Compare commits

..

1 Commits

Author SHA1 Message Date
Lincoln Stein
48cb6bd200 change workflow to deploy from v2.3 branch 2023-05-06 23:50:34 -04:00
19 changed files with 42 additions and 130 deletions

View File

@@ -41,7 +41,7 @@ jobs:
--verbose
- name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }}
if: ${{ github.ref == 'refs/heads/v2.3' }}
run: |
python -m \
mkdocs gh-deploy \

View File

@@ -41,16 +41,6 @@ Windows systems). If the `loras` folder does not already exist, just
create it. The vast majority of LoRA models use the Kohya file format,
which is a type of `.safetensors` file.
!!! warning "LoRA Naming Restrictions"
InvokeAI will only recognize LoRA files that contain the
characters a-z, A-Z, 0-9 and the underscore character
_. Other characters, including the hyphen, will cause the
LoRA file not to load. These naming restrictions may be
relaxed in the future, but for now you will need to rename
files that contain hyphens, commas, brackets, and other
non-word characters.
You may change where InvokeAI looks for the `loras` folder by passing the
`--lora_directory` option to the `invoke.sh`/`invoke.bat` launcher, or
by placing the option in `invokeai.init`. For example:

View File

@@ -33,11 +33,6 @@ title: Overview
Restore mangled faces and make images larger with upscaling. Also see
the [Embiggen Upscaling Guide](EMBIGGEN.md).
- The [Using LoRA Models](LORAS.md)
Add custom subjects and styles using HuggingFace's repository of
embeddings.
- The [Concepts Library](CONCEPTS.md)
Add custom subjects and styles using HuggingFace's repository of

View File

@@ -79,7 +79,7 @@ title: Manual Installation, Linux
and obtaining an access token for downloading. It will then download and
install the weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing
the same thing.
7. Start generating images!

View File

@@ -75,7 +75,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
obtaining an access token for downloading. It will then download and install the
weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing the
Please look [here](../INSTALL_MANUAL.md) for a manual process for doing the
same thing.
8. Start generating images!

View File

@@ -1,5 +0,0 @@
mkdocs
mkdocs-material>=8, <9
mkdocs-git-revision-date-localized-plugin
mkdocs-redirects==1.2.0

View File

@@ -243,15 +243,16 @@ class InvokeAiInstance:
# Note that we're installing pinned versions of torch and
# torchvision here, which *should* correspond to what is
# in pyproject.toml.
# in pyproject.toml. This is to prevent torch 2.0 from
# being installed and immediately uninstalled and replaced with 1.13
pip = local[self.pip]
(
pip[
"install",
"--require-virtualenv",
"torch~=2.0.0",
"torchvision>=0.14.1",
"torch~=1.13.1",
"torchvision~=0.14.1",
"--force-reinstall",
"--find-links" if find_links is not None else None,
find_links,

View File

@@ -25,7 +25,7 @@ from invokeai.backend.modules.parameters import parameters_to_command
import invokeai.frontend.dist as frontend
from ldm.generate import Generate
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.concepts_lib import get_hf_concepts_lib
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
from ldm.invoke.conditioning import (
get_tokens_for_prompt_object,
get_prompt_structure,
@@ -538,7 +538,7 @@ class InvokeAIWebServer:
try:
local_triggers = self.generate.model.textual_inversion_manager.get_all_trigger_strings()
locals = [{'name': x} for x in sorted(local_triggers, key=str.casefold)]
concepts = get_hf_concepts_lib().list_concepts(minimum_likes=5)
concepts = HuggingFaceConceptsLibrary().list_concepts(minimum_likes=5)
concepts = [{'name': f'<{x}>'} for x in sorted(concepts, key=str.casefold) if f'<{x}>' not in local_triggers]
socketio.emit("foundTextualInversionTriggers", {'local_triggers': locals, 'huggingface_concepts': concepts})
except Exception as e:

View File

@@ -13,16 +13,11 @@ import time
import traceback
from typing import List
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
import torch
import cv2
import diffusers
import numpy as np
import skimage
import torch
import transformers
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.utils.import_utils import is_xformers_available
@@ -984,15 +979,13 @@ class Generate:
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
if self.embedding_path and not model_data.get("ti_embeddings_loaded"):
print(f'>> Loading embeddings from {self.embedding_path}')
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
self.model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
model_data["ti_embeddings_loaded"] = True
for root, _, files in os.walk(self.embedding_path):
for name in files:
ti_path = os.path.join(root, name)
self.model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True
)
model_data["ti_embeddings_loaded"] = True
print(
f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}'
)

View File

@@ -9,6 +9,7 @@ from pathlib import Path
from typing import Union
import click
from compel import PromptParser
if sys.platform == "darwin":

View File

@@ -1,3 +1 @@
__version__='2.3.5.post2'
__version__='2.3.5'

View File

@@ -620,10 +620,7 @@ def convert_ldm_vae_checkpoint(checkpoint, config):
for key in keys:
if key.startswith(vae_key):
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
new_checkpoint = convert_ldm_vae_state_dict(vae_state_dict,config)
return new_checkpoint
def convert_ldm_vae_state_dict(vae_state_dict, config):
new_checkpoint = {}
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]

View File

@@ -12,14 +12,6 @@ from urllib import request, error as ul_error
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
from ldm.invoke.globals import Globals
singleton = None
def get_hf_concepts_lib():
global singleton
if singleton is None:
singleton = HuggingFaceConceptsLibrary()
return singleton
class HuggingFaceConceptsLibrary(object):
def __init__(self, root=None):
'''

View File

@@ -6,7 +6,6 @@ import os
import platform
import psutil
import requests
import pkg_resources
from rich import box, print
from rich.console import Console, group
from rich.panel import Panel
@@ -73,20 +72,10 @@ def welcome(versions: dict):
)
console.line()
def get_extras():
extras = ''
try:
dist = pkg_resources.get_distribution('xformers')
extras = '[xformers]'
except pkg_resources.DistributionNotFound:
pass
return extras
def main():
versions = get_versions()
if invokeai_is_running():
print(f':exclamation: [bold red]Please terminate all running instances of InvokeAI before updating.[/red bold]')
input('Press any key to continue...')
return
welcome(versions)
@@ -105,15 +94,13 @@ def main():
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
extras = get_extras()
print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]')
if release:
cmd = f"pip install 'invokeai{extras} @ {INVOKE_AI_SRC}/{release}.zip' --use-pep517 --upgrade"
cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade'
elif tag:
cmd = f"pip install 'invokeai{extras} @ {INVOKE_AI_TAG}/{tag}.zip' --use-pep517 --upgrade"
cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
else:
cmd = f"pip install 'invokeai{extras} @ {INVOKE_AI_BRANCH}/{branch}.zip' --use-pep517 --upgrade"
cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd)==0:

View File

@@ -9,6 +9,7 @@ from __future__ import annotations
import contextlib
import gc
import hashlib
import io
import os
import re
import sys
@@ -30,10 +31,11 @@ from huggingface_hub import scan_cache_dir
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from picklescan.scanner import scan_file_path
from ldm.invoke.devices import CPU_DEVICE
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ldm.invoke.globals import Globals, global_cache_dir
from ldm.util import ask_user, download_with_resume, url_attachment_name
from ldm.util import ask_user, download_with_resume, instantiate_from_config, url_attachment_name
class SDLegacyType(Enum):
@@ -368,9 +370,8 @@ class ModelManager(object):
print(
f">> Converting legacy checkpoint {model_name} into a diffusers model..."
)
from .ckpt_to_diffuser import (
load_pipeline_from_original_stable_diffusion_ckpt,
)
from ldm.invoke.ckpt_to_diffuser import load_pipeline_from_original_stable_diffusion_ckpt
if self._has_cuda():
torch.cuda.empty_cache()
pipeline = load_pipeline_from_original_stable_diffusion_ckpt(
@@ -432,7 +433,7 @@ class ModelManager(object):
**fp_args,
)
except OSError as e:
if 'Revision Not Found' in str(e):
if str(e).startswith("fp16 is not a valid"):
pass
else:
print(
@@ -1229,17 +1230,6 @@ class ModelManager(object):
return vae_path
def _load_vae(self, vae_config) -> AutoencoderKL:
using_fp16 = self.precision == "float16"
dtype = torch.float16 if using_fp16 else torch.float32
# Handle the common case of a user shoving a VAE .ckpt into
# the vae field for a diffusers. We convert it into diffusers
# format and use it.
if isinstance(vae_config,(str,Path)):
return self.convert_vae(vae_config).to(dtype=dtype)
elif isinstance(vae_config,DictConfig) and (vae_path := vae_config.get('path')):
return self.convert_vae(vae_path).to(dtype=dtype)
vae_args = {}
try:
name_or_path = self.model_name_or_path(vae_config)
@@ -1247,6 +1237,7 @@ class ModelManager(object):
return None
if name_or_path is None:
return None
using_fp16 = self.precision == "float16"
vae_args.update(
cache_dir=global_cache_dir("hub"),
@@ -1286,32 +1277,6 @@ class ModelManager(object):
return vae
@staticmethod
def convert_vae(vae_path: Union[Path,str])->AutoencoderKL:
print(" | A checkpoint VAE was detected. Converting to diffusers format.")
vae_path = Path(Globals.root,vae_path).resolve()
from .ckpt_to_diffuser import (
create_vae_diffusers_config,
convert_ldm_vae_state_dict,
)
vae_path = Path(vae_path)
if vae_path.suffix in ['.pt','.ckpt']:
vae_state_dict = torch.load(vae_path, map_location="cpu")
else:
vae_state_dict = safetensors.torch.load_file(vae_path)
if 'state_dict' in vae_state_dict:
vae_state_dict = vae_state_dict['state_dict']
# TODO: see if this works with 1.x inpaint models and 2.x models
config_file_path = Path(Globals.root,"configs/stable-diffusion/v1-inference.yaml")
original_conf = OmegaConf.load(config_file_path)
vae_config = create_vae_diffusers_config(original_conf, image_size=512) # TODO: fix
diffusers_vae = convert_ldm_vae_state_dict(vae_state_dict,vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(diffusers_vae)
return vae
@staticmethod
def _delete_model_from_cache(repo_id):
cache_info = scan_cache_dir(global_cache_dir("diffusers"))

View File

@@ -13,7 +13,7 @@ import re
import atexit
from typing import List
from ldm.invoke.args import Args
from ldm.invoke.concepts_lib import get_hf_concepts_lib
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
from ldm.invoke.globals import Globals
from ldm.modules.lora_manager import LoraManager
@@ -287,7 +287,7 @@ class Completer(object):
def _concept_completions(self, text, state):
if self.concepts is None:
# cache Concepts() instance so we can check for updates in concepts_list during runtime.
self.concepts = get_hf_concepts_lib()
self.concepts = HuggingFaceConceptsLibrary()
self.embedding_terms.update(set(self.concepts.list_concepts()))
else:
self.embedding_terms.update(set(self.concepts.list_concepts()))

View File

@@ -6,7 +6,7 @@ from torch import nn
import sys
from ldm.invoke.concepts_lib import get_hf_concepts_lib
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
from ldm.data.personalized import per_img_token_list
from transformers import CLIPTokenizer
from functools import partial
@@ -39,7 +39,7 @@ class EmbeddingManager(nn.Module):
super().__init__()
self.embedder = embedder
self.concepts_library=get_hf_concepts_lib()
self.concepts_library=HuggingFaceConceptsLibrary()
self.string_to_token_dict = {}
self.string_to_param_dict = nn.ParameterDict()

View File

@@ -3,16 +3,14 @@ from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Union
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
import safetensors.torch
import torch
import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
from transformers import CLIPTextModel, CLIPTokenizer
from compel.embeddings_provider import BaseTextualInversionManager
from ldm.invoke.concepts_lib import get_hf_concepts_lib
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
@dataclass
class TextualInversion:
@@ -36,7 +34,7 @@ class TextualInversionManager(BaseTextualInversionManager):
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.full_precision = full_precision
self.hf_concepts_library = get_hf_concepts_lib()
self.hf_concepts_library = HuggingFaceConceptsLibrary()
self.trigger_to_sourcefile = dict()
default_textual_inversions: list[TextualInversion] = []
self.textual_inversions = default_textual_inversions

View File

@@ -32,9 +32,9 @@ dependencies = [
"albumentations",
"click",
"clip_anytorch",
"compel~=1.1.5",
"compel~=1.1.0",
"datasets",
"diffusers[torch]~=0.16.1",
"diffusers[torch]~=0.15.0",
"dnspython==2.2.1",
"einops",
"eventlet",
@@ -76,7 +76,7 @@ dependencies = [
"taming-transformers-rom1504",
"test-tube>=0.7.5",
"torch-fidelity",
"torch~=2.0.0",
"torch~=1.13.1",
"torchmetrics",
"torchvision>=0.14.1",
"transformers~=4.26",
@@ -108,7 +108,7 @@ requires-python = ">=3.9, <3.11"
"test" = ["pytest-cov", "pytest>6.0.0"]
"xformers" = [
"triton; sys_platform=='linux'",
"xformers~=0.0.19; sys_platform!='darwin'",
"xformers~=0.0.16; sys_platform!='darwin'",
]
[project.scripts]