algorithm described in PR #948
- Models are selected using their configuration stanza name
  given in models.yaml.
- To avoid filling up CPU RAM with cached models, this PR
  implements an LRU cache that monitors available CPU RAM.
- The caching code allows the minimum value of available RAM
  to be adjusted, but invoke.py does not currently have a
  command-line argument that allows you to set it. The
  minimum free RAM is arbitrarily set to 2 GB.
- Add optional description field to configs/models.yaml

Unrelated fixes:
- Added ">>" to CompViz model loading messages in order to make user experience
  more consistent.
- When generating an image greater than defaults, will only warn about possible
  VRAM filling the first time.
- Fixed bug that was causing help message to be printed twice. This involved
  moving the import line for the web backend into the section where it is
  called.
2022-10-12 02:19:12 -04:00
Chloe
c82e94811b Update Stable_Diffusion_AI_Notebook.ipynb 2022-10-11 21:42:31 -04:00
Chloe
c15a902e8d Update Stable_Diffusion_AI_Notebook.ipynb
Making Stable_Diffusion_AI_Notebook.ipynb work smoothly on Google Colab
2022-10-11 21:42:31 -04:00
Lincoln Stein
b9e910b5f4 add mostly functional model caching module 2022-10-11 17:24:10 -04:00
Jan Skurovec
101cac6a21 reintroduce fix for m1 from PR#579 missing after merge
Make results reproducible (so runs with the same seed produce the same result).
Implements fix by @wbowling referenced in https://github.com/invoke-ai/InvokeAI/issues/397#issuecomment-1240679294
2022-10-11 23:00:20 +02:00
blessedcoolant
06f542ed7a Update .gitignore 2022-10-11 16:28:48 +13:00
Will
9eff9e5752 update mac instructions to use invokeai for env name 2022-10-10 17:45:18 -04:00
58 changed files with 2066 additions and 1357 deletions

View File

@@ -1,26 +1,43 @@
name: Create Caches
on:
workflow_dispatch
on: workflow_dispatch
jobs:
build:
os_matrix:
strategy:
matrix:
os: [ ubuntu-latest, macos-12 ]
name: Create Caches on ${{ matrix.os }} conda
os: [ubuntu-latest, macos-latest]
include:
- os: ubuntu-latest
environment-file: environment.yml
default-shell: bash -l {0}
- os: macos-latest
environment-file: environment-mac.yml
default-shell: bash -l {0}
name: Test invoke.py on ${{ matrix.os }} with conda
runs-on: ${{ matrix.os }}
defaults:
run:
shell: ${{ matrix.default-shell }}
steps:
- name: Set platform variables
id: vars
run: |
if [ "$RUNNER_OS" = "macOS" ]; then
echo "::set-output name=ENV_FILE::environment-mac.yml"
echo "::set-output name=PYTHON_BIN::/usr/local/miniconda/envs/ldm/bin/python"
elif [ "$RUNNER_OS" = "Linux" ]; then
echo "::set-output name=ENV_FILE::environment.yml"
echo "::set-output name=PYTHON_BIN::/usr/share/miniconda/envs/ldm/bin/python"
fi
- name: Checkout sources
uses: actions/checkout@v3
- name: setup miniconda
uses: conda-incubator/setup-miniconda@v2
with:
auto-activate-base: false
auto-update-conda: false
miniconda-version: latest
- name: set environment
run: |
[[ "$GITHUB_REF" == 'refs/heads/main' ]] \
&& echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> $GITHUB_ENV \
|| echo "TEST_PROMPTS=tests/dev_prompts.txt" >> $GITHUB_ENV
echo "CONDA_ROOT=$CONDA" >> $GITHUB_ENV
echo "CONDA_ENV_NAME=invokeai" >> $GITHUB_ENV
- name: Use Cached Stable Diffusion v1.4 Model
id: cache-sd-v1-4
uses: actions/cache@v3
@@ -29,42 +46,52 @@ jobs:
with:
path: models/ldm/stable-diffusion-v1/model.ckpt
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}
- name: Download Stable Diffusion v1.4 Model
if: ${{ steps.cache-sd-v1-4.outputs.cache-hit != 'true' }}
run: |
if [ ! -e models/ldm/stable-diffusion-v1 ]; then
mkdir -p models/ldm/stable-diffusion-v1
fi
if [ ! -e models/ldm/stable-diffusion-v1/model.ckpt ]; then
curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
fi
- name: Use Cached Dependencies
id: cache-conda-env-ldm
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-ldm
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ~/.conda/envs/ldm
path: ${{ env.CONDA_ROOT }}/envs/${{ env.CONDA_ENV_NAME }}
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(steps.vars.outputs.ENV_FILE) }}
- name: Install Dependencies
if: ${{ steps.cache-conda-env-ldm.outputs.cache-hit != 'true' }}
run: |
conda env create -f ${{ steps.vars.outputs.ENV_FILE }}
- name: Use Cached Huggingface and Torch models
id: cache-huggingface-torch
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-huggingface-torch
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: ${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2
with:
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
- name: Use Cached Huggingface and Torch models
id: cache-hugginface-torch
uses: actions/cache@v3
env:
cache-name: cache-hugginface-torch
with:
path: ~/.cache
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ hashFiles('scripts/preload_models.py') }}
- name: Download Huggingface and Torch models
if: ${{ steps.cache-huggingface-torch.outputs.cache-hit != 'true' }}
run: |
${{ steps.vars.outputs.PYTHON_BIN }} scripts/preload_models.py
- name: run preload_models.py
run: python scripts/preload_models.py

View File

@@ -1,28 +0,0 @@
name: Deploy
on:
push:
branches:
- main
# pull_request:
# branches:
# - main
jobs:
build:
name: Deploy docs to GitHub Pages
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Build
uses: Tiryoh/actions-mkdocs@v0
with:
mkdocs_version: 'latest' # option
requirements: '/requirements-mkdocs.txt' # option
configfile: '/mkdocs.yml' # option
- name: Deploy
uses: peaceiris/actions-gh-pages@v3
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
publish_dir: ./site

40
.github/workflows/mkdocs-material.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: mkdocs-material
on:
push:
branches:
- 'main'
- 'development'
jobs:
mkdocs-material:
runs-on: ubuntu-latest
steps:
- name: checkout sources
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: setup python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: install requirements
run: |
python -m \
pip install -r requirements-mkdocs.txt
- name: confirm buildability
run: |
python -m \
mkdocs build \
--clean \
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
run: |
python -m \
mkdocs gh-deploy \
--clean \
--force

View File

@@ -4,29 +4,55 @@ on:
branches:
- 'main'
- 'development'
- 'fix-gh-actions-fork'
pull_request:
branches:
- 'main'
- 'development'
jobs:
os_matrix:
strategy:
matrix:
os: [ ubuntu-latest, macos-12 ]
os: [ubuntu-latest, macos-latest]
include:
- os: ubuntu-latest
environment-file: environment.yml
default-shell: bash -l {0}
- os: macos-latest
environment-file: environment-mac.yml
default-shell: bash -l {0}
name: Test invoke.py on ${{ matrix.os }} with conda
runs-on: ${{ matrix.os }}
defaults:
run:
shell: ${{ matrix.default-shell }}
steps:
- run: |
echo The PR was merged
- name: Set platform variables
id: vars
run: |
# Note, can't "activate" via github action; specifying the env's python has the same effect
if [ "$RUNNER_OS" = "macOS" ]; then
echo "::set-output name=ENV_FILE::environment-mac.yml"
echo "::set-output name=PYTHON_BIN::/usr/local/miniconda/envs/ldm/bin/python"
elif [ "$RUNNER_OS" = "Linux" ]; then
echo "::set-output name=ENV_FILE::environment.yml"
echo "::set-output name=PYTHON_BIN::/usr/share/miniconda/envs/ldm/bin/python"
fi
- name: Checkout sources
uses: actions/checkout@v3
- name: setup miniconda
uses: conda-incubator/setup-miniconda@v2
with:
auto-activate-base: false
auto-update-conda: false
miniconda-version: latest
- name: set test prompt to main branch validation
if: ${{ github.ref == 'refs/heads/main' }}
run: echo "TEST_PROMPTS=tests/preflight_prompts.txt" >> $GITHUB_ENV
- name: set test prompt to development branch validation
if: ${{ github.ref == 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/dev_prompts.txt" >> $GITHUB_ENV
- name: set test prompt to Pull Request validation
if: ${{ github.ref != 'refs/heads/main' && github.ref != 'refs/heads/development' }}
run: echo "TEST_PROMPTS=tests/pr_prompt.txt" >> $GITHUB_ENV
- name: set conda environment name
run: echo "CONDA_ENV_NAME=invokeai" >> $GITHUB_ENV
- name: Use Cached Stable Diffusion v1.4 Model
id: cache-sd-v1-4
uses: actions/cache@v3
@@ -35,31 +61,40 @@ jobs:
with:
path: models/ldm/stable-diffusion-v1/model.ckpt
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}
restore-keys: ${{ env.cache-name }}
- name: Download Stable Diffusion v1.4 Model
if: ${{ steps.cache-sd-v1-4.outputs.cache-hit != 'true' }}
run: |
if [ ! -e models/ldm/stable-diffusion-v1 ]; then
mkdir -p models/ldm/stable-diffusion-v1
fi
if [ ! -e models/ldm/stable-diffusion-v1/model.ckpt ]; then
curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
fi
- name: Use Cached Dependencies
id: cache-conda-env-ldm
[[ -d models/ldm/stable-diffusion-v1 ]] \
|| mkdir -p models/ldm/stable-diffusion-v1
[[ -r models/ldm/stable-diffusion-v1/model.ckpt ]] \
|| curl -o models/ldm/stable-diffusion-v1/model.ckpt ${{ secrets.SD_V1_4_URL }}
- name: Use cached Conda Environment
uses: actions/cache@v3
env:
cache-name: cache-conda-env-ldm
cache-name: cache-conda-env-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ~/.conda/envs/ldm
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(steps.vars.outputs.ENV_FILE) }}
- name: Install Dependencies
if: ${{ steps.cache-conda-env-ldm.outputs.cache-hit != 'true' }}
run: |
conda env create -f ${{ steps.vars.outputs.ENV_FILE }}
path: ${{ env.CONDA }}/envs/${{ env.CONDA_ENV_NAME }}
key: env-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Use cached Conda Packages
uses: actions/cache@v3
env:
cache-name: cache-conda-pkgs-${{ env.CONDA_ENV_NAME }}
conda-env-file: ${{ matrix.environment-file }}
with:
path: ${{ env.CONDA_PKGS_DIR }}
key: pkgs-${{ env.cache-name }}-${{ runner.os }}-${{ hashFiles(env.conda-env-file) }}
- name: Activate Conda Env
uses: conda-incubator/setup-miniconda@v2
with:
activate-environment: ${{ env.CONDA_ENV_NAME }}
environment-file: ${{ matrix.environment-file }}
- name: Use Cached Huggingface and Torch models
id: cache-hugginface-torch
uses: actions/cache@v3
@@ -70,28 +105,22 @@ jobs:
key: ${{ env.cache-name }}
restore-keys: |
${{ env.cache-name }}-${{ hashFiles('scripts/preload_models.py') }}
- name: Download Huggingface and Torch models
if: ${{ steps.cache-hugginface-torch.outputs.cache-hit != 'true' }}
run: |
${{ steps.vars.outputs.PYTHON_BIN }} scripts/preload_models.py
# - name: Run tmate
# uses: mxschmitt/action-tmate@v3
# timeout-minutes: 30
- name: run preload_models.py
run: python scripts/preload_models.py
- name: Run the tests
run: |
# Note, can't "activate" via github action; specifying the env's python has the same effect
if [ $(uname) = "Darwin" ]; then
export PYTORCH_ENABLE_MPS_FALLBACK=1
fi
# Utterly hacky, but I don't know how else to do this
if [[ ${{ github.ref }} == 'refs/heads/master' ]]; then
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/invoke.py --from_file tests/preflight_prompts.txt
elif [[ ${{ github.ref }} == 'refs/heads/development' ]]; then
time ${{ steps.vars.outputs.PYTHON_BIN }} scripts/invoke.py --from_file tests/dev_prompts.txt
fi
time python scripts/invoke.py \
--from_file ${{ env.TEST_PROMPTS }}
- name: export conda env
run: |
mkdir -p outputs/img-samples
conda env export --name ${{ env.CONDA_ENV_NAME }} > outputs/img-samples/environment-${{ runner.os }}.yml
- name: Archive results
uses: actions/upload-artifact@v3
with:
name: results
name: results_${{ matrix.os }}
path: outputs/img-samples

4
.gitignore vendored
View File

@@ -1,7 +1,7 @@
# ignore default image save location and model symbolic link
outputs/
models/ldm/stable-diffusion-v1/model.ckpt
ldm/dream/restoration/codeformer/weights
**/restoration/codeformer/weights
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
@@ -180,7 +180,7 @@ src
**/__pycache__/
outputs
# Logs and associated folders
# Logs and associated folders
# created from generated embeddings.
logs
testtube

13
LICENSE
View File

@@ -1,17 +1,6 @@
MIT License
Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
This software is derived from a fork of the source code available from
https://github.com/pesser/stable-diffusion and
https://github.com/CompViz/stable-diffusion. They carry the following
copyrights:
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
Please see individual source code files for copyright and authorship
attributions.
Copyright (c) 2022 InvokeAI Team
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -68,11 +68,11 @@ requests. Be sure to use the provided templates. They will help aid diagnose iss
This fork is supported across multiple platforms. You can find individual installation instructions
below.
- #### [Linux](docs/installation/INSTALL_LINUX.md)
- #### [Linux](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_LINUX/)
- #### [Windows](docs/installation/INSTALL_WINDOWS.md)
- #### [Windows](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_WINDOWS/)
- #### [Macintosh](docs/installation/INSTALL_MAC.md)
- #### [Macintosh](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_MAC/)
### Hardware Requirements
@@ -103,34 +103,33 @@ errors like 'expected type Float but found Half' or 'not implemented for Half'
you can try starting `invoke.py` with the `--precision=float32` flag:
```bash
(ldm) ~/stable-diffusion$ python scripts/invoke.py --precision=float32
(invokeai) ~/InvokeAI$ python scripts/invoke.py --precision=float32
```
### Features
#### Major Features
- [Web Server](docs/features/WEB.md)
- [Interactive Command Line Interface](docs/features/CLI.md)
- [Image To Image](docs/features/IMG2IMG.md)
- [Inpainting Support](docs/features/INPAINTING.md)
- [Outpainting Support](docs/features/OUTPAINTING.md)
- [Upscaling, face-restoration and outpainting](docs/features/POSTPROCESS.md)
- [Seamless Tiling](docs/features/OTHER.md#seamless-tiling)
- [Google Colab](docs/features/OTHER.md#google-colab)
- [Reading Prompts From File](docs/features/PROMPTS.md#reading-prompts-from-a-file)
- [Shortcut: Reusing Seeds](docs/features/OTHER.md#shortcuts-reusing-seeds)
- [Prompt Blending](docs/features/PROMPTS.md#prompt-blending)
- [Thresholding and Perlin Noise Initialization Options](/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options)
- [Negative/Unconditioned Prompts](docs/features/PROMPTS.md#negative-and-unconditioned-prompts)
- [Variations](docs/features/VARIATIONS.md)
- [Personalizing Text-to-Image Generation](docs/features/TEXTUAL_INVERSION.md)
- [Simplified API for text to image generation](docs/features/OTHER.md#simplified-api)
- [Web Server](https://invoke-ai.github.io/InvokeAI/features/WEB/)
- [Interactive Command Line Interface](https://invoke-ai.github.io/InvokeAI/features/CLI/)
- [Image To Image](https://invoke-ai.github.io/InvokeAI/features/IMG2IMG/)
- [Inpainting Support](https://invoke-ai.github.io/InvokeAI/features/INPAINTING/)
- [Outpainting Support](https://invoke-ai.github.io/InvokeAI/features/OUTPAINTING/)
- [Upscaling, face-restoration and outpainting](https://invoke-ai.github.io/InvokeAI/features/POSTPROCESS/)
- [Reading Prompts From File](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#reading-prompts-from-a-file)
- [Prompt Blending](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#prompt-blending)
- [Thresholding and Perlin Noise Initialization Options](https://invoke-ai.github.io/InvokeAI/features/OTHER/#thresholding-and-perlin-noise-initialization-options)
- [Negative/Unconditioned Prompts](https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#negative-and-unconditioned-prompts)
- [Variations](https://invoke-ai.github.io/InvokeAI/features/VARIATIONS/)
- [Personalizing Text-to-Image Generation](https://invoke-ai.github.io/InvokeAI/features/TEXTUAL_INVERSION/)
- [Simplified API for text to image generation](https://invoke-ai.github.io/InvokeAI/features/OTHER/#simplified-api)
#### Other Features
- [Creating Transparent Regions for Inpainting](docs/features/INPAINTING.md#creating-transparent-regions-for-inpainting)
- [Preload Models](docs/features/OTHER.md#preload-models)
- [Google Colab](https://invoke-ai.github.io/InvokeAI/features/OTHER/#google-colab)
- [Seamless Tiling](https://invoke-ai.github.io/InvokeAI/features/OTHER/#seamless-tiling)
- [Shortcut: Reusing Seeds](https://invoke-ai.github.io/InvokeAI/features/OTHER/#shortcuts-reusing-seeds)
- [Preload Models](https://invoke-ai.github.io/InvokeAI/features/OTHER/#preload-models)
### Latest Changes
@@ -144,33 +143,33 @@ you can try starting `invoke.py` with the `--precision=float32` flag:
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains
for backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/INPAINTING.md">inpainting</a> and <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OUTPAINTING.md">outpainting</a>
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/INPAINTING/">inpainting</a> and <a href="https://invoke-ai.github.io/InvokeAI/features/OUTPAINTING/">outpainting</a>
- img2img runs on all k* samplers
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/PROMPTS.md#negative-and-unconditioned-prompts">negative prompts</a>
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#negative-and-unconditioned-prompts">negative prompts</a>
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/POSTPROCESS.md">post-processing of previously-generated images</a>
- Support in both WebGUI and CLI for <a href="https://invoke-ai.github.io/InvokeAI/features/POSTPROCESS/">post-processing of previously-generated images</a>
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.md#this-is-an-example-of-txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--hires` option on `invoke>` line allows <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/#txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.md">command-line completion behavior</a>.
- Improved <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/">command-line completion behavior</a>.
New commands added:
* List command-line history with `!history`
* Search command-line history with `!search`
* Clear history with `!clear`
- List command-line history with `!history`
- Search command-line history with `!search`
- Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
For older changelogs, please visit the **[CHANGELOG](docs/features/CHANGELOG.md)**.
For older changelogs, please visit the **[CHANGELOG](https://invoke-ai.github.io/InvokeAI/CHANGELOG#v114-11-september-2022)**.
### Troubleshooting
Please check out our **[Q&A](docs/help/TROUBLESHOOT.md)** to get solutions for common installation
Please check out our **[Q&A](https://invoke-ai.github.io/InvokeAI/help/TROUBLESHOOT/#faq)** to get solutions for common installation
problems and other issues.
# Contributing
@@ -188,7 +187,7 @@ changes.
### Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](docs/other/CONTRIBUTORS.md). We thank them for
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
### Support
@@ -202,4 +201,4 @@ Original portions of the software are Copyright (c) 2020
### Further Reading
Please see the original README for more information on this software and underlying algorithm,
located in the file [README-CompViz.md](docs/other/README-CompViz.md).
located in the file [README-CompViz.md](https://invoke-ai.github.io/InvokeAI/other/README-CompViz/).

View File

@@ -319,7 +319,7 @@ class InvokeAIWebServer:
elif postprocessing_parameters['type'] == 'gfpgan':
image = self.gfpgan.process(
image=image,
strength=postprocessing_parameters['gfpgan_strength'],
strength=postprocessing_parameters['facetool_strength'],
seed=seed,
)
else:
@@ -625,7 +625,7 @@ class InvokeAIWebServer:
seed=seed,
)
postprocessing = True
all_parameters['gfpgan_strength'] = gfpgan_parameters[
all_parameters['facetool_strength'] = gfpgan_parameters[
'strength'
]
@@ -723,6 +723,7 @@ class InvokeAIWebServer:
'height',
'extra',
'seamless',
'hires_fix',
]
rfc_dict = {}
@@ -735,12 +736,12 @@ class InvokeAIWebServer:
postprocessing = []
# 'postprocessing' is either null or an
if 'gfpgan_strength' in parameters:
if 'facetool_strength' in parameters:
postprocessing.append(
{
'type': 'gfpgan',
'strength': float(parameters['gfpgan_strength']),
'strength': float(parameters['facetool_strength']),
}
)
@@ -837,7 +838,7 @@ class InvokeAIWebServer:
elif parameters['type'] == 'gfpgan':
postprocessing_metadata['type'] = 'gfpgan'
postprocessing_metadata['strength'] = parameters[
'gfpgan_strength'
'facetool_strength'
]
else:
raise TypeError(f"Invalid type: {parameters['type']}")

View File

@@ -36,6 +36,8 @@ def parameters_to_command(params):
switches.append(f'-A {params["sampler_name"]}')
if "seamless" in params and params["seamless"] == True:
switches.append(f"--seamless")
if "hires_fix" in params and params["hires_fix"] == True:
switches.append(f"--hires")
if "init_img" in params and len(params["init_img"]) > 0:
switches.append(f'-I {params["init_img"]}')
if "init_mask" in params and len(params["init_mask"]) > 0:
@@ -46,8 +48,14 @@ def parameters_to_command(params):
switches.append(f'-f {params["strength"]}')
if "fit" in params and params["fit"] == True:
switches.append(f"--fit")
if "gfpgan_strength" in params and params["gfpgan_strength"]:
if "facetool" in params:
switches.append(f'-ft {params["facetool"]}')
if "facetool_strength" in params and params["facetool_strength"]:
switches.append(f'-G {params["facetool_strength"]}')
elif "gfpgan_strength" in params and params["gfpgan_strength"]:
switches.append(f'-G {params["gfpgan_strength"]}')
if "codeformer_fidelity" in params:
switches.append(f'-cf {params["codeformer_fidelity"]}')
if "upscale" in params and params["upscale"]:
switches.append(f'-U {params["upscale"][0]} {params["upscale"][1]}')
if "variation_amount" in params and params["variation_amount"] > 0:

View File

@@ -349,7 +349,7 @@ def handle_run_gfpgan_event(original_image, gfpgan_parameters):
eventlet.sleep(0)
image = gfpgan.process(
image=image, strength=gfpgan_parameters["gfpgan_strength"], seed=seed
image=image, strength=gfpgan_parameters["facetool_strength"], seed=seed
)
progress["currentStatus"] = "Saving image"
@@ -464,7 +464,7 @@ def parameters_to_post_processed_image_metadata(parameters, original_image_path,
image["strength"] = parameters["upscale"][1]
elif type == "gfpgan":
image["type"] = "gfpgan"
image["strength"] = parameters["gfpgan_strength"]
image["strength"] = parameters["facetool_strength"]
else:
raise TypeError(f"Invalid type: {type}")
@@ -493,6 +493,7 @@ def parameters_to_generated_image_metadata(parameters):
"height",
"extra",
"seamless",
"hires_fix",
]
rfc_dict = {}
@@ -505,10 +506,10 @@ def parameters_to_generated_image_metadata(parameters):
postprocessing = []
# 'postprocessing' is either null or an
if "gfpgan_strength" in parameters:
if "facetool_strength" in parameters:
postprocessing.append(
{"type": "gfpgan", "strength": float(parameters["gfpgan_strength"])}
{"type": "gfpgan", "strength": float(parameters["facetool_strength"])}
)
if "upscale" in parameters:
@@ -751,7 +752,7 @@ def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters)
image=image, strength=gfpgan_parameters["strength"], seed=seed
)
postprocessing = True
all_parameters["gfpgan_strength"] = gfpgan_parameters["strength"]
all_parameters["facetool_strength"] = gfpgan_parameters["strength"]
progress["currentStatus"] = "Saving image"
socketio.emit("progressUpdate", progress)

View File

@@ -9,10 +9,12 @@
laion400m:
config: configs/latent-diffusion/txt2img-1p4B-eval.yaml
weights: models/ldm/text2img-large/model.ckpt
description: Latent Diffusion LAION400M model
width: 256
height: 256
stable-diffusion-1.4:
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/model.ckpt
description: Stable Diffusion inference model version 1.4
width: 512
height: 512

View File

@@ -6,64 +6,64 @@ title: Changelog
## v2.0.1 (13 October 2022)
- fix noisy images at high step count when using k* samplers
- dream.py script now calls invoke.py module directly rather than
- fix noisy images at high step count when using k* samplers
- dream.py script now calls invoke.py module directly rather than
via a new python process (which could break the environment)
## v2.0.0 <small>(9 October 2022)</small>
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains
for backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/INPAINTING.md">inpainting</a> and <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OUTPAINTING.md">outpainting</a>
- img2img runs on all k* samplers
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/PROMPTS.md#negative-and-unconditioned-prompts">negative prompts</a>
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/POSTPROCESS.md">post-processing of previously-generated images</a>
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for [inpainting](features/INPAINTING.md) and [outpainting](features/OUTPAINTING.md)
- img2img runs on all k* samplers
- Support for [negative prompts](features/PROMPTS.md#negative-and-unconditioned-prompts)
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for [post-processing of previously-generated images](features/POSTPROCESS.md)
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m#this-is-an-example-of-txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
- New `--hires` option on `invoke>` line allows [larger images to be created without duplicating elements](features/CLI.md#this-is-an-example-of-txt2img), at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see [Thresholding and Perlin Noise Initialization](features/OTHER.md#thresholding-and-perlin-noise-initialization-options))
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m">command-line completion behavior</a>.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved [command-line completion behavior](features/CLI.md)
New commands added:
* List command-line history with `!history`
* Search command-line history with `!search`
* Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
- List command-line history with `!history`
- Search command-line history with `!search`
- Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
## v1.14 <small>(11 September 2022)</small>
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
- Full support for Apple hardware with M1 or M2 chips.
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
- Full support for Apple hardware with M1 or M2 chips.
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
([prixt](https://github.com/prixt)).
- Inpainting support.
- Improved web server GUI.
- Lots of code and documentation cleanups.
- Inpainting support.
- Improved web server GUI.
- Lots of code and documentation cleanups.
## v1.13 <small>(3 September 2022)</small>
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
- Supports a Google Colab notebook for a standalone server running on Google hardware
- Supports a Google Colab notebook for a standalone server running on Google hardware
[Arturo Mendivil](https://github.com/artmen1516)
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
[Kevin Gibbons](https://github.com/bakkot)
- WebUI supports incremental display of in-progress images during generation
- WebUI supports incremental display of in-progress images during generation
[Kevin Gibbons](https://github.com/bakkot)
- A new configuration file scheme that allows new models (including upcoming
- A new configuration file scheme that allows new models (including upcoming
stable-diffusion-v1.5) to be added without altering the code.
([David Wager](https://github.com/maddavid12))
- Can specify --grid on invoke.py command line as the default.
- Miscellaneous internal bug and stability fixes.
- Works on M1 Apple hardware.
- Multiple bug fixes.
- Can specify --grid on invoke.py command line as the default.
- Miscellaneous internal bug and stability fixes.
- Works on M1 Apple hardware.
- Multiple bug fixes.
---
@@ -88,7 +88,7 @@ title: Changelog
Seed memory only extends back to the previous command, but will work on all images generated with the -n# switch.
- Variant generation support temporarily disabled pending more general solution.
- Created a feature branch named **yunsaki-morphing-invoke** which adds experimental support for
iteratively modifying the prompt and its parameters. Please see[ Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86)
iteratively modifying the prompt and its parameters. Please see[Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86)
for a synopsis of how this works. Note that when this feature is eventually added to the main branch, it will may be modified
significantly.

View File

@@ -1,143 +0,0 @@
---
title: Changelog
---
# :octicons-log-16: Changelog
## v1.13
- Supports a Google Colab notebook for a standalone server running on Google
hardware [Arturo Mendivil](https://github.com/artmen1516)
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
[Kevin Gibbons](https://github.com/bakkot)
- WebUI supports incremental display of in-progress images during generation
[Kevin Gibbons](https://github.com/bakkot)
- Output directory can be specified on the invoke> command line.
- The grid was displaying duplicated images when not enough images to fill the
final row [Muhammad Usama](https://github.com/SMUsamaShah)
- Can specify --grid on invoke.py command line as the default.
- Miscellaneous internal bug and stability fixes.
---
## v1.12 <small>(28 August 2022)</small>
- Improved file handling, including ability to read prompts from standard input.
(kudos to [Yunsaki](https://github.com/yunsaki)
- The web server is now integrated with the invoke.py script. Invoke by adding
--web to the invoke.py command arguments.
- Face restoration and upscaling via GFPGAN and Real-ESGAN are now automatically
enabled if the GFPGAN directory is located as a sibling to Stable Diffusion.
VRAM requirements are modestly reduced. Thanks to both
[Blessedcoolant](https://github.com/blessedcoolant) and
[Oceanswave](https://github.com/oceanswave) for their work on this.
- You can now swap samplers on the invoke> command line.
[Blessedcoolant](https://github.com/blessedcoolant)
---
## v1.11 <small>(26 August 2022)</small>
- NEW FEATURE: Support upscaling and face enhancement using the GFPGAN module.
(kudos to [Oceanswave](https://github.com/Oceanswave))
- You now can specify a seed of -1 to use the previous image's seed, -2 to use
the seed for the image generated before that, etc. Seed memory only extends
back to the previous command, but will work on all images generated with the
-n# switch.
- Variant generation support temporarily disabled pending more general solution.
- Created a feature branch named **yunsaki-morphing-invoke** which adds
experimental support for iteratively modifying the prompt and its parameters.
Please
see[ Pull Request #86](https://github.com/lstein/stable-diffusion/pull/86) for
a synopsis of how this works. Note that when this feature is eventually added
to the main branch, it will may be modified significantly.
---
## v1.10 <small>(25 August 2022)</small>
- A barebones but fully functional interactive web server for online generation
of txt2img and img2img.
---
## v1.09 <small>(24 August 2022)</small>
- A new -v option allows you to generate multiple variants of an initial image
in img2img mode. (kudos to [Oceanswave](https://github.com/Oceanswave).
- [See this discussion in the PR for examples and details on use](https://github.com/lstein/stable-diffusion/pull/71#issuecomment-1226700810))
- Added ability to personalize text to image generation (kudos to
[Oceanswave](https://github.com/Oceanswave) and
[nicolai256](https://github.com/nicolai256))
- Enabled all of the samplers from k_diffusion
---
## v1.08 <small>(24 August 2022)</small>
- Escape single quotes on the invoke> command before trying to parse. This avoids
parse errors.
- Removed instruction to get Python3.8 as first step in Windows install.
Anaconda3 does it for you.
- Added bounds checks for numeric arguments that could cause crashes.
- Cleaned up the copyright and license agreement files.
---
## v1.07 <small>(23 August 2022)</small>
- Image filenames will now never fill gaps in the sequence, but will be assigned
the next higher name in the chosen directory. This ensures that the alphabetic
and chronological sort orders are the same.
---
## v1.06 <small>(23 August 2022)</small>
- Added weighted prompt support contributed by
[xraxra](https://github.com/xraxra)
- Example of using weighted prompts to tweak a demonic figure contributed by
[bmaltais](https://github.com/bmaltais)
---
## v1.05 <small>(22 August 2022 - after the drop)</small>
- Filenames now use the following formats: 000010.95183149.png -- Two files
produced by the same command (e.g. -n2), 000010.26742632.png -- distinguished
by a different seed.
000011.455191342.01.png -- Two files produced by the same command using
000011.455191342.02.png -- a batch size>1 (e.g. -b2). They have the same seed.
000011.4160627868.grid#1-4.png -- a grid of four images (-g); the whole grid
can be regenerated with the indicated key
- It should no longer be possible for one image to overwrite another
- You can use the "cd" and "pwd" commands at the invoke> prompt to set and
retrieve the path of the output directory.
## v1.04 <small>(22 August 2022 - after the drop)</small>
- Updated README to reflect installation of the released weights.
- Suppressed very noisy and inconsequential warning when loading the frozen CLIP
tokenizer.
## v1.03 <small>(22 August 2022)</small>
- The original txt2img and img2img scripts from the CompViz repository have been
moved into a subfolder named "orig_scripts", to reduce confusion.
## v1.02 <small>(21 August 2022)</small>
- A copy of the prompt and all of its switches and options is now stored in the
corresponding image in a tEXt metadata field named "Dream". You can read the
prompt using scripts/images2prompt.py, or an image editor that allows you to
explore the full metadata. **Please run "conda env update -f environment.yaml"
to load the k_lms dependencies!!**
## v1.01 <small>(21 August 2022)</small>
- added k_lms sampling. **Please run "conda env update -f environment.yaml" to
load the k_lms dependencies!!**
- use half precision arithmetic by default, resulting in faster execution and
lower memory requirements Pass argument --full_precision to invoke.py to get
slower but more accurate image generation

View File

@@ -85,6 +85,7 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--from_file <path>` | | `None` | Read list of prompts from a file. Use `-` to read from standard input |
| `--model <modelname>` | | `stable-diffusion-1.4` | Loads model specified in configs/models.yaml. Currently one of "stable-diffusion-1.4" or "laion400m" |
| `--full_precision` | `-F` | `False` | Run in slower full-precision mode. Needed for Macintosh M1/M2 hardware and some older video cards. |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| `--web` | | `False` | Start in web server mode |
| `--host <ip addr>` | | `localhost` | Which network interface web server should listen on. Set to 0.0.0.0 to listen on any. |
| `--port <port>` | | `9090` | Which port web server should listen for requests on. |
@@ -100,9 +101,7 @@ overridden on a per-prompt basis (see [List of prompt arguments](#list-of-prompt
| `--free_gpu_mem` | | `False` | Free GPU memory after sampling, to allow image decoding and saving in low VRAM conditions |
| `--precision` | | `auto` | Set model precision, default is selected by device. Options: auto, float32, float16, autocast |
!!! warning deprecated
These arguments are deprecated but still work:
!!! warning "These arguments are deprecated but still work"
<div align="center" markdown>
@@ -131,7 +130,7 @@ from text ([txt2img](#txt2img)), to embellish an existing image or sketch
### txt2img
!!! example
!!! example ""
```bash
invoke> waterfall and rainbow -W640 -H480
@@ -144,46 +143,47 @@ Here are the invoke> command that apply to txt2img:
| Argument <img width="680" align="right"/> | Shortcut <img width="420" align="right"/> | Default <img width="480" align="right"/> | Description |
|--------------------|------------|---------------------|--------------|
| `"my prompt"` | | | Text prompt to use. The quotation marks are optional. |
| `--width <int>` | `-W<int>` | `512` | Width of generated image |
| `--height <int>` | `-H<int>` | `512` | Height of generated image |
| `--iterations <int>` | `-n<int>` | `1` | How many images to generate from this prompt |
| `--steps <int>` | `-s<int>` | `50` | How many steps of refinement to apply |
| `--cfg_scale <float>`| `-C<float>` | `7.5` | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| `--seed <int>` | `-S<int>` | `None` | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
| `--sampler <sampler>`| `-A<sampler>`| `k_lms` | Sampler to use. Use -h to get list of available samplers. |
| `--hires_fix` | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--grid` | `-g` | `False` | Turn on grid mode to return a single image combining all the images generated by this prompt |
| `--individual` | `-i` | `True` | Turn off grid mode (deprecated; leave off `--grid` instead) |
| `--outdir <path>` | `-o<path>` | `outputs/img_samples` | Temporarily change the location of these images |
| `--seamless` | | `False` | Activate seamless tiling for interesting effects |
| `--log_tokenization` | `-t` | `False` | Display a color-coded list of the parsed tokens derived from the prompt |
| `--skip_normalization`| `-x` | `False` | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| `--upscale <int> <float>` | `-U <int> <float>` | `-U 1 0.75`| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| `--gfpgan_strength <float>` | `-G <float>` | `-G0` | Fix faces using the GFPGAN algorithm; argument indicates how hard the algorithm should try (0.0-1.0) |
| `--save_original` | `-save_orig`| `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` |`-v<float>`| `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
| `--with_variations <pattern>` | `-V<pattern>`| `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| "my prompt" | | | Text prompt to use. The quotation marks are optional. |
| --width <int> | -W<int> | 512 | Width of generated image |
| --height <int> | -H<int> | 512 | Height of generated image |
| --iterations <int> | -n<int> | 1 | How many images to generate from this prompt |
| --steps <int> | -s<int> | 50 | How many steps of refinement to apply |
| --cfg_scale <float>| -C<float> | 7.5 | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| --seed <int> | -S<int> | None | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
| --hires_fix | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| `--png_compression <0-9>` | `-z<0-9>` | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| --grid | -g | False | Turn on grid mode to return a single image combining all the images generated by this prompt |
| --individual | -i | True | Turn off grid mode (deprecated; leave off --grid instead) |
| --outdir <path> | -o<path> | outputs/img_samples | Temporarily change the location of these images |
| --seamless | | False | Activate seamless tiling for interesting effects |
| --log_tokenization | -t | False | Display a color-coded list of the parsed tokens derived from the prompt |
| --skip_normalization| -x | False | Weighted subprompts will not be normalized. See [Weighted Prompts](./OTHER.md#weighted-prompts) |
| --upscale <int> <float> | -U <int> <float> | -U 1 0.75| Upscale image by magnification factor (2, 4), and set strength of upscaling (0.0-1.0). If strength not set, will default to 0.75. |
| --facetool_strength <float> | -G <float> | -G0 | Fix faces (defaults to using the GFPGAN algorithm); argument indicates how hard the algorithm should try (0.0-1.0) |
| --facetool <name> | -ft <name> | -ft gfpgan | Select face restoration algorithm to use: gfpgan, codeformer |
| --codeformer_fidelity | -cf <float> | 0.75 | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| --save_original | -save_orig| False | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| --variation <float> |-v<float>| 0.0 | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with -S<seed> and -n<int> to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
| --with_variations <pattern> | | None | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
| --save_intermediates <n> | | None | Save the image from every nth step into an "intermediates" folder inside the output directory |
!!! note
Note that the width and height of the image must be multiples of
64. You can provide different values, but they will be rounded down to
the nearest multiple of 64.
The width and height of the image must be multiples of
64. You can provide different values, but they will be rounded down to
the nearest multiple of 64.
### img2img
### This is an example of img2img:
!!! example
~~~~
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
~~~~
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -W640 -H480 --fit
```
This will modify the indicated vacation photograph by making it more
like the prompt. Results will vary greatly depending on what is in the
image. We also ask to `--fit` the image into a box no bigger than
640x480. Otherwise the image size will be identical to the provided
photo and you may run out of memory if it is large.
This will modify the indicated vacation photograph by making it more
like the prompt. Results will vary greatly depending on what is in the
image. We also ask to --fit the image into a box no bigger than
640x480. Otherwise the image size will be identical to the provided
photo and you may run out of memory if it is large.
In addition to the command-line options recognized by txt2img, img2img
accepts additional options:
@@ -196,7 +196,7 @@ accepts additional options:
### inpainting
!!! example
!!! example ""
```bash
invoke> waterfall and rainbow -I./vacation-photo.png -M./vacation-mask.png -W640 -H480 --fit
@@ -216,10 +216,14 @@ well as the --mask (-M) argument:
|--------------------|------------|---------------------|--------------|
| `--init_mask <path>` | `-M<path>` | `None` |Path to an image the same size as the initial_image, with areas for inpainting made transparent.|
## Convenience commands
# Other Commands
In addition to the standard image generation arguments, there are a
series of convenience commands that begin with !:
The CLI offers a number of commands that begin with "!".
## Postprocessing images
To postprocess a file using face restoration or upscaling, use the
`!fix` command.
### `!fix`
@@ -252,19 +256,161 @@ Some examples:
Outputs:
[1] outputs/img-samples/000017.4829112.gfpgan-00.png: !fix "outputs/img-samples/0000045.4829112.png" -s 50 -S -W 512 -H 512 -C 7.5 -A k_lms -G 0.8
# Model selection and importation
The CLI allows you to add new models on the fly, as well as to switch
among them rapidly without leaving the script.
## !models
This prints out a list of the models defined in `config/models.yaml'.
The active model is bold-faced
Example:
<pre>
laion400m not loaded <no description>
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
waifu-diffusion not loaded Waifu Diffusion v1.3
</pre>
## !switch <model>
This quickly switches from one model to another without leaving the
CLI script. `invoke.py` uses a memory caching system; once a model
has been loaded, switching back and forth is quick. The following
example shows this in action. Note how the second column of the
`!models` table changes to `cached` after a model is first loaded,
and that the long initialization step is not needed when loading
a cached model.
<pre>
invoke> !models
laion400m not loaded <no description>
<b>stable-diffusion-1.4 cached Stable Diffusion v1.4</b>
waifu-diffusion active Waifu Diffusion v1.3
invoke> !switch waifu-diffusion
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
| LatentDiffusion: Running in eps-prediction mode
| DiffusionWrapper has 859.52 M params.
| Making attention of type 'vanilla' with 512 in_channels
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
| Making attention of type 'vanilla' with 512 in_channels
| Using faster float16 precision
>> Model loaded in 18.24s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Setting Sampler to k_lms
invoke> !models
laion400m not loaded <no description>
stable-diffusion-1.4 cached Stable Diffusion v1.4
<b>waifu-diffusion active Waifu Diffusion v1.3</b>
invoke> !switch stable-diffusion-1.4
>> Caching model waifu-diffusion in system RAM
>> Retrieving model stable-diffusion-1.4 from system RAM cache
>> Setting Sampler to k_lms
invoke> !models
laion400m not loaded <no description>
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
waifu-diffusion cached Waifu Diffusion v1.3
</pre>
## !import_model <path/to/model/weights>
This command imports a new model weights file into InvokeAI, makes it
available for image generation within the script, and writes out the
configuration for the model into `config/models.yaml` for use in
subsequent sessions.
Provide `!import_model` with the path to a weights file ending in
`.ckpt`. If you type a partial path and press tab, the CLI will
autocomplete. Although it will also autocomplete to `.vae` files,
these are not currenty supported (but will be soon).
When you hit return, the CLI will prompt you to fill in additional
information about the model, including the short name you wish to use
for it with the `!switch` command, a brief description of the model,
the default image width and height to use with this model, and the
model's configuration file. The latter three fields are automatically
filled with reasonable defaults. In the example below, the bold-faced
text shows what the user typed in with the exception of the width,
height and configuration file paths, which were filled in
automatically.
Example:
<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/ model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:
Name for this model: <b>waifu-diffusion</b>
Description of this model: <b>Waifu Diffusion v1.3</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
waifu-diffusion:
config: configs/stable-diffusion/v1-inference.yaml
description: Waifu Diffusion v1.3
height: 512
weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
| LatentDiffusion: Running in eps-prediction mode
| DiffusionWrapper has 859.52 M params.
| Making attention of type 'vanilla' with 512 in_channels
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
| Making attention of type 'vanilla' with 512 in_channels
| Using faster float16 precision
invoke>
</pre>
##!edit_model <name_of_model>
The `!edit_model` command can be used to modify a model that is
already defined in `config/models.yaml`. Call it with the short
name of the model you wish to modify, and it will allow you to
modify the model's `description`, `weights` and other fields.
Example:
<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512
>> New configuration:
waifu-diffusion:
config: configs/stable-diffusion/v1-inference.yaml
description: Waifu diffusion v1.4beta
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
height: 512
width: 512
OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
=======
invoke> !fix 000017.4829112.gfpgan-00.png --embiggen 3
...lots of text...
Outputs:
[2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix "outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512 -H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25
```
# History processing
### `!fetch`
This command retrieves the generation parameters from a previously
generated image and either loads them into the command line. You may
provide either the name of a file in the current output directory, or
a full file path.
The CLI provides a series of convenient commands for reviewing previous
actions, retrieving them, modifying them, and re-running them.
```bash
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
@@ -299,7 +445,23 @@ invoke> !20
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
```
### `!search <search string>`
## !fetch
This command retrieves the generation parameters from a previously
generated image and either loads them into the command line. You may
provide either the name of a file in the current output directory, or
a full file path.
~~~
invoke> !fetch 0000015.8929913.png
# the script returns the next line, ready for editing and running:
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
~~~
Note that this command may behave unexpectedly if given a PNG file that
was not generated by InvokeAI.
### !search <search string>
This is similar to !history but it only returns lines that contain
`search string`. For example:

View File

@@ -17,15 +17,15 @@ tree on a hill with a river, nature photograph, national geographic -I./test-pic
This will take the original image shown here:
<div align="center" markdown>
<figure markdown>
<img src="https://user-images.githubusercontent.com/50542132/193946000-c42a96d8-5a74-4f8a-b4c3-5213e6cadcce.png" width=350>
</div>
</figure>
and generate a new image based on it as shown here:
<div align="center" markdown>
<figure markdown>
<img src="https://user-images.githubusercontent.com/111189/194135515-53d4c060-e994-4016-8121-7c685e281ac9.png" width=350>
</div>
</figure>
The `--init_img` (`-I`) option gives the path to the seed picture. `--strength` (`-f`) controls how much
the original will be modified, ranging from `0.0` (keep the original intact), to `1.0` (ignore the
@@ -41,11 +41,10 @@ interesting variants.
Note that the prompt makes a big difference. For example, this slight variation on the prompt produces
a very different image:
`photograph of a tree on a hill with a river`
<div align="center" markdown>
<figure markdown>
<img src="https://user-images.githubusercontent.com/111189/194135220-16b62181-b60c-4248-8989-4834a8fd7fbd.png" width=350>
</div>
<caption markdown>photograph of a tree on a hill with a river</caption>
</figure>
!!! tip
@@ -59,16 +58,13 @@ information underneath the transparent needs to be preserved, not erased.
!!! warning
`img2img` does not work properly on initial images smaller than 512x512. Please scale your
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
GPU card.
To fix this, use the `--fit` option, which downscales the initial image to fit within the box specified
by width x height:
```bash
invoke> "tree on a hill with a river, national geographic" -I./test-pictures/big-sketch.png -H512 -W512 --fit
```
**IMPORTANT ISSUE** `img2img` does not work properly on initial images smaller than 512x512. Please scale your
image to at least 512x512 before using it. Larger images are not a problem, but may run out of VRAM on your
GPU card. To fix this, use the --fit option, which downscales the initial image to fit within the box specified
by width x height:
~~~
tree on a hill with a river, national geographic -I./test-pictures/big-sketch.png -H512 -W512 --fit
~~~
## How does it actually work, though?
@@ -78,13 +74,13 @@ gaussian noise and progressively refines it over the requested number of steps,
**Let's start** by thinking about vanilla `prompt2img`, just generating an image from a prompt. If the step count is 10, then the "latent space" (Stable Diffusion's internal representation of the image) for the prompt "fire" with seed `1592514025` develops something like this:
```bash
```commandline
invoke> "fire" -s10 -W384 -H384 -S1592514025
```
<div align="center" markdown>
<figure markdown>
![latent steps](../assets/img2img/000019.steps.png)
</div>
</figure>
Put simply: starting from a frame of fuzz/static, SD finds details in each frame that it thinks look like "fire" and brings them a little bit more into focus, gradually scrubbing out the fuzz until a clear image remains.
@@ -94,28 +90,28 @@ Put simply: starting from a frame of fuzz/static, SD finds details in each frame
I want SD to draw a fire based on this hand-drawn image:
<div align="center" markdown>
<figure markdown>
![drawing of a fireplace](../assets/img2img/fire-drawing.png)
</div>
</figure>
Let's only do 10 steps, to make it easier to see what's happening. If strength is `0.7`, this is what the internal steps the algorithm has to take will look like:
<div align="center" markdown>
<figure markdown>
![gravity32](../assets/img2img/000032.steps.gravity.png)
</div>
</figure>
With strength `0.4`, the steps look more like this:
<div align="center" markdown>
<figure markdown>
![gravity30](../assets/img2img/000030.steps.gravity.png)
</div>
</figure>
Notice how much more fuzzy the starting image is for strength `0.7` compared to `0.4`, and notice also how much longer the sequence is with `0.7`:
| | strength = 0.7 | strength = 0.4 |
| -- | :--: | :--: |
| initial image that SD sees | ![step-0-32](../assets/img2img/000032.step-0.png) | ![step-0-30](../assets/img2img/000030.step-0.png) |
| steps argument to `dream>` | `-S10` | `-S10` |
| -- | -- | -- |
| initial image that SD sees | ![](../assets/img2img/000032.step-0.png) | ![](../assets/img2img/000030.step-0.png) |
| steps argument to `invoke>` | `-S10` | `-S10` |
| steps actually taken | 7 | 4 |
| latent space at each step | ![gravity32](../assets/img2img/000032.steps.gravity.png) | ![gravity30](../assets/img2img/000030.steps.gravity.png) |
| output | ![000032.1592514025](../assets/img2img/000032.1592514025.png) | ![000030.1592514025](../assets/img2img/000030.1592514025.png) |
@@ -124,11 +120,13 @@ Both of the outputs look kind of like what I was thinking of. With the strength
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `"fire"`:
```bash
If you want to try this out yourself, all of these are using a seed of `1592514025` with a width/height of `384`, step count `10`, the default sampler (`k_lms`), and the single-word prompt `fire`:
```commandline
invoke> "fire" -s10 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png --strength 0.7
```
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `invoke.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
The code for rendering intermediates is on my (damian0815's) branch [document-img2img](https://github.com/damian0815/InvokeAI/tree/document-img2img) - run `invoke.py` and check your `outputs/img-samples/intermediates` folder while generating an image.
### Compensating for the reduced step count
@@ -136,43 +134,52 @@ After putting this guide together I was curious to see how the difference would
Here's strength `0.4` (note step count `50`, which is `20 ÷ 0.4` to make sure SD does `20` steps from my image):
```bash
```commandline
invoke> "fire" -s50 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.4
```
<div align="center" markdown>
<figure markdown>
![000035.1592514025](../assets/img2img/000035.1592514025.png)
</div>
</figure>
and here is strength `0.7` (note step count `30`, which is roughly `20 ÷ 0.7` to make sure SD does `20` steps from my image):
```bash
```commandline
invoke> "fire" -s30 -W384 -H384 -S1592514025 -I /tmp/fire-drawing.png -f 0.7
```
<div align="center" markdown>
<figure markdown>
![000046.1592514025](../assets/img2img/000046.1592514025.png)
</div>
</figure>
In both cases the image is nice and clean and "finished", but because at strength `0.7` Stable Diffusion has been give so much more freedom to improve on my badly-drawn flames, they've come out looking much better. You can really see the difference when looking at the latent steps. There's more noise on the first image with strength `0.7`:
<figure markdown>
![gravity46](../assets/img2img/000046.steps.gravity.png)
</figure>
than there is for strength `0.4`:
<figure markdown>
![gravity35](../assets/img2img/000035.steps.gravity.png)
</figure>
and that extra noise gives the algorithm more choices when it is evaluating how to denoise any particular pixel in the image.
Unfortunately, it seems that `img2img` is very sensitive to the step count. Here's strength `0.7` with a step count of `29` (SD did 19 steps from my image):
<div align="center" markdown>
<figure markdown>
![gravity45](../assets/img2img/000045.1592514025.png)
</div>
</figure>
By comparing the latents we can sort of see that something got interpreted differently enough on the third or fourth step to lead to a rather different interpretation of the flames.
<figure markdown>
![gravity46](../assets/img2img/000046.steps.gravity.png)
</figure>
<figure markdown>
![gravity45](../assets/img2img/000045.steps.gravity.png)
</figure>
This is the result of a difference in the de-noising "schedule" - basically the noise has to be cleaned by a certain degree each step or the model won't "converge" on the image properly (see [stable diffusion blog](https://huggingface.co/blog/stable_diffusion) for more about that). A different step count means a different schedule, which means things get interpreted slightly differently at every step.

View File

@@ -6,21 +6,29 @@ title: Inpainting
## **Creating Transparent Regions for Inpainting**
Inpainting is really cool. To do it, you start with an initial image and use a photoeditor to make
one or more regions transparent (i.e. they have a "hole" in them). You then provide the path to this
image at the invoke> command line using the `-I` switch. Stable Diffusion will only paint within the
transparent region.
Inpainting is really cool. To do it, you start with an initial image
and use a photoeditor to make one or more regions transparent
(i.e. they have a "hole" in them). You then provide the path to this
image at the dream> command line using the `-I` switch. Stable
Diffusion will only paint within the transparent region.
There's a catch. In the current implementation, you have to prepare the initial image correctly so
that the underlying colors are preserved under the transparent area. Many imaging editing
applications will by default erase the color information under the transparent pixels and replace
them with white or black, which will lead to suboptimal inpainting. You also must take care to
export the PNG file in such a way that the color information is preserved.
There's a catch. In the current implementation, you have to prepare
the initial image correctly so that the underlying colors are
preserved under the transparent area. Many imaging editing
applications will by default erase the color information under the
transparent pixels and replace them with white or black, which will
lead to suboptimal inpainting. It often helps to apply incomplete
transparency, such as any value between 1 and 99%
If your photoeditor is erasing the underlying color information, `invoke.py` will give you a big fat
warning. If you can't find a way to coax your photoeditor to retain color values under transparent
areas, then you can combine the `-I` and `-M` switches to provide both the original unedited image
and the masked (partially transparent) image:
You also must take care to export the PNG file in such a way that the
color information is preserved. There is often an option in the export
dialog that lets you specify this.
If your photoeditor is erasing the underlying color information,
`dream.py` will give you a big fat warning. If you can't find a way to
coax your photoeditor to retain color values under transparent areas,
then you can combine the `-I` and `-M` switches to provide both the
original unedited image and the masked (partially transparent) image:
```bash
invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent.png
@@ -28,6 +36,26 @@ invoke> "man with cat on shoulder" -I./images/man.png -M./images/man-transparent
We are hoping to get rid of the need for this workaround in an upcoming release.
### Inpainting is not changing the masked region enough!
One of the things to understand about how inpainting works is that it
is equivalent to running img2img on just the masked (transparent)
area. img2img builds on top of the existing image data, and therefore
will attempt to preserve colors, shapes and textures to the best of
its ability. Unfortunately this means that if you want to make a
dramatic change in the inpainted region, for example replacing a red
wall with a blue one, the algorithm will fight you.
You have a couple of options. The first is to increase the values of
the requested steps (`-sXXX`), strength (`-f0.XX`), and/or
condition-free guidance (`-CXX.X`). If this is not working for you, a
more extreme step is to provide the `--inpaint_replace 0.X` (`-r0.X`)
option. This value ranges from 0.0 to 1.0. The higher it is the less
attention the algorithm will pay to the data underneath the masked
region. At high values this will enable you to replace colored regions
entirely, but beware that the masked region mayl not blend in with the
surrounding unmasked regions as well.
---
## Recipe for GIMP
@@ -35,10 +63,10 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
[GIMP](https://www.gimp.org/) is a popular Linux photoediting tool.
1. Open image in GIMP.
2. Layer --> Transparency --> Add Alpha Channel
3. Use lasoo tool to select region to mask
4. Choose Select --> Float to create a floating selection
5. Open the Layers toolbar (++ctrl+l++) and select "Floating Selection"
2. Layer->Transparency->Add Alpha Channel
3. Use lasso tool to select region to mask
4. Choose Select -> Float to create a floating selection
5. Open the Layers toolbar (^L) and select "Floating Selection"
6. Set opacity to a value between 0% and 99%
7. Export as PNG
8. In the export dialogue, Make sure the "Save colour values from
@@ -50,28 +78,40 @@ We are hoping to get rid of the need for this workaround in an upcoming release.
1. Open image in Photoshop
<div align="center" markdown>![step1](../assets/step1.png)</div>
<figure markdown>
![step1](../assets/step1.png)
</figure>
2. Use any of the selection tools (Marquee, Lasso, or Wand) to select the area you desire to inpaint.
<div align="center" markdown>![step2](../assets/step2.png)</div>
<figure markdown>
![step2](../assets/step2.png)
</figure>
3. Because we'll be applying a mask over the area we want to preserve, you should now select the inverse by using the ++shift+ctrl+i++ shortcut, or right clicking and using the "Select Inverse" option.
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the undrlying image, or your inpainting results will be dramatically impacted.
4. You'll now create a mask by selecting the image layer, and Masking the selection. Make sure that you don't delete any of the underlying image, or your inpainting results will be dramatically impacted.
<div align="center" markdown>![step4](../assets/step4.png)</div>
<figure markdown>
![step4](../assets/step4.png)
</figure>
5. Make sure to hide any background layers that are present. You should see the mask applied to your image layer, and the image on your canvas should display the checkered background.
<div align="center" markdown>![step5](../assets/step5.png)</div>
<figure markdown>
![step5](../assets/step5.png)
</figure>
6. Save the image as a transparent PNG by using `File`-->`Save a Copy` from the menu bar, or by using the keyboard shortcut ++alt+ctrl+s++
<div align="center" markdown>![step6](../assets/step6.png)</div>
<figure markdown>
![step6](../assets/step6.png)
</figure>
7. After following the inpainting instructions above (either through the CLI or the Web UI), marvel at your newfound ability to selectively invoke. Lookin' good!
<div align="center" markdown>![step7](../assets/step7.png)</div>
<figure markdown>
![step7](../assets/step7.png)
</figure>
8. In the export dialogue, Make sure the "Save colour values from transparent pixels" checkbox is selected.

View File

@@ -25,9 +25,9 @@ implementations.
Consider this image:
<div align="center" markdown>
<figure markdown>
![curly_woman](../assets/outpainting/curly.png)
</div>
</figure>
Pretty nice, but it's annoying that the top of her head is cut
off. She's also a bit off center. Let's fix that!
@@ -44,9 +44,9 @@ specify any number of pixels to extend. You can also abbreviate
The result looks like this:
<div align="center" markdown>
<figure markdown>
![curly_woman_outcrop](../assets/outpainting/curly-outcrop.png)
</div>
</figure>
The new image is actually slightly larger than the original (576x576,
because 64 pixels were added to the top and right sides.)
@@ -78,9 +78,9 @@ invoke> !fix images/curly.png --out_direction top 64
The result is shown here:
<div align="center" markdown>
<figure markdown>
![curly_woman_outpaint](../assets/outpainting/curly-outpaint.png)
</div>
</figure>
Although the effect is similar, there are significant differences from
outcropping:

View File

@@ -70,7 +70,7 @@ If you do not explicitly specify an upscaling_strength, it will default to 0.75.
### Face Restoration
`-G : <gfpgan_strength>`
`-G : <facetool_strength>`
This prompt argument controls the strength of the face restoration that is being
applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.

View File

@@ -47,33 +47,33 @@ original prompt:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<div align="center" markdown>
<figure markdown>
![step1](../assets/negative_prompt_walkthru/step1.png)
</div>
</figure>
That image has a woman, so if we want the horse without a rider, we can influence the image not to have a woman by putting [woman] in the prompt, like this:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<div align="center" markdown>
<figure markdown>
![step2](../assets/negative_prompt_walkthru/step2.png)
</div>
</figure>
That's nice - but say we also don't want the image to be quite so blue. We can add "blue" to the list of negative prompts, so it's now [woman blue]:
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<div align="center" markdown>
<figure markdown>
![step3](../assets/negative_prompt_walkthru/step3.png)
</div>
</figure>
Getting close - but there's no sense in having a saddle when our horse doesn't have a rider, so we'll add one more negative prompt: [woman blue saddle].
`#!bash "A fantastical translucent poney made of water and foam, ethereal, radiant, hyperalism, scottish folklore, digital painting, artstation, concept art, smooth, 8 k frostbite 3 engine, ultra detailed, art by artgerm and greg rutkowski and magali villeneuve [woman blue saddle]" -s 20 -W 512 -H 768 -C 7.5 -A k_euler_a -S 1654590180`
<div align="center" markdown>
<figure markdown>
![step4](../assets/negative_prompt_walkthru/step4.png)
</div>
</figure>
!!! notes "Notes about this feature:"
@@ -112,56 +112,56 @@ different results each time you run them.
---
<div align="center" markdown>
<figure markdown>
### "blue sphere, red cube, hybrid"
</div>
</figure>
This example doesn't use melding at all and represents the default way
of mixing concepts.
<div align="center" markdown>
<figure markdown>
![blue-sphere-red-cube-hyprid](../assets/prompt-blending/blue-sphere-red-cube-hybrid.png)
</div>
</figure>
It's interesting to see how the AI expressed the concept of "cube" as
the four quadrants of the enclosing frame. If you look closely, there
is depth there, so the enclosing frame is actually a cube.
<div align="center" markdown>
<figure markdown>
### "blue sphere:0.25 red cube:0.75 hybrid"
![blue-sphere-25-red-cube-75](../assets/prompt-blending/blue-sphere-0.25-red-cube-0.75-hybrid.png)
</div>
</figure>
Now that's interesting. We get neither a blue sphere nor a red cube,
but a red sphere embedded in a brick wall, which represents a melding
of concepts within the AI's "latent space" of semantic
representations. Where is Ludwig Wittgenstein when you need him?
<div align="center" markdown>
<figure markdown>
### "blue sphere:0.75 red cube:0.25 hybrid"
![blue-sphere-75-red-cube-25](../assets/prompt-blending/blue-sphere-0.75-red-cube-0.25-hybrid.png)
</div>
</figure>
Definitely more blue-spherey. The cube is gone entirely, but it's
really cool abstract art.
<div align="center" markdown>
<figure markdown>
### "blue sphere:0.5 red cube:0.5 hybrid"
![blue-sphere-5-red-cube-5-hybrid](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5-hybrid.png)
</div>
</figure>
Whoa...! I see blue and red, but no spheres or cubes. Is the word
"hybrid" summoning up the concept of some sort of scifi creature?
Let's find out.
<div align="center" markdown>
<figure markdown>
### "blue sphere:0.5 red cube:0.5"
![blue-sphere-5-red-cube-5](../assets/prompt-blending/blue-sphere-0.5-red-cube-0.5.png)
</div>
</figure>
Indeed, removing the word "hybrid" produces an image that is more like
what we'd expect.

View File

@@ -12,7 +12,7 @@ title: Home
-->
<div align="center" markdown>
# ^^**InvokeAI: A Stable Diffusion Toolkit**^^ :tools: <br> <small>Formally known as lstein/stable-diffusion</small>
# ^^**InvokeAI: A Stable Diffusion Toolkit**^^ :tools: <br> <small>Formerly known as lstein/stable-diffusion</small>
![project logo](assets/logo.png)
@@ -86,74 +86,57 @@ You wil need one of the following:
- At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
!!! note
!!! info
If you are have a Nvidia 10xx series card (e.g. the 1080ti), please run the invoke script in
full-precision mode as shown below.
Similarly, specify full-precision mode on Apple M1 hardware.
To run in full-precision mode, start `invoke.py` with the `--full_precision` flag:
Precision is auto configured based on the device. If however you encounter errors like
`expected type Float but found Half` or `not implemented for Half` you can try starting
`invoke.py` with the `--precision=float32` flag:
```bash
(invokeai) ~/InvokeAI$ python scripts/invoke.py --full_precision
```
## :octicons-log-16: Latest Changes
### v2.0.1 <small>(13 October 2022)</small>
- fix noisy images at high step count when using k* samplers
- dream.py script now calls invoke.py module directly rather than
via a new python process (which could break the environment)
### v2.0.0 <small>(9 October 2022)</small>
- `dream.py` script renamed `invoke.py`. A `dream.py` script wrapper remains
for backward compatibility.
for backward compatibility.
- Completely new WebGUI - launch with `python3 scripts/invoke.py --web`
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/INPAINTING.md">inpainting</a> and <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OUTPAINTING.md">outpainting</a>
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/INPAINTING/">inpainting</a> and <a href="https://invoke-ai.github.io/InvokeAI/features/OUTPAINTING/">outpainting</a>
- img2img runs on all k* samplers
- Support for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/PROMPTS.md#negative-and-unconditioned-prompts">negative prompts</a>
- Support for <a href="https://invoke-ai.github.io/InvokeAI/features/PROMPTS/#negative-and-unconditioned-prompts">negative prompts</a>
- Support for CodeFormer face reconstruction
- Support for Textual Inversion on Macintoshes
- Support in both WebGUI and CLI for <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/POSTPROCESS.md">post-processing of previously-generated images</a>
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m#this-is-an-example-of-txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- Support in both WebGUI and CLI for <a href="https://invoke-ai.github.io/InvokeAI/features/POSTPROCESS/">post-processing of previously-generated images</a>
using facial reconstruction, ESRGAN upscaling, outcropping (similar to DALL-E infinite canvas),
and "embiggen" upscaling. See the `!fix` command.
- New `--hires` option on `invoke>` line allows <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/#txt2img">larger images to be created without duplicating elements</a>, at the cost of some performance.
- New `--perlin` and `--threshold` options allow you to add and control variation
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
during image generation (see <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/OTHER.md#thresholding-and-perlin-noise-initialization-options">Thresholding and Perlin Noise Initialization</a>
- Extensive metadata now written into PNG files, allowing reliable regeneration of images
and tweaking of previous settings.
and tweaking of previous settings.
- Command-line completion in `invoke.py` now works on Windows, Linux and Mac platforms.
- Improved <a href="https://github.com/invoke-ai/InvokeAI/blob/main/docs/features/CLI.m">command-line completion behavior</a>.
New commands added:
* List command-line history with `!history`
* Search command-line history with `!search`
* Clear history with `!clear`
- Improved <a href="https://invoke-ai.github.io/InvokeAI/features/CLI/">command-line completion behavior</a>.
New commands added:
- List command-line history with `!history`
- Search command-line history with `!search`
- Clear history with `!clear`
- Deprecated `--full_precision` / `-F`. Simply omit it and `invoke.py` will auto
configure. To switch away from auto use the new flag like `--precision=float32`.
configure. To switch away from auto use the new flag like `--precision=float32`.
### v1.14 <small>(11 September 2022)</small>
- Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
- Full support for Apple hardware with M1 or M2 chips.
- Add "seamless mode" for circular tiling of image. Generates beautiful effects.
([prixt](https://github.com/prixt)).
- Inpainting support.
- Improved web server GUI.
- Lots of code and documentation cleanups.
### v1.13 <small>(3 September 2022</small>
- Support image variations (see [VARIATIONS](features/VARIATIONS.md)
([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
- Supports a Google Colab notebook for a standalone server running on Google hardware
[Arturo Mendivil](https://github.com/artmen1516)
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling
[Kevin Gibbons](https://github.com/bakkot)
- WebUI supports incremental display of in-progress images during generation
[Kevin Gibbons](https://github.com/bakkot)
- A new configuration file scheme that allows new models (including upcoming stable-diffusion-v1.5)
to be added without altering the code. ([David Wager](https://github.com/maddavid12))
- Can specify --grid on invoke.py command line as the default.
- Miscellaneous internal bug and stability fixes.
- Works on M1 Apple hardware.
- Multiple bug fixes.
For older changelogs, please visit the **[CHANGELOG](features/CHANGELOG.md)**.
For older changelogs, please visit the **[CHANGELOG](CHANGELOG.md#v114-11-september-2022)**.
## :material-target: Troubleshooting

View File

@@ -51,7 +51,15 @@ While that is downloading, open Terminal and run the following commands one at a
brew install cmake protobuf rust
```
Then choose the kind of your Mac and install miniconda:
Then clone the InvokeAI repository:
```bash title="Clone the InvokeAI repository:
# Clone the Invoke AI repo
git clone https://github.com/invoke-ai/InvokeAI.git
cd InvokeAI
```
Choose the appropriate architecture for your system and install miniconda:
=== "M1 arm64"
@@ -81,7 +89,7 @@ While that is downloading, open Terminal and run the following commands one at a
!!! todo "Clone the Invoke AI repo"
```bash
```bash
git clone https://github.com/invoke-ai/InvokeAI.git
cd InvokeAI
```
@@ -178,7 +186,7 @@ conda install \
pytorch \
torchvision \
-c pytorch-nightly \
-n ldm
-n invokeai
```
If it takes forever to run `conda env create -f environment-mac.yml`, try this:
@@ -202,11 +210,11 @@ conda update \
---
### "No module named cv2", torch, 'ldm', 'transformers', 'taming', etc
### "No module named cv2", torch, 'invokeai', 'transformers', 'taming', etc
There are several causes of these errors:
1. Did you remember to `conda activate ldm`? If your terminal prompt begins with
1. Did you remember to `conda activate invokeai`? If your terminal prompt begins with
"(invokeai)" then you activated it. If it begins with "(base)" or something else
you haven't.
@@ -221,17 +229,17 @@ There are several causes of these errors:
```bash
conda deactivate
conda env remove -n ldm
conda env remove -n invokeai
conda env create -f environment-mac.yml
```
4. If you have activated the ldm virtual environment and tried rebuilding it,
4. If you have activated the invokeai virtual environment and tried rebuilding it,
maybe the problem could be that I have something installed that you don't and
you'll just need to manually install it. Make sure you activate the virtual
environment so it installs there instead of globally.
```bash
conda activate ldm
conda activate invokeai
pip install <package name>
```
@@ -290,11 +298,11 @@ output of `python3 -V` and `python -V`.
```bash
(invokeai) % which python
/Users/name/miniforge3/envs/ldm/bin/python
/Users/name/miniforge3/envs/invokeai/bin/python
```
The above is what you'll see if you have miniforge and correctly activated the
ldm environment, while usingd the standalone setup instructions above.
invokeai environment, while usingd the standalone setup instructions above.
If you otherwise installed via pyenv, you will get this result:
@@ -474,7 +482,7 @@ this issue too. I should probably test it.
### "view size is not compatible with input tensor's size and stride"
```bash
File "/opt/anaconda3/envs/ldm/lib/python3.10/site-packages/torch/nn/functional.py", line 2511, in layer_norm
File "/opt/anaconda3/envs/invokeai/lib/python3.10/site-packages/torch/nn/functional.py", line 2511, in layer_norm
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
```
@@ -510,7 +518,7 @@ Generating: 0%| |
loc("mps_add"("(mpsFileLoc): /AppleInternal/Library/BuildRoots/20d6c351-ee94-11ec-bcaf-7247572f23b4/Library/Caches/com.apple.xbs/Sources/MetalPerformanceShadersGraph/mpsgraph/MetalPerformanceShadersGraph/Core/Files/MPSGraphUtilities.mm":219:0)): error: input types 'tensor<2x1280xf32>' and 'tensor<*xf16>' are not broadcast compatible
LLVM ERROR: Failed to infer result type(s).
Abort trap: 6
/Users/[...]/opt/anaconda3/envs/ldm/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
/Users/[...]/opt/anaconda3/envs/invokeai/lib/python3.9/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
```

View File

@@ -3,55 +3,53 @@ channels:
- pytorch
- conda-forge
dependencies:
- python==3.9.13
- pip==22.2.2
- python>=3.9, <3.10
- pip>=22.2
# pytorch left unpinned
- pytorch==1.12.1
- torchvision==0.13.1
- pytorch
- torchvision
# I suggest to keep the other deps sorted for convenience.
# To determine what the latest versions should be, run:
#
# ```shell
# sed -E 's/ldm/ldm-updated/;20,99s/- ([^=]+)==.+/- \1/' environment-mac.yml > environment-mac-updated.yml
# CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac-updated.yml && conda list -n ldm-updated | awk ' {print " - " $1 "==" $2;} '
# sed -E 's/invokeai/invokeai-updated/;20,99s/- ([^=]+)==.+/- \1/' environment-mac.yml > environment-mac-updated.yml
# CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac-updated.yml && conda list -n invokeai-updated | awk ' {print " - " $1 "==" $2;} '
# ```
- albumentations==1.2.1
- coloredlogs==15.0.1
- einops==0.4.1
- grpcio==1.46.4
- humanfriendly==10.0
- imageio==2.21.2
- imageio-ffmpeg==0.4.7
- imgaug==0.4.0
- kornia==0.6.7
- mpmath==1.2.1
- nomkl=1.0
- numpy==1.23.2
- omegaconf==2.1.1
- openh264==2.3.0
- onnx==1.12.0
- onnxruntime==1.12.1
- pudb==2022.1
- pytorch-lightning==1.7.5
- scipy==1.9.1
- streamlit==1.12.2
- sympy==1.10.1
- tensorboard==2.10.0
- torchmetrics==0.9.3
- albumentations
- coloredlogs
- einops
- grpcio
- humanfriendly
- imageio
- imageio-ffmpeg
- imgaug
- kornia
- mpmath
- nomkl
- numpy
- omegaconf
- openh264
- onnx
- onnxruntime
- pudb
- pytorch-lightning
- scipy
- streamlit
- sympy
- tensorboard
- torchmetrics
- pip:
- flask==2.1.3
- flask_socketio==5.3.0
- flask_cors==3.0.10
- dependency_injector==4.40.0
- eventlet==0.33.1
- opencv-python==4.6.0
- protobuf==3.19.5
- protobuf==3.19.6
- realesrgan==0.2.5.0
- send2trash==1.8.0
- test-tube==0.7.5
- transformers==4.21.2
- transformers==4.21.3
- torch-fidelity==0.3.0
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip

View File

@@ -4,18 +4,18 @@ channels:
- defaults
dependencies:
- python>=3.9
- pip=20.3
- cudatoolkit=11.3
- pytorch=1.11.0
- torchvision=0.12.0
- numpy=1.19.2
- pip>=22.2
- cudatoolkit
- pytorch
- torchvision
- numpy
- pip:
- albumentations==0.4.3
- opencv-python==4.5.5.64
- pudb==2019.2
- imageio==2.9.0
- imageio-ffmpeg==0.4.2
- pytorch-lightning==1.4.2
- pytorch-lightning==1.7.7
- omegaconf==2.1.1
- realesrgan==0.2.5.0
- test-tube>=0.7.5
@@ -25,8 +25,8 @@ dependencies:
- einops==0.3.0
- pyreadline3
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
- transformers==4.21.3
- torchmetrics==0.7.0
- flask==2.1.3
- flask_socketio==5.3.0
- flask_cors==3.0.10

File diff suppressed because one or more lines are too long

483
frontend/dist/assets/index.ea68b5f5.js vendored Normal file

File diff suppressed because one or more lines are too long

View File

@@ -6,7 +6,7 @@
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>InvokeAI - A Stable Diffusion Toolkit</title>
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
<script type="module" crossorigin src="/assets/index.989a0ca2.js"></script>
<script type="module" crossorigin src="/assets/index.ea68b5f5.js"></script>
<link rel="stylesheet" href="/assets/index.58175ea1.css">
</head>

View File

@@ -50,6 +50,7 @@ export const PARAMETERS: { [key: string]: string } = {
maskPath: 'Initial Image Mask',
shouldFitToWidthHeight: 'Fit Initial Image',
seamless: 'Seamless Tiling',
hiresFix: 'High Resolution Optimizations',
};
export const NUMPY_RAND_MIN = 0;

View File

@@ -14,10 +14,13 @@ export enum Feature {
FACE_CORRECTION,
IMAGE_TO_IMAGE,
}
/** For each tooltip in the UI, the below feature definitions & props will pull relevant information into the tooltip.
*
* To-do: href & GuideImages are placeholders, and are not currently utilized, but will be updated (along with the tooltip UI) as feature and UI development and we get a better idea on where things "forever homes" will be .
*/
export const FEATURES: Record<Feature, FeatureHelpInfo> = {
[Feature.PROMPT]: {
text: 'This field will take all prompt text, including both content and stylistic terms. CLI Commands will not work in the prompt.',
text: 'This field will take all prompt text, including both content and stylistic terms. While weights can be included in the prompt, standard CLI Commands/parameters will not work.',
href: 'link/to/docs/feature3.html',
guideImage: 'asset/path.gif',
},
@@ -27,17 +30,16 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
guideImage: 'asset/path.gif',
},
[Feature.OTHER]: {
text: 'Additional Options',
href: 'link/to/docs/feature3.html',
text: 'These options will enable alternative processing modes for Invoke. Seamless tiling will work to generate repeating patterns in the output. High Resolution Optimization performs a two-step generation cycle, and should be used at higher resolutions when you desire a more coherent image/composition. ', href: 'link/to/docs/feature3.html',
guideImage: 'asset/path.gif',
},
[Feature.SEED]: {
text: 'Seed values provide an initial set of noise which guide the denoising process.',
text: 'Seed values provide an initial set of noise which guide the denoising process, and can be randomized or populated with a seed from a previous invocation. The Threshold feature can be used to mitigate undesirable outcomes at higher CFG values (try between 0-10), and Perlin can be used to add Perlin noise into the denoising process - Both serve to add variation to your outputs. ',
href: 'link/to/docs/feature3.html',
guideImage: 'asset/path.gif',
},
[Feature.VARIATIONS]: {
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed.',
text: 'Try a variation with an amount of between 0 and 1 to change the output image for the set seed - Interesting variations on the seed are found between 0.1 and 0.3.',
href: 'link/to/docs/feature3.html',
guideImage: 'asset/path.gif',
},
@@ -47,8 +49,8 @@ export const FEATURES: Record<Feature, FeatureHelpInfo> = {
guideImage: 'asset/path.gif',
},
[Feature.FACE_CORRECTION]: {
text: 'Using GFPGAN or CodeFormer, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs.',
href: 'link/to/docs/feature2.html',
text: 'Using GFPGAN, Face Correction will attempt to identify faces in outputs, and correct any defects/abnormalities. Higher values will apply a stronger corrective pressure on outputs, resulting in more appealing faces (with less respect for accuracy of the original subject).',
href: 'link/to/docs/feature3.html',
guideImage: 'asset/path.gif',
},
[Feature.IMAGE_TO_IMAGE]: {

View File

@@ -55,6 +55,7 @@ export declare type CommonGeneratedImageMetadata = {
width: number;
height: number;
seamless: boolean;
hires_fix: boolean;
extra: null | Record<string, never>; // Pending development of RFC #266
};

View File

@@ -76,7 +76,7 @@ const makeSocketIOEmitters = (
const { gfpganStrength } = getState().options;
const gfpganParameters = {
gfpgan_strength: gfpganStrength,
facetool_strength: gfpganStrength,
};
socketio.emit('runPostprocessing', imageToProcess, {
type: 'gfpgan',

View File

@@ -29,6 +29,7 @@ export const frontendToBackendParameters = (
sampler,
seed,
seamless,
hiresFix,
shouldUseInitImage,
img2imgStrength,
initialImagePath,
@@ -59,6 +60,7 @@ export const frontendToBackendParameters = (
sampler_name: sampler,
seed,
seamless,
hires_fix: hiresFix,
progress_images: shouldDisplayInProgress,
};
@@ -123,10 +125,11 @@ export const backendToFrontendParameters = (parameters: {
sampler_name,
seed,
seamless,
hires_fix,
progress_images,
variation_amount,
with_variations,
gfpgan_strength,
facetool_strength,
upscale,
init_img,
init_mask,
@@ -151,9 +154,9 @@ export const backendToFrontendParameters = (parameters: {
}
}
if (gfpgan_strength > 0) {
if (facetool_strength > 0) {
options.shouldRunGFPGAN = true;
options.gfpganStrength = gfpgan_strength;
options.gfpganStrength = facetool_strength;
}
if (upscale) {
@@ -185,6 +188,7 @@ export const backendToFrontendParameters = (parameters: {
options.sampler = sampler_name;
options.seed = seed;
options.seamless = seamless;
options.hiresFix = hires_fix;
}
return options;

View File

@@ -16,11 +16,13 @@ import {
setCfgScale,
setGfpganStrength,
setHeight,
setHiresFix,
setImg2imgStrength,
setInitialImagePath,
setMaskPath,
setPrompt,
setSampler,
setSeamless,
setSeed,
setSeedWeights,
setShouldFitToWidthHeight,
@@ -116,6 +118,7 @@ const ImageMetadataViewer = memo(
steps,
cfg_scale,
seamless,
hires_fix,
width,
height,
strength,
@@ -214,7 +217,14 @@ const ImageMetadataViewer = memo(
<MetadataItem
label="Seamless"
value={seamless}
onClick={() => dispatch(setWidth(seamless))}
onClick={() => dispatch(setSeamless(seamless))}
/>
)}
{hires_fix && (
<MetadataItem
label="High Resolution Optimization"
value={hires_fix}
onClick={() => dispatch(setHiresFix(hires_fix))}
/>
)}
{width && (

View File

@@ -0,0 +1,32 @@
import { Flex } from '@chakra-ui/react';
import { RootState } from '../../app/store';
import { useAppDispatch, useAppSelector } from '../../app/store';
import { setHiresFix } from './optionsSlice';
import { ChangeEvent } from 'react';
import IAISwitch from '../../common/components/IAISwitch';
/**
* Image output options. Includes width, height, seamless tiling.
*/
const HiresOptions = () => {
const dispatch = useAppDispatch();
const hiresFix = useAppSelector((state: RootState) => state.options.hiresFix);
const handleChangeHiresFix = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setHiresFix(e.target.checked));
return (
<Flex gap={2} direction={'column'}>
<IAISwitch
label="High Res Optimization"
fontSize={'md'}
isChecked={hiresFix}
onChange={handleChangeHiresFix}
/>
</Flex>
);
};
export default HiresOptions;

View File

@@ -1,29 +1,14 @@
import { Flex } from '@chakra-ui/react';
import { RootState } from '../../app/store';
import { useAppDispatch, useAppSelector } from '../../app/store';
import { setSeamless } from './optionsSlice';
import { ChangeEvent } from 'react';
import IAISwitch from '../../common/components/IAISwitch';
/**
* Image output options. Includes width, height, seamless tiling.
*/
import HiresOptions from './HiresOptions';
import SeamlessOptions from './SeamlessOptions';
const OutputOptions = () => {
const dispatch = useAppDispatch();
const seamless = useAppSelector((state: RootState) => state.options.seamless);
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setSeamless(e.target.checked));
return (
<Flex gap={2} direction={'column'}>
<IAISwitch
label="Seamless tiling"
fontSize={'md'}
isChecked={seamless}
onChange={handleChangeSeamless}
/>
<SeamlessOptions />
<HiresOptions />
</Flex>
);
};

View File

@@ -0,0 +1,28 @@
import { Flex } from '@chakra-ui/react';
import { RootState } from '../../app/store';
import { useAppDispatch, useAppSelector } from '../../app/store';
import { setSeamless } from './optionsSlice';
import { ChangeEvent } from 'react';
import IAISwitch from '../../common/components/IAISwitch';
const SeamlessOptions = () => {
const dispatch = useAppDispatch();
const seamless = useAppSelector((state: RootState) => state.options.seamless);
const handleChangeSeamless = (e: ChangeEvent<HTMLInputElement>) =>
dispatch(setSeamless(e.target.checked));
return (
<Flex gap={2} direction={'column'}>
<IAISwitch
label="Seamless tiling"
fontSize={'md'}
isChecked={seamless}
onChange={handleChangeSeamless}
/>
</Flex>
);
};
export default SeamlessOptions;

View File

@@ -25,6 +25,7 @@ export interface OptionsState {
initialImagePath: string | null;
maskPath: string;
seamless: boolean;
hiresFix: boolean;
shouldFitToWidthHeight: boolean;
shouldGenerateVariations: boolean;
variationAmount: number;
@@ -50,6 +51,7 @@ const initialOptionsState: OptionsState = {
perlin: 0,
seed: 0,
seamless: false,
hiresFix: false,
shouldUseInitImage: false,
img2imgStrength: 0.75,
initialImagePath: null,
@@ -138,6 +140,9 @@ export const optionsSlice = createSlice({
setSeamless: (state, action: PayloadAction<boolean>) => {
state.seamless = action.payload;
},
setHiresFix: (state, action: PayloadAction<boolean>) => {
state.hiresFix = action.payload;
},
setShouldFitToWidthHeight: (state, action: PayloadAction<boolean>) => {
state.shouldFitToWidthHeight = action.payload;
},
@@ -180,6 +185,7 @@ export const optionsSlice = createSlice({
threshold,
perlin,
seamless,
hires_fix,
width,
height,
strength,
@@ -256,6 +262,7 @@ export const optionsSlice = createSlice({
if (perlin) state.perlin = perlin;
if (typeof perlin === 'undefined') state.perlin = 0;
if (typeof seamless === 'boolean') state.seamless = seamless;
if (typeof hires_fix === 'boolean') state.hiresFix = hires_fix;
if (width) state.width = width;
if (height) state.height = height;
},
@@ -301,6 +308,7 @@ export const {
setSampler,
setSeed,
setSeamless,
setHiresFix,
setImg2imgStrength,
setGfpganStrength,
setUpscalingLevel,

View File

@@ -33,6 +33,25 @@ from ldm.invoke.args import metadata_from_png
from ldm.invoke.image_util import InitImageResizer
from ldm.invoke.devices import choose_torch_device, choose_precision
from ldm.invoke.conditioning import get_uc_and_c
from ldm.invoke.model_cache import ModelCache
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
def new_func(*args, **kw):
device = kw.get("device", "mps")
kw["device"]="cpu"
return orig(*args, **kw).to(device)
return new_func
return orig
torch.rand = fix_func(torch.rand)
torch.rand_like = fix_func(torch.rand_like)
torch.randn = fix_func(torch.randn)
torch.randn_like = fix_func(torch.randn_like)
torch.randint = fix_func(torch.randint)
torch.randint_like = fix_func(torch.randint_like)
torch.bernoulli = fix_func(torch.bernoulli)
torch.multinomial = fix_func(torch.multinomial)
def fix_func(orig):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
@@ -113,7 +132,7 @@ gr = Generate(
# these are deprecated - use conf and model instead
weights = path to model weights ('models/ldm/stable-diffusion-v1/model.ckpt')
config = path to model configuraiton ('configs/stable-diffusion/v1-inference.yaml')
config = path to model configuration ('configs/stable-diffusion/v1-inference.yaml')
)
"""
@@ -141,12 +160,11 @@ class Generate:
esrgan=None,
free_gpu_mem=False,
):
models = OmegaConf.load(conf)
mconfig = models[model]
self.weights = mconfig.weights if weights is None else weights
self.config = mconfig.config if config is None else config
self.height = mconfig.height
self.width = mconfig.width
mconfig = OmegaConf.load(conf)
self.model_name = model
self.height = None
self.width = None
self.model_cache = None
self.iterations = 1
self.steps = 50
self.cfg_scale = 7.5
@@ -155,8 +173,10 @@ class Generate:
self.precision = precision
self.strength = 0.75
self.seamless = False
self.hires_fix = False
self.embedding_path = embedding_path
self.model = None # empty for now
self.model_hash = None
self.sampler = None
self.device = None
self.session_peakmem = None
@@ -167,11 +187,13 @@ class Generate:
self.codeformer = codeformer
self.esrgan = esrgan
self.free_gpu_mem = free_gpu_mem
self.size_matters = True # used to warn once about large image sizes and VRAM
# Note that in previous versions, there was an option to pass the
# device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated.
device_type = choose_torch_device()
print(f'>> Using device_type {device_type}')
self.device = torch.device(device_type)
if full_precision:
if self.precision != 'auto':
@@ -182,6 +204,9 @@ class Generate:
if self.precision == 'auto':
self.precision = choose_precision(self.device)
# model caching system for fast switching
self.model_cache = ModelCache(mconfig,self.device,self.precision)
# for VRAM usage statistics
self.session_peakmem = torch.cuda.max_memory_allocated() if self._has_cuda else None
transformers.logging.set_verbosity_error()
@@ -249,10 +274,12 @@ class Generate:
embiggen_tiles = None,
# these are specific to GFPGAN/ESRGAN
facetool = None,
gfpgan_strength = 0,
facetool_strength = 0,
codeformer_fidelity = None,
save_original = False,
upscale = None,
# this is specific to inpainting and causes more extreme inpainting
inpaint_replace = 0.0,
# Set this True to handle KeyboardInterrupt internally
catch_interrupts = False,
hires_fix = False,
@@ -269,9 +296,10 @@ class Generate:
height // height of image, in multiples of 64 (512)
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
seamless // whether the generated image should tile
hires_fix // whether the Hires Fix should be applied during generation
init_img // path to an initial image
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
facetool_strength // strength for GFPGAN/CodeFormer. 0.0 preserves image exactly, 1.0 replaces it completely
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
step_callback // a function or method that will be called each step
image_callback // a function or method that will be called each time an image is generated
@@ -302,6 +330,7 @@ class Generate:
width = width or self.width
height = height or self.height
seamless = seamless or self.seamless
hires_fix = hires_fix or self.hires_fix
cfg_scale = cfg_scale or self.cfg_scale
ddim_eta = ddim_eta or self.ddim_eta
iterations = iterations or self.iterations
@@ -312,7 +341,12 @@ class Generate:
with_variations = [] if with_variations is None else with_variations
# will instantiate the model or return it from cache
model = self.load_model()
model = self.set_model(self.model_name)
# self.width and self.height are set by set_model()
# to the width and height of the image training set
width = width or self.width
height = height or self.height
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
@@ -344,6 +378,7 @@ class Generate:
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
width, height, _ = self._resolution_check(width, height, log=True)
assert inpaint_replace >=0.0 and inpaint_replace <= 1.0,'inpaint_replace must be between 0.0 and 1.0'
if sampler_name and (sampler_name != self.sampler_name):
self.sampler_name = sampler_name
@@ -371,6 +406,8 @@ class Generate:
height,
fit=fit,
)
# TODO: Hacky selection of operation to perform. Needs to be refactored.
if (init_image is not None) and (mask_image is not None):
generator = self._make_inpaint()
elif (embiggen != None or embiggen_tiles != None):
@@ -385,6 +422,7 @@ class Generate:
generator.set_variation(
self.seed, variation_amount, with_variations
)
results = generator.generate(
prompt,
iterations=iterations,
@@ -406,6 +444,7 @@ class Generate:
perlin=perlin,
embiggen=embiggen,
embiggen_tiles=embiggen_tiles,
inpaint_replace=inpaint_replace,
)
if init_color:
@@ -413,11 +452,11 @@ class Generate:
reference_image_path = init_color,
image_callback = image_callback)
if upscale is not None or gfpgan_strength > 0:
if upscale is not None or facetool_strength > 0:
self.upscale_and_reconstruct(results,
upscale = upscale,
facetool = facetool,
strength = gfpgan_strength,
strength = facetool_strength,
codeformer_fidelity = codeformer_fidelity,
save_original = save_original,
image_callback = image_callback)
@@ -460,7 +499,7 @@ class Generate:
self,
image_path,
tool = 'gfpgan', # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen'
gfpgan_strength = 0.0,
facetool_strength = 0.0,
codeformer_fidelity = 0.75,
upscale = None,
out_direction = None,
@@ -507,11 +546,11 @@ class Generate:
facetool = 'codeformer'
elif tool == 'upscale':
facetool = 'gfpgan' # but won't be run
gfpgan_strength = 0
facetool_strength = 0
return self.upscale_and_reconstruct(
[[image,seed]],
facetool = facetool,
strength = gfpgan_strength,
strength = facetool_strength,
codeformer_fidelity = codeformer_fidelity,
save_original = save_original,
upscale = upscale,
@@ -602,8 +641,9 @@ class Generate:
# this returns a torch tensor
init_mask = self._create_init_mask(image, width, height, fit=fit)
if (image.width * image.height) > (self.width * self.height):
if (image.width * image.height) > (self.width * self.height) and self.size_matters:
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
self.size_matters = False
init_image = self._create_init_image(image,width,height,fit=fit) # this returns a torch tensor
@@ -653,29 +693,40 @@ class Generate:
return self.generators['inpaint']
def load_model(self):
"""Load and initialize the model from configuration variables passed at object creation time"""
if self.model is None:
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
try:
model = self._load_model_from_config(self.config, self.weights)
if self.embedding_path is not None:
model.embedding_manager.load(
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
)
self.model = model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
self.model.cond_stage_model.device = self.device
except AttributeError as e:
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
raise SystemExit from e
'''
preload model identified in self.model_name
'''
self.set_model(self.model_name)
self._set_sampler()
def set_model(self,model_name):
"""
Given the name of a model defined in models.yaml, will load and initialize it
and return the model object. Previously-used models will be cached.
"""
if self.model_name == model_name and self.model is not None:
return self.model
for m in self.model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m._orig_padding_mode = m.padding_mode
model_data = self.model_cache.get_model(model_name)
if model_data is None or len(model_data) == 0:
print(f'** Model switch failed **')
return self.model
self.model = model_data['model']
self.width = model_data['width']
self.height= model_data['height']
self.model_hash = model_data['hash']
# uncache generators so they pick up new models
self.generators = {}
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path is not None:
model.embedding_manager.load(
self.embedding_path, self.precision == 'float32' or self.precision == 'autocast'
)
self._set_sampler()
self.model_name = model_name
return self.model
def correct_colors(self,
@@ -779,53 +830,6 @@ class Generate:
print(msg)
# Be warned: config is the path to the model config file, not the invoke conf file!
# Also note that we can get config and weights from self, so why do we need to
# pass them as args?
def _load_model_from_config(self, config, weights):
print(f'>> Loading model from {weights}')
# for usage statistics
device_type = choose_torch_device()
if device_type == 'cuda':
torch.cuda.reset_peak_memory_stats()
tic = time.time()
# this does the work
c = OmegaConf.load(config)
with open(weights,'rb') as f:
weight_bytes = f.read()
self.model_hash = self._cached_sha256(weights,weight_bytes)
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
del weight_bytes
sd = pl_sd['state_dict']
model = instantiate_from_config(c.model)
m, u = model.load_state_dict(sd, strict=False)
if self.precision == 'float16':
print('>> Using faster float16 precision')
model.to(torch.float16)
else:
print('>> Using more accurate float32 precision')
model.to(self.device)
model.eval()
# usage statistics
toc = time.time()
print(
f'>> Model loaded in', '%4.2fs' % (toc - tic)
)
if self._has_cuda():
print(
'>> Max VRAM used to load the model:',
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
'\n>> Current VRAM usage:'
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
)
return model
def _load_img(self, img, width, height)->Image:
if isinstance(img, Image.Image):
image = img
@@ -969,26 +973,6 @@ class Generate:
def _has_cuda(self):
return self.device.type == 'cuda'
def _cached_sha256(self,path,data):
dirname = os.path.dirname(path)
basename = os.path.basename(path)
base, _ = os.path.splitext(basename)
hashpath = os.path.join(dirname,base+'.sha256')
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
with open(hashpath) as f:
hash = f.read()
return hash
print(f'>> Calculating sha256 hash of weights file')
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
with open(hashpath,'w') as f:
f.write(hash)
return hash
def write_intermediate_images(self,modulus,path):
counter = -1
if not os.path.exists(path):

View File

@@ -239,12 +239,17 @@ class Args(object):
switches.append(f'--init_color {a["init_color"]}')
if a['strength'] and a['strength']>0:
switches.append(f'-f {a["strength"]}')
if a['inpaint_replace']:
switches.append(f'--inpaint_replace')
else:
switches.append(f'-A {a["sampler_name"]}')
# gfpgan-specific parameters
if a['gfpgan_strength']:
switches.append(f'-G {a["gfpgan_strength"]}')
# facetool-specific parameters, only print if running facetool
if a['facetool_strength']:
switches.append(f'-G {a["facetool_strength"]}')
switches.append(f'-ft {a["facetool"]}')
if a["facetool"] == "codeformer":
switches.append(f'-cf {a["codeformer_fidelity"]}')
if a['outcrop']:
switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}')
@@ -262,11 +267,12 @@ class Args(object):
# outpainting parameters
if a['out_direction']:
switches.append(f'-D {" ".join([str(u) for u in a["out_direction"]])}')
# LS: slight semantic drift which needs addressing in the future:
# 1. Variations come out of the stored metadata as a packed string with the keyword "variations"
# 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and
# in broken-out form. Variation (1) should be changed to comply with (2)
if a['with_variations']:
if a['with_variations'] and len(a['with_variations'])>0:
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
switches.append(f'-V {formatted_variations}')
if 'variations' in a and len(a['variations'])>0:
@@ -372,6 +378,14 @@ class Args(object):
default='stable-diffusion-1.4',
help='Indicates which diffusion model to load. (currently "stable-diffusion-1.4" (default) or "laion400m")',
)
model_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,9),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
)
model_group.add_argument(
'--sampler',
'-A',
@@ -643,6 +657,14 @@ class Args(object):
dest='save_intermediates',
help='Save every nth intermediate image into an "intermediates" directory within the output directory'
)
render_group.add_argument(
'--png_compression','-z',
type=int,
default=6,
choices=range(0,10),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
)
img2img_group.add_argument(
'-I',
'--init_img',
@@ -690,6 +712,13 @@ class Args(object):
metavar=('direction','pixels'),
help='Outcrop the image with one or more direction/pixel pairs: -c top 64 bottom 128 left 64 right 64',
)
img2img_group.add_argument(
'-r',
'--inpaint_replace',
type=float,
default=0.0,
help='when inpainting, adjust how aggressively to replace the part of the picture under the mask, from 0.0 (a gentle merge) to 1.0 (replace entirely)',
)
postprocessing_group.add_argument(
'-ft',
'--facetool',
@@ -699,6 +728,7 @@ class Args(object):
)
postprocessing_group.add_argument(
'-G',
'--facetool_strength',
'--gfpgan_strength',
type=float,
help='The strength at which to apply the face restoration to the result.',
@@ -795,7 +825,8 @@ def metadata_dumps(opt,
# remove any image keys not mentioned in RFC #266
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength']
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength',
'init_img','init_mask']
rfc_dict ={}
@@ -816,11 +847,15 @@ def metadata_dumps(opt,
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
rfc_dict['variations'] = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations] if opt.with_variations else []
# if variations are present then we need to replace 'seed' with 'orig_seed'
if hasattr(opt,'first_seed'):
rfc_dict['seed'] = opt.first_seed
if opt.init_img:
rfc_dict['type'] = 'img2img'
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
rfc_dict['sampler'] = 'ddim' # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
rfc_dict['type'] = 'img2img'
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
rfc_dict['inpaint_replace'] = opt.inpaint_replace
else:
rfc_dict['type'] = 'txt2img'
rfc_dict.pop('strength')

View File

@@ -5,6 +5,7 @@ including img2img, txt2img, and inpaint
import torch
import numpy as np
import random
import os
from tqdm import tqdm, trange
from PIL import Image
from einops import rearrange, repeat
@@ -168,3 +169,14 @@ class Generator():
return v2
# this is a handy routine for debugging use. Given a generated sample,
# convert it into a PNG image and store it at the indicated path
def save_sample(self, sample, filepath):
image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or '.'
if not os.path.exists(dirname):
print(f'** creating directory {dirname}')
os.makedirs(dirname, exist_ok=True)
image.save(filepath,'PNG')

View File

@@ -18,7 +18,7 @@ class Inpaint(Img2Img):
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,mask_image,strength,
step_callback=None,**kwargs):
step_callback=None,inpaint_replace=False,**kwargs):
"""
Returns a function returning an image derived from the prompt and
the initial image + mask. Return value depends on the seed at
@@ -58,6 +58,14 @@ class Inpaint(Img2Img):
noise=x_T
)
# to replace masked area with latent noise, weighted by inpaint_replace strength
if inpaint_replace > 0.0:
print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
l_noise = self.get_noise(kwargs['width'],kwargs['height'])
inverted_mask = 1.0-mask_image # there will be 1s where the mask is
masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
z_enc = z_enc * mask_image + masked_region
# decode it
samples = sampler.decode(
z_enc,

281
ldm/invoke/model_cache.py Normal file
View File

@@ -0,0 +1,281 @@
'''
Manage a cache of Stable Diffusion model files for fast switching.
They are moved between GPU and CPU as necessary. If CPU memory falls
below a preset minimum, the least recently used model will be
cleared and loaded from disk when next needed.
'''
import torch
import os
import io
import time
import gc
import hashlib
import psutil
import transformers
from sys import getrefcount
from omegaconf import OmegaConf
from omegaconf.errors import ConfigAttributeError
from ldm.util import instantiate_from_config
GIGS=2**30
AVG_MODEL_SIZE=2.1*GIGS
DEFAULT_MIN_AVAIL=2*GIGS
class ModelCache(object):
def __init__(self, config:OmegaConf, device_type:str, precision:str, min_avail_mem=DEFAULT_MIN_AVAIL):
'''
Initialize with the path to the models.yaml config file,
the torch device type, and precision. The optional
min_avail_mem argument specifies how much unused system
(CPU) memory to preserve. The cache of models in RAM will
grow until this value is approached. Default is 2G.
'''
# prevent nasty-looking CLIP log message
transformers.logging.set_verbosity_error()
self.config = config
self.precision = precision
self.device = torch.device(device_type)
self.min_avail_mem = min_avail_mem
self.models = {}
self.stack = [] # this is an LRU FIFO
self.current_model = None
def get_model(self, model_name:str):
'''
Given a model named identified in models.yaml, return
the model object. If in RAM will load into GPU VRAM.
If on disk, will load from there.
'''
if model_name not in self.config:
print(f'** "{model_name}" is not a known model name. Please check your models.yaml file')
return None
if self.current_model != model_name:
self.unload_model(self.current_model)
if model_name in self.models:
requested_model = self.models[model_name]['model']
print(f'>> Retrieving model {model_name} from system RAM cache')
self.models[model_name]['model'] = self._model_from_cpu(requested_model)
width = self.models[model_name]['width']
height = self.models[model_name]['height']
hash = self.models[model_name]['hash']
else:
self._check_memory()
try:
requested_model, width, height, hash = self._load_model(model_name)
self.models[model_name] = {}
self.models[model_name]['model'] = requested_model
self.models[model_name]['width'] = width
self.models[model_name]['height'] = height
self.models[model_name]['hash'] = hash
except Exception as e:
print(f'** model {model_name} could not be loaded: {str(e)}')
print(f'** restoring {self.current_model}')
return self.get_model(self.current_model)
self.current_model = model_name
self._push_newest_model(model_name)
return {
'model':requested_model,
'width':width,
'height':height,
'hash': hash
}
def list_models(self) -> dict:
'''
Return a dict of models in the format:
{ model_name1: {'status': ('active'|'cached'|'not loaded'),
'description': description,
},
model_name2: { etc }
'''
result = {}
for name in self.config:
try:
description = self.config[name].description
except ConfigAttributeError:
description = '<no description>'
if self.current_model == name:
status = 'active'
elif name in self.models:
status = 'cached'
else:
status = 'not loaded'
result[name]={}
result[name]['status']=status
result[name]['description']=description
return result
def print_models(self):
'''
Print a table of models, their descriptions, and load status
'''
models = self.list_models()
for name in models:
line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["description"]}'
if models[name]['status'] == 'active':
print(f'\033[1m{line}\033[0m')
else:
print(line)
def add_model(self, model_name:str, model_attributes:dict, clobber=False) ->str:
'''
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
On a successful update, the config will be changed in memory and a YAML
string will be returned.
'''
omega = self.config
# check that all the required fields are present
for field in ('description','weights','height','width','config'):
assert field in model_attributes, f'required field {field} is missing'
assert (clobber or model_name not in omega), f'attempt to overwrite existing model definition "{model_name}"'
config = omega[model_name] if model_name in omega else {}
for field in model_attributes:
config[field] = model_attributes[field]
omega[model_name] = config
return OmegaConf.to_yaml(omega)
def _check_memory(self):
avail_memory = psutil.virtual_memory()[1]
if AVG_MODEL_SIZE + self.min_avail_mem > avail_memory:
least_recent_model = self._pop_oldest_model()
if least_recent_model is not None:
del self.models[least_recent_model]
gc.collect()
def _load_model(self, model_name:str):
"""Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config:
print(f'"{model_name}" is not a known model name. Please check your models.yaml file')
return None
mconfig = self.config[model_name]
config = mconfig.config
weights = mconfig.weights
width = mconfig.width
height = mconfig.height
print(f'>> Loading {model_name} from {weights}')
# for usage statistics
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
tic = time.time()
# this does the work
c = OmegaConf.load(config)
with open(weights,'rb') as f:
weight_bytes = f.read()
model_hash = self._cached_sha256(weights,weight_bytes)
pl_sd = torch.load(io.BytesIO(weight_bytes), map_location='cpu')
del weight_bytes
sd = pl_sd['state_dict']
model = instantiate_from_config(c.model)
m, u = model.load_state_dict(sd, strict=False)
if self.precision == 'float16':
print(' | Using faster float16 precision')
model.to(torch.float16)
else:
print(' | Using more accurate float32 precision')
model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
model.cond_stage_model.device = self.device
model.eval()
for m in model.modules():
if isinstance(m, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
m._orig_padding_mode = m.padding_mode
# usage statistics
toc = time.time()
print(f'>> Model loaded in', '%4.2fs' % (toc - tic))
if self._has_cuda():
print(
'>> Max VRAM used to load the model:',
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
'\n>> Current VRAM usage:'
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
)
return model, width, height, model_hash
def unload_model(self, model_name:str):
if model_name not in self.models:
return
print(f'>> Caching model {model_name} in system RAM')
model = self.models[model_name]['model']
self.models[model_name]['model'] = self._model_to_cpu(model)
gc.collect()
if self._has_cuda():
torch.cuda.empty_cache()
def _model_to_cpu(self,model):
if self.device != 'cpu':
model.cond_stage_model.device = 'cpu'
model.first_stage_model.to('cpu')
model.cond_stage_model.to('cpu')
model.model.to('cpu')
return model.to('cpu')
else:
return model
def _model_from_cpu(self,model):
if self.device != 'cpu':
model.to(self.device)
model.first_stage_model.to(self.device)
model.cond_stage_model.to(self.device)
model.cond_stage_model.device = self.device
return model
def _pop_oldest_model(self):
'''
Remove the first element of the FIFO, which ought
to be the least recently accessed model. Do not
pop the last one, because it is in active use!
'''
if len(self.stack) > 1:
return self.stack.pop(0)
def _push_newest_model(self,model_name:str):
'''
Maintain a simple FIFO. First element is always the
least recent, and last element is always the most recent.
'''
try:
self.stack.remove(model_name)
except ValueError:
pass
self.stack.append(model_name)
def _has_cuda(self):
return self.device.type == 'cuda'
def _cached_sha256(self,path,data):
dirname = os.path.dirname(path)
basename = os.path.basename(path)
base, _ = os.path.splitext(basename)
hashpath = os.path.join(dirname,base+'.sha256')
if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime(hashpath):
with open(hashpath) as f:
hash = f.read()
return hash
print(f'>> Calculating sha256 hash of weights file')
tic = time.time()
sha = hashlib.sha256()
sha.update(data)
hash = sha.hexdigest()
toc = time.time()
print(f'>> sha256 = {hash}','(%4.2fs)' % (toc - tic))
with open(hashpath,'w') as f:
f.write(hash)
return hash

View File

@@ -33,13 +33,13 @@ class PngWriter:
# saves image named _image_ to outdir/name, writing metadata from prompt
# returns full path of output
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None):
def save_image_and_prompt_to_png(self, image, dream_prompt, name, metadata=None, compress_level=6):
path = os.path.join(self.outdir, name)
info = PngImagePlugin.PngInfo()
info.add_text('Dream', dream_prompt)
if metadata:
info.add_text('sd-metadata', json.dumps(metadata))
image.save(path, 'PNG', pnginfo=info)
image.save(path, 'PNG', pnginfo=info, compress_level=compress_level)
return path
def retrieve_metadata(self,img_basename):

View File

@@ -21,6 +21,8 @@ except (ImportError,ModuleNotFoundError):
readline_available = False
IMG_EXTENSIONS = ('.png','.jpg','.jpeg','.PNG','.JPG','.JPEG','.gif','.GIF')
WEIGHT_EXTENSIONS = ('.ckpt','.bae')
CONFIG_EXTENSIONS = ('.yaml','.yml')
COMMANDS = (
'--steps','-s',
'--seed','-S',
@@ -42,13 +44,25 @@ COMMANDS = (
'--embedding_path',
'--device',
'--grid','-g',
'--gfpgan_strength','-G',
'--facetool','-ft',
'--facetool_strength','-G',
'--codeformer_fidelity','-cf',
'--upscale','-U',
'-save_orig','--save_original',
'--skip_normalize','-x',
'--log_tokenization','-t',
'--hires_fix',
'--inpaint_replace','-r',
'--png_compression','-z',
'!fix','!fetch','!history','!search','!clear',
'!models','!switch','!import_model','!edit_model'
)
MODEL_COMMANDS = (
'!switch',
'!edit_model',
)
WEIGHT_COMMANDS = (
'!import_model',
)
IMG_PATH_COMMANDS = (
'--outdir[=\s]',
@@ -61,16 +75,19 @@ IMG_FILE_COMMANDS=(
'--init_color[=\s]',
'--embedding_path[=\s]',
)
path_regexp = '('+'|'.join(IMG_PATH_COMMANDS+IMG_FILE_COMMANDS) + ')\s*\S*$'
path_regexp = '('+'|'.join(IMG_PATH_COMMANDS+IMG_FILE_COMMANDS) + ')\s*\S*$'
weight_regexp = '('+'|'.join(WEIGHT_COMMANDS) + ')\s*\S*$'
class Completer(object):
def __init__(self, options):
def __init__(self, options, models=[]):
self.options = sorted(options)
self.models = sorted(models)
self.seeds = set()
self.matches = list()
self.default_dir = None
self.linebuffer = None
self.auto_history_active = True
self.extensions = None
return
def complete(self, text, state):
@@ -81,7 +98,13 @@ class Completer(object):
buffer = readline.get_line_buffer()
if state == 0:
if re.search(path_regexp,buffer):
# extensions defined, so go directly into path completion mode
if self.extensions is not None:
self.matches = self._path_completions(text, state, self.extensions)
# looking for an image file
elif re.search(path_regexp,buffer):
do_shortcut = re.search('^'+'|'.join(IMG_FILE_COMMANDS),buffer)
self.matches = self._path_completions(text, state, IMG_EXTENSIONS,shortcut_ok=do_shortcut)
@@ -89,6 +112,13 @@ class Completer(object):
elif re.search('(-S\s*|--seed[=\s])\d*$',buffer):
self.matches= self._seed_completions(text,state)
# looking for a model
elif re.match('^'+'|'.join(MODEL_COMMANDS),buffer):
self.matches= self._model_completions(text, state)
elif re.search(weight_regexp,buffer):
self.matches = self._path_completions(text, state, WEIGHT_EXTENSIONS)
# This is the first time for this text, so build a match list.
elif text:
self.matches = [
@@ -105,6 +135,13 @@ class Completer(object):
response = None
return response
def complete_extensions(self, extensions:list):
'''
If called with a list of extensions, will force completer
to do file path completions.
'''
self.extensions=extensions
def add_history(self,line):
'''
Pass thru to readline
@@ -189,6 +226,21 @@ class Completer(object):
matches.sort()
return matches
def _model_completions(self, text, state):
m = re.search('(!switch\s+)(\w*)',text)
if m:
switch = m.groups()[0]
partial = m.groups()[1]
else:
switch = ''
partial = text
matches = list()
for s in self.models:
if s.startswith(partial):
matches.append(switch+s)
matches.sort()
return matches
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
@@ -267,9 +319,9 @@ class DummyCompleter(Completer):
def set_line(self,line):
print(f'# {line}')
def get_completer(opt:Args)->Completer:
def get_completer(opt:Args, models=[])->Completer:
if readline_available:
completer = Completer(COMMANDS)
completer = Completer(COMMANDS,models)
readline.set_completer(
completer.complete

View File

@@ -31,12 +31,13 @@ def build_opt(post_data, seed, gfpgan_model_exists):
setattr(opt, 'embiggen', None)
setattr(opt, 'embiggen_tiles', None)
setattr(opt, 'gfpgan_strength', float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0)
setattr(opt, 'facetool_strength', float(post_data['facetool_strength']) if gfpgan_model_exists else 0)
setattr(opt, 'upscale', [int(post_data['upscale_level']), float(post_data['upscale_strength'])] if post_data['upscale_level'] != '' else None)
setattr(opt, 'progress_images', 'progress_images' in post_data)
setattr(opt, 'seed', None if int(post_data['seed']) == -1 else int(post_data['seed']))
setattr(opt, 'threshold', float(post_data['threshold']))
setattr(opt, 'perlin', float(post_data['perlin']))
setattr(opt, 'hires_fix', 'hires_fix' in post_data)
setattr(opt, 'variation_amount', float(post_data['variation_amount']) if int(post_data['seed']) != -1 else 0)
setattr(opt, 'with_variations', [])
setattr(opt, 'embiggen', None)
@@ -196,7 +197,7 @@ class DreamServer(BaseHTTPRequestHandler):
) + '\n',"utf-8"))
# control state of the "postprocessing..." message
upscaling_requested = opt.upscale or opt.gfpgan_strength > 0
upscaling_requested = opt.upscale or opt.facetool_strength > 0
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
if upscaled:

View File

@@ -106,7 +106,7 @@ class DDPM(pl.LightningModule):
], 'currently only supporting "eps" and "x0"'
self.parameterization = parameterization
print(
f'{self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
f' | {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
)
self.cond_stage_model = None
self.clip_denoised = clip_denoised
@@ -1353,7 +1353,7 @@ class LatentDiffusion(DDPM):
num_downs = self.first_stage_model.encoder.num_resolutions - 1
rescale_latent = 2 ** (num_downs)
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
# need to rescale the tl patch coordinates to be in between (0,1)
tl_patch_coordinates = [
(

View File

@@ -49,9 +49,15 @@ class Upsample(nn.Module):
padding=1)
def forward(self, x):
cpu_m1_cond = True if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available() and \
x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3] % 2**27 == 0 else False
if cpu_m1_cond:
x = x.to('cpu') # send to cpu
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
if cpu_m1_cond:
x = x.to('mps') # return to mps
return x
@@ -117,6 +123,14 @@ class ResnetBlock(nn.Module):
padding=0)
def forward(self, x, temb):
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
x_size = x.size()
if (x_size[0] * x_size[1] * x_size[2] * x_size[3]) % 2**29 == 0:
self.to('cpu')
x = x.to('cpu')
else:
self.to('mps')
x = x.to('mps')
h = self.norm1(x)
h = silu(h)
h = self.conv1(h)
@@ -245,7 +259,7 @@ class AttnBlock(nn.Module):
def make_attn(in_channels, attn_type="vanilla"):
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
print(f" | Making attention of type '{attn_type}' with {in_channels} in_channels")
if attn_type == "vanilla":
return AttnBlock(in_channels)
elif attn_type == "none":
@@ -521,7 +535,7 @@ class Decoder(nn.Module):
block_in = ch*ch_mult[self.num_resolutions-1]
curr_res = resolution // 2**(self.num_resolutions-1)
self.z_shape = (1,z_channels,curr_res,curr_res)
print("Working with z of shape {} = {} dimensions.".format(
print(" | Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)))
# z to block_in

View File

@@ -64,7 +64,8 @@ def make_ddim_timesteps(
):
if ddim_discr_method == 'uniform':
c = num_ddpm_timesteps // num_ddim_timesteps
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
# ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
ddim_timesteps = (np.arange(0, num_ddim_timesteps) * c).astype(int)
elif ddim_discr_method == 'quad':
ddim_timesteps = (
(
@@ -81,8 +82,8 @@ def make_ddim_timesteps(
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
# add one to get the final alpha values right (the ones from first scale to data during sampling)
# steps_out = ddim_timesteps + 1
steps_out = ddim_timesteps
steps_out = ddim_timesteps + 1
# steps_out = ddim_timesteps
if verbose:
print(f'Selected timesteps for ddim sampler: {steps_out}')

View File

@@ -75,7 +75,7 @@ def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(
f'{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
)
return total_params

View File

@@ -6,7 +6,7 @@
"id": "ycYWcsEKc6w7"
},
"source": [
"# Stable Diffusion AI Notebook (Release 1.14)\n",
"# Stable Diffusion AI Notebook (Release 2.0.0)\n",
"\n",
"<img src=\"https://user-images.githubusercontent.com/60411196/186547976-d9de378a-9de8-4201-9c25-c057a9c59bad.jpeg\" alt=\"stable-diffusion-ai\" width=\"170px\"/> <br>\n",
"#### Instructions:\n",
@@ -58,8 +58,8 @@
"from os.path import exists\n",
"\n",
"!git clone --quiet https://github.com/invoke-ai/InvokeAI.git # Original repo\n",
"%cd /content/stable-diffusion/\n",
"!git checkout --quiet tags/release-1.14.1"
"%cd /content/InvokeAI/\n",
"!git checkout --quiet tags/v2.0.0"
]
},
{
@@ -79,6 +79,7 @@
"!pip install colab-xterm\n",
"!pip install -r requirements-lin-win-colab-CUDA.txt\n",
"!pip install clean-fid torchtext\n",
"!pip install transformers\n",
"gc.collect()"
]
},
@@ -106,7 +107,7 @@
"source": [
"#@title 5. Load small ML models required\n",
"import gc\n",
"%cd /content/stable-diffusion/\n",
"%cd /content/InvokeAI/\n",
"!python scripts/preload_models.py\n",
"gc.collect()"
]
@@ -171,18 +172,18 @@
"import os \n",
"\n",
"# Folder creation if it doesn't exist\n",
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1\"):\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1\"):\n",
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
"else:\n",
" %mkdir /content/stable-diffusion/models/ldm/stable-diffusion-v1\n",
" %mkdir /content/InvokeAI/models/ldm/stable-diffusion-v1\n",
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
"\n",
"# Symbolic link if it doesn't exist\n",
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
"if exists(\"/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt\"):\n",
" print(\"❗ Symlink already created\")\n",
"else: \n",
" src = model_path\n",
" dst = '/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt'\n",
" dst = '/content/InvokeAI/models/ldm/stable-diffusion-v1/model.ckpt'\n",
" os.symlink(src, dst) \n",
" print(\"✅ Symbolic link created successfully\")"
]
@@ -207,7 +208,7 @@
"source": [
"#@title 9. Run Terminal and Execute Dream bot\n",
"#@markdown <font color=\"blue\">Steps:</font> <br>\n",
"#@markdown 1. Execute command `python scripts/dream.py` to run dream bot.<br>\n",
"#@markdown 1. Execute command `python scripts/invoke.py` to run InvokeAI.<br>\n",
"#@markdown 2. After initialized you'll see `Dream>` line.<br>\n",
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy` <br>\n",
"#@markdown 4. To quit Dream bot use: `q` command.<br>\n",
@@ -233,7 +234,7 @@
"%matplotlib inline\n",
"\n",
"images = []\n",
"for img_path in sorted(glob.glob('/content/stable-diffusion/outputs/img-samples/*.png'), reverse=True):\n",
"for img_path in sorted(glob.glob('/content/InvokeAI/outputs/img-samples/*.png'), reverse=True):\n",
" images.append(mpimg.imread(img_path))\n",
"\n",
"images = images[:15] \n",

View File

@@ -12,12 +12,12 @@ pillow==9.2.0
pudb==2019.2
torch==1.12.1
torchvision==0.13.0
pytorch-lightning==1.4.2
pytorch-lightning==1.7.7
streamlit==1.12.0
test-tube>=0.7.5
torch-fidelity==0.3.0
torchmetrics==0.6.0
transformers==4.19.2
transformers==4.21.3
-e git+https://github.com/openai/CLIP.git@main#egg=clip
-e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
-e git+https://github.com/lstein/k-diffusion.git@master#egg=k-diffusion

View File

@@ -1,6 +1,6 @@
-r requirements.txt
protobuf==3.19.4
protobuf==3.19.6
torch
torchvision
-e .

View File

@@ -9,6 +9,7 @@ import copy
import warnings
import time
import traceback
import yaml
sys.path.append('.') # corrects a weird problem on Macs
from ldm.invoke.readline import get_completer
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
@@ -16,8 +17,6 @@ from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
from ldm.invoke.image_util import make_grid
from ldm.invoke.log import write_log
from omegaconf import OmegaConf
from backend.invoke_ai_web_server import InvokeAIWebServer
def main():
"""Initialize command-line parsers and the diffusion model"""
@@ -33,7 +32,7 @@ def main():
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
sys.exit(-1)
print('* Initializing, be patient...\n')
print('* Initializing, be patient...')
from ldm.generate import Generate
# these two lines prevent a horrible warning message from appearing
@@ -42,45 +41,7 @@ def main():
transformers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_dir, opt.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
# creating a simple text2image object with a handful of
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
try:
gen = Generate(
conf = opt.conf,
model = opt.model,
sampler_name = opt.sampler_name,
embedding_path = opt.embedding_path,
full_precision = opt.full_precision,
precision = opt.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=opt.free_gpu_mem,
)
except (FileNotFoundError, IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
gfpgan,codeformer,esrgan = load_face_restoration(opt)
# make sure the output directory exists
if not os.path.exists(opt.outdir):
@@ -100,6 +61,24 @@ def main():
print(f'{e}. Aborting.')
sys.exit(-1)
# creating a Generate object:
try:
gen = Generate(
conf = opt.conf,
model = opt.model,
sampler_name = opt.sampler_name,
embedding_path = opt.embedding_path,
full_precision = opt.full_precision,
precision = opt.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=opt.free_gpu_mem,
)
except (FileNotFoundError, IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
if opt.seamless:
print(">> changed to seamless tiling mode")
@@ -116,7 +95,10 @@ def main():
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
)
main_loop(gen, opt, infile)
try:
main_loop(gen, opt, infile)
except KeyboardInterrupt:
print("\ngoodbye!")
# TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt, infile):
@@ -124,12 +106,13 @@ def main_loop(gen, opt, infile):
done = False
path_filter = re.compile(r'[<>:"/\\|?*]')
last_results = list()
model_config = OmegaConf.load(opt.conf)[opt.model]
model_config = OmegaConf.load(opt.conf)
# The readline completer reads history from the .dream_history file located in the
# output directory specified at the time of script launch. We do not currently support
# changing the history file midstream when the output directory is changed.
completer = get_completer(opt)
completer = get_completer(opt, models=list(model_config.keys()))
completer.set_default_dir(opt.outdir)
output_cntr = completer.get_current_history_length()+1
# os.pathconf is not available on Windows
@@ -141,11 +124,9 @@ def main_loop(gen, opt, infile):
name_max = 255
while not done:
operation = 'generate' # default operation, alternative is 'postprocess'
if completer:
completer.set_default_dir(opt.outdir)
operation = 'generate'
try:
command = get_next_command(infile)
except EOFError:
@@ -164,41 +145,10 @@ def main_loop(gen, opt, infile):
break
if command.startswith('!'):
subcommand = command[1:]
command, operation = do_command(command, gen, opt, completer)
if subcommand.startswith('dream'): # in case a stored prompt still contains the !dream command
command = command.replace('!dream ','',1)
elif subcommand.startswith('fix'):
command = command.replace('!fix ','',1)
operation = 'postprocess'
elif subcommand.startswith('fetch'):
file_path = command.replace('!fetch ','',1)
retrieve_dream_command(opt,file_path,completer)
continue
elif subcommand.startswith('history'):
completer.show_history()
continue
elif subcommand.startswith('search'):
search_str = command.replace('!search ','',1)
completer.show_history(search_str)
continue
elif subcommand.startswith('clear'):
completer.clear_history()
continue
elif re.match('^(\d+)',subcommand):
command_no = re.match('^(\d+)',subcommand).groups()[0]
command = completer.get_line(int(command_no))
completer.set_line(command)
continue
else: # not a recognized subcommand, so give the --help text
command = '-h'
if operation is None:
continue
if opt.parse_cmd(command) is None:
continue
@@ -218,9 +168,9 @@ def main_loop(gen, opt, infile):
# width and height are set by model if not specified
if not opt.width:
opt.width = model_config.width
opt.width = gen.width
if not opt.height:
opt.height = model_config.height
opt.height = gen.height
# retrieve previous value of init image if requested
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
@@ -323,6 +273,7 @@ def main_loop(gen, opt, infile):
model_hash = gen.model_hash,
),
name = filename,
compress_level = opt.png_compression,
)
# update rfc metadata
@@ -394,13 +345,162 @@ def main_loop(gen, opt, infile):
print('goodbye!')
def do_command(command:str, gen, opt:Args, completer) -> tuple:
operation = 'generate' # default operation, alternative is 'postprocess'
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
command = command.replace('!dream ','',1)
elif command.startswith('!fix'):
command = command.replace('!fix ','',1)
operation = 'postprocess'
elif command.startswith('!switch'):
model_name = command.replace('!switch ','',1)
gen.set_model(model_name)
completer.add_history(command)
operation = None
elif command.startswith('!models'):
gen.model_cache.print_models()
operation = None
elif command.startswith('!import'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide a path to a .ckpt or .vae model file')
elif not os.path.exists(path[1]):
print(f'** {path[1]}: file not found')
else:
add_weights_to_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!edit'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the name of a model')
else:
edit_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!fetch'):
file_path = command.replace('!fetch ','',1)
retrieve_dream_command(opt,file_path,completer)
operation = None
elif command.startswith('!history'):
completer.show_history()
operation = None
elif command.startswith('!search'):
search_str = command.replace('!search ','',1)
completer.show_history(search_str)
operation = None
elif command.startswith('!clear'):
completer.clear_history()
operation = None
elif re.match('^!(\d+)',command):
command_no = re.match('^!(\d+)',command).groups()[0]
command = completer.get_line(int(command_no))
completer.set_line(command)
operation = None
else: # not a recognized command, so give the --help text
command = '-h'
return command, operation
def add_weights_to_config(model_path:str, gen, opt, completer):
print(f'>> Model import in process. Please enter the values needed to configure this model:')
print()
new_config = {}
new_config['weights'] = model_path
done = False
while not done:
model_name = input('Short name for this model: ')
if not re.match('^[\w._-]+$',model_name):
print('** model name must contain only words, digits and the characters [._-] **')
else:
done = True
new_config['description'] = input('Description of this model: ')
completer.complete_extensions(('.yaml','.yml'))
completer.linebuffer = 'configs/stable-diffusion/v1-inference.yaml'
done = False
while not done:
new_config['config'] = input('Configuration file for this model: ')
done = os.path.exists(new_config['config'])
completer.complete_extensions(None)
for field in ('width','height'):
done = False
while not done:
try:
completer.linebuffer = '512'
value = int(input(f'Default image {field}: '))
assert value >= 64 and value <= 2048
new_config[field] = value
done = True
except:
print('** Please enter a valid integer between 64 and 2048')
if write_config_file(opt.conf, gen, model_name, new_config):
gen.set_model(model_name)
def edit_config(model_name:str, gen, opt, completer):
config = gen.model_cache.config
if model_name not in config:
print(f'** Unknown model {model_name}')
return
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
conf = config[model_name]
new_config = {}
completer.complete_extensions(('.yaml','.yml','.ckpt','.vae'))
for field in ('description', 'weights', 'config', 'width','height'):
completer.linebuffer = str(conf[field]) if field in conf else ''
new_value = input(f'{field}: ')
new_config[field] = int(new_value) if field in ('width','height') else new_value
completer.complete_extensions(None)
if write_config_file(opt.conf, gen, model_name, new_config, clobber=True):
gen.set_model(model_name)
def write_config_file(conf_path, gen, model_name, new_config, clobber=False):
op = 'modify' if clobber else 'import'
print('\n>> New configuration:')
print(yaml.dump({model_name:new_config}))
if input(f'OK to {op} [n]? ') not in ('y','Y'):
return False
try:
yaml_str = gen.model_cache.add_model(model_name, new_config, clobber)
except AssertionError as e:
print(f'** configuration failed: {str(e)}')
return False
tmpfile = os.path.join(os.path.dirname(conf_path),'new_config.tmp')
with open(tmpfile, 'w') as outfile:
outfile.write(yaml_str)
os.rename(tmpfile,conf_path)
return True
def do_postprocess (gen, opt, callback):
file_path = opt.prompt # treat the prompt as the file pathname
if os.path.dirname(file_path) == '': #basename given
file_path = os.path.join(opt.outdir,file_path)
tool=None
if opt.gfpgan_strength > 0:
if opt.facetool_strength > 0:
tool = opt.facetool
elif opt.embiggen:
tool = 'embiggen'
@@ -416,7 +516,7 @@ def do_postprocess (gen, opt, callback):
gen.apply_postprocessor(
image_path = file_path,
tool = tool,
gfpgan_strength = opt.gfpgan_strength,
facetool_strength = opt.facetool_strength,
codeformer_fidelity = opt.codeformer_fidelity,
save_original = opt.save_original,
upscale = opt.upscale,
@@ -511,6 +611,7 @@ def get_next_command(infile=None) -> str: # command string
def invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan):
print('\n* --web was specified, starting web server...')
from backend.invoke_ai_web_server import InvokeAIWebServer
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
@@ -549,6 +650,27 @@ def split_variations(variations_string) -> list:
else:
return parts
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_dir, opt.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
return gfpgan,codeformer,esrgan
def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir,'intermediates',prefix)
os.makedirs(destination,exist_ok=True)

View File

@@ -35,13 +35,14 @@ class DreamBase():
perlin: float = 0.0
sampler_name: string = 'klms'
seamless: bool = False
hires_fix: bool = False
model: str = None # The model to use (currently unused)
embeddings = None # The embeddings to use (currently unused)
progress_images: bool = False
# GFPGAN
enable_gfpgan: bool
gfpgan_strength: float = 0
facetool_strength: float = 0
# Upscale
enable_upscale: bool
@@ -91,12 +92,13 @@ class DreamBase():
# model: str = None # The model to use (currently unused)
# embeddings = None # The embeddings to use (currently unused)
self.seamless = 'seamless' in j
self.hires_fix = 'hires_fix' in j
self.progress_images = 'progress_images' in j
# GFPGAN
self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan'))
if self.enable_gfpgan:
self.gfpgan_strength = float(j.get('gfpgan_strength'))
self.facetool_strength = float(j.get('facetool_strength'))
# Upscale
self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale'))

View File

@@ -334,11 +334,11 @@ class GeneratorService:
# TODO: Support no generation (just upscaling/gfpgan)
upscale = None if not jobRequest.enable_upscale else jobRequest.upscale
gfpgan_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.gfpgan_strength
facetool_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.facetool_strength
if not jobRequest.enable_generate:
# If not generating, check if we're upscaling or running gfpgan
if not upscale and not gfpgan_strength:
if not upscale and not facetool_strength:
# Invalid settings (TODO: Add message to help user)
raise CanceledException()
@@ -347,7 +347,7 @@ class GeneratorService:
self.__model.upscale_and_reconstruct(
image_list = [[image,0]],
upscale = upscale,
strength = gfpgan_strength,
strength = facetool_strength,
save_original = False,
image_callback = lambda image, seed, upscaled=False: self.__on_image_result(jobRequest, image, seed, upscaled))
@@ -371,10 +371,11 @@ class GeneratorService:
steps = jobRequest.steps,
variation_amount = jobRequest.variation_amount,
with_variations = jobRequest.with_variations,
gfpgan_strength = gfpgan_strength,
facetool_strength = facetool_strength,
upscale = upscale,
sampler_name = jobRequest.sampler_name,
seamless = jobRequest.seamless,
hires_fix = jobRequest.hires_fix,
embiggen = jobRequest.embiggen,
embiggen_tiles = jobRequest.embiggen_tiles,
step_callback = lambda sample, step: self.__on_progress(jobRequest, sample, step),

View File

@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
setup(
name='invoke-ai',
version='2.0.0',
version='2.0.2',
description='',
packages=find_packages(),
install_requires=[

View File

@@ -144,8 +144,8 @@
<input type="checkbox" name="enable_gfpgan" id="enable_gfpgan">
<label for="enable_gfpgan">Enable gfpgan</label>
</legend>
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength:</label>
<input value="0.8" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.05">
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength:</label>
<input value="0.8" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.05">
</fieldset>
<fieldset id="upscale">
<legend>

View File

@@ -100,8 +100,8 @@
</fieldset>
<fieldset id="gfpgan">
<div class="section-header">Post-processing options</div>
<label title="Strength of the gfpgan (face fixing) algorithm." for="gfpgan_strength">GPFGAN Strength (0 to disable):</label>
<input value="0.0" min="0" max="1" type="number" id="gfpgan_strength" name="gfpgan_strength" step="0.1">
<label title="Strength of the gfpgan (face fixing) algorithm." for="facetool_strength">GPFGAN Strength (0 to disable):</label>
<input value="0.0" min="0" max="1" type="number" id="facetool_strength" name="facetool_strength" step="0.1">
<label title="Upscaling to perform using ESRGAN." for="upscale_level">Upscaling Level</label>
<select id="upscale_level" name="upscale_level" value="">
<option value="" selected>None</option>

1
tests/pr_prompt.txt Normal file
View File

@@ -0,0 +1 @@
banana sushi -Ak_lms -S42 -s10