mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-21 14:38:03 -05:00
Compare commits
43 Commits
v4.2.0a2
...
ryan/fix-a
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3f2dedceec | ||
|
|
0bdf7f5726 | ||
|
|
caa7c0f2bd | ||
|
|
d546823c4d | ||
|
|
dac2d78da6 | ||
|
|
398f37c0ed | ||
|
|
6b0bf59682 | ||
|
|
5b8f77f990 | ||
|
|
3207822738 | ||
|
|
8d86fabf4b | ||
|
|
af3e910ad3 | ||
|
|
af25d00964 | ||
|
|
d4a30d08ef | ||
|
|
bd8a33e824 | ||
|
|
b425646b7b | ||
|
|
293e11cfa6 | ||
|
|
c73aabdfbf | ||
|
|
ca989c54b0 | ||
|
|
260e24733f | ||
|
|
bb6e3e726d | ||
|
|
6b394554e2 | ||
|
|
ae1955a1a8 | ||
|
|
1bef13db37 | ||
|
|
a461537087 | ||
|
|
99e28da19b | ||
|
|
42a159beaa | ||
|
|
0aa5aadfe8 | ||
|
|
2537d260e3 | ||
|
|
bbf919a933 | ||
|
|
01897ec576 | ||
|
|
bc12d6654e | ||
|
|
6d7c8d5f57 | ||
|
|
38604aa408 | ||
|
|
781de914f4 | ||
|
|
c094bad233 | ||
|
|
0063014f2b | ||
|
|
d7b5ad02e8 | ||
|
|
2cee436ecf | ||
|
|
e6386d969f | ||
|
|
4b2b983646 | ||
|
|
53808149fb | ||
|
|
21ba55d0a6 | ||
|
|
28c28b2fc0 |
495
README.md
495
README.md
@@ -2,21 +2,102 @@
|
||||
|
||||

|
||||
|
||||
# Invoke - Professional Creative AI Tools for Visual Media
|
||||
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
|
||||
|
||||
# Invoke - Professional Creative AI Tools for Visual Media
|
||||
|
||||
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
|
||||
|
||||
[![discord badge]][discord link]
|
||||
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
|
||||
|
||||
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
|
||||
</div>
|
||||
|
||||
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
|
||||
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
|
||||
|
||||
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
|
||||
[Installation][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
</div>
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
|
||||
2. Run the installer script.
|
||||
|
||||
- **Windows**: Double-click on the `install.bat` script.
|
||||
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
|
||||
- **Linux**: Run `install.sh`.
|
||||
|
||||
3. When prompted, enter a location for the install and select your GPU type.
|
||||
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
|
||||
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
|
||||
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
|
||||
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
|
||||
|
||||
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
|
||||
|
||||
## Troubleshooting, FAQ and Support
|
||||
|
||||
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
|
||||
|
||||
For more help, please join our [Discord][discord link].
|
||||
|
||||
## Features
|
||||
|
||||
Full details on features can be found in [our documentation][features docs].
|
||||
|
||||
### Web Server & UI
|
||||
|
||||
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
|
||||
|
||||
### Unified Canvas
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### Workflows & Nodes
|
||||
|
||||
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
|
||||
|
||||
### Board & Gallery Management
|
||||
|
||||
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- Support for both ckpt and diffusers models
|
||||
- SD1.5, SD2.0, and SDXL support
|
||||
- Upscaling Tools
|
||||
- Embedding Manager & Support
|
||||
- Model Manager & Support
|
||||
- Workflow creation & management
|
||||
- Node-Based Architecture
|
||||
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
|
||||
|
||||
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
|
||||
|
||||
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
|
||||
|
||||
## Thanks
|
||||
|
||||
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
|
||||
|
||||
Original portions of the software are Copyright © 2024 by respective contributors.
|
||||
|
||||
[features docs]: https://invoke-ai.github.io/InvokeAI/features/
|
||||
[faq]: https://invoke-ai.github.io/InvokeAI/help/FAQ/
|
||||
[contributors]: https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/
|
||||
[invoke.com]: https://www.invoke.com/about
|
||||
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
|
||||
[docs home]: https://invoke-ai.github.io/InvokeAI
|
||||
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/
|
||||
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
|
||||
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/
|
||||
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
|
||||
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
|
||||
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
|
||||
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
|
||||
[discord link]: https://discord.gg/ZmtBAhwWhy
|
||||
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
|
||||
@@ -30,402 +111,6 @@
|
||||
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
|
||||
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
|
||||
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
|
||||
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
|
||||
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
|
||||
[translation status link]: https://hosted.weblate.org/engage/invokeai/
|
||||
|
||||
</div>
|
||||
|
||||
InvokeAI is a leading creative engine built to empower professionals
|
||||
and enthusiasts alike. Generate and create stunning visual media using
|
||||
the latest AI-driven technologies. InvokeAI offers an industry leading
|
||||
Web Interface, interactive Command Line Interface, and also serves as
|
||||
the foundation for multiple commercial products.
|
||||
|
||||
**Quick links**: [[How to
|
||||
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
|
||||
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
|
||||
Tutorials</a>]
|
||||
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
|
||||
[<a
|
||||
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
|
||||
Ideas & Q&A</a>]
|
||||
[<a
|
||||
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
|
||||
|
||||
<div align="center">
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
</div>
|
||||
|
||||
## Table of Contents
|
||||
|
||||
Table of Contents 📝
|
||||
|
||||
**Getting Started**
|
||||
1. 🏁 [Quick Start](#quick-start)
|
||||
3. 🖥️ [Hardware Requirements](#hardware-requirements)
|
||||
|
||||
**More About Invoke**
|
||||
1. 🌟 [Features](#features)
|
||||
2. 📣 [Latest Changes](#latest-changes)
|
||||
3. 🛠️ [Troubleshooting](#troubleshooting)
|
||||
|
||||
**Supporting the Project**
|
||||
1. 🤝 [Contributing](#contributing)
|
||||
2. 👥 [Contributors](#contributors)
|
||||
3. 💕 [Support](#support)
|
||||
|
||||
## Quick Start
|
||||
|
||||
For full installation and upgrade instructions, please see:
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
|
||||
|
||||
If upgrading from version 2.3, please read [Migrating a 2.3 root
|
||||
directory to 3.0](#migrating-to-3) first.
|
||||
|
||||
### Automatic Installer (suggested for 1st time users)
|
||||
|
||||
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
|
||||
|
||||
2. Download the .zip file for your OS (Windows/macOS/Linux).
|
||||
|
||||
3. Unzip the file.
|
||||
|
||||
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
|
||||
into the Terminal, and press return. **Linux:** run `install.sh`.
|
||||
|
||||
5. You'll be asked to confirm the location of the folder in which
|
||||
to install InvokeAI and its image generation model files. Pick a
|
||||
location with at least 15 GB of free memory. More if you plan on
|
||||
installing lots of models.
|
||||
|
||||
6. Wait while the installer does its thing. After installing the software,
|
||||
the installer will launch a script that lets you configure InvokeAI and
|
||||
select a set of starting image generation models.
|
||||
|
||||
7. Find the folder that InvokeAI was installed into (it is not the
|
||||
same as the unpacked zip file directory!) The default location of this
|
||||
folder (if you didn't change it in step 5) is `~/invokeai` on
|
||||
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
|
||||
|
||||
8. On Windows systems, double-click on the `invoke.bat` file. On
|
||||
macOS, open a Terminal window, drag `invoke.sh` from the folder into
|
||||
the Terminal, and press return. On Linux, run `invoke.sh`
|
||||
|
||||
9. Press 2 to open the "browser-based UI", press enter/return, wait a
|
||||
minute or two for Stable Diffusion to start up, then open your browser
|
||||
and go to http://localhost:9090.
|
||||
|
||||
10. Type `banana sushi` in the box on the top left and click `Invoke`
|
||||
|
||||
### Command-Line Installation (for developers and users familiar with Terminals)
|
||||
|
||||
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
|
||||
later versions are not supported.
|
||||
Node.js also needs to be installed along with `pnpm` (can be installed with
|
||||
the command `npm install -g pnpm` if needed)
|
||||
|
||||
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
|
||||
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
|
||||
|
||||
```terminal
|
||||
mkdir invokeai
|
||||
````
|
||||
|
||||
3. Create a virtual environment named `.venv` inside this directory and activate it:
|
||||
|
||||
```terminal
|
||||
cd invokeai
|
||||
python -m venv .venv --prompt InvokeAI
|
||||
```
|
||||
|
||||
4. Activate the virtual environment (do it every time you run InvokeAI)
|
||||
|
||||
_For Linux/Mac users:_
|
||||
|
||||
```sh
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
_For Windows users:_
|
||||
|
||||
```ps
|
||||
.venv\Scripts\activate
|
||||
```
|
||||
|
||||
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
|
||||
|
||||
_For Windows/Linux with an NVIDIA GPU:_
|
||||
|
||||
```terminal
|
||||
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
|
||||
```
|
||||
|
||||
_For Linux with an AMD GPU:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
|
||||
```
|
||||
|
||||
_For non-GPU systems:_
|
||||
```terminal
|
||||
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
```
|
||||
|
||||
_For Macintoshes, either Intel or M1/M2/M3:_
|
||||
|
||||
```sh
|
||||
pip install InvokeAI --use-pep517
|
||||
```
|
||||
|
||||
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
|
||||
|
||||
```terminal
|
||||
invokeai-configure --root .
|
||||
```
|
||||
Don't miss the dot at the end!
|
||||
|
||||
7. Launch the web server (do it every time you run InvokeAI):
|
||||
|
||||
```terminal
|
||||
invokeai-web
|
||||
```
|
||||
|
||||
8. Point your browser to http://localhost:9090 to bring up the web interface.
|
||||
|
||||
9. Type `banana sushi` in the box on the top left and click `Invoke`.
|
||||
|
||||
Be sure to activate the virtual environment each time before re-launching InvokeAI,
|
||||
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
|
||||
|
||||
## Detailed Installation Instructions
|
||||
|
||||
This fork is supported across Linux, Windows and Macintosh. Linux
|
||||
users can use either an Nvidia-based card (with CUDA support) or an
|
||||
AMD card (using the ROCm driver). For full installation and upgrade
|
||||
instructions, please see:
|
||||
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
|
||||
|
||||
<a name="migrating-to-3"></a>
|
||||
### Migrating a v2.3 InvokeAI root directory
|
||||
|
||||
The InvokeAI root directory is where the InvokeAI startup file,
|
||||
installed models, and generated images are stored. It is ordinarily
|
||||
named `invokeai` and located in your home directory. The contents and
|
||||
layout of this directory has changed between versions 2.3 and 3.0 and
|
||||
cannot be used directly.
|
||||
|
||||
We currently recommend that you use the installer to create a new root
|
||||
directory named differently from the 2.3 one, e.g. `invokeai-3` and
|
||||
then use a migration script to copy your 2.3 models into the new
|
||||
location. However, if you choose, you can upgrade this directory in
|
||||
place. This section gives both recipes.
|
||||
|
||||
#### Creating a new root directory and migrating old models
|
||||
|
||||
This is the safer recipe because it leaves your old root directory in
|
||||
place to fall back on.
|
||||
|
||||
1. Follow the instructions above to create and install InvokeAI in a
|
||||
directory that has a different name from the 2.3 invokeai directory.
|
||||
In this example, we will use "invokeai-3"
|
||||
|
||||
2. When you are prompted to select models to install, select a minimal
|
||||
set of models, such as stable-diffusion-v1.5 only.
|
||||
|
||||
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
|
||||
`invokeai.bat` and select option 8 "Open the developers console". This
|
||||
will take you to the command line.
|
||||
|
||||
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
|
||||
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
|
||||
paths for your v2.3 and v3.0 root directories respectively.
|
||||
|
||||
This will copy and convert your old models from 2.3 format to 3.0
|
||||
format and create a new `models` directory in the 3.0 directory. The
|
||||
old models directory (which contains the models selected at install
|
||||
time) will be renamed `models.orig` and can be deleted once you have
|
||||
confirmed that the migration was successful.
|
||||
|
||||
If you wish, you can pass the 2.3 root directory to both `--from` and
|
||||
`--to` in order to update in place. Warning: this directory will no
|
||||
longer be usable with InvokeAI 2.3.
|
||||
|
||||
#### Migrating in place
|
||||
|
||||
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
|
||||
without touching the command line. ***This recipe does not work on
|
||||
Windows platforms due to a bug in the Windows version of the 2.3
|
||||
upgrade script.** See the next section for a Windows recipe.
|
||||
|
||||
##### For Mac and Linux Users:
|
||||
|
||||
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
|
||||
|
||||
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
|
||||
|
||||
3. Select option [1] to upgrade to the latest release.
|
||||
|
||||
4. Once the upgrade is finished you will be returned to the launcher
|
||||
menu. Select option [6] "Re-run the configure script to fix a broken
|
||||
install or to complete a major upgrade".
|
||||
|
||||
This will run the configure script against the v2.3 directory and
|
||||
update it to the 3.0 format. The following files will be replaced:
|
||||
|
||||
- The invokeai.init file, replaced by invokeai.yaml
|
||||
- The models directory
|
||||
- The configs/models.yaml model index
|
||||
|
||||
The original versions of these files will be saved with the suffix
|
||||
".orig" appended to the end. Once you have confirmed that the upgrade
|
||||
worked, you can safely remove these files. Alternatively you can
|
||||
restore a working v2.3 directory by removing the new files and
|
||||
restoring the ".orig" files' original names.
|
||||
|
||||
##### For Windows Users:
|
||||
|
||||
Windows Users can upgrade with the
|
||||
|
||||
1. Enter the 2.3 root directory you wish to upgrade
|
||||
2. Launch `invoke.sh` or `invoke.bat`
|
||||
3. Select the "Developer's console" option [8]
|
||||
4. Type the following commands
|
||||
|
||||
```
|
||||
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
|
||||
invokeai-configure --root .
|
||||
```
|
||||
(Replace `v3.0.0` with the current release number if this document is out of date).
|
||||
|
||||
The first command will install and upgrade new software to run
|
||||
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
|
||||
You may now launch the WebUI in the usual way, by selecting option [1]
|
||||
from the launcher script
|
||||
|
||||
#### Migrating Images
|
||||
|
||||
The migration script will migrate your invokeai settings and models,
|
||||
including textual inversion models, LoRAs and merges that you may have
|
||||
installed previously. However it does **not** migrate the generated
|
||||
images stored in your 2.3-format outputs directory. To do this, you
|
||||
need to run an additional step:
|
||||
|
||||
1. From a working InvokeAI 3.0 root directory, start the launcher and
|
||||
enter menu option [8] to open the "developer's console".
|
||||
|
||||
2. At the developer's console command line, type the command:
|
||||
|
||||
```bash
|
||||
invokeai-import-images
|
||||
```
|
||||
|
||||
3. This will lead you through the process of confirming the desired
|
||||
source and destination for the imported images. The images will
|
||||
appear in the gallery board of your choice, and contain the
|
||||
original prompt, model name, and other parameters used to generate
|
||||
the image.
|
||||
|
||||
(Many kudos to **techjedi** for contributing this script.)
|
||||
|
||||
## Hardware Requirements
|
||||
|
||||
InvokeAI is supported across Linux, Windows and macOS. Linux
|
||||
users can use either an Nvidia-based card (with CUDA support) or an
|
||||
AMD card (using the ROCm driver).
|
||||
|
||||
### System
|
||||
|
||||
You will need one of the following:
|
||||
|
||||
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
|
||||
of VRAM is highly recommended for rendering using the Stable
|
||||
Diffusion XL models
|
||||
- An Apple computer with an M1 chip.
|
||||
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
|
||||
only), 6-8 GB for XL rendering.
|
||||
|
||||
We do not recommend the GTX 1650 or 1660 series video cards. They are
|
||||
unable to run in half-precision mode and do not have sufficient VRAM
|
||||
to render 512x512 images.
|
||||
|
||||
**Memory** - At least 12 GB Main Memory RAM.
|
||||
|
||||
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
|
||||
|
||||
## Features
|
||||
|
||||
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
|
||||
|
||||
### *Web Server & UI*
|
||||
|
||||
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
|
||||
|
||||
### *Unified Canvas*
|
||||
|
||||
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
|
||||
|
||||
### *Workflows & Nodes*
|
||||
|
||||
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
|
||||
|
||||
### *Board & Gallery Management*
|
||||
|
||||
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
|
||||
|
||||
### Other features
|
||||
|
||||
- *Support for both ckpt and diffusers models*
|
||||
- *SD 2.0, 2.1, XL support*
|
||||
- *Upscaling Tools*
|
||||
- *Embedding Manager & Support*
|
||||
- *Model Manager & Support*
|
||||
- *Workflow creation & management*
|
||||
- *Node-Based Architecture*
|
||||
|
||||
|
||||
### Latest Changes
|
||||
|
||||
For our latest changes, view our [Release
|
||||
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
|
||||
[CHANGELOG](docs/CHANGELOG.md).
|
||||
|
||||
### Troubleshooting / FAQ
|
||||
|
||||
Please check out our **[FAQ](https://invoke-ai.github.io/InvokeAI/help/FAQ/)** to get solutions for common installation
|
||||
problems and other issues. For more help, please join our [Discord][discord link]
|
||||
|
||||
## Contributing
|
||||
|
||||
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
|
||||
cleanup, testing, or code reviews, is very much encouraged to do so.
|
||||
|
||||
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
|
||||
|
||||
If you are unfamiliar with how
|
||||
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
|
||||
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
|
||||
|
||||
We hope you enjoy using our software as much as we enjoy creating it,
|
||||
and we hope that some of those of you who are reading this will elect
|
||||
to become part of our community.
|
||||
|
||||
Welcome to InvokeAI!
|
||||
|
||||
### Contributors
|
||||
|
||||
This fork is a combined effort of various people from across the world.
|
||||
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
|
||||
their time, hard work and effort.
|
||||
|
||||
### Support
|
||||
|
||||
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
|
||||
|
||||
Original portions of the software are Copyright (c) 2023 by respective contributors.
|
||||
|
||||
|
||||
@@ -35,23 +35,6 @@ from ..services.urls.urls_default import LocalUrlService
|
||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from .events import FastAPIEventService
|
||||
|
||||
|
||||
# TODO: is there a better way to achieve this?
|
||||
def check_internet() -> bool:
|
||||
"""
|
||||
Return true if the internet is reachable.
|
||||
It does this by pinging huggingface.co.
|
||||
"""
|
||||
import urllib.request
|
||||
|
||||
host = "http://huggingface.co"
|
||||
try:
|
||||
urllib.request.urlopen(host, timeout=1)
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
logger = InvokeAILogger.get_logger()
|
||||
|
||||
|
||||
|
||||
@@ -2,6 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import mimetypes
|
||||
import socket
|
||||
import time
|
||||
from contextlib import asynccontextmanager
|
||||
from inspect import signature
|
||||
from pathlib import Path
|
||||
@@ -20,13 +21,10 @@ from fastapi_events.middleware import EventHandlerASGIMiddleware
|
||||
from pydantic.json_schema import models_json_schema
|
||||
from torch.backends.mps import is_available as is_mps_available
|
||||
|
||||
# for PyCharm:
|
||||
# noinspection PyUnresolvedReferences
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.frontend.web as web_dir
|
||||
from invokeai.app.api.no_cache_staticfiles import NoCacheStaticFiles
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig, get_config
|
||||
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
@@ -44,188 +42,189 @@ from .api.routers import (
|
||||
workflows,
|
||||
)
|
||||
from .api.sockets import SocketIO
|
||||
from .invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
UIConfigBase,
|
||||
)
|
||||
from .invocations.baseinvocation import BaseInvocation, UIConfigBase
|
||||
from .invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
# TODO(ryand): Search for imports from api_app.py in the rest of the codebase and make sure I didn't break any of them.
|
||||
def build_app(app_config: InvokeAIAppConfig, logger: logging.Logger) -> FastAPI:
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
# Add startup event to load dependencies
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
|
||||
yield
|
||||
# Shut down threads
|
||||
ApiDependencies.shutdown()
|
||||
|
||||
app = FastAPI(
|
||||
title="Invoke - Community Edition",
|
||||
docs_url=None,
|
||||
redoc_url=None,
|
||||
separate_input_output_schemas=False,
|
||||
lifespan=lifespan,
|
||||
)
|
||||
|
||||
# Add event handler
|
||||
event_handler_id: int = id(app)
|
||||
app.add_middleware(
|
||||
EventHandlerASGIMiddleware,
|
||||
handlers=[local_handler], # TODO: consider doing this in services to support different configurations
|
||||
middleware_id=event_handler_id,
|
||||
)
|
||||
|
||||
socket_io = SocketIO(app)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=app_config.allow_origins,
|
||||
allow_credentials=app_config.allow_credentials,
|
||||
allow_methods=app_config.allow_methods,
|
||||
allow_headers=app_config.allow_headers,
|
||||
)
|
||||
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
|
||||
# Include all routers
|
||||
app.include_router(utilities.utilities_router, prefix="/api")
|
||||
app.include_router(model_manager.model_manager_router, prefix="/api")
|
||||
app.include_router(download_queue.download_queue_router, prefix="/api")
|
||||
app.include_router(images.images_router, prefix="/api")
|
||||
app.include_router(boards.boards_router, prefix="/api")
|
||||
app.include_router(board_images.board_images_router, prefix="/api")
|
||||
app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
|
||||
add_custom_openapi(app)
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
def overridden_swagger() -> HTMLResponse:
|
||||
return get_swagger_ui_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=f"{app.title} - Swagger UI",
|
||||
swagger_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
@app.get("/redoc", include_in_schema=False)
|
||||
def overridden_redoc() -> HTMLResponse:
|
||||
return get_redoc_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=f"{app.title} - Redoc",
|
||||
redoc_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
web_root_path = Path(list(web_dir.__path__)[0])
|
||||
|
||||
try:
|
||||
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
|
||||
except RuntimeError:
|
||||
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount")
|
||||
|
||||
app.mount(
|
||||
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
|
||||
) # docs favicon is in here
|
||||
|
||||
return app
|
||||
|
||||
|
||||
if is_mps_available():
|
||||
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
||||
def apply_monkeypatches() -> None:
|
||||
# TODO(ryand): Don't monkeypatch on import!
|
||||
if is_mps_available():
|
||||
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
|
||||
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
|
||||
|
||||
|
||||
logger = InvokeAILogger.get_logger(config=app_config)
|
||||
# fix for windows mimetypes registry entries being borked
|
||||
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
|
||||
mimetypes.add_type("application/javascript", ".js")
|
||||
mimetypes.add_type("text/css", ".css")
|
||||
|
||||
torch_device_name = TorchDevice.get_torch_device_name()
|
||||
logger.info(f"Using torch device: {torch_device_name}")
|
||||
def fix_mimetypes():
|
||||
# fix for windows mimetypes registry entries being borked
|
||||
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
|
||||
mimetypes.add_type("application/javascript", ".js")
|
||||
mimetypes.add_type("text/css", ".css")
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
# Add startup event to load dependencies
|
||||
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
|
||||
yield
|
||||
# Shut down threads
|
||||
ApiDependencies.shutdown()
|
||||
def add_custom_openapi(app: FastAPI) -> None:
|
||||
"""Add a custom .openapi() method to the FastAPI app.
|
||||
|
||||
This is done based on the guidance here:
|
||||
https://fastapi.tiangolo.com/how-to/extending-openapi/#normal-fastapi
|
||||
"""
|
||||
|
||||
# Create the app
|
||||
# TODO: create this all in a method so configuration/etc. can be passed in?
|
||||
app = FastAPI(
|
||||
title="Invoke - Community Edition",
|
||||
docs_url=None,
|
||||
redoc_url=None,
|
||||
separate_input_output_schemas=False,
|
||||
lifespan=lifespan,
|
||||
)
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
def custom_openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
return app.openapi_schema
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# Add event handler
|
||||
event_handler_id: int = id(app)
|
||||
app.add_middleware(
|
||||
EventHandlerASGIMiddleware,
|
||||
handlers=[local_handler], # TODO: consider doing this in services to support different configurations
|
||||
middleware_id=event_handler_id,
|
||||
)
|
||||
# Add all outputs
|
||||
all_invocations = BaseInvocation.get_invocations()
|
||||
output_types = set()
|
||||
output_type_titles = {}
|
||||
for invoker in all_invocations:
|
||||
output_type = signature(invoker.invoke).return_annotation
|
||||
output_types.add(output_type)
|
||||
|
||||
socket_io = SocketIO(app)
|
||||
output_schemas = models_json_schema(
|
||||
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
for schema_key, output_schema in output_schemas[1]["$defs"].items():
|
||||
# TODO: note that we assume the schema_key here is the TYPE.__name__
|
||||
# This could break in some cases, figure out a better way to do it
|
||||
output_type_titles[schema_key] = output_schema["title"]
|
||||
openapi_schema["components"]["schemas"][schema_key] = output_schema
|
||||
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=app_config.allow_origins,
|
||||
allow_credentials=app_config.allow_credentials,
|
||||
allow_methods=app_config.allow_methods,
|
||||
allow_headers=app_config.allow_headers,
|
||||
)
|
||||
# Some models don't end up in the schemas as standalone definitions
|
||||
additional_schemas = models_json_schema(
|
||||
[
|
||||
(UIConfigBase, "serialization"),
|
||||
(InputFieldJSONSchemaExtra, "serialization"),
|
||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
||||
(ModelIdentifierField, "serialization"),
|
||||
(ProgressImage, "serialization"),
|
||||
],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
output_type = signature(obj=invoker.invoke).return_annotation
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# This code no longer seems to be necessary?
|
||||
# Leave it here just in case
|
||||
#
|
||||
# from invokeai.backend.model_manager import get_model_config_formats
|
||||
# formats = get_model_config_formats()
|
||||
# for model_config_name, enum_set in formats.items():
|
||||
|
||||
# Include all routers
|
||||
app.include_router(utilities.utilities_router, prefix="/api")
|
||||
app.include_router(model_manager.model_manager_router, prefix="/api")
|
||||
app.include_router(download_queue.download_queue_router, prefix="/api")
|
||||
app.include_router(images.images_router, prefix="/api")
|
||||
app.include_router(boards.boards_router, prefix="/api")
|
||||
app.include_router(board_images.board_images_router, prefix="/api")
|
||||
app.include_router(app_info.app_router, prefix="/api")
|
||||
app.include_router(session_queue.session_queue_router, prefix="/api")
|
||||
app.include_router(workflows.workflows_router, prefix="/api")
|
||||
# if model_config_name in openapi_schema["components"]["schemas"]:
|
||||
# # print(f"Config with name {name} already defined")
|
||||
# continue
|
||||
|
||||
# openapi_schema["components"]["schemas"][model_config_name] = {
|
||||
# "title": model_config_name,
|
||||
# "description": "An enumeration.",
|
||||
# "type": "string",
|
||||
# "enum": [v.value for v in enum_set],
|
||||
# }
|
||||
|
||||
# Build a custom OpenAPI to include all outputs
|
||||
# TODO: can outputs be included on metadata of invocation schemas somehow?
|
||||
def custom_openapi() -> dict[str, Any]:
|
||||
if app.openapi_schema:
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
openapi_schema = get_openapi(
|
||||
title=app.title,
|
||||
description="An API for invoking AI image operations",
|
||||
version="1.0.0",
|
||||
routes=app.routes,
|
||||
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
|
||||
)
|
||||
|
||||
# Add all outputs
|
||||
all_invocations = BaseInvocation.get_invocations()
|
||||
output_types = set()
|
||||
output_type_titles = {}
|
||||
for invoker in all_invocations:
|
||||
output_type = signature(invoker.invoke).return_annotation
|
||||
output_types.add(output_type)
|
||||
|
||||
output_schemas = models_json_schema(
|
||||
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}"
|
||||
)
|
||||
for schema_key, output_schema in output_schemas[1]["$defs"].items():
|
||||
# TODO: note that we assume the schema_key here is the TYPE.__name__
|
||||
# This could break in some cases, figure out a better way to do it
|
||||
output_type_titles[schema_key] = output_schema["title"]
|
||||
openapi_schema["components"]["schemas"][schema_key] = output_schema
|
||||
openapi_schema["components"]["schemas"][schema_key]["class"] = "output"
|
||||
|
||||
# Some models don't end up in the schemas as standalone definitions
|
||||
additional_schemas = models_json_schema(
|
||||
[
|
||||
(UIConfigBase, "serialization"),
|
||||
(InputFieldJSONSchemaExtra, "serialization"),
|
||||
(OutputFieldJSONSchemaExtra, "serialization"),
|
||||
(ModelIdentifierField, "serialization"),
|
||||
(ProgressImage, "serialization"),
|
||||
],
|
||||
ref_template="#/components/schemas/{model}",
|
||||
)
|
||||
for schema_key, schema_json in additional_schemas[1]["$defs"].items():
|
||||
openapi_schema["components"]["schemas"][schema_key] = schema_json
|
||||
|
||||
# Add a reference to the output type to additionalProperties of the invoker schema
|
||||
for invoker in all_invocations:
|
||||
invoker_name = invoker.__name__ # type: ignore [attr-defined] # this is a valid attribute
|
||||
output_type = signature(obj=invoker.invoke).return_annotation
|
||||
output_type_title = output_type_titles[output_type.__name__]
|
||||
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"]
|
||||
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
|
||||
invoker_schema["output"] = outputs_ref
|
||||
invoker_schema["class"] = "invocation"
|
||||
|
||||
# This code no longer seems to be necessary?
|
||||
# Leave it here just in case
|
||||
#
|
||||
# from invokeai.backend.model_manager import get_model_config_formats
|
||||
# formats = get_model_config_formats()
|
||||
# for model_config_name, enum_set in formats.items():
|
||||
|
||||
# if model_config_name in openapi_schema["components"]["schemas"]:
|
||||
# # print(f"Config with name {name} already defined")
|
||||
# continue
|
||||
|
||||
# openapi_schema["components"]["schemas"][model_config_name] = {
|
||||
# "title": model_config_name,
|
||||
# "description": "An enumeration.",
|
||||
# "type": "string",
|
||||
# "enum": [v.value for v in enum_set],
|
||||
# }
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
|
||||
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
|
||||
|
||||
|
||||
@app.get("/docs", include_in_schema=False)
|
||||
def overridden_swagger() -> HTMLResponse:
|
||||
return get_swagger_ui_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=f"{app.title} - Swagger UI",
|
||||
swagger_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
|
||||
@app.get("/redoc", include_in_schema=False)
|
||||
def overridden_redoc() -> HTMLResponse:
|
||||
return get_redoc_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=f"{app.title} - Redoc",
|
||||
redoc_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
|
||||
web_root_path = Path(list(web_dir.__path__)[0])
|
||||
|
||||
try:
|
||||
app.mount("/", NoCacheStaticFiles(directory=Path(web_root_path, "dist"), html=True), name="ui")
|
||||
except RuntimeError:
|
||||
logger.warn(f"No UI found at {web_root_path}/dist, skipping UI mount")
|
||||
app.mount(
|
||||
"/static", NoCacheStaticFiles(directory=Path(web_root_path, "static/")), name="static"
|
||||
) # docs favicon is in here
|
||||
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment
|
||||
|
||||
|
||||
def check_cudnn(logger: logging.Logger) -> None:
|
||||
@@ -244,27 +243,39 @@ def check_cudnn(logger: logging.Logger) -> None:
|
||||
)
|
||||
|
||||
|
||||
def find_port(port: int) -> int:
|
||||
"""Find a port not in use starting at given port"""
|
||||
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
|
||||
# https://github.com/WaylonWalker
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
if s.connect_ex(("localhost", port)) == 0:
|
||||
return find_port(port=port + 1)
|
||||
else:
|
||||
return port
|
||||
|
||||
|
||||
def init_dev_reload(logger: logging.Logger) -> None:
|
||||
try:
|
||||
import jurigged
|
||||
except ImportError as e:
|
||||
logger.error(
|
||||
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
|
||||
exc_info=e,
|
||||
)
|
||||
else:
|
||||
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
|
||||
|
||||
|
||||
def invoke_api() -> None:
|
||||
def find_port(port: int) -> int:
|
||||
"""Find a port not in use starting at given port"""
|
||||
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
|
||||
# https://github.com/WaylonWalker
|
||||
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
||||
if s.connect_ex(("localhost", port)) == 0:
|
||||
return find_port(port=port + 1)
|
||||
else:
|
||||
return port
|
||||
start = time.time()
|
||||
app_config = get_config()
|
||||
logger = InvokeAILogger.get_logger(config=app_config)
|
||||
|
||||
apply_monkeypatches()
|
||||
fix_mimetypes()
|
||||
|
||||
if app_config.dev_reload:
|
||||
try:
|
||||
import jurigged
|
||||
except ImportError as e:
|
||||
logger.error(
|
||||
'Can\'t start `--dev_reload` because jurigged is not found; `pip install -e ".[dev]"` to include development dependencies.',
|
||||
exc_info=e,
|
||||
)
|
||||
else:
|
||||
jurigged.watch(logger=InvokeAILogger.get_logger(name="jurigged").info)
|
||||
init_dev_reload(logger)
|
||||
|
||||
port = find_port(app_config.port)
|
||||
if port != app_config.port:
|
||||
@@ -272,6 +283,11 @@ def invoke_api() -> None:
|
||||
|
||||
check_cudnn(logger)
|
||||
|
||||
torch_device_name = TorchDevice.get_torch_device_name()
|
||||
logger.info(f"Using torch device: {torch_device_name}")
|
||||
|
||||
app = build_app(app_config, logger)
|
||||
|
||||
# Start our own event loop for eventing usage
|
||||
loop = asyncio.new_event_loop()
|
||||
config = uvicorn.Config(
|
||||
@@ -291,6 +307,7 @@ def invoke_api() -> None:
|
||||
log.handlers.clear()
|
||||
for ch in logger.handlers:
|
||||
log.addHandler(ch)
|
||||
logger.info(f"API started in {time.time() - start:.2f} seconds")
|
||||
|
||||
loop.run_until_complete(server.serve())
|
||||
|
||||
|
||||
@@ -35,6 +35,7 @@ from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
@@ -44,14 +45,6 @@ from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
|
||||
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
|
||||
CONTROLNET_RESIZE_VALUES = Literal[
|
||||
"just_resize",
|
||||
"crop_resize",
|
||||
"fill_resize",
|
||||
"just_resize_simple",
|
||||
]
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
image: ImageField = Field(description="The control image")
|
||||
|
||||
@@ -51,6 +51,7 @@ from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
||||
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
@@ -185,7 +186,7 @@ class GradientMaskOutput(BaseInvocationOutput):
|
||||
title="Create Gradient Mask",
|
||||
tags=["mask", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class CreateGradientMaskInvocation(BaseInvocation):
|
||||
"""Creates mask for denoising model run."""
|
||||
@@ -198,6 +199,32 @@ class CreateGradientMaskInvocation(BaseInvocation):
|
||||
minimum_denoise: float = InputField(
|
||||
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||||
)
|
||||
image: Optional[ImageField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] Image",
|
||||
ui_order=6,
|
||||
)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||||
default=None,
|
||||
input=Input.Connection,
|
||||
title="[OPTIONAL] UNet",
|
||||
ui_order=5,
|
||||
)
|
||||
vae: Optional[VAEField] = InputField(
|
||||
default=None,
|
||||
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||||
title="[OPTIONAL] VAE",
|
||||
input=Input.Connection,
|
||||
ui_order=7,
|
||||
)
|
||||
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||||
fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == "float32",
|
||||
description=FieldDescriptions.fp32,
|
||||
ui_order=9,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||||
@@ -233,8 +260,27 @@ class CreateGradientMaskInvocation(BaseInvocation):
|
||||
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||||
expanded_image_dto = context.images.save(expanded_mask_image)
|
||||
|
||||
masked_latents_name = None
|
||||
if self.unet is not None and self.vae is not None and self.image is not None:
|
||||
# all three fields must be present at the same time
|
||||
main_model_config = context.models.get_config(self.unet.unet.key)
|
||||
assert isinstance(main_model_config, MainConfigBase)
|
||||
if main_model_config.variant is ModelVariantType.Inpaint:
|
||||
mask = blur_tensor
|
||||
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||||
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||||
)
|
||||
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||||
|
||||
return GradientMaskOutput(
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=None, gradient=True),
|
||||
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||||
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||||
)
|
||||
|
||||
|
||||
@@ -3,7 +3,6 @@ from typing import Any, Literal, Optional, Union
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
@@ -14,6 +13,7 @@ from invokeai.app.invocations.fields import (
|
||||
)
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
|
||||
|
||||
from ...version import __version__
|
||||
|
||||
|
||||
@@ -8,11 +8,11 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
|
||||
|
||||
|
||||
class T2IAdapterField(BaseModel):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import shutil
|
||||
import tempfile
|
||||
import typing
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Optional, TypeVar
|
||||
|
||||
@@ -17,12 +17,6 @@ if TYPE_CHECKING:
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
@dataclass
|
||||
class DeleteAllResult:
|
||||
deleted_count: int
|
||||
freed_space_bytes: float
|
||||
|
||||
|
||||
class ObjectSerializerDisk(ObjectSerializerBase[T]):
|
||||
"""Disk-backed storage for arbitrary python objects. Serialization is handled by `torch.save` and `torch.load`.
|
||||
|
||||
@@ -35,6 +29,12 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
|
||||
self._ephemeral = ephemeral
|
||||
self._base_output_dir = output_dir
|
||||
self._base_output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if self._ephemeral:
|
||||
# Remove dangling tempdirs that might have been left over from an earlier unplanned shutdown.
|
||||
for temp_dir in filter(Path.is_dir, self._base_output_dir.glob("tmp*")):
|
||||
shutil.rmtree(temp_dir)
|
||||
|
||||
# Must specify `ignore_cleanup_errors` to avoid fatal errors during cleanup on Windows
|
||||
self._tempdir = (
|
||||
tempfile.TemporaryDirectory(dir=self._base_output_dir, ignore_cleanup_errors=True) if ephemeral else None
|
||||
|
||||
@@ -1,13 +1,21 @@
|
||||
from typing import Union
|
||||
from typing import Any, Literal, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from controlnet_aux.util import HWC3
|
||||
from diffusers.utils import PIL_INTERPOLATION
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import nms, normalize_image_channel_count
|
||||
|
||||
CONTROLNET_RESIZE_VALUES = Literal[
|
||||
"just_resize",
|
||||
"crop_resize",
|
||||
"fill_resize",
|
||||
"just_resize_simple",
|
||||
]
|
||||
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
|
||||
|
||||
###################################################################
|
||||
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
|
||||
###################################################################
|
||||
@@ -68,17 +76,6 @@ def lvmin_thin(x, prunings=True):
|
||||
return y
|
||||
|
||||
|
||||
def nake_nms(x):
|
||||
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
||||
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
||||
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
||||
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
||||
y = np.zeros_like(x)
|
||||
for f in [f1, f2, f3, f4]:
|
||||
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
||||
return y
|
||||
|
||||
|
||||
################################################################################
|
||||
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
|
||||
################################################################################
|
||||
@@ -134,98 +131,122 @@ def pixel_perfect_resolution(
|
||||
return int(np.round(estimation))
|
||||
|
||||
|
||||
def clone_contiguous(x: np.ndarray[Any, Any]) -> np.ndarray[Any, Any]:
|
||||
"""Get a memory-contiguous clone of the given numpy array, as a safety measure and to improve computation efficiency."""
|
||||
return np.ascontiguousarray(x).copy()
|
||||
|
||||
|
||||
def np_img_to_torch(np_img: np.ndarray[Any, Any], device: torch.device) -> torch.Tensor:
|
||||
"""Convert a numpy image to a PyTorch tensor. The image is normalized to 0-1, rearranged to BCHW format and sent to
|
||||
the specified device."""
|
||||
|
||||
torch_img = torch.from_numpy(np_img)
|
||||
normalized = torch_img.float() / 255.0
|
||||
bchw = rearrange(normalized, "h w c -> 1 c h w")
|
||||
on_device = bchw.to(device)
|
||||
return on_device.clone()
|
||||
|
||||
|
||||
def heuristic_resize(np_img: np.ndarray[Any, Any], size: tuple[int, int]) -> np.ndarray[Any, Any]:
|
||||
"""Resizes an image using a heuristic to choose the best resizing strategy.
|
||||
|
||||
- If the image appears to be an edge map, special handling will be applied to ensure the edges are not distorted.
|
||||
- Single-pixel edge maps use NMS and thinning to keep the edges as single-pixel lines.
|
||||
- Low-color-count images are resized with nearest-neighbor to preserve color information (for e.g. segmentation maps).
|
||||
- The alpha channel is handled separately to ensure it is resized correctly.
|
||||
|
||||
Args:
|
||||
np_img (np.ndarray): The input image.
|
||||
size (tuple[int, int]): The target size for the image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The resized image.
|
||||
|
||||
Adapted from https://github.com/Mikubill/sd-webui-controlnet.
|
||||
"""
|
||||
|
||||
# Return early if the image is already at the requested size
|
||||
if np_img.shape[0] == size[1] and np_img.shape[1] == size[0]:
|
||||
return np_img
|
||||
|
||||
# If the image has an alpha channel, separate it for special handling later.
|
||||
inpaint_mask = None
|
||||
if np_img.ndim == 3 and np_img.shape[2] == 4:
|
||||
inpaint_mask = np_img[:, :, 3]
|
||||
np_img = np_img[:, :, 0:3]
|
||||
|
||||
new_size_is_smaller = (size[0] * size[1]) < (np_img.shape[0] * np_img.shape[1])
|
||||
new_size_is_bigger = (size[0] * size[1]) > (np_img.shape[0] * np_img.shape[1])
|
||||
unique_color_count = np.unique(np_img.reshape(-1, np_img.shape[2]), axis=0).shape[0]
|
||||
is_one_pixel_edge = False
|
||||
is_binary = False
|
||||
|
||||
if unique_color_count == 2:
|
||||
# If the image has only two colors, it is likely binary. Check if the image has one-pixel edges.
|
||||
is_binary = np.min(np_img) < 16 and np.max(np_img) > 240
|
||||
if is_binary:
|
||||
eroded = cv2.erode(np_img, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
dilated = cv2.dilate(eroded, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
one_pixel_edge_count = np.where(dilated < np_img)[0].shape[0]
|
||||
all_edge_count = np.where(np_img > 127)[0].shape[0]
|
||||
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
||||
|
||||
if 2 < unique_color_count < 200:
|
||||
# With a low color count, we assume this is a map where exact colors are important. Near-neighbor preserves
|
||||
# the colors as needed.
|
||||
interpolation = cv2.INTER_NEAREST
|
||||
elif new_size_is_smaller:
|
||||
# This works best for downscaling
|
||||
interpolation = cv2.INTER_AREA
|
||||
else:
|
||||
# Fall back for other cases
|
||||
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
||||
|
||||
# This may be further transformed depending on the binary nature of the image.
|
||||
resized = cv2.resize(np_img, size, interpolation=interpolation)
|
||||
|
||||
if inpaint_mask is not None:
|
||||
# Resize the inpaint mask to match the resized image using the same interpolation method.
|
||||
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
||||
|
||||
# If the image is binary, we will perform some additional processing to ensure the edges are preserved.
|
||||
if is_binary:
|
||||
resized = np.mean(resized.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
||||
if is_one_pixel_edge:
|
||||
# Use NMS and thinning to keep the edges as single-pixel lines.
|
||||
resized = nms(resized)
|
||||
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
resized = lvmin_thin(resized, prunings=new_size_is_bigger)
|
||||
else:
|
||||
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
resized = np.stack([resized] * 3, axis=2)
|
||||
|
||||
# Restore the alpha channel if it was present.
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
||||
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
||||
resized = np.concatenate([resized, inpaint_mask], axis=2)
|
||||
|
||||
return resized
|
||||
|
||||
|
||||
###########################################################################
|
||||
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
|
||||
# modified for InvokeAI
|
||||
###########################################################################
|
||||
# def detectmap_proc(detected_map, module, resize_mode, h, w):
|
||||
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
|
||||
# if 'inpaint' in module:
|
||||
# np_img = np_img.astype(np.float32)
|
||||
# else:
|
||||
# np_img = HWC3(np_img)
|
||||
np_img = HWC3(np_img)
|
||||
def np_img_resize(
|
||||
np_img: np.ndarray,
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES,
|
||||
h: int,
|
||||
w: int,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
) -> tuple[torch.Tensor, np.ndarray[Any, Any]]:
|
||||
np_img = normalize_image_channel_count(np_img)
|
||||
|
||||
def safe_numpy(x):
|
||||
# A very safe method to make sure that Apple/Mac works
|
||||
y = x
|
||||
|
||||
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
||||
y = y.copy()
|
||||
y = np.ascontiguousarray(y)
|
||||
y = y.copy()
|
||||
return y
|
||||
|
||||
def get_pytorch_control(x):
|
||||
# A very safe method to make sure that Apple/Mac works
|
||||
y = x
|
||||
|
||||
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
||||
y = torch.from_numpy(y)
|
||||
y = y.float() / 255.0
|
||||
y = rearrange(y, "h w c -> 1 c h w")
|
||||
y = y.clone()
|
||||
# y = y.to(devices.get_device_for("controlnet"))
|
||||
y = y.to(device)
|
||||
y = y.clone()
|
||||
return y
|
||||
|
||||
def high_quality_resize(x: np.ndarray, size):
|
||||
# Written by lvmin
|
||||
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
|
||||
inpaint_mask = None
|
||||
if x.ndim == 3 and x.shape[2] == 4:
|
||||
inpaint_mask = x[:, :, 3]
|
||||
x = x[:, :, 0:3]
|
||||
|
||||
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
|
||||
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
|
||||
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
|
||||
is_one_pixel_edge = False
|
||||
is_binary = False
|
||||
if unique_color_count == 2:
|
||||
is_binary = np.min(x) < 16 and np.max(x) > 240
|
||||
if is_binary:
|
||||
xc = x
|
||||
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
||||
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
|
||||
all_edge_count = np.where(x > 127)[0].shape[0]
|
||||
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
||||
|
||||
if 2 < unique_color_count < 200:
|
||||
interpolation = cv2.INTER_NEAREST
|
||||
elif new_size_is_smaller:
|
||||
interpolation = cv2.INTER_AREA
|
||||
else:
|
||||
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
||||
|
||||
y = cv2.resize(x, size, interpolation=interpolation)
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
||||
|
||||
if is_binary:
|
||||
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
||||
if is_one_pixel_edge:
|
||||
y = nake_nms(y)
|
||||
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
y = lvmin_thin(y, prunings=new_size_is_bigger)
|
||||
else:
|
||||
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
||||
y = np.stack([y] * 3, axis=2)
|
||||
|
||||
if inpaint_mask is not None:
|
||||
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
||||
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
||||
y = np.concatenate([y, inpaint_mask], axis=2)
|
||||
|
||||
return y
|
||||
|
||||
# if resize_mode == external_code.ResizeMode.RESIZE:
|
||||
if resize_mode == "just_resize": # RESIZE
|
||||
np_img = high_quality_resize(np_img, (w, h))
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = heuristic_resize(np_img, (w, h))
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
|
||||
old_h, old_w, _ = np_img.shape
|
||||
old_w = float(old_w)
|
||||
@@ -236,7 +257,6 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
|
||||
def safeint(x: Union[int, float]) -> int:
|
||||
return int(np.round(x))
|
||||
|
||||
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
|
||||
if resize_mode == "fill_resize": # OUTER_FIT
|
||||
k = min(k0, k1)
|
||||
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
|
||||
@@ -245,23 +265,23 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
|
||||
# Inpaint hijack
|
||||
high_quality_border_color[3] = 255
|
||||
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
|
||||
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
new_h, new_w, _ = np_img.shape
|
||||
pad_h = max(0, (h - new_h) // 2)
|
||||
pad_w = max(0, (w - new_w) // 2)
|
||||
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
|
||||
np_img = high_quality_background
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
else: # resize_mode == "crop_resize" (INNER_FIT)
|
||||
k = max(k0, k1)
|
||||
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
|
||||
new_h, new_w, _ = np_img.shape
|
||||
pad_h = max(0, (new_h - h) // 2)
|
||||
pad_w = max(0, (new_w - w) // 2)
|
||||
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
|
||||
np_img = safe_numpy(np_img)
|
||||
return get_pytorch_control(np_img), np_img
|
||||
np_img = clone_contiguous(np_img)
|
||||
return np_img_to_torch(np_img, device), np_img
|
||||
|
||||
|
||||
def prepare_control_image(
|
||||
@@ -269,12 +289,12 @@ def prepare_control_image(
|
||||
width: int,
|
||||
height: int,
|
||||
num_channels: int = 3,
|
||||
device="cuda",
|
||||
dtype=torch.float16,
|
||||
do_classifier_free_guidance=True,
|
||||
control_mode="balanced",
|
||||
resize_mode="just_resize_simple",
|
||||
):
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
do_classifier_free_guidance: bool = True,
|
||||
) -> torch.Tensor:
|
||||
"""Pre-process images for ControlNets or T2I-Adapters.
|
||||
|
||||
Args:
|
||||
@@ -292,26 +312,15 @@ def prepare_control_image(
|
||||
resize_mode (str, optional): Defaults to "just_resize_simple".
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If resize_mode == "crop_resize_simple".
|
||||
NotImplementedError: If resize_mode == "fill_resize_simple".
|
||||
ValueError: If `resize_mode` is not recognized.
|
||||
ValueError: If `num_channels` is out of range.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The pre-processed input tensor.
|
||||
"""
|
||||
if (
|
||||
resize_mode == "just_resize_simple"
|
||||
or resize_mode == "crop_resize_simple"
|
||||
or resize_mode == "fill_resize_simple"
|
||||
):
|
||||
if resize_mode == "just_resize_simple":
|
||||
image = image.convert("RGB")
|
||||
if resize_mode == "just_resize_simple":
|
||||
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
||||
elif resize_mode == "crop_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
elif resize_mode == "fill_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
image = image.resize((width, height), resample=Image.LANCZOS)
|
||||
nimage = np.array(image)
|
||||
nimage = nimage[None, :]
|
||||
nimage = np.concatenate([nimage], axis=0)
|
||||
@@ -328,8 +337,7 @@ def prepare_control_image(
|
||||
resize_mode=resize_mode,
|
||||
h=height,
|
||||
w=width,
|
||||
# device=torch.device('cpu')
|
||||
device=device,
|
||||
device=torch.device(device),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")
|
||||
|
||||
@@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
non_maximum_suppression,
|
||||
nms,
|
||||
normalize_image_channel_count,
|
||||
np_to_pil,
|
||||
pil_to_np,
|
||||
@@ -134,7 +134,7 @@ class HEDProcessor:
|
||||
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
if scribble:
|
||||
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
|
||||
detected_map = nms(detected_map, 127, 3.0)
|
||||
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
||||
detected_map[detected_map > 4] = 255
|
||||
detected_map[detected_map < 255] = 0
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from math import ceil, floor, sqrt
|
||||
from typing import Optional
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@@ -153,10 +154,13 @@ def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.n
|
||||
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA)
|
||||
|
||||
|
||||
def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
|
||||
def nms(np_img: np.ndarray, threshold: Optional[int] = None, sigma: Optional[float] = None) -> np.ndarray:
|
||||
"""
|
||||
Apply non-maximum suppression to an image.
|
||||
|
||||
If both threshold and sigma are provided, the image will blurred before the suppression and thresholded afterwards,
|
||||
resulting in a binary output image.
|
||||
|
||||
This function is adapted from https://github.com/lllyasviel/ControlNet.
|
||||
|
||||
Args:
|
||||
@@ -166,23 +170,36 @@ def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
|
||||
|
||||
Returns:
|
||||
The image after non-maximum suppression.
|
||||
|
||||
Raises:
|
||||
ValueError: If only one of threshold and sigma provided.
|
||||
"""
|
||||
|
||||
image = cv2.GaussianBlur(image.astype(np.float32), (0, 0), sigma)
|
||||
# Raise a value error if only one of threshold and sigma is provided
|
||||
if (threshold is None) != (sigma is None):
|
||||
raise ValueError("Both threshold and sigma must be provided if one is provided.")
|
||||
|
||||
if sigma is not None and threshold is not None:
|
||||
# Blurring the image can help to thin out features
|
||||
np_img = cv2.GaussianBlur(np_img.astype(np.float32), (0, 0), sigma)
|
||||
|
||||
filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
||||
filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
||||
filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
||||
filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
||||
|
||||
y = np.zeros_like(image)
|
||||
nms_img = np.zeros_like(np_img)
|
||||
|
||||
for f in [filter_1, filter_2, filter_3, filter_4]:
|
||||
np.putmask(y, cv2.dilate(image, kernel=f) == image, image)
|
||||
np.putmask(nms_img, cv2.dilate(np_img, kernel=f) == np_img, np_img)
|
||||
|
||||
z = np.zeros_like(y, dtype=np.uint8)
|
||||
z[y > threshold] = 255
|
||||
return z
|
||||
if sigma is not None and threshold is not None:
|
||||
# We blurred - now threshold to get a binary image
|
||||
thresholded = np.zeros_like(nms_img, dtype=np.uint8)
|
||||
thresholded[nms_img > threshold] = 255
|
||||
return thresholded
|
||||
|
||||
return nms_img
|
||||
|
||||
|
||||
def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray:
|
||||
|
||||
@@ -301,12 +301,12 @@ class MainConfigBase(ModelConfigBase):
|
||||
default_settings: Optional[MainModelDefaultSettings] = Field(
|
||||
description="Default settings for this model", default=None
|
||||
)
|
||||
variant: ModelVariantType = ModelVariantType.Normal
|
||||
|
||||
|
||||
class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
|
||||
"""Model config for main checkpoint models."""
|
||||
|
||||
variant: ModelVariantType = ModelVariantType.Normal
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
||||
upcast_attention: bool = False
|
||||
|
||||
|
||||
@@ -155,7 +155,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_sd15/resolve/main/ip-adapter_sd15.safetensors",
|
||||
description="IP-Adapter for SD 1.5 models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@@ -163,7 +163,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter Plus",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_plus_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_plus_sd15/resolve/main/ip-adapter-plus_sd15.safetensors",
|
||||
description="Refined IP-Adapter for SD 1.5 models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@@ -171,7 +171,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter Plus Face",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
source="InvokeAI/ip_adapter_plus_face_sd15",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_plus_face_sd15/resolve/main/ip-adapter-plus-face_sd15.safetensors",
|
||||
description="Refined IP-Adapter for SD 1.5 models, adapted for faces",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sd_image_encoder],
|
||||
@@ -179,7 +179,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
StarterModel(
|
||||
name="IP Adapter SDXL",
|
||||
base=BaseModelType.StableDiffusionXL,
|
||||
source="InvokeAI/ip_adapter_sdxl",
|
||||
source="https://huggingface.co/InvokeAI/ip_adapter_sdxl_vit_h/resolve/main/ip-adapter_sdxl_vit-h.safetensors",
|
||||
description="IP-Adapter for SDXL models",
|
||||
type=ModelType.IPAdapter,
|
||||
dependencies=[ip_adapter_sdxl_image_encoder],
|
||||
|
||||
@@ -51,6 +51,7 @@
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"@chakra-ui/react-use-size": "^2.1.0",
|
||||
"@dagrejs/dagre": "^1.1.1",
|
||||
"@dagrejs/graphlib": "^2.2.1",
|
||||
"@dnd-kit/core": "^6.1.0",
|
||||
|
||||
3
invokeai/frontend/web/pnpm-lock.yaml
generated
3
invokeai/frontend/web/pnpm-lock.yaml
generated
@@ -8,6 +8,9 @@ dependencies:
|
||||
'@chakra-ui/react':
|
||||
specifier: ^2.8.2
|
||||
version: 2.8.2(@emotion/react@11.11.3)(@emotion/styled@11.11.0)(@types/react@18.2.59)(framer-motion@11.0.6)(react-dom@18.2.0)(react@18.2.0)
|
||||
'@chakra-ui/react-use-size':
|
||||
specifier: ^2.1.0
|
||||
version: 2.1.0(react@18.2.0)
|
||||
'@dagrejs/dagre':
|
||||
specifier: ^1.1.1
|
||||
version: 1.1.1
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import { Button, Flex, Heading, Text } from '@invoke-ai/ui-library';
|
||||
import { Button, Flex, Heading, SimpleGrid, Text } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useControlNetOrT2IAdapterDefaultSettings } from 'features/modelManagerV2/hooks/useControlNetOrT2IAdapterDefaultSettings';
|
||||
import { DefaultPreprocessor } from 'features/modelManagerV2/subpanels/ModelPanel/ControlNetOrT2IAdapterDefaultSettings/DefaultPreprocessor';
|
||||
@@ -92,13 +92,9 @@ export const ControlNetOrT2IAdapterDefaultSettings = () => {
|
||||
</Button>
|
||||
</Flex>
|
||||
|
||||
<Flex flexDir="column" gap={8}>
|
||||
<Flex gap={8}>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultPreprocessor control={control} name="preprocessor" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Flex>
|
||||
<SimpleGrid columns={2} gap={8}>
|
||||
<DefaultPreprocessor control={control} name="preprocessor" />
|
||||
</SimpleGrid>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import { Button, Flex, Heading, Text } from '@invoke-ai/ui-library';
|
||||
import { Button, Flex, Heading, SimpleGrid, Text } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useMainModelDefaultSettings } from 'features/modelManagerV2/hooks/useMainModelDefaultSettings';
|
||||
import { DefaultHeight } from 'features/modelManagerV2/subpanels/ModelPanel/MainModelDefaultSettings/DefaultHeight';
|
||||
@@ -122,40 +122,16 @@ export const MainModelDefaultSettings = () => {
|
||||
</Button>
|
||||
</Flex>
|
||||
|
||||
<Flex flexDir="column" gap={8}>
|
||||
<Flex gap={8}>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultVae control={control} name="vae" />
|
||||
</Flex>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultVaePrecision control={control} name="vaePrecision" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex gap={8}>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultScheduler control={control} name="scheduler" />
|
||||
</Flex>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultSteps control={control} name="steps" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex gap={8}>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultCfgScale control={control} name="cfgScale" />
|
||||
</Flex>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultCfgRescaleMultiplier control={control} name="cfgRescaleMultiplier" />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<Flex gap={8}>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultWidth control={control} optimalDimension={optimalDimension} />
|
||||
</Flex>
|
||||
<Flex gap={4} w="full">
|
||||
<DefaultHeight control={control} optimalDimension={optimalDimension} />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</Flex>
|
||||
<SimpleGrid columns={2} gap={8}>
|
||||
<DefaultVae control={control} name="vae" />
|
||||
<DefaultVaePrecision control={control} name="vaePrecision" />
|
||||
<DefaultScheduler control={control} name="scheduler" />
|
||||
<DefaultSteps control={control} name="steps" />
|
||||
<DefaultCfgScale control={control} name="cfgScale" />
|
||||
<DefaultCfgRescaleMultiplier control={control} name="cfgRescaleMultiplier" />
|
||||
<DefaultWidth control={control} optimalDimension={optimalDimension} />
|
||||
<DefaultHeight control={control} optimalDimension={optimalDimension} />
|
||||
</SimpleGrid>
|
||||
</>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -6,6 +6,7 @@ import {
|
||||
FormLabel,
|
||||
Heading,
|
||||
Input,
|
||||
SimpleGrid,
|
||||
Text,
|
||||
Textarea,
|
||||
} from '@invoke-ai/ui-library';
|
||||
@@ -66,25 +67,21 @@ export const ModelEdit = ({ form }: Props) => {
|
||||
<Heading as="h3" fontSize="md" mt="4">
|
||||
{t('modelManager.modelSettings')}
|
||||
</Heading>
|
||||
<Flex gap={4}>
|
||||
<SimpleGrid columns={2} gap={4}>
|
||||
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
|
||||
<FormLabel>{t('modelManager.baseModel')}</FormLabel>
|
||||
<BaseModelSelect control={form.control} />
|
||||
</FormControl>
|
||||
</Flex>
|
||||
{data.type === 'main' && data.format === 'checkpoint' && (
|
||||
<>
|
||||
<Flex gap={4}>
|
||||
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
|
||||
<FormLabel>{t('modelManager.variant')}</FormLabel>
|
||||
<ModelVariantSelect control={form.control} />
|
||||
</FormControl>
|
||||
{data.type === 'main' && data.format === 'checkpoint' && (
|
||||
<>
|
||||
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
|
||||
<FormLabel>{t('modelManager.pathToConfig')}</FormLabel>
|
||||
<Input {...form.register('config_path', stringFieldOptions)} />
|
||||
</FormControl>
|
||||
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
|
||||
<FormLabel>{t('modelManager.variant')}</FormLabel>
|
||||
<ModelVariantSelect control={form.control} />
|
||||
</FormControl>
|
||||
</Flex>
|
||||
<Flex gap={4}>
|
||||
<FormControl flexDir="column" alignItems="flex-start" gap={1}>
|
||||
<FormLabel>{t('modelManager.predictionType')}</FormLabel>
|
||||
<PredictionTypeSelect control={form.control} />
|
||||
@@ -93,9 +90,9 @@ export const ModelEdit = ({ form }: Props) => {
|
||||
<FormLabel>{t('modelManager.upcastAttention')}</FormLabel>
|
||||
<Checkbox {...form.register('upcast_attention')} />
|
||||
</FormControl>
|
||||
</Flex>
|
||||
</>
|
||||
)}
|
||||
</>
|
||||
)}
|
||||
</SimpleGrid>
|
||||
</Flex>
|
||||
</form>
|
||||
</Flex>
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import { Box, Flex, Text } from '@invoke-ai/ui-library';
|
||||
import { Box, Flex, SimpleGrid, Text } from '@invoke-ai/ui-library';
|
||||
import { skipToken } from '@reduxjs/toolkit/query';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { ControlNetOrT2IAdapterDefaultSettings } from 'features/modelManagerV2/subpanels/ModelPanel/ControlNetOrT2IAdapterDefaultSettings/ControlNetOrT2IAdapterDefaultSettings';
|
||||
@@ -24,57 +24,32 @@ export const ModelView = () => {
|
||||
return (
|
||||
<Flex flexDir="column" h="full" gap={4}>
|
||||
<Box layerStyle="second" borderRadius="base" p={4}>
|
||||
<Flex flexDir="column" gap={4}>
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('modelManager.baseModel')} value={data.base} />
|
||||
<ModelAttrView label={t('modelManager.modelType')} value={data.type} />
|
||||
</Flex>
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('common.format')} value={data.format} />
|
||||
<ModelAttrView label={t('modelManager.path')} value={data.path} />
|
||||
</Flex>
|
||||
|
||||
<SimpleGrid columns={2} gap={4}>
|
||||
<ModelAttrView label={t('modelManager.baseModel')} value={data.base} />
|
||||
<ModelAttrView label={t('modelManager.modelType')} value={data.type} />
|
||||
<ModelAttrView label={t('common.format')} value={data.format} />
|
||||
<ModelAttrView label={t('modelManager.path')} value={data.path} />
|
||||
{data.type === 'main' && <ModelAttrView label={t('modelManager.variant')} value={data.variant} />}
|
||||
{data.type === 'main' && data.format === 'diffusers' && data.repo_variant && (
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('modelManager.repoVariant')} value={data.repo_variant} />
|
||||
</Flex>
|
||||
<ModelAttrView label={t('modelManager.repoVariant')} value={data.repo_variant} />
|
||||
)}
|
||||
|
||||
{data.type === 'main' && data.format === 'checkpoint' && (
|
||||
<>
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('modelManager.pathToConfig')} value={data.config_path} />
|
||||
<ModelAttrView label={t('modelManager.variant')} value={data.variant} />
|
||||
</Flex>
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('modelManager.predictionType')} value={data.prediction_type} />
|
||||
<ModelAttrView label={t('modelManager.upcastAttention')} value={`${data.upcast_attention}`} />
|
||||
</Flex>
|
||||
<ModelAttrView label={t('modelManager.pathToConfig')} value={data.config_path} />
|
||||
<ModelAttrView label={t('modelManager.predictionType')} value={data.prediction_type} />
|
||||
<ModelAttrView label={t('modelManager.upcastAttention')} value={`${data.upcast_attention}`} />
|
||||
</>
|
||||
)}
|
||||
|
||||
{data.type === 'ip_adapter' && data.format === 'invokeai' && (
|
||||
<Flex gap={2}>
|
||||
<ModelAttrView label={t('modelManager.imageEncoderModelId')} value={data.image_encoder_model_id} />
|
||||
</Flex>
|
||||
<ModelAttrView label={t('modelManager.imageEncoderModelId')} value={data.image_encoder_model_id} />
|
||||
)}
|
||||
</Flex>
|
||||
</SimpleGrid>
|
||||
</Box>
|
||||
<Box layerStyle="second" borderRadius="base" p={4}>
|
||||
{data.type === 'main' && data.base !== 'sdxl-refiner' && <MainModelDefaultSettings />}
|
||||
{(data.type === 'controlnet' || data.type === 't2i_adapter') && <ControlNetOrT2IAdapterDefaultSettings />}
|
||||
{(data.type === 'main' || data.type === 'lora') && <TriggerPhrases />}
|
||||
</Box>
|
||||
{data.type === 'main' && data.base !== 'sdxl-refiner' && (
|
||||
<Box layerStyle="second" borderRadius="base" p={4}>
|
||||
<MainModelDefaultSettings />
|
||||
</Box>
|
||||
)}
|
||||
{(data.type === 'controlnet' || data.type === 't2i_adapter') && (
|
||||
<Box layerStyle="second" borderRadius="base" p={4}>
|
||||
<ControlNetOrT2IAdapterDefaultSettings />
|
||||
</Box>
|
||||
)}
|
||||
{(data.type === 'main' || data.type === 'lora') && (
|
||||
<Box layerStyle="second" borderRadius="base" p={4}>
|
||||
<TriggerPhrases />
|
||||
</Box>
|
||||
)}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -77,9 +77,17 @@ export const TriggerPhrases = () => {
|
||||
[updateModel, selectedModelKey, triggerPhrases]
|
||||
);
|
||||
|
||||
const onTriggerPhraseAddFormSubmit = useCallback(
|
||||
(e: React.FormEvent<HTMLFormElement>) => {
|
||||
e.preventDefault();
|
||||
addTriggerPhrase();
|
||||
},
|
||||
[addTriggerPhrase]
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" w="full" gap="5">
|
||||
<form>
|
||||
<form onSubmit={onTriggerPhraseAddFormSubmit}>
|
||||
<FormControl w="full" isInvalid={Boolean(errors.length)} orientation="vertical">
|
||||
<FormLabel>{t('modelManager.triggerPhrases')}</FormLabel>
|
||||
<Flex flexDir="column" w="full">
|
||||
|
||||
@@ -9,6 +9,7 @@ import {
|
||||
CANVAS_TEXT_TO_IMAGE_GRAPH,
|
||||
IMAGE_TO_IMAGE_GRAPH,
|
||||
IMAGE_TO_LATENTS,
|
||||
INPAINT_CREATE_MASK,
|
||||
INPAINT_IMAGE,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
@@ -145,6 +146,16 @@ export const addVAEToGraph = async (
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: isSeamlessEnabled ? SEAMLESS : isAutoVae ? modelLoaderNodeId : VAE_LOADER,
|
||||
field: 'vae',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'vae',
|
||||
},
|
||||
},
|
||||
|
||||
{
|
||||
source: {
|
||||
|
||||
@@ -133,6 +133,8 @@ export const buildCanvasInpaintGraph = async (
|
||||
coherence_mode: canvasCoherenceMode,
|
||||
minimum_denoise: canvasCoherenceMinDenoise,
|
||||
edge_radius: canvasCoherenceEdgeSize,
|
||||
tiled: false,
|
||||
fp32: fp32,
|
||||
},
|
||||
[DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
@@ -182,6 +184,16 @@ export const buildCanvasInpaintGraph = async (
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
// Connect CLIP Skip to Conditioning
|
||||
{
|
||||
source: {
|
||||
@@ -331,6 +343,16 @@ export const buildCanvasInpaintGraph = async (
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_IMAGE_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Resize Down
|
||||
{
|
||||
source: {
|
||||
|
||||
@@ -157,6 +157,8 @@ export const buildCanvasOutpaintGraph = async (
|
||||
coherence_mode: canvasCoherenceMode,
|
||||
edge_radius: canvasCoherenceEdgeSize,
|
||||
minimum_denoise: canvasCoherenceMinDenoise,
|
||||
tiled: false,
|
||||
fp32: fp32,
|
||||
},
|
||||
[DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
@@ -207,6 +209,16 @@ export const buildCanvasOutpaintGraph = async (
|
||||
field: 'clip',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
// Connect CLIP Skip to Conditioning
|
||||
{
|
||||
source: {
|
||||
@@ -453,6 +465,16 @@ export const buildCanvasOutpaintGraph = async (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_IMAGE_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Resize Results Down
|
||||
{
|
||||
source: {
|
||||
|
||||
@@ -135,6 +135,8 @@ export const buildCanvasSDXLInpaintGraph = async (
|
||||
coherence_mode: canvasCoherenceMode,
|
||||
minimum_denoise: refinerModel ? Math.max(0.2, canvasCoherenceMinDenoise) : canvasCoherenceMinDenoise,
|
||||
edge_radius: canvasCoherenceEdgeSize,
|
||||
tiled: false,
|
||||
fp32: fp32,
|
||||
},
|
||||
[SDXL_DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
@@ -214,6 +216,16 @@ export const buildCanvasSDXLInpaintGraph = async (
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
// Connect Everything To Inpaint Node
|
||||
{
|
||||
source: {
|
||||
@@ -342,6 +354,16 @@ export const buildCanvasSDXLInpaintGraph = async (
|
||||
field: 'mask',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_IMAGE_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Resize Down
|
||||
{
|
||||
source: {
|
||||
|
||||
@@ -157,6 +157,8 @@ export const buildCanvasSDXLOutpaintGraph = async (
|
||||
coherence_mode: canvasCoherenceMode,
|
||||
edge_radius: canvasCoherenceEdgeSize,
|
||||
minimum_denoise: refinerModel ? Math.max(0.2, canvasCoherenceMinDenoise) : canvasCoherenceMinDenoise,
|
||||
tiled: false,
|
||||
fp32: fp32,
|
||||
},
|
||||
[SDXL_DENOISE_LATENTS]: {
|
||||
type: 'denoise_latents',
|
||||
@@ -237,6 +239,16 @@ export const buildCanvasSDXLOutpaintGraph = async (
|
||||
field: 'clip2',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: modelLoaderNodeId,
|
||||
field: 'unet',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'unet',
|
||||
},
|
||||
},
|
||||
// Connect Infill Result To Inpaint Image
|
||||
{
|
||||
source: {
|
||||
@@ -451,6 +463,16 @@ export const buildCanvasSDXLOutpaintGraph = async (
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
{
|
||||
source: {
|
||||
node_id: INPAINT_IMAGE_RESIZE_UP,
|
||||
field: 'image',
|
||||
},
|
||||
destination: {
|
||||
node_id: INPAINT_CREATE_MASK,
|
||||
field: 'image',
|
||||
},
|
||||
},
|
||||
// Take combined mask and resize
|
||||
{
|
||||
source: {
|
||||
|
||||
@@ -2,7 +2,7 @@ import { Flex } from '@invoke-ai/ui-library';
|
||||
import { StageComponent } from 'features/regionalPrompts/components/StageComponent';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const AspectRatioPreview = memo(() => {
|
||||
export const AspectRatioCanvasPreview = memo(() => {
|
||||
return (
|
||||
<Flex w="full" h="full" alignItems="center" justifyContent="center" position="relative">
|
||||
<StageComponent asPreview />
|
||||
@@ -10,4 +10,4 @@ export const AspectRatioPreview = memo(() => {
|
||||
);
|
||||
});
|
||||
|
||||
AspectRatioPreview.displayName = 'AspectRatioPreview';
|
||||
AspectRatioCanvasPreview.displayName = 'AspectRatioCanvasPreview';
|
||||
@@ -0,0 +1,75 @@
|
||||
import { useSize } from '@chakra-ui/react-use-size';
|
||||
import { Flex, Icon } from '@invoke-ai/ui-library';
|
||||
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import { memo, useMemo, useRef } from 'react';
|
||||
import { PiFrameCorners } from 'react-icons/pi';
|
||||
|
||||
import {
|
||||
BOX_SIZE_CSS_CALC,
|
||||
ICON_CONTAINER_STYLES,
|
||||
ICON_HIGH_CUTOFF,
|
||||
ICON_LOW_CUTOFF,
|
||||
MOTION_ICON_ANIMATE,
|
||||
MOTION_ICON_EXIT,
|
||||
MOTION_ICON_INITIAL,
|
||||
} from './constants';
|
||||
|
||||
export const AspectRatioIconPreview = memo(() => {
|
||||
const ctx = useImageSizeContext();
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
const containerSize = useSize(containerRef);
|
||||
|
||||
const shouldShowIcon = useMemo(
|
||||
() => ctx.aspectRatioState.value < ICON_HIGH_CUTOFF && ctx.aspectRatioState.value > ICON_LOW_CUTOFF,
|
||||
[ctx.aspectRatioState.value]
|
||||
);
|
||||
|
||||
const { width, height } = useMemo(() => {
|
||||
if (!containerSize) {
|
||||
return { width: 0, height: 0 };
|
||||
}
|
||||
|
||||
let width = ctx.width;
|
||||
let height = ctx.height;
|
||||
|
||||
if (ctx.width > ctx.height) {
|
||||
width = containerSize.width;
|
||||
height = width / ctx.aspectRatioState.value;
|
||||
} else {
|
||||
height = containerSize.height;
|
||||
width = height * ctx.aspectRatioState.value;
|
||||
}
|
||||
|
||||
return { width, height };
|
||||
}, [containerSize, ctx.width, ctx.height, ctx.aspectRatioState.value]);
|
||||
|
||||
return (
|
||||
<Flex w="full" h="full" alignItems="center" justifyContent="center" ref={containerRef}>
|
||||
<Flex
|
||||
bg="blackAlpha.400"
|
||||
borderRadius="base"
|
||||
width={`${width}px`}
|
||||
height={`${height}px`}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<AnimatePresence>
|
||||
{shouldShowIcon && (
|
||||
<Flex
|
||||
as={motion.div}
|
||||
initial={MOTION_ICON_INITIAL}
|
||||
animate={MOTION_ICON_ANIMATE}
|
||||
exit={MOTION_ICON_EXIT}
|
||||
style={ICON_CONTAINER_STYLES}
|
||||
>
|
||||
<Icon as={PiFrameCorners} color="base.700" boxSize={BOX_SIZE_CSS_CALC} />
|
||||
</Flex>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
AspectRatioIconPreview.displayName = 'AspectRatioIconPreview';
|
||||
@@ -1,6 +1,5 @@
|
||||
import type { FormLabelProps } from '@invoke-ai/ui-library';
|
||||
import { Flex, FormControlGroup } from '@invoke-ai/ui-library';
|
||||
import { AspectRatioPreview } from 'features/parameters/components/ImageSize/AspectRatioPreview';
|
||||
import { AspectRatioSelect } from 'features/parameters/components/ImageSize/AspectRatioSelect';
|
||||
import type { ImageSizeContextInnerValue } from 'features/parameters/components/ImageSize/ImageSizeContext';
|
||||
import { ImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
|
||||
@@ -13,10 +12,11 @@ import { memo } from 'react';
|
||||
type ImageSizeProps = ImageSizeContextInnerValue & {
|
||||
widthComponent: ReactNode;
|
||||
heightComponent: ReactNode;
|
||||
previewComponent: ReactNode;
|
||||
};
|
||||
|
||||
export const ImageSize = memo((props: ImageSizeProps) => {
|
||||
const { widthComponent, heightComponent, ...ctx } = props;
|
||||
const { widthComponent, heightComponent, previewComponent, ...ctx } = props;
|
||||
return (
|
||||
<ImageSizeContext.Provider value={ctx}>
|
||||
<Flex gap={4} alignItems="center">
|
||||
@@ -33,7 +33,7 @@ export const ImageSize = memo((props: ImageSizeProps) => {
|
||||
</FormControlGroup>
|
||||
</Flex>
|
||||
<Flex w="108px" h="108px" flexShrink={0} flexGrow={0}>
|
||||
<AspectRatioPreview />
|
||||
{previewComponent}
|
||||
</Flex>
|
||||
</Flex>
|
||||
</ImageSizeContext.Provider>
|
||||
|
||||
@@ -1,7 +1,29 @@
|
||||
import type { ComboboxOption } from '@invoke-ai/ui-library';
|
||||
|
||||
import type { AspectRatioID, AspectRatioState } from './types';
|
||||
|
||||
// When the aspect ratio is between these two values, we show the icon (experimentally determined)
|
||||
export const ICON_LOW_CUTOFF = 0.23;
|
||||
export const ICON_HIGH_CUTOFF = 1 / ICON_LOW_CUTOFF;
|
||||
const ICON_SIZE_PX = 64;
|
||||
const ICON_PADDING_PX = 16;
|
||||
export const BOX_SIZE_CSS_CALC = `min(${ICON_SIZE_PX}px, calc(100% - ${ICON_PADDING_PX}px))`;
|
||||
export const MOTION_ICON_INITIAL = {
|
||||
opacity: 0,
|
||||
};
|
||||
export const MOTION_ICON_ANIMATE = {
|
||||
opacity: 1,
|
||||
transition: { duration: 0.1 },
|
||||
};
|
||||
export const MOTION_ICON_EXIT = {
|
||||
opacity: 0,
|
||||
transition: { duration: 0.1 },
|
||||
};
|
||||
export const ICON_CONTAINER_STYLES = {
|
||||
width: '100%',
|
||||
height: '100%',
|
||||
alignItems: 'center',
|
||||
justifyContent: 'center',
|
||||
};
|
||||
export const ASPECT_RATIO_OPTIONS: ComboboxOption[] = [
|
||||
{ label: 'Free' as const, value: 'Free' },
|
||||
{ label: '16:9' as const, value: '16:9' },
|
||||
|
||||
@@ -75,7 +75,7 @@ export const RPLayerListItem = memo(({ layerId }: Props) => {
|
||||
<RPLayerSettingsPopover layerId={layerId} />
|
||||
<RPLayerMenu layerId={layerId} />
|
||||
</Flex>
|
||||
<AddPromptButtons layerId={layerId} />
|
||||
{!hasPositivePrompt && !hasNegativePrompt && !hasIPAdapters && <AddPromptButtons layerId={layerId} />}
|
||||
{hasPositivePrompt && <RPLayerPositivePrompt layerId={layerId} />}
|
||||
{hasNegativePrompt && <RPLayerNegativePrompt layerId={layerId} />}
|
||||
{hasIPAdapters && <RPLayerIPAdapterList layerId={layerId} />}
|
||||
|
||||
@@ -6,6 +6,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useMouseEvents } from 'features/regionalPrompts/hooks/mouseEventHooks';
|
||||
import {
|
||||
$cursorPosition,
|
||||
$isMouseOver,
|
||||
$lastMouseDownPos,
|
||||
$tool,
|
||||
isVectorMaskLayer,
|
||||
@@ -14,7 +15,7 @@ import {
|
||||
layerTranslated,
|
||||
selectRegionalPromptsSlice,
|
||||
} from 'features/regionalPrompts/store/regionalPromptsSlice';
|
||||
import { renderers } from 'features/regionalPrompts/util/renderers';
|
||||
import { debouncedRenderers, renderers as normalRenderers } from 'features/regionalPrompts/util/renderers';
|
||||
import Konva from 'konva';
|
||||
import type { IRect } from 'konva/lib/types';
|
||||
import type { MutableRefObject } from 'react';
|
||||
@@ -49,18 +50,10 @@ const useStageRenderer = (
|
||||
const { onMouseDown, onMouseUp, onMouseMove, onMouseEnter, onMouseLeave, onMouseWheel } = useMouseEvents();
|
||||
const cursorPosition = useStore($cursorPosition);
|
||||
const lastMouseDownPos = useStore($lastMouseDownPos);
|
||||
const isMouseOver = useStore($isMouseOver);
|
||||
const selectedLayerIdColor = useAppSelector(selectSelectedLayerColor);
|
||||
|
||||
const renderLayers = useMemo(() => (asPreview ? renderers.layersDebounced : renderers.layers), [asPreview]);
|
||||
const renderToolPreview = useMemo(
|
||||
() => (asPreview ? renderers.toolPreviewDebounced : renderers.toolPreview),
|
||||
[asPreview]
|
||||
);
|
||||
const renderBbox = useMemo(() => (asPreview ? renderers.bboxDebounced : renderers.bbox), [asPreview]);
|
||||
const renderBackground = useMemo(
|
||||
() => (asPreview ? renderers.backgroundDebounced : renderers.background),
|
||||
[asPreview]
|
||||
);
|
||||
const layerIds = useMemo(() => state.layers.map((l) => l.id), [state.layers]);
|
||||
const renderers = useMemo(() => (asPreview ? debouncedRenderers : normalRenderers), [asPreview]);
|
||||
|
||||
const onLayerPosChanged = useCallback(
|
||||
(layerId: string, x: number, y: number) => {
|
||||
@@ -147,17 +140,19 @@ const useStageRenderer = (
|
||||
}, [stageRef, width, height, wrapper]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering brush preview');
|
||||
log.trace('Rendering tool preview');
|
||||
if (asPreview) {
|
||||
// Preview should not display tool
|
||||
return;
|
||||
}
|
||||
renderToolPreview(
|
||||
renderers.renderToolPreview(
|
||||
stageRef.current,
|
||||
tool,
|
||||
selectedLayerIdColor,
|
||||
state.globalMaskLayerOpacity,
|
||||
cursorPosition,
|
||||
lastMouseDownPos,
|
||||
isMouseOver,
|
||||
state.brushSize
|
||||
);
|
||||
}, [
|
||||
@@ -168,30 +163,38 @@ const useStageRenderer = (
|
||||
state.globalMaskLayerOpacity,
|
||||
cursorPosition,
|
||||
lastMouseDownPos,
|
||||
isMouseOver,
|
||||
state.brushSize,
|
||||
renderToolPreview,
|
||||
renderers,
|
||||
]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering layers');
|
||||
renderLayers(stageRef.current, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
|
||||
}, [stageRef, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged, renderLayers]);
|
||||
renderers.renderLayers(stageRef.current, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged);
|
||||
}, [stageRef, state.layers, state.globalMaskLayerOpacity, tool, onLayerPosChanged, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering bbox');
|
||||
if (asPreview) {
|
||||
// Preview should not display bboxes
|
||||
return;
|
||||
}
|
||||
renderBbox(stageRef.current, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown);
|
||||
}, [stageRef, asPreview, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown, renderBbox]);
|
||||
renderers.renderBbox(stageRef.current, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown);
|
||||
}, [stageRef, asPreview, state.layers, state.selectedLayerId, tool, onBboxChanged, onBboxMouseDown, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Rendering background');
|
||||
if (asPreview) {
|
||||
// The preview should not have a background
|
||||
return;
|
||||
}
|
||||
renderBackground(stageRef.current, width, height);
|
||||
}, [stageRef, asPreview, width, height, renderBackground]);
|
||||
renderers.renderBackground(stageRef.current, width, height);
|
||||
}, [stageRef, asPreview, width, height, renderers]);
|
||||
|
||||
useLayoutEffect(() => {
|
||||
log.trace('Arranging layers');
|
||||
renderers.arrangeLayers(stageRef.current, layerIds);
|
||||
}, [stageRef, layerIds, renderers]);
|
||||
};
|
||||
|
||||
type Props = {
|
||||
|
||||
@@ -15,6 +15,7 @@ import {
|
||||
} from 'features/regionalPrompts/store/regionalPromptsSlice';
|
||||
import type Konva from 'konva';
|
||||
import type { KonvaEventObject } from 'konva/lib/Node';
|
||||
import type { Vector2d } from 'konva/lib/types';
|
||||
import { useCallback, useRef } from 'react';
|
||||
|
||||
const getIsFocused = (stage: Konva.Stage) => {
|
||||
@@ -23,21 +24,28 @@ const getIsFocused = (stage: Konva.Stage) => {
|
||||
|
||||
export const getScaledFlooredCursorPosition = (stage: Konva.Stage) => {
|
||||
const pointerPosition = stage.getPointerPosition();
|
||||
|
||||
const stageTransform = stage.getAbsoluteTransform().copy();
|
||||
|
||||
if (!pointerPosition || !stageTransform) {
|
||||
return;
|
||||
}
|
||||
|
||||
const scaledCursorPosition = stageTransform.invert().point(pointerPosition);
|
||||
|
||||
return {
|
||||
x: Math.floor(scaledCursorPosition.x),
|
||||
y: Math.floor(scaledCursorPosition.y),
|
||||
};
|
||||
};
|
||||
|
||||
const syncCursorPos = (stage: Konva.Stage): Vector2d | null => {
|
||||
const pos = getScaledFlooredCursorPosition(stage);
|
||||
if (!pos) {
|
||||
return null;
|
||||
}
|
||||
$cursorPosition.set(pos);
|
||||
return pos;
|
||||
};
|
||||
|
||||
const BRUSH_SPACING = 20;
|
||||
|
||||
export const useMouseEvents = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selectedLayerId = useAppSelector((s) => s.regionalPrompts.present.selectedLayerId);
|
||||
@@ -52,7 +60,7 @@ export const useMouseEvents = () => {
|
||||
if (!stage) {
|
||||
return;
|
||||
}
|
||||
const pos = $cursorPosition.get();
|
||||
const pos = syncCursorPos(stage);
|
||||
if (!pos) {
|
||||
return;
|
||||
}
|
||||
@@ -61,12 +69,11 @@ export const useMouseEvents = () => {
|
||||
if (!selectedLayerId) {
|
||||
return;
|
||||
}
|
||||
// const tool = getTool();
|
||||
if (tool === 'brush' || tool === 'eraser') {
|
||||
dispatch(
|
||||
maskLayerLineAdded({
|
||||
layerId: selectedLayerId,
|
||||
points: [Math.floor(pos.x), Math.floor(pos.y), Math.floor(pos.x), Math.floor(pos.y)],
|
||||
points: [pos.x, pos.y, pos.x, pos.y],
|
||||
tool,
|
||||
})
|
||||
);
|
||||
@@ -109,33 +116,47 @@ export const useMouseEvents = () => {
|
||||
if (!stage) {
|
||||
return;
|
||||
}
|
||||
const pos = getScaledFlooredCursorPosition(stage);
|
||||
const pos = syncCursorPos(stage);
|
||||
if (!pos || !selectedLayerId) {
|
||||
return;
|
||||
}
|
||||
$cursorPosition.set(pos);
|
||||
if (getIsFocused(stage) && $isMouseOver.get() && $isMouseDown.get() && (tool === 'brush' || tool === 'eraser')) {
|
||||
if (lastCursorPosRef.current) {
|
||||
if (Math.hypot(lastCursorPosRef.current[0] - pos.x, lastCursorPosRef.current[1] - pos.y) < 20) {
|
||||
// Dispatching redux events impacts perf substantially - using brush spacing keeps dispatches to a reasonable number
|
||||
if (Math.hypot(lastCursorPosRef.current[0] - pos.x, lastCursorPosRef.current[1] - pos.y) < BRUSH_SPACING) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
lastCursorPosRef.current = [Math.floor(pos.x), Math.floor(pos.y)];
|
||||
lastCursorPosRef.current = [pos.x, pos.y];
|
||||
dispatch(maskLayerPointsAdded({ layerId: selectedLayerId, point: lastCursorPosRef.current }));
|
||||
}
|
||||
},
|
||||
[dispatch, selectedLayerId, tool]
|
||||
);
|
||||
|
||||
const onMouseLeave = useCallback((e: KonvaEventObject<MouseEvent | TouchEvent>) => {
|
||||
const stage = e.target.getStage();
|
||||
if (!stage) {
|
||||
return;
|
||||
}
|
||||
$isMouseOver.set(false);
|
||||
$isMouseDown.set(false);
|
||||
$cursorPosition.set(null);
|
||||
}, []);
|
||||
const onMouseLeave = useCallback(
|
||||
(e: KonvaEventObject<MouseEvent | TouchEvent>) => {
|
||||
const stage = e.target.getStage();
|
||||
if (!stage) {
|
||||
return;
|
||||
}
|
||||
const pos = syncCursorPos(stage);
|
||||
if (
|
||||
pos &&
|
||||
selectedLayerId &&
|
||||
getIsFocused(stage) &&
|
||||
$isMouseOver.get() &&
|
||||
$isMouseDown.get() &&
|
||||
(tool === 'brush' || tool === 'eraser')
|
||||
) {
|
||||
dispatch(maskLayerPointsAdded({ layerId: selectedLayerId, point: [pos.x, pos.y] }));
|
||||
}
|
||||
$isMouseOver.set(false);
|
||||
$isMouseDown.set(false);
|
||||
$cursorPosition.set(null);
|
||||
},
|
||||
[selectedLayerId, tool, dispatch]
|
||||
);
|
||||
|
||||
const onMouseEnter = useCallback(
|
||||
(e: KonvaEventObject<MouseEvent>) => {
|
||||
@@ -144,7 +165,7 @@ export const useMouseEvents = () => {
|
||||
return;
|
||||
}
|
||||
$isMouseOver.set(true);
|
||||
const pos = $cursorPosition.get();
|
||||
const pos = syncCursorPos(stage);
|
||||
if (!pos) {
|
||||
return;
|
||||
}
|
||||
@@ -162,7 +183,7 @@ export const useMouseEvents = () => {
|
||||
dispatch(
|
||||
maskLayerLineAdded({
|
||||
layerId: selectedLayerId,
|
||||
points: [Math.floor(pos.x), Math.floor(pos.y), Math.floor(pos.x), Math.floor(pos.y)],
|
||||
points: [pos.x, pos.y, pos.x, pos.y],
|
||||
tool,
|
||||
})
|
||||
);
|
||||
|
||||
@@ -16,7 +16,7 @@ type DrawingTool = 'brush' | 'eraser';
|
||||
|
||||
export type Tool = DrawingTool | 'move' | 'rect';
|
||||
|
||||
type VectorMaskLine = {
|
||||
export type VectorMaskLine = {
|
||||
id: string;
|
||||
type: 'vector_mask_line';
|
||||
tool: DrawingTool;
|
||||
@@ -24,7 +24,7 @@ type VectorMaskLine = {
|
||||
points: number[];
|
||||
};
|
||||
|
||||
type VectorMaskRect = {
|
||||
export type VectorMaskRect = {
|
||||
id: string;
|
||||
type: 'vector_mask_rect';
|
||||
x: number;
|
||||
@@ -109,7 +109,7 @@ export const regionalPromptsSlice = createSlice({
|
||||
y: 0,
|
||||
autoNegative: 'invert',
|
||||
needsPixelBbox: false,
|
||||
positivePrompt: null,
|
||||
positivePrompt: '',
|
||||
negativePrompt: null,
|
||||
ipAdapterIds: [],
|
||||
};
|
||||
|
||||
@@ -20,7 +20,7 @@ export const getRegionalPromptLayerBlobs = async (
|
||||
const reduxLayers = state.regionalPrompts.present.layers;
|
||||
const container = document.createElement('div');
|
||||
const stage = new Konva.Stage({ container, width: state.generation.width, height: state.generation.height });
|
||||
renderers.layers(stage, reduxLayers, 1, 'brush');
|
||||
renderers.renderLayers(stage, reduxLayers, 1, 'brush');
|
||||
|
||||
const konvaLayers = stage.find<Konva.Layer>(`.${VECTOR_MASK_LAYER_NAME}`);
|
||||
const blobs: Record<string, Blob> = {};
|
||||
|
||||
@@ -1,9 +1,14 @@
|
||||
import { getStore } from 'app/store/nanostores/store';
|
||||
import { rgbaColorToString, rgbColorToString } from 'features/canvas/util/colorToString';
|
||||
import { getScaledFlooredCursorPosition } from 'features/regionalPrompts/hooks/mouseEventHooks';
|
||||
import type { Layer, Tool, VectorMaskLayer } from 'features/regionalPrompts/store/regionalPromptsSlice';
|
||||
import type {
|
||||
Layer,
|
||||
Tool,
|
||||
VectorMaskLayer,
|
||||
VectorMaskLine,
|
||||
VectorMaskRect,
|
||||
} from 'features/regionalPrompts/store/regionalPromptsSlice';
|
||||
import {
|
||||
$isMouseOver,
|
||||
$tool,
|
||||
BACKGROUND_LAYER_ID,
|
||||
BACKGROUND_RECT_ID,
|
||||
@@ -35,6 +40,7 @@ const BBOX_NOT_SELECTED_STROKE = 'rgba(255, 255, 255, 0.353)';
|
||||
const BBOX_NOT_SELECTED_MOUSEOVER_STROKE = 'rgba(255, 255, 255, 0.661)';
|
||||
const BRUSH_BORDER_INNER_COLOR = 'rgba(0,0,0,1)';
|
||||
const BRUSH_BORDER_OUTER_COLOR = 'rgba(255,255,255,0.8)';
|
||||
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
|
||||
const STAGE_BG_DATAURL =
|
||||
'';
|
||||
|
||||
@@ -51,6 +57,68 @@ const selectVectorMaskObjects = (node: Konva.Node) => {
|
||||
return node.name() === VECTOR_MASK_LAYER_LINE_NAME || node.name() === VECTOR_MASK_LAYER_RECT_NAME;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates the brush preview layer.
|
||||
* @param stage The konva stage to render on.
|
||||
* @returns The brush preview layer.
|
||||
*/
|
||||
const createToolPreviewLayer = (stage: Konva.Stage) => {
|
||||
// Initialize the brush preview layer & add to the stage
|
||||
const toolPreviewLayer = new Konva.Layer({ id: TOOL_PREVIEW_LAYER_ID, visible: false, listening: false });
|
||||
stage.add(toolPreviewLayer);
|
||||
|
||||
// Add handlers to show/hide the brush preview layer
|
||||
stage.on('mousemove', (e) => {
|
||||
const tool = $tool.get();
|
||||
e.target
|
||||
.getStage()
|
||||
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
|
||||
?.visible(tool === 'brush' || tool === 'eraser');
|
||||
});
|
||||
stage.on('mouseleave', (e) => {
|
||||
e.target.getStage()?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
|
||||
});
|
||||
stage.on('mouseenter', (e) => {
|
||||
const tool = $tool.get();
|
||||
e.target
|
||||
.getStage()
|
||||
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
|
||||
?.visible(tool === 'brush' || tool === 'eraser');
|
||||
});
|
||||
|
||||
// Create the brush preview group & circles
|
||||
const brushPreviewGroup = new Konva.Group({ id: TOOL_PREVIEW_BRUSH_GROUP_ID });
|
||||
const brushPreviewFill = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_FILL_ID,
|
||||
listening: false,
|
||||
strokeEnabled: false,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewFill);
|
||||
const brushPreviewBorderInner = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_BORDER_INNER_ID,
|
||||
listening: false,
|
||||
stroke: BRUSH_BORDER_INNER_COLOR,
|
||||
strokeWidth: 1,
|
||||
strokeEnabled: true,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewBorderInner);
|
||||
const brushPreviewBorderOuter = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID,
|
||||
listening: false,
|
||||
stroke: BRUSH_BORDER_OUTER_COLOR,
|
||||
strokeWidth: 1,
|
||||
strokeEnabled: true,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewBorderOuter);
|
||||
toolPreviewLayer.add(brushPreviewGroup);
|
||||
|
||||
// Create the rect preview
|
||||
const rectPreview = new Konva.Rect({ id: TOOL_PREVIEW_RECT_ID, listening: false, stroke: 'white', strokeWidth: 1 });
|
||||
toolPreviewLayer.add(rectPreview);
|
||||
|
||||
return toolPreviewLayer;
|
||||
};
|
||||
|
||||
/**
|
||||
* Renders the brush preview for the selected tool.
|
||||
* @param stage The konva stage to render on.
|
||||
@@ -60,13 +128,14 @@ const selectVectorMaskObjects = (node: Konva.Node) => {
|
||||
* @param lastMouseDownPos The position of the last mouse down event - used for the rect tool.
|
||||
* @param brushSize The brush size.
|
||||
*/
|
||||
const toolPreview = (
|
||||
const renderToolPreview = (
|
||||
stage: Konva.Stage,
|
||||
tool: Tool,
|
||||
color: RgbColor | null,
|
||||
globalMaskLayerOpacity: number,
|
||||
cursorPos: Vector2d | null,
|
||||
lastMouseDownPos: Vector2d | null,
|
||||
isMouseOver: boolean,
|
||||
brushSize: number
|
||||
) => {
|
||||
const layerCount = stage.find(`.${VECTOR_MASK_LAYER_NAME}`).length;
|
||||
@@ -85,65 +154,9 @@ const toolPreview = (
|
||||
stage.container().style.cursor = 'none';
|
||||
}
|
||||
|
||||
let toolPreviewLayer = stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`);
|
||||
const toolPreviewLayer = stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`) ?? createToolPreviewLayer(stage);
|
||||
|
||||
// Create the layer if it doesn't exist
|
||||
if (!toolPreviewLayer) {
|
||||
// Initialize the brush preview layer & add to the stage
|
||||
toolPreviewLayer = new Konva.Layer({ id: TOOL_PREVIEW_LAYER_ID, visible: tool !== 'move', listening: false });
|
||||
stage.add(toolPreviewLayer);
|
||||
|
||||
// Add handlers to show/hide the brush preview layer
|
||||
stage.on('mousemove', (e) => {
|
||||
const tool = $tool.get();
|
||||
e.target
|
||||
.getStage()
|
||||
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
|
||||
?.visible(tool === 'brush' || tool === 'eraser');
|
||||
});
|
||||
stage.on('mouseleave', (e) => {
|
||||
e.target.getStage()?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.visible(false);
|
||||
});
|
||||
stage.on('mouseenter', (e) => {
|
||||
const tool = $tool.get();
|
||||
e.target
|
||||
.getStage()
|
||||
?.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)
|
||||
?.visible(tool === 'brush' || tool === 'eraser');
|
||||
});
|
||||
|
||||
// Create the brush preview group & circles
|
||||
const brushPreviewGroup = new Konva.Group({ id: TOOL_PREVIEW_BRUSH_GROUP_ID });
|
||||
const brushPreviewFill = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_FILL_ID,
|
||||
listening: false,
|
||||
strokeEnabled: false,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewFill);
|
||||
const brushPreviewBorderInner = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_BORDER_INNER_ID,
|
||||
listening: false,
|
||||
stroke: BRUSH_BORDER_INNER_COLOR,
|
||||
strokeWidth: 1,
|
||||
strokeEnabled: true,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewBorderInner);
|
||||
const brushPreviewBorderOuter = new Konva.Circle({
|
||||
id: TOOL_PREVIEW_BRUSH_BORDER_OUTER_ID,
|
||||
listening: false,
|
||||
stroke: BRUSH_BORDER_OUTER_COLOR,
|
||||
strokeWidth: 1,
|
||||
strokeEnabled: true,
|
||||
});
|
||||
brushPreviewGroup.add(brushPreviewBorderOuter);
|
||||
toolPreviewLayer.add(brushPreviewGroup);
|
||||
|
||||
// Create the rect preview
|
||||
const rectPreview = new Konva.Rect({ id: TOOL_PREVIEW_RECT_ID, listening: false, stroke: 'white', strokeWidth: 1 });
|
||||
toolPreviewLayer.add(rectPreview);
|
||||
}
|
||||
|
||||
if (!$isMouseOver.get() || layerCount === 0) {
|
||||
if (!isMouseOver || layerCount === 0) {
|
||||
// We can bail early if the mouse isn't over the stage or there are no layers
|
||||
toolPreviewLayer.visible(false);
|
||||
return;
|
||||
@@ -200,85 +213,140 @@ const toolPreview = (
|
||||
}
|
||||
};
|
||||
|
||||
const vectorMaskLayer = (
|
||||
/**
|
||||
* Creates a vector mask layer.
|
||||
* @param stage The konva stage to attach the layer to.
|
||||
* @param reduxLayer The redux layer to create the konva layer from.
|
||||
* @param onLayerPosChanged Callback for when the layer's position changes.
|
||||
*/
|
||||
const createVectorMaskLayer = (
|
||||
stage: Konva.Stage,
|
||||
vmLayer: VectorMaskLayer,
|
||||
vmLayerIndex: number,
|
||||
reduxLayer: VectorMaskLayer,
|
||||
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
|
||||
) => {
|
||||
// This layer hasn't been added to the konva state yet
|
||||
const konvaLayer = new Konva.Layer({
|
||||
id: reduxLayer.id,
|
||||
name: VECTOR_MASK_LAYER_NAME,
|
||||
draggable: true,
|
||||
dragDistance: 0,
|
||||
});
|
||||
|
||||
// Create a `dragmove` listener for this layer
|
||||
if (onLayerPosChanged) {
|
||||
konvaLayer.on('dragend', function (e) {
|
||||
onLayerPosChanged(reduxLayer.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
|
||||
});
|
||||
}
|
||||
|
||||
// The dragBoundFunc limits how far the layer can be dragged
|
||||
konvaLayer.dragBoundFunc(function (pos) {
|
||||
const cursorPos = getScaledFlooredCursorPosition(stage);
|
||||
if (!cursorPos) {
|
||||
return this.getAbsolutePosition();
|
||||
}
|
||||
// Prevent the user from dragging the layer out of the stage bounds.
|
||||
if (
|
||||
cursorPos.x < 0 ||
|
||||
cursorPos.x > stage.width() / stage.scaleX() ||
|
||||
cursorPos.y < 0 ||
|
||||
cursorPos.y > stage.height() / stage.scaleY()
|
||||
) {
|
||||
return this.getAbsolutePosition();
|
||||
}
|
||||
return pos;
|
||||
});
|
||||
|
||||
// The object group holds all of the layer's objects (e.g. lines and rects)
|
||||
const konvaObjectGroup = new Konva.Group({
|
||||
id: getVectorMaskLayerObjectGroupId(reduxLayer.id, uuidv4()),
|
||||
name: VECTOR_MASK_LAYER_OBJECT_GROUP_NAME,
|
||||
listening: false,
|
||||
});
|
||||
konvaLayer.add(konvaObjectGroup);
|
||||
|
||||
stage.add(konvaLayer);
|
||||
|
||||
return konvaLayer;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates a konva line from a redux vector mask line.
|
||||
* @param reduxObject The redux object to create the konva line from.
|
||||
* @param konvaGroup The konva group to add the line to.
|
||||
*/
|
||||
const createVectorMaskLine = (reduxObject: VectorMaskLine, konvaGroup: Konva.Group): Konva.Line => {
|
||||
const vectorMaskLine = new Konva.Line({
|
||||
id: reduxObject.id,
|
||||
key: reduxObject.id,
|
||||
name: VECTOR_MASK_LAYER_LINE_NAME,
|
||||
strokeWidth: reduxObject.strokeWidth,
|
||||
tension: 0,
|
||||
lineCap: 'round',
|
||||
lineJoin: 'round',
|
||||
shadowForStrokeEnabled: false,
|
||||
globalCompositeOperation: reduxObject.tool === 'brush' ? 'source-over' : 'destination-out',
|
||||
listening: false,
|
||||
});
|
||||
konvaGroup.add(vectorMaskLine);
|
||||
return vectorMaskLine;
|
||||
};
|
||||
|
||||
/**
|
||||
* Creates a konva rect from a redux vector mask rect.
|
||||
* @param reduxObject The redux object to create the konva rect from.
|
||||
* @param konvaGroup The konva group to add the rect to.
|
||||
*/
|
||||
const createVectorMaskRect = (reduxObject: VectorMaskRect, konvaGroup: Konva.Group): Konva.Rect => {
|
||||
const vectorMaskRect = new Konva.Rect({
|
||||
id: reduxObject.id,
|
||||
key: reduxObject.id,
|
||||
name: VECTOR_MASK_LAYER_RECT_NAME,
|
||||
x: reduxObject.x,
|
||||
y: reduxObject.y,
|
||||
width: reduxObject.width,
|
||||
height: reduxObject.height,
|
||||
listening: false,
|
||||
});
|
||||
konvaGroup.add(vectorMaskRect);
|
||||
return vectorMaskRect;
|
||||
};
|
||||
|
||||
/**
|
||||
* Renders a vector mask layer.
|
||||
* @param stage The konva stage to render on.
|
||||
* @param reduxLayer The redux vector mask layer to render.
|
||||
* @param reduxLayerIndex The index of the layer in the redux store.
|
||||
* @param globalMaskLayerOpacity The opacity of the global mask layer.
|
||||
* @param tool The current tool.
|
||||
*/
|
||||
const renderVectorMaskLayer = (
|
||||
stage: Konva.Stage,
|
||||
reduxLayer: VectorMaskLayer,
|
||||
globalMaskLayerOpacity: number,
|
||||
tool: Tool,
|
||||
onLayerPosChanged?: (layerId: string, x: number, y: number) => void
|
||||
) => {
|
||||
let konvaLayer = stage.findOne<Konva.Layer>(`#${vmLayer.id}`);
|
||||
|
||||
if (!konvaLayer) {
|
||||
// This layer hasn't been added to the konva state yet
|
||||
konvaLayer = new Konva.Layer({
|
||||
id: vmLayer.id,
|
||||
name: VECTOR_MASK_LAYER_NAME,
|
||||
draggable: true,
|
||||
dragDistance: 0,
|
||||
});
|
||||
|
||||
// Create a `dragmove` listener for this layer
|
||||
if (onLayerPosChanged) {
|
||||
konvaLayer.on('dragend', function (e) {
|
||||
onLayerPosChanged(vmLayer.id, Math.floor(e.target.x()), Math.floor(e.target.y()));
|
||||
});
|
||||
}
|
||||
|
||||
// The dragBoundFunc limits how far the layer can be dragged
|
||||
konvaLayer.dragBoundFunc(function (pos) {
|
||||
const cursorPos = getScaledFlooredCursorPosition(stage);
|
||||
if (!cursorPos) {
|
||||
return this.getAbsolutePosition();
|
||||
}
|
||||
// Prevent the user from dragging the layer out of the stage bounds.
|
||||
if (
|
||||
cursorPos.x < 0 ||
|
||||
cursorPos.x > stage.width() / stage.scaleX() ||
|
||||
cursorPos.y < 0 ||
|
||||
cursorPos.y > stage.height() / stage.scaleY()
|
||||
) {
|
||||
return this.getAbsolutePosition();
|
||||
}
|
||||
return pos;
|
||||
});
|
||||
|
||||
// The object group holds all of the layer's objects (e.g. lines and rects)
|
||||
const konvaObjectGroup = new Konva.Group({
|
||||
id: getVectorMaskLayerObjectGroupId(vmLayer.id, uuidv4()),
|
||||
name: VECTOR_MASK_LAYER_OBJECT_GROUP_NAME,
|
||||
listening: false,
|
||||
});
|
||||
konvaLayer.add(konvaObjectGroup);
|
||||
|
||||
stage.add(konvaLayer);
|
||||
|
||||
// When a layer is added, it ends up on top of the brush preview - we need to move the preview back to the top.
|
||||
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.moveToTop();
|
||||
}
|
||||
): void => {
|
||||
const konvaLayer =
|
||||
stage.findOne<Konva.Layer>(`#${reduxLayer.id}`) ?? createVectorMaskLayer(stage, reduxLayer, onLayerPosChanged);
|
||||
|
||||
// Update the layer's position and listening state
|
||||
konvaLayer.setAttrs({
|
||||
listening: tool === 'move', // The layer only listens when using the move tool - otherwise the stage is handling mouse events
|
||||
x: Math.floor(vmLayer.x),
|
||||
y: Math.floor(vmLayer.y),
|
||||
// We have a konva layer for each redux layer, plus a brush preview layer, which should always be on top. We can
|
||||
// therefore use the index of the redux layer as the zIndex for konva layers. If more layers are added to the
|
||||
// stage, this may no longer be work.
|
||||
zIndex: vmLayerIndex,
|
||||
x: Math.floor(reduxLayer.x),
|
||||
y: Math.floor(reduxLayer.y),
|
||||
});
|
||||
|
||||
// Convert the color to a string, stripping the alpha - the object group will handle opacity.
|
||||
const rgbColor = rgbColorToString(vmLayer.previewColor);
|
||||
const rgbColor = rgbColorToString(reduxLayer.previewColor);
|
||||
|
||||
const konvaObjectGroup = konvaLayer.findOne<Konva.Group>(`.${VECTOR_MASK_LAYER_OBJECT_GROUP_NAME}`);
|
||||
assert(konvaObjectGroup, `Object group not found for layer ${vmLayer.id}`);
|
||||
assert(konvaObjectGroup, `Object group not found for layer ${reduxLayer.id}`);
|
||||
|
||||
// We use caching to handle "global" layer opacity, but caching is expensive and we should only do it when required.
|
||||
let groupNeedsCache = false;
|
||||
|
||||
const objectIds = vmLayer.objects.map(mapId);
|
||||
const objectIds = reduxLayer.objects.map(mapId);
|
||||
for (const objectNode of konvaObjectGroup.find(selectVectorMaskObjects)) {
|
||||
if (!objectIds.includes(objectNode.id())) {
|
||||
objectNode.destroy();
|
||||
@@ -286,26 +354,10 @@ const vectorMaskLayer = (
|
||||
}
|
||||
}
|
||||
|
||||
for (const reduxObject of vmLayer.objects) {
|
||||
for (const reduxObject of reduxLayer.objects) {
|
||||
if (reduxObject.type === 'vector_mask_line') {
|
||||
let vectorMaskLine = stage.findOne<Konva.Line>(`#${reduxObject.id}`);
|
||||
|
||||
// Create the line if it doesn't exist
|
||||
if (!vectorMaskLine) {
|
||||
vectorMaskLine = new Konva.Line({
|
||||
id: reduxObject.id,
|
||||
key: reduxObject.id,
|
||||
name: VECTOR_MASK_LAYER_LINE_NAME,
|
||||
strokeWidth: reduxObject.strokeWidth,
|
||||
tension: 0,
|
||||
lineCap: 'round',
|
||||
lineJoin: 'round',
|
||||
shadowForStrokeEnabled: false,
|
||||
globalCompositeOperation: reduxObject.tool === 'brush' ? 'source-over' : 'destination-out',
|
||||
listening: false,
|
||||
});
|
||||
konvaObjectGroup.add(vectorMaskLine);
|
||||
}
|
||||
const vectorMaskLine =
|
||||
stage.findOne<Konva.Line>(`#${reduxObject.id}`) ?? createVectorMaskLine(reduxObject, konvaObjectGroup);
|
||||
|
||||
// Only update the points if they have changed. The point values are never mutated, they are only added to the
|
||||
// array, so checking the length is sufficient to determine if we need to re-cache.
|
||||
@@ -319,20 +371,9 @@ const vectorMaskLayer = (
|
||||
groupNeedsCache = true;
|
||||
}
|
||||
} else if (reduxObject.type === 'vector_mask_rect') {
|
||||
let konvaObject = stage.findOne<Konva.Rect>(`#${reduxObject.id}`);
|
||||
if (!konvaObject) {
|
||||
konvaObject = new Konva.Rect({
|
||||
id: reduxObject.id,
|
||||
key: reduxObject.id,
|
||||
name: VECTOR_MASK_LAYER_RECT_NAME,
|
||||
x: reduxObject.x,
|
||||
y: reduxObject.y,
|
||||
width: reduxObject.width,
|
||||
height: reduxObject.height,
|
||||
listening: false,
|
||||
});
|
||||
konvaObjectGroup.add(konvaObject);
|
||||
}
|
||||
const konvaObject =
|
||||
stage.findOne<Konva.Rect>(`#${reduxObject.id}`) ?? createVectorMaskRect(reduxObject, konvaObjectGroup);
|
||||
|
||||
// Only update the color if it has changed.
|
||||
if (konvaObject.fill() !== rgbColor) {
|
||||
konvaObject.fill(rgbColor);
|
||||
@@ -342,20 +383,16 @@ const vectorMaskLayer = (
|
||||
}
|
||||
|
||||
// Only update layer visibility if it has changed.
|
||||
if (konvaLayer.visible() !== vmLayer.isVisible) {
|
||||
konvaLayer.visible(vmLayer.isVisible);
|
||||
if (konvaLayer.visible() !== reduxLayer.isVisible) {
|
||||
konvaLayer.visible(reduxLayer.isVisible);
|
||||
groupNeedsCache = true;
|
||||
}
|
||||
|
||||
if (konvaObjectGroup.children.length > 0) {
|
||||
// If we have objects, we need to cache the group to apply the layer opacity...
|
||||
if (groupNeedsCache) {
|
||||
// ...but only if we've done something that needs the cache.
|
||||
konvaObjectGroup.cache();
|
||||
}
|
||||
} else {
|
||||
// No children - clear the cache to reset the previous pixel data
|
||||
if (konvaObjectGroup.children.length === 0) {
|
||||
// No objects - clear the cache to reset the previous pixel data
|
||||
konvaObjectGroup.clearCache();
|
||||
} else if (groupNeedsCache) {
|
||||
konvaObjectGroup.cache();
|
||||
}
|
||||
|
||||
// Updating group opacity does not require re-caching
|
||||
@@ -372,7 +409,7 @@ const vectorMaskLayer = (
|
||||
* @param onLayerPosChanged Callback for when the layer's position changes. This is optional to allow for offscreen rendering.
|
||||
* @returns
|
||||
*/
|
||||
const layers = (
|
||||
const renderLayers = (
|
||||
stage: Konva.Stage,
|
||||
reduxLayers: Layer[],
|
||||
globalMaskLayerOpacity: number,
|
||||
@@ -388,24 +425,57 @@ const layers = (
|
||||
}
|
||||
}
|
||||
|
||||
for (let layerIndex = 0; layerIndex < reduxLayers.length; layerIndex++) {
|
||||
const reduxLayer = reduxLayers[layerIndex];
|
||||
assert(reduxLayer, `Layer at index ${layerIndex} is undefined`);
|
||||
for (const reduxLayer of reduxLayers) {
|
||||
if (isVectorMaskLayer(reduxLayer)) {
|
||||
vectorMaskLayer(stage, reduxLayer, layerIndex, globalMaskLayerOpacity, tool, onLayerPosChanged);
|
||||
renderVectorMaskLayer(stage, reduxLayer, globalMaskLayerOpacity, tool, onLayerPosChanged);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
*
|
||||
* @param stage The konva stage to render on.
|
||||
* @param tool The current tool.
|
||||
* @param selectedLayerIdId The currently selected layer id.
|
||||
* @param onBboxChanged A callback to be called when the bounding box changes.
|
||||
* Creates a bounding box rect for a layer.
|
||||
* @param reduxLayer The redux layer to create the bounding box for.
|
||||
* @param konvaLayer The konva layer to attach the bounding box to.
|
||||
* @param onBboxMouseDown Callback for when the bounding box is clicked.
|
||||
*/
|
||||
const createBboxRect = (reduxLayer: Layer, konvaLayer: Konva.Layer, onBboxMouseDown: (layerId: string) => void) => {
|
||||
const rect = new Konva.Rect({
|
||||
id: getLayerBboxId(reduxLayer.id),
|
||||
name: LAYER_BBOX_NAME,
|
||||
strokeWidth: 1,
|
||||
});
|
||||
rect.on('mousedown', function () {
|
||||
onBboxMouseDown(reduxLayer.id);
|
||||
});
|
||||
rect.on('mouseover', function (e) {
|
||||
if (getIsSelected(e.target.getLayer()?.id())) {
|
||||
this.stroke(BBOX_SELECTED_STROKE);
|
||||
} else {
|
||||
this.stroke(BBOX_NOT_SELECTED_MOUSEOVER_STROKE);
|
||||
}
|
||||
});
|
||||
rect.on('mouseout', function (e) {
|
||||
if (getIsSelected(e.target.getLayer()?.id())) {
|
||||
this.stroke(BBOX_SELECTED_STROKE);
|
||||
} else {
|
||||
this.stroke(BBOX_NOT_SELECTED_STROKE);
|
||||
}
|
||||
});
|
||||
konvaLayer.add(rect);
|
||||
return rect;
|
||||
};
|
||||
|
||||
/**
|
||||
* Renders the bounding boxes for the layers.
|
||||
* @param stage The konva stage to render on
|
||||
* @param reduxLayers An array of all redux layers to draw bboxes for
|
||||
* @param selectedLayerId The selected layer's id
|
||||
* @param tool The current tool
|
||||
* @param onBboxChanged Callback for when the bbox is changed
|
||||
* @param onBboxMouseDown Callback for when the bbox is clicked
|
||||
* @returns
|
||||
*/
|
||||
const bbox = (
|
||||
const renderBbox = (
|
||||
stage: Konva.Stage,
|
||||
reduxLayers: Layer[],
|
||||
selectedLayerId: string | null,
|
||||
@@ -433,7 +503,6 @@ const bbox = (
|
||||
if (reduxLayer.bboxNeedsUpdate && reduxLayer.objects.length) {
|
||||
// We only need to use the pixel-perfect bounding box if the layer has eraser strokes
|
||||
bbox = reduxLayer.needsPixelBbox ? getLayerBboxPixels(konvaLayer) : getLayerBboxFast(konvaLayer);
|
||||
|
||||
// Update the layer's bbox in the redux store
|
||||
onBboxChanged(reduxLayer.id, bbox);
|
||||
}
|
||||
@@ -442,32 +511,8 @@ const bbox = (
|
||||
continue;
|
||||
}
|
||||
|
||||
let rect = konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`);
|
||||
if (!rect) {
|
||||
rect = new Konva.Rect({
|
||||
id: getLayerBboxId(reduxLayer.id),
|
||||
name: LAYER_BBOX_NAME,
|
||||
strokeWidth: 1,
|
||||
});
|
||||
rect.on('mousedown', function () {
|
||||
onBboxMouseDown(reduxLayer.id);
|
||||
});
|
||||
rect.on('mouseover', function (e) {
|
||||
if (getIsSelected(e.target.getLayer()?.id())) {
|
||||
this.stroke(BBOX_SELECTED_STROKE);
|
||||
} else {
|
||||
this.stroke(BBOX_NOT_SELECTED_MOUSEOVER_STROKE);
|
||||
}
|
||||
});
|
||||
rect.on('mouseout', function (e) {
|
||||
if (getIsSelected(e.target.getLayer()?.id())) {
|
||||
this.stroke(BBOX_SELECTED_STROKE);
|
||||
} else {
|
||||
this.stroke(BBOX_NOT_SELECTED_STROKE);
|
||||
}
|
||||
});
|
||||
konvaLayer.add(rect);
|
||||
}
|
||||
const rect =
|
||||
konvaLayer.findOne<Konva.Rect>(`.${LAYER_BBOX_NAME}`) ?? createBboxRect(reduxLayer, konvaLayer, onBboxMouseDown);
|
||||
|
||||
rect.setAttrs({
|
||||
visible: true,
|
||||
@@ -481,31 +526,41 @@ const bbox = (
|
||||
}
|
||||
};
|
||||
|
||||
const background = (stage: Konva.Stage, width: number, height: number) => {
|
||||
let layer = stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`);
|
||||
/**
|
||||
* Creates the background layer for the stage.
|
||||
* @param stage The konva stage to render on
|
||||
*/
|
||||
const createBackgroundLayer = (stage: Konva.Stage): Konva.Layer => {
|
||||
const layer = new Konva.Layer({
|
||||
id: BACKGROUND_LAYER_ID,
|
||||
});
|
||||
const background = new Konva.Rect({
|
||||
id: BACKGROUND_RECT_ID,
|
||||
x: stage.x(),
|
||||
y: 0,
|
||||
width: stage.width() / stage.scaleX(),
|
||||
height: stage.height() / stage.scaleY(),
|
||||
listening: false,
|
||||
opacity: 0.2,
|
||||
});
|
||||
layer.add(background);
|
||||
stage.add(layer);
|
||||
const image = new Image();
|
||||
image.onload = () => {
|
||||
background.fillPatternImage(image);
|
||||
};
|
||||
image.src = STAGE_BG_DATAURL;
|
||||
return layer;
|
||||
};
|
||||
|
||||
if (!layer) {
|
||||
layer = new Konva.Layer({
|
||||
id: BACKGROUND_LAYER_ID,
|
||||
});
|
||||
const background = new Konva.Rect({
|
||||
id: BACKGROUND_RECT_ID,
|
||||
x: stage.x(),
|
||||
y: 0,
|
||||
width: stage.width() / stage.scaleX(),
|
||||
height: stage.height() / stage.scaleY(),
|
||||
listening: false,
|
||||
opacity: 0.2,
|
||||
});
|
||||
layer.add(background);
|
||||
stage.add(layer);
|
||||
const image = new Image();
|
||||
image.onload = () => {
|
||||
background.fillPatternImage(image);
|
||||
};
|
||||
// This is invokeai/frontend/web/public/assets/images/transparent_bg.png as a dataURL
|
||||
image.src = STAGE_BG_DATAURL;
|
||||
}
|
||||
/**
|
||||
* Renders the background layer for the stage.
|
||||
* @param stage The konva stage to render on
|
||||
* @param width The unscaled width of the canvas
|
||||
* @param height The unscaled height of the canvas
|
||||
*/
|
||||
const renderBackground = (stage: Konva.Stage, width: number, height: number) => {
|
||||
const layer = stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`) ?? createBackgroundLayer(stage);
|
||||
|
||||
const background = layer.findOne<Konva.Rect>(`#${BACKGROUND_RECT_ID}`);
|
||||
assert(background, 'Background rect not found');
|
||||
@@ -528,15 +583,37 @@ const background = (stage: Konva.Stage, width: number, height: number) => {
|
||||
background.fillPatternOffset(stagePos);
|
||||
};
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
/**
|
||||
* Arranges all layers in the z-axis by updating their z-indices.
|
||||
* @param stage The konva stage
|
||||
* @param layerIds An array of redux layer ids, in their z-index order
|
||||
*/
|
||||
const arrangeLayers = (stage: Konva.Stage, layerIds: string[]): void => {
|
||||
let nextZIndex = 0;
|
||||
// Background is the first layer
|
||||
stage.findOne<Konva.Layer>(`#${BACKGROUND_LAYER_ID}`)?.zIndex(nextZIndex++);
|
||||
// Then arrange the redux layers in order
|
||||
for (const layerId of layerIds) {
|
||||
stage.findOne<Konva.Layer>(`#${layerId}`)?.zIndex(nextZIndex++);
|
||||
}
|
||||
// Finally, the tool preview layer is always on top
|
||||
stage.findOne<Konva.Layer>(`#${TOOL_PREVIEW_LAYER_ID}`)?.zIndex(nextZIndex++);
|
||||
};
|
||||
|
||||
export const renderers = {
|
||||
toolPreview,
|
||||
toolPreviewDebounced: debounce(toolPreview, DEBOUNCE_MS),
|
||||
layers,
|
||||
layersDebounced: debounce(layers, DEBOUNCE_MS),
|
||||
bbox,
|
||||
bboxDebounced: debounce(bbox, DEBOUNCE_MS),
|
||||
background,
|
||||
backgroundDebounced: debounce(background, DEBOUNCE_MS),
|
||||
renderToolPreview,
|
||||
renderLayers,
|
||||
renderBbox,
|
||||
renderBackground,
|
||||
arrangeLayers,
|
||||
};
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
|
||||
export const debouncedRenderers = {
|
||||
renderToolPreview: debounce(renderToolPreview, DEBOUNCE_MS),
|
||||
renderLayers: debounce(renderLayers, DEBOUNCE_MS),
|
||||
renderBbox: debounce(renderBbox, DEBOUNCE_MS),
|
||||
renderBackground: debounce(renderBackground, DEBOUNCE_MS),
|
||||
arrangeLayers: debounce(arrangeLayers, DEBOUNCE_MS),
|
||||
};
|
||||
|
||||
@@ -2,6 +2,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { aspectRatioChanged, setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
|
||||
import ParamBoundingBoxHeight from 'features/parameters/components/Canvas/BoundingBox/ParamBoundingBoxHeight';
|
||||
import ParamBoundingBoxWidth from 'features/parameters/components/Canvas/BoundingBox/ParamBoundingBoxWidth';
|
||||
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
|
||||
import { ImageSize } from 'features/parameters/components/ImageSize/ImageSize';
|
||||
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
|
||||
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
|
||||
@@ -41,6 +42,7 @@ export const ImageSizeCanvas = memo(() => {
|
||||
aspectRatioState={aspectRatioState}
|
||||
heightComponent={<ParamBoundingBoxHeight />}
|
||||
widthComponent={<ParamBoundingBoxWidth />}
|
||||
previewComponent={<AspectRatioIconPreview />}
|
||||
onChangeAspectRatioState={onChangeAspectRatioState}
|
||||
onChangeWidth={onChangeWidth}
|
||||
onChangeHeight={onChangeHeight}
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { ParamHeight } from 'features/parameters/components/Core/ParamHeight';
|
||||
import { ParamWidth } from 'features/parameters/components/Core/ParamWidth';
|
||||
import { AspectRatioCanvasPreview } from 'features/parameters/components/ImageSize/AspectRatioCanvasPreview';
|
||||
import { AspectRatioIconPreview } from 'features/parameters/components/ImageSize/AspectRatioIconPreview';
|
||||
import { ImageSize } from 'features/parameters/components/ImageSize/ImageSize';
|
||||
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
|
||||
import { aspectRatioChanged, heightChanged, widthChanged } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useCallback } from 'react';
|
||||
|
||||
export const ImageSizeLinear = memo(() => {
|
||||
const dispatch = useAppDispatch();
|
||||
const tab = useAppSelector(activeTabNameSelector);
|
||||
const width = useAppSelector((s) => s.generation.width);
|
||||
const height = useAppSelector((s) => s.generation.height);
|
||||
const aspectRatioState = useAppSelector((s) => s.generation.aspectRatio);
|
||||
@@ -40,6 +44,7 @@ export const ImageSizeLinear = memo(() => {
|
||||
aspectRatioState={aspectRatioState}
|
||||
heightComponent={<ParamHeight />}
|
||||
widthComponent={<ParamWidth />}
|
||||
previewComponent={tab === 'txt2img' ? <AspectRatioCanvasPreview /> : <AspectRatioIconPreview />}
|
||||
onChangeAspectRatioState={onChangeAspectRatioState}
|
||||
onChangeWidth={onChangeWidth}
|
||||
onChangeHeight={onChangeHeight}
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +1 @@
|
||||
__version__ = "4.2.0a2"
|
||||
__version__ = "4.2.0a3"
|
||||
|
||||
@@ -7,10 +7,12 @@ import os
|
||||
|
||||
from invokeai.app.run_app import run_app
|
||||
|
||||
logging.getLogger("xformers").addFilter(lambda record: "A matching Triton is not available" not in record.getMessage())
|
||||
|
||||
|
||||
def main():
|
||||
logging.getLogger("xformers").addFilter(
|
||||
lambda record: "A matching Triton is not available" not in record.getMessage()
|
||||
)
|
||||
|
||||
# Change working directory to the repo root
|
||||
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
run_app()
|
||||
|
||||
@@ -3,6 +3,7 @@ import pytest
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.image_util.util import nms
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_channels", [1, 2, 3])
|
||||
@@ -40,3 +41,10 @@ def test_prepare_control_image_num_channels_too_large(num_channels):
|
||||
device="cpu",
|
||||
do_classifier_free_guidance=False,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("threshold,sigma", [(None, 1.0), (1, None)])
|
||||
def test_nms_invalid_options(threshold: None | int, sigma: None | float):
|
||||
"""Test that an exception is raised in nms(...) if only one of the `threshold` or `sigma` parameters are provided."""
|
||||
with pytest.raises(ValueError):
|
||||
nms(np.zeros((256, 256, 3), dtype=np.uint8), threshold, sigma)
|
||||
|
||||
@@ -4,7 +4,7 @@ import pytest
|
||||
from torch import tensor
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
|
||||
from invokeai.backend.model_manager.config import InvalidModelConfigException
|
||||
from invokeai.backend.model_manager.config import InvalidModelConfigException, MainDiffusersConfig, ModelVariantType
|
||||
from invokeai.backend.model_manager.probe import (
|
||||
CkptType,
|
||||
ModelProbe,
|
||||
@@ -78,3 +78,11 @@ def test_probe_handles_state_dict_with_integer_keys():
|
||||
}
|
||||
with pytest.raises(InvalidModelConfigException):
|
||||
ModelProbe.get_model_type_from_checkpoint(Path("embedding.pt"), state_dict_with_integer_keys)
|
||||
|
||||
|
||||
def test_probe_sd1_diffusers_inpainting(datadir: Path):
|
||||
config = ModelProbe.probe(datadir / "sd-1/main/dreamshaper-8-inpainting")
|
||||
assert isinstance(config, MainDiffusersConfig)
|
||||
assert config.base is BaseModelType.StableDiffusion1
|
||||
assert config.variant is ModelVariantType.Inpaint
|
||||
assert config.repo_variant is ModelRepoVariant.FP16
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
This folder contains config files copied from [Lykon/dreamshaper-8-inpainting](https://huggingface.co/Lykon/dreamshaper-8-inpainting).
|
||||
@@ -0,0 +1,34 @@
|
||||
{
|
||||
"_class_name": "StableDiffusionInpaintPipeline",
|
||||
"_diffusers_version": "0.21.0.dev0",
|
||||
"_name_or_path": "lykon-models/dreamshaper-8-inpainting",
|
||||
"feature_extractor": [
|
||||
"transformers",
|
||||
"CLIPFeatureExtractor"
|
||||
],
|
||||
"requires_safety_checker": true,
|
||||
"safety_checker": [
|
||||
"stable_diffusion",
|
||||
"StableDiffusionSafetyChecker"
|
||||
],
|
||||
"scheduler": [
|
||||
"diffusers",
|
||||
"DEISMultistepScheduler"
|
||||
],
|
||||
"text_encoder": [
|
||||
"transformers",
|
||||
"CLIPTextModel"
|
||||
],
|
||||
"tokenizer": [
|
||||
"transformers",
|
||||
"CLIPTokenizer"
|
||||
],
|
||||
"unet": [
|
||||
"diffusers",
|
||||
"UNet2DConditionModel"
|
||||
],
|
||||
"vae": [
|
||||
"diffusers",
|
||||
"AutoencoderKL"
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,23 @@
|
||||
{
|
||||
"_class_name": "DEISMultistepScheduler",
|
||||
"_diffusers_version": "0.21.0.dev0",
|
||||
"algorithm_type": "deis",
|
||||
"beta_end": 0.012,
|
||||
"beta_schedule": "scaled_linear",
|
||||
"beta_start": 0.00085,
|
||||
"clip_sample": false,
|
||||
"dynamic_thresholding_ratio": 0.995,
|
||||
"lower_order_final": true,
|
||||
"num_train_timesteps": 1000,
|
||||
"prediction_type": "epsilon",
|
||||
"sample_max_value": 1.0,
|
||||
"set_alpha_to_one": false,
|
||||
"skip_prk_steps": true,
|
||||
"solver_order": 2,
|
||||
"solver_type": "logrho",
|
||||
"steps_offset": 1,
|
||||
"thresholding": false,
|
||||
"timestep_spacing": "leading",
|
||||
"trained_betas": null,
|
||||
"use_karras_sigmas": false
|
||||
}
|
||||
@@ -0,0 +1,66 @@
|
||||
{
|
||||
"_class_name": "UNet2DConditionModel",
|
||||
"_diffusers_version": "0.21.0.dev0",
|
||||
"_name_or_path": "/home/patrick/.cache/huggingface/hub/models--lykon-models--dreamshaper-8-inpainting/snapshots/15dcb9dec91a39ee498e3917c9ef6174b103862d/unet",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": null,
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"addition_time_embed_dim": null,
|
||||
"attention_head_dim": 8,
|
||||
"attention_type": "default",
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280,
|
||||
1280
|
||||
],
|
||||
"center_input_sample": false,
|
||||
"class_embed_type": null,
|
||||
"class_embeddings_concat": false,
|
||||
"conv_in_kernel": 3,
|
||||
"conv_out_kernel": 3,
|
||||
"cross_attention_dim": 768,
|
||||
"cross_attention_norm": null,
|
||||
"down_block_types": [
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"dual_cross_attention": false,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"in_channels": 9,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_only_cross_attention": null,
|
||||
"mid_block_scale_factor": 1,
|
||||
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"out_channels": 4,
|
||||
"projection_class_embeddings_input_dim": null,
|
||||
"resnet_out_scale_factor": 1.0,
|
||||
"resnet_skip_time_act": false,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"sample_size": 64,
|
||||
"time_cond_proj_dim": null,
|
||||
"time_embedding_act_fn": null,
|
||||
"time_embedding_dim": null,
|
||||
"time_embedding_type": "positional",
|
||||
"timestep_post_act": null,
|
||||
"transformer_layers_per_block": 1,
|
||||
"up_block_types": [
|
||||
"UpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D",
|
||||
"CrossAttnUpBlock2D"
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": false
|
||||
}
|
||||
@@ -99,6 +99,20 @@ def test_obj_serializer_ephemeral_writes_to_tempdir(tmp_path: Path):
|
||||
assert not Path(tmp_path, obj_1_name).exists()
|
||||
|
||||
|
||||
def test_obj_serializer_ephemeral_deletes_dangling_tempdirs_on_init(tmp_path: Path):
|
||||
tempdir = tmp_path / "tmpdir"
|
||||
tempdir.mkdir()
|
||||
ObjectSerializerDisk[MockDataclass](tmp_path, ephemeral=True)
|
||||
assert not tempdir.exists()
|
||||
|
||||
|
||||
def test_obj_serializer_does_not_delete_tempdirs_on_init(tmp_path: Path):
|
||||
tempdir = tmp_path / "tmpdir"
|
||||
tempdir.mkdir()
|
||||
ObjectSerializerDisk[MockDataclass](tmp_path, ephemeral=False)
|
||||
assert tempdir.exists()
|
||||
|
||||
|
||||
def test_obj_serializer_disk_different_types(tmp_path: Path):
|
||||
obj_serializer_1 = ObjectSerializerDisk[MockDataclass](tmp_path)
|
||||
obj_1 = MockDataclass(foo="bar")
|
||||
|
||||
Reference in New Issue
Block a user