Compare commits

...

265 Commits

Author SHA1 Message Date
blessedcoolant
e222484663 chore: v4.2.1 (#6362)
## Summary

Bump to v4.2.1

## Related Issues / Discussions

n/a

## QA Instructions

n/a

## Merge Plan

Do the release after merging.

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-14 03:17:03 +05:30
psychedelicious
2a9cea6689 Update invokeai_version.py
Bump to v4.2.1
2024-05-14 07:37:02 +10:00
psychedelicious
93da75209c feat(nodes): use new blur_if_nsfw method 2024-05-14 07:23:38 +10:00
psychedelicious
9c819f0fd8 fix(nodes): fix nsfw checker model download 2024-05-14 07:23:38 +10:00
Васянатор
eef6fcf286 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1210 of 1210 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Riccardo Giovanetti
e375d9f787 translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.5% (1192 of 1210 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
gallegonovato
ab18174774 translationBot(ui): update translation (Spanish)
Currently translated at 31.3% (379 of 1208 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Hosted Weblate
9265841384 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Riccardo Giovanetti
c5fd08125d translationBot(ui): update translation (Italian)
Currently translated at 98.5% (1192 of 1210 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Васянатор
11d88dae7f translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1210 of 1210 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Hosted Weblate
3b495659b0 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Riccardo Giovanetti
15c9a3a4b6 translationBot(ui): update translation (Italian)
Currently translated at 98.3% (1189 of 1209 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.3% (1189 of 1209 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
flower_elf
60e77e4ed6 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 77.8% (922 of 1185 strings)

Co-authored-by: flower_elf <miaoju2005@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Васянатор
fa832a8ac6 translationBot(ui): update translation (Russian)
Currently translated at 100.0% (1209 of 1209 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1209 of 1209 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1188 of 1188 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1185 of 1185 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Hosted Weblate
f7834d7d59 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

translationBot(ui): update translation files

Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Alexander Eichhorn
63d7461510 translationBot(ui): update translation (German)
Currently translated at 71.9% (839 of 1166 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Васянатор
1de704160e translationBot(ui): update translation (Russian)
Currently translated at 97.3% (1154 of 1185 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1174 of 1174 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1173 of 1173 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1166 of 1166 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1165 of 1165 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1149 of 1149 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (1147 of 1147 strings)

Co-authored-by: Васянатор <ilabulanov339@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
Riccardo Giovanetti
b118a2565c translationBot(ui): update translation (Italian)
Currently translated at 96.0% (1138 of 1185 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1156 of 1174 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.3% (1155 of 1174 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.4% (1129 of 1147 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2024-05-14 07:15:12 +10:00
psychedelicious
eb166baafe fix(ui): invoke button shows loading while queueing
Make the Invoke button show a loading spinner while queueing.

The queue mutations need to be awaited else the `isLoading` state doesn't work as expected. I feel like I should understand why, but I don't...
2024-05-13 11:53:29 +10:00
psychedelicious
818d37f304 fix(api): retain cover image when converting model to diffusers
We need to retrieve and re-save the image, because a conversion to diffusers creates a new model record, with a new key.

See: https://old.reddit.com/r/StableDiffusion/comments/1cnx40d/invoke_42_control_layers_regional_guidance_w_text/l3bv152/
2024-05-13 08:46:07 +10:00
psychedelicious
9cdb801c1c fix(api): add cover image to update model response
Fixes a bug where the image _appears_ to be reset when editing a model.

See: https://old.reddit.com/r/StableDiffusion/comments/1cnx40d/invoke_42_control_layers_regional_guidance_w_text/l3asdej/
2024-05-13 08:46:07 +10:00
blessedcoolant
5da8cde4fc fix(ui): disable listening on CA and II layers (#6332)
## Summary

Do not listen for mouse events on CA and II layers (which are not
interact-able).

## Related Issues / Discussions

Closes #6331

## QA Instructions

Move a CA or II layer above a regional guidance layer. The move tool
should now work.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:07:27 +05:30
blessedcoolant
6ec3dc0c0d Merge branch 'main' into psyche/fix/ui/cl-listening-layers 2024-05-13 04:05:35 +05:30
blessedcoolant
6050dffb25 fix(ui): use translations for canvas layer select (#6357)
## Summary

Use translations instead of plain strings.

## Related Issues / Discussions


https://discord.com/channels/1020123559063990373/1054129386447716433/1239181243078279208

## QA Instructions

The layer select should still work.

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:04:13 +05:30
blessedcoolant
93efeafe30 Merge branch 'main' into psyche/fix/ui/canvas-layer-translations 2024-05-13 04:02:23 +05:30
blessedcoolant
f167e8a8d3 fix(ui): jank in depthanything model size select (#6335)
## Summary

The select had a default search value, which meant it only showed
"small" as an option on first load.

## Related Issues / Discussions

n/a

## QA Instructions

- Add a CA layer
- Expand advanced
- Set processor to depth anything
- Click the model size dropdown, it should show all 3 sizes

## Merge Plan

n/a

## Checklist

- [x] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
2024-05-13 04:01:58 +05:30
psychedelicious
124d49f35e fix(ui): use translations for canvas layer select 2024-05-13 08:30:18 +10:00
blessedcoolant
52d8efa892 Merge branch 'main' into psyche/fix/ui/depth-anything-select 2024-05-13 04:00:07 +05:30
psychedelicious
4ea8416c68 fix(ui): use pluralization for invoke button tooltip 2024-05-13 08:29:31 +10:00
psychedelicious
8dd0bfb068 feat(ui): use new model type grouping for control adapters in control layers 2024-05-13 08:29:31 +10:00
psychedelicious
6ff1c7d541 feat(ui): add group by base & type to useGroupedModelCombobox hook
This allows comboboxes for models to have more granular groupings. For example, Control Adapter models can be grouped by base model & model type.

Before:
- `SD-1`
- `SDXL`

After:
- `SD-1 / ControlNet`
- `SD-1 / T2I Adapter`
- `SDXL / ControlNet`
- `SDXL / T2I Adapter`
2024-05-13 08:29:31 +10:00
psychedelicious
19f5a9c3a9 feat(ui): better invoke button checks
- Improved/more thorough checking before invoking for control layers
- Improved styling for the tooltip
2024-05-13 08:29:31 +10:00
psychedelicious
d9ce9c62ac feat(ui): disable invoke button when t2i adapter used w/ image dims that are not multiples of 64 2024-05-13 08:29:31 +10:00
blessedcoolant
cdc468a38c Merge branch 'main' into psyche/fix/ui/depth-anything-select 2024-05-13 03:57:47 +05:30
psychedelicious
2656f13a4a fix(ui): CA processor cancellation
When a control adapter processor config is changed, if we were already processing an image, that batch is immediately canceled. This prevents the processed image from getting stuck in a weird state if you change or reset the processor at the right (err, wrong?) moment.

- Update internal state for control adapters to track processor batches, instead of just having a flag indicating if the image is processing. Add a slice migration to not break the user's existing app state.
- Update preprocessor listener with more sophisticated logic to handle canceling the batch and resetting the processed image when the config changes or is reset.
- Fixed error handling that erroneously showed "failed to queue graph" errors when an active listener instance is canceled, need to check the abort signal.
2024-05-13 08:23:02 +10:00
blessedcoolant
da61396b1c cleanup: seamless unused older code cleanup 2024-05-13 08:11:08 +10:00
blessedcoolant
6c9fb617dc fix: fix seamless 2024-05-13 08:11:08 +10:00
psychedelicious
5dd73fe53e fix(ui): jank in depthanything model size select 2024-05-10 09:52:30 +10:00
psychedelicious
e6793be465 fix(ui): disable listening on CA and II layers
Closes #6331
2024-05-10 06:42:53 +10:00
gogurtenjoyer
63e62c5720 Update INSTALL_REQUIREMENTS.md - 'linux only' under AMD for SDXL.
Moved 'Linux only.' back from under NVIDIA to under AMD for the SDXL hardware requirements.
2024-05-09 10:56:23 -04:00
psychedelicious
0848cb8ebd Update invokeai_version.py 2024-05-09 08:01:40 -04:00
psychedelicious
1b777bb972 Revert "feat(ui): negative prompt boxes are italicized"
This reverts commit 49c4704379.
2024-05-09 07:52:52 -04:00
psychedelicious
029ee90351 docs(ui): add comment & TODO for konva bug 2024-05-09 07:52:52 -04:00
psychedelicious
2f9a064d48 feat(ui): ip adapter layers are selectable
This is largely an internal change, and it should have been this way from the start - less tip-toeing around layer types. The user-facing change is when you click an IP Adapter layer, it is highlighted. That's it.
2024-05-09 07:52:52 -04:00
psychedelicious
b180666497 feat(ui): disable spellcheck on prompt boxes
These are almost guaranteed to have non-english words - disable the spellcheck to prevent red squigglies.
2024-05-09 07:52:52 -04:00
psychedelicious
4740cd4f64 feat(ui): add "global" to global prompt placeholders 2024-05-09 07:52:52 -04:00
psychedelicious
8b51298ba1 feat(ui): negative prompt boxes are italicized 2024-05-09 07:52:52 -04:00
psychedelicious
1533429e54 feat(ui): optimized empty mask logic
Turns out, it's more efficient to just use the bbox logic for empty mask calculations. We already track if if the bbox needs updating, so this calculation does minimal work.

The dedicated calculation wasn't able to use the bbox tracking so it ran far more often than the bbox calculation.

Removed the "fast" bbox calculation logic, bc the new logic means we are continually updating the bbox in the background - not only when the user switches to the move tool and/or selects a layer.

The bbox calculation logic is split out from the bbox rendering logic to support this.

Result - better perf overall, with the empty mask handling retained.
2024-05-09 07:52:52 -04:00
psychedelicious
fc000214a5 feat(ui): check for transparency and clear masks if no pixel data
Mask vector data includes additive (brush, rect) shapes and subtractive (eraser) shapes. A different composite operation is used to draw a shape, depending on whether it is additive or subtractive.

This means that a mask may have vector objects, but once rendered, is _visually_ empty (fully transparent). The only way determine if a mask is visually empty is to render it and check every pixel.

When we generate and save layer metadata, these fully erased masks are still used. Generating with an empty mask is a no-op in the backend, so we want to avoid this and not pollute graphs/metadata.

Previously, we did that pixel-based when calculating the bbox, which we only did when using the move tool, and only for the selected layer.

This change introduces a simpler function to check if a mask is transparent, and if so, deletes all its objects to reset it. This allows us skip these no-op layers entirely.

This check is debounced to 300 ms, trailing edge only.
2024-05-09 07:52:52 -04:00
psychedelicious
f631aea4ee fix(ui): skip RG layers with no mask
These do not need to be added to the graph or metadata, as they are no-ops on the backend.
2024-05-09 07:52:52 -04:00
psychedelicious
32f4c1f966 fix(ui): memoize mouse event handlers
This prevents resetting the stage event handlers on every frame. Whoops!
2024-05-09 07:52:52 -04:00
psychedelicious
adebe639e3 tidy(ui): remove errant console.logs 2024-05-09 07:52:52 -04:00
psychedelicious
44280ed472 fix(ui): layer recall uses fresh ids
When layer metadata is stored, the layer IDs are included. When recalling the metadata, we need to assign fresh IDs, else we can end up with multiple layers with the same ID, which of course causes all sorts of issues.
2024-05-09 07:52:52 -04:00
psychedelicious
cec8840038 fix(ui): handle disabled RG layers
Was missing a check for `layer.isEnabled`.
2024-05-09 07:52:52 -04:00
psychedelicious
fc7f484935 feat(ui): add data-testids to control layers components:
- Add Layer Menu Button: `control-layers-add-layer-menu-button`
- Delete All Layers Button: `control-layers-delete-all-layers-button`
- CL Layer List: `control-layers-layer-list`
- CL Canvas: `control-layers-canvas`
- Toggle Metadata Button: `toggle-show-metadata-button`
- Toggle Progress Button: `toggle-show-progress-button`
- Toggle Viewer Menu Button: `toggle-viewer-menu-button`
- Settings Tab Button: `generation-tab-settings-tab-button`
- Control Layers Tab Button: `generation-tab-control-layers-tab-button`
2024-05-09 07:03:13 +10:00
psychedelicious
1aa7cd57c2 feat(ui): add invert brush scroll checkbox to control layers settings 2024-05-09 07:03:13 +10:00
psychedelicious
722a91aedb fix(ui): canvas toolbar centering 2024-05-09 07:03:13 +10:00
Mary Hipp
03c24ca9cb lint fix 2024-05-08 15:49:37 -04:00
Mary Hipp
5820579237 switch to generation tab when someone sends to img2img 2024-05-08 15:49:37 -04:00
psychedelicious
6c768bfe7e fix(ui): viewer toggle prevents progress toggle interaction 2024-05-08 08:39:18 -04:00
psychedelicious
5ca794b94f feat(ui): show progress toggle on control layers toolbar 2024-05-08 08:39:18 -04:00
psychedelicious
d20695260d feat(ui): open viewer on enqueue from generation tab 2024-05-08 08:39:18 -04:00
psychedelicious
d8557d573b Revert "feat(ui): extend zod with a is typeguard` method"
This reverts commit 0f45933791.
2024-05-08 08:39:18 -04:00
psychedelicious
6c1fd584d2 feat(ui): pre-CL control adapter metadata recall 2024-05-08 08:39:18 -04:00
psychedelicious
e8e764be20 feat(ui): revise image viewer
- Viewer only exists on Generation tab
- Viewer defaults to open
- When clicking the Control Layers tab on the left panel, close the viewer (i.e. open the CL editor)
- Do not switch to editor when adding layers (this is handled by clicking the Control Layers tab)
- Do not open viewer when single-clicking images in gallery
- _Do_ open viewer when _double_-clicking images in gallery
- Do not change viewer state when switching between app tabs (this no longer makes sense; the viewer only exists on generation tab)
- Change the button to a drop down menu that states what you are currently doing, e.g. Viewing vs Editing
2024-05-08 08:39:18 -04:00
psychedelicious
e8023c44b0 chore(ui): lint 2024-05-08 08:39:18 -04:00
psychedelicious
a3a6449786 feat(ui): versioned control layers metadata 2024-05-08 08:39:18 -04:00
psychedelicious
e9d2ffe3d7 fix(ui): process control image on recall if no processed image 2024-05-08 08:39:18 -04:00
psychedelicious
23ad6fb730 feat(ui): handle missing images/models when recalling control layers 2024-05-08 08:39:18 -04:00
psychedelicious
00f36cb491 tidy(ui): clean up control layers graph builder 2024-05-08 08:39:18 -04:00
psychedelicious
3f489c92c8 feat(ui): handle initial image layers in control layers helper 2024-05-08 08:39:18 -04:00
psychedelicious
f147f99bef feat(ui): better metadata labels for layers 2024-05-08 08:39:18 -04:00
psychedelicious
6107e3d281 fix(ui): fix zControlAdapterBase schema weight 2024-05-08 08:39:18 -04:00
psychedelicious
de33d6e647 fix(ui): metadata "Layers" -> "Layer" 2024-05-08 08:39:18 -04:00
psychedelicious
e36e5871a1 chore(ui): lint 2024-05-08 08:39:18 -04:00
psychedelicious
8b25c1a62e tidy(ui): remove extraneous metadata handlers 2024-05-08 08:39:18 -04:00
psychedelicious
dfbd7eb1cf feat(ui): individual layer recall 2024-05-08 08:39:18 -04:00
psychedelicious
b43b2714cc feat(ui): add fracturedjsonjs to pretty-serialize objects
In use on the metadata viewer - makes it sooo much easier on the eyes.
2024-05-08 08:39:18 -04:00
psychedelicious
e537de2f6d feat(ui): layers recall
This still needs some finessing - needs logic depending on the tab...
2024-05-08 08:39:18 -04:00
psychedelicious
ccd399e277 feat(ui): add getIsVisible to metadata handlers 2024-05-08 08:39:18 -04:00
psychedelicious
bfad814862 fix(ui): fix IPAdapterConfigV2 schema weight 2024-05-08 08:39:18 -04:00
psychedelicious
6e8b7f9421 feat(ui): write layers to metadata 2024-05-08 08:39:18 -04:00
psychedelicious
e47629cbe7 feat(ui): add zod schema for layers array 2024-05-08 08:39:18 -04:00
psychedelicious
e840de27ed feat(ui): extend zod with a is typeguard` method
Feels dangerous, but it's very handy.
2024-05-08 08:39:18 -04:00
psychedelicious
8342f32f2e refactor(ui): rewrite all types as zod schemas
This change prepares for safe metadata recall.
2024-05-08 08:39:18 -04:00
psychedelicious
a7aa529b99 tidy(ui): "imageName" -> "name" 2024-05-08 08:39:18 -04:00
psychedelicious
4adc592657 feat(ui): move strength to init image layer
This further splits the control layers state into its own thing.
2024-05-07 11:02:16 +10:00
psychedelicious
e8d60e8d83 fix(ui): image metadata viewer stuck when spamming hotkey 2024-05-07 11:02:16 +10:00
psychedelicious
886f5c90a3 feat(ui): move img2img strength out of advanced on canvas 2024-05-07 11:02:16 +10:00
psychedelicious
5e684c11f1 Update invokeai_version.py 2024-05-07 09:09:10 +10:00
psychedelicious
72ce239592 revert(ui): remove floating viewer
There are unresolved platform-specific issues with this component, and its utility is debatable.

Should be easy to just revert this commit to add it back in the future if desired.
2024-05-06 19:00:07 -04:00
psychedelicious
a826f8f8c5 fix(ui): show total layer count in control layers tab 2024-05-06 19:00:07 -04:00
psychedelicious
b6c19a8e47 feat(ui): close viewer when adding a RG layer 2024-05-06 19:00:07 -04:00
psychedelicious
67d6cf19c6 fix(ui): switch to viewer if auto-switch is enabled 2024-05-06 19:00:07 -04:00
psychedelicious
a9bf651c69 chore(ui): bump all deps 2024-05-06 19:00:07 -04:00
psychedelicious
3bd5d9a8e4 fix(ui): memoize FloatingImageViewer
Maybe this will fix @JPPhoto's issue?
2024-05-06 19:00:07 -04:00
psychedelicious
6249982d82 fix(ui): stuck viewer when spamming toggle
There are a number of bugs with `framer-motion` that can result in sync issues with AnimatePresence and the conditionally rendered component.

You can see this if you rapidly click an accordion, occasionally it gets out of sync and is closed when it should be open.

This is a bigger problem with the viewer where the user may hold down the `z` key. It's trivial to get it to lock up.

For now, just remove the animation entirely.

Upstream issues for reference:
https://github.com/framer/motion/issues/2023
https://github.com/framer/motion/issues/2618
https://github.com/framer/motion/issues/2554
2024-05-06 19:00:07 -04:00
psychedelicious
6b98dba71d chore(ui): lint 2024-05-06 08:55:32 -04:00
psychedelicious
c0065a65a0 feat(ui): floating viewer always shows progress, never shows metadata 2024-05-06 08:55:32 -04:00
psychedelicious
cce3144c74 feat(ui): add floating image viewer 2024-05-06 08:55:32 -04:00
psychedelicious
aab152a7e9 fix(ui): track mouse out flags correctly 2024-05-06 08:55:32 -04:00
psychedelicious
c5b948bc3f feat(ui): fade layer selection color 2024-05-06 08:55:32 -04:00
psychedelicious
44ecddae2e feat(ui): style Settings/Control Layers tabs like tabs 2024-05-06 08:55:32 -04:00
psychedelicious
26847895b9 fix(ui): update hotkeys for viewer 2024-05-06 08:55:32 -04:00
psychedelicious
e4a640f0a7 feat(ui): optimized rendering of selected layer
Instead of caching on every stroke, we can use a compositing rect when the layer is being drawn to improve performance.
2024-05-04 12:03:28 -04:00
psychedelicious
b5b6a96d94 feat(ui): dynamic brush spacing
Scaled to 10% of brush size, clamped between 5px and 15px. This makes drawing feel a bit smoother, but maintains reasonable performance.
2024-05-04 12:03:28 -04:00
psychedelicious
806a8f69c5 perf(ui): rerender of opacity sliders 2024-05-04 12:03:28 -04:00
psychedelicious
ac0b9ba290 tidy(ui): $cursorPosition -> $lastCursorPos 2024-05-04 12:03:28 -04:00
psychedelicious
7ca613d41c feat(ui): snap cursor pos when drawing rects
- Rects snap to stage edge when within a threshold (10 screen pixels)
- When mouse leaves stage, set last mousedown pos to null, preventing nonfunctional rect outlines

Partially addresses #6306.

There's a technical challenge to fully address the issue - mouse event are not fired when the mouse is outside the stage. While we could draw the rect even if the mouse leaves, we cannot update the rect's dimensions on mouse move, or complete the drawing on mouse up.

To fully address the issue, we'd need to a way to forward window events back to the stage, or at least handle window events. We can explore this later.
2024-05-04 12:03:28 -04:00
psychedelicious
5cb1ff8679 fix(ui): open viewer on image click, not select 2024-05-04 12:03:28 -04:00
psychedelicious
8794b99d51 fix(ui): save upscaled images to gallery on canvas tab 2024-05-03 23:15:10 -04:00
psychedelicious
6bdded85da fix(ui): do not auto-hide next/prev image buttons 2024-05-03 23:15:10 -04:00
psychedelicious
26613f10c7 feat(ui): close viewer when user switches tabs 2024-05-03 23:15:10 -04:00
psychedelicious
6d2fe3b691 tidy(ui): clean up layer reset logic 2024-05-03 23:15:10 -04:00
psychedelicious
2888845f7c fix(ui): invalidate mask cache when moving layer 2024-05-03 23:15:10 -04:00
psychedelicious
4beccea6e7 fix(ui): do not run HRO if using an initial image 2024-05-03 23:15:10 -04:00
psychedelicious
68d1458c83 fix(ui): address feedback 2024-05-04 08:40:12 +10:00
blessedcoolant
f4dde883ca feat: improve the switch states of the control layers / viewer area 2024-05-04 08:40:12 +10:00
psychedelicious
be7eeb576b fix(ui): fix viewer getting stuck when spamming toggle 2024-05-03 20:57:18 +10:00
psychedelicious
af9f0e0963 feat(ui): cache control layer mask images
When invoking with control layers, we were creating and uploading the mask images on every enqueue, even when the mask didn't change. The mask image can be cached to greatly reduce the number of uploads.

With this change, we are a bit smarter about the mask images:
- Check if there is an uploaded mask image name
- If so, attempt to retrieve its DTO. Typically it will be in the RTKQ cache, so there is no network request, but it will make a network request if not cached to confirm the image actually exists on the server.
- If we don't have an uploaded mask image name, or the request fails, we go ahead and upload the generated blob
- Update the layer's state with a reference to this uploaded image for next time
- Continue as before

Any time we modify the mask (drawing/erasing, resetting the layer), we invalidate that cached image name (set it to null).

We now only upload images when we need to and generation starts faster.
2024-05-03 20:57:18 +10:00
Kent Keirsey
3cba53533d Update README.md 2024-05-03 17:31:50 +10:00
Kent Keirsey
ab87511a03 Update INSTALLATION.md 2024-05-03 17:31:50 +10:00
Kent Keirsey
af868b0ea6 Update 010_INSTALL_AUTOMATED.md 2024-05-03 17:31:50 +10:00
Kent Keirsey
960eae8255 Update TRAINING.md 2024-05-03 17:30:42 +10:00
psychedelicious
0787c6c746 Update invokeai_version.py 2024-05-03 13:23:19 +10:00
psychedelicious
579d436934 fix(ui): floating param/gallery buttons 2024-05-02 23:09:26 -04:00
psychedelicious
36f01988e8 chore(ui): lint 2024-05-02 23:09:26 -04:00
psychedelicious
d9b92d19f9 feat(ui): clearer viewer/editor context switching 2024-05-02 23:09:26 -04:00
psychedelicious
fdfc379a84 fix(ui): layer counts 2024-05-02 23:09:26 -04:00
psychedelicious
2062cfe84a fix(ui): cursor when no renderable layers added 2024-05-02 23:09:26 -04:00
psychedelicious
eb36e834b2 feat(ui): add fallback when no layers exist 2024-05-02 23:09:26 -04:00
psychedelicious
2baa33730a fix(ui): fix control layer list layout 2024-05-02 23:09:26 -04:00
psychedelicious
c30df7ce79 feat(ui): style settings/control layers tabs 2024-05-02 23:09:26 -04:00
psychedelicious
f05ac5a7a5 chore(ui): bump @invoke-ai/ui-library 2024-05-02 23:09:26 -04:00
psychedelicious
85dd78b8df fix(ui): handle deleting images in use in generation tab 2024-05-02 23:09:26 -04:00
psychedelicious
4c7be03702 tidy(ui): rename generation tab graph builders 2024-05-02 23:09:26 -04:00
psychedelicious
e354fee4f4 fix(ui): add img2img metadata to graphs 2024-05-02 23:09:26 -04:00
psychedelicious
20e628297c fix(ui): smoother animations in current image preview 2024-05-02 23:09:26 -04:00
psychedelicious
98664fc46f fix(ui): gallery prev/next buttons animations 2024-05-02 23:09:26 -04:00
psychedelicious
33617fc06a feat(ui): rework image viewer
- Rework styling
- Replace "CurrentImageDisplay" entirely
- Add a super short fade to reduce jarring transition
- Make the viewer a singleton component, overlaid on everything else - reduces change when switching tabs
2024-05-02 23:09:26 -04:00
psychedelicious
c05e52ebae fix(ui): do not delete all layers when using image as initial image 2024-05-02 23:09:26 -04:00
psychedelicious
5734a97c55 fix(ui): do not attempt drawing when invalid layer type selected 2024-05-02 23:09:26 -04:00
psychedelicious
94a73d5377 feat(ui): update mm-related translations 2024-05-02 23:09:26 -04:00
psychedelicious
0f7fdabe9b feat(ui): rename tab identifiers
- "txt2img" -> "generation"
- "unifiedCanvas" -> "canvas"
- "modelManager" -> "models"
- "nodes" -> "workflows"
- Add UI slice migration setting the active tab to "generation"
2024-05-02 23:09:26 -04:00
psychedelicious
7c1f1076b4 feat(ui): rename tabs
- "Text to Image" -> "Generation"
- "Unified Canvas" -> "Canvas"
- "Model Manager" -> "Models"
2024-05-02 23:09:26 -04:00
psychedelicious
a6ac184211 tidy(ui): excise img2img tab 2024-05-02 23:09:26 -04:00
psychedelicious
7d58908e32 fix(ui): fix img2img graphs w/ control layers 2024-05-02 23:09:26 -04:00
psychedelicious
26d3ec3fce fix(ui): destroy initial image layer after deleting 2024-05-02 23:09:26 -04:00
psychedelicious
dc81357152 feat(ui): add img2img via control layers to graph builders 2024-05-02 23:09:26 -04:00
psychedelicious
c9886796f6 feat(ui): add image viewer overlay
- Works on txt2img, canvas and workflows tabs, img2img has its own side-by-side view
- In workflow editor, the is closeable only if you are in edit mode, else it's always there
- Press `i` to open
- Press `esc` to close
- Selecting an image or changing image selection opens the viewer
- When generating, if auto-switch to new image is enabled, the viewer opens when an image comes in

To support this change, I organized and restructured some tab stuff.
2024-05-02 23:09:26 -04:00
psychedelicious
209ddc2037 fix(ui): do not toggle layers on double click of opacity popover 2024-05-02 23:09:26 -04:00
psychedelicious
8b6a283eab feat(ui): add opacity to initial image layer 2024-05-02 23:09:26 -04:00
psychedelicious
75be6814bb feat(ui): add renderer for initial image 2024-05-02 23:09:26 -04:00
psychedelicious
1d213067e8 feat(ui): add initial image layer to CL 2024-05-02 23:09:26 -04:00
psychedelicious
d67480d92c feat(ui): add layerwrapper component 2024-05-02 23:09:26 -04:00
psychedelicious
d55ea318ec tidy(ui): remove unused gallery hotkeys 2024-05-02 23:09:26 -04:00
psychedelicious
474eab6f8a fix(ui): clamp incoming w/h to ensure always a multiple of 8
When recalling metadata and/or using control image dimensions, it was possible to set a width or height that was not a multiple of 8, resulting in generation failures.

Added a `clamp` option to the w/h actions to fix this. The option is used for all untrusted sources - everything except for the w/h number inputs, which clamp the values themselves.
2024-05-02 23:09:26 -04:00
psychedelicious
1b13fee256 fix(ui): firefox drawing lag
Firefox v125.0.3 and below has a bug where `mouseenter` events are fired continually during mouse moves. The issue isn't present on FF v126.0b6 Developer Edition. It's not clear if the issue is present on FF nightly, and we're not sure if it will actually be fixed in the stable v126 release.

The control layers drawing logic relied on on `mouseenter` events to create new lines, and `mousemove` to extend existing lines. On the affected version of FF, all line extensions are turned into new lines, resulting in very poor performance, noncontiguous lines, and way-too-big internal state.

To resolve this, the drawing handling was updated to not use `mouseenter` at all. As a bonus, resolving this issue has resulted in simpler logic for drawing on the canvas.
2024-05-02 23:09:26 -04:00
psychedelicious
6363095b29 feat(ui): control adapter recall for control layers
- Add set of metadata handlers for the control layers CAs
- Use these conditionally depending on the active tab - when recalling on txt2img, the CAs go to control layers, else they go to the old CA area.
2024-05-02 23:09:26 -04:00
psychedelicious
4cd78b9478 feat(ui): add getImageDTO imperative RTKQ helper 2024-05-02 23:09:26 -04:00
psychedelicious
2cde8a643e tidy(ui): suffix a control adapter types/objects with V2
Prevent mixing the old and new implementations up
2024-05-02 23:09:26 -04:00
psychedelicious
f9555f03f5 tidy(ui): "CONTROLNET_PROCESSORS" -> "CA_PROCESSOR_DATA" 2024-05-02 23:09:26 -04:00
psychedelicious
b1d8f3a3f9 tidy(ui): revert changes to old CA implementation
These changes were left over from the previous attempt to handle control adapters in control layers with the same logic. Control Layers are now handled totally separately, so these changes may be reverted.
2024-05-02 23:09:26 -04:00
psychedelicious
33a9f9a4dc fix(nodes): fix constraints in cnet processors
There were some invalid constraints with the processors - minimum of 0 for resolution or multiple of 64 for resolution.

Made minimum 1px and no multiple ofs.
2024-05-02 12:24:04 +10:00
psychedelicious
c35625eb44 feat(ui): processor layout changes 2024-05-01 21:48:47 -04:00
psychedelicious
6f572e1cce fix(ui): convert t2i to cnet and vice-versa when model changes 2024-05-01 21:48:47 -04:00
psychedelicious
54acd3f2b1 ci(ui): restore error status for circular deps 2024-05-01 21:48:47 -04:00
psychedelicious
6e966909ab chore(ui): lint 2024-05-01 21:48:47 -04:00
psychedelicious
311ba8c04b fix(ui): ensure canvas size is correctly updated when model changed
Closes #6293
2024-05-01 21:48:47 -04:00
psychedelicious
1b617768cf fix(ui): canvas infinite loop when setting bbox dims
When typing in a number into the w/h number inputs, if the number is less than the step, it appears the value of 0 is used. This is unexpected; it means Chakra isn't clamping the value correctly (or maybe our wrapper isn't clamping it).

Add checks to never bail if the width or height value from the number input component is 0.
2024-05-01 21:48:47 -04:00
psychedelicious
8ceb94497e fix(ui): fix canvas rendering of control images 2024-05-01 21:48:47 -04:00
psychedelicious
efb571401c feat(ui): tweak control adapter layout 2024-05-01 21:48:47 -04:00
psychedelicious
ffba4871d0 tidy(ui): "scribble" -> "Scribble" 2024-05-01 21:48:47 -04:00
psychedelicious
9437d701b2 fix(ui): disable clear processor when no processor selected 2024-05-01 21:48:47 -04:00
psychedelicious
6effa19626 fix(ui): edge cases in auto-process 2024-05-01 21:48:47 -04:00
psychedelicious
45c2ac41d5 feat(ui): processor layout/styling 2024-05-01 21:48:47 -04:00
psychedelicious
ca1c3c0873 fix(ui): do not re-process if processor config hasn't changed 2024-05-01 21:48:47 -04:00
psychedelicious
47ee08db91 fix(ui): processor select styling 2024-05-01 21:48:47 -04:00
psychedelicious
c96b98fc9e feat(ui): auto-process for control layer CAs 2024-05-01 21:48:47 -04:00
psychedelicious
905baf2787 refactor(ui): continue wiring up CA logic across (wip)
It works!
2024-05-01 21:48:47 -04:00
psychedelicious
0e55488ff6 refactor(ui): wire up CA logic across (wip) 2024-05-01 21:48:47 -04:00
psychedelicious
424a27eeda refactor(ui): add CA processor config components (wip) 2024-05-01 21:48:47 -04:00
psychedelicious
6007218a51 refactor(ui): add CA config components (wip) 2024-05-01 21:48:47 -04:00
psychedelicious
811e8a5a8b refactor(ui): rename & export actions from CL slice 2024-05-01 21:48:47 -04:00
psychedelicious
121918352a refactor(ui): add control layers separate control adapter implementation (wip)
- Revise control adapter config types
- Recreate all control adapter mutations in control layers slice
- Bit of renaming along the way - typing 'RegionalGuidanceLayer' over and over again was getting tedious
2024-05-01 21:48:47 -04:00
psychedelicious
3717321480 tidy(ui): organize layer components 2024-05-01 21:48:47 -04:00
blessedcoolant
4a250bdf9c Add TCD scheduler (#6086)
Adds the TCD scheduler to better support.
https://huggingface.co/h1t/TCD-SDXL-LoRA or checkpoints that have been
made with TCD

Example:
TCD Lora with Euler A

![b0ad6174-cd2b-49fe-ae42-3a83bc6ae571](https://github.com/invoke-ai/InvokeAI/assets/82827604/d823cb2f-4d9c-4f93-9fc2-e63773a378b6)

TCD Lora with TCD scheduler

![74495a51-eeac-45e6-9983-fb6551a5bdef](https://github.com/invoke-ai/InvokeAI/assets/82827604/c87604d8-a44e-4fb9-a7be-ef2600784727)
2024-05-01 12:57:01 +05:30
blessedcoolant
dce8b88aaf fix: change eta only for TCD Scheduler 2024-05-01 12:47:46 +05:30
blessedcoolant
1bdcbe3284 cleanup: use dict update to actually update the scheduler keyword args 2024-05-01 12:22:39 +05:30
Kent Keirsey
88ac3bc7f0 Merge branch 'main' into main 2024-04-30 16:51:44 -04:00
psychedelicious
abb3bb9f7e Update invokeai_version.py 2024-05-01 06:30:28 +10:00
blessedcoolant
2ddb82200c fix: Manually update eta(gamma) to 1.0 for TCDScheduler
seems to work best with invoke at 4 steps
2024-05-01 01:20:53 +05:30
blessedcoolant
38880cde5c chore: update schema 2024-05-01 01:20:22 +05:30
blessedcoolant
39ab4dd83e Merge branch 'main' into pr/6086 2024-05-01 00:37:06 +05:30
psychedelicious
631878b212 feat(ui): border radius on canvas 2024-04-30 08:10:59 -04:00
psychedelicious
7a5399e83c feat(ui): display message when no layers are added 2024-04-30 08:10:59 -04:00
psychedelicious
e90775731d fix(ui): layer layout orientation 2024-04-30 08:10:59 -04:00
psychedelicious
3f26880493 fix(ui): "Global Settings" -> "Settings" 2024-04-30 08:10:59 -04:00
psychedelicious
21cf1004db fix(ui): layers default to expanded 2024-04-30 08:10:59 -04:00
psychedelicious
d74cd12aa6 feat(ui): collapsible layers 2024-04-30 08:10:59 -04:00
psychedelicious
cf1883585d chore(ui): lint 2024-04-30 08:10:59 -04:00
psychedelicious
8a791d4f16 feat(ui): make control image opacity filter toggleable 2024-04-30 08:10:59 -04:00
psychedelicious
1212698059 tidy(ui): more renaming of components 2024-04-30 08:10:59 -04:00
psychedelicious
ba6db33b39 tidy(ui): more renaming of components 2024-04-30 08:10:59 -04:00
psychedelicious
b3dbfdaa02 tidy(ui): more renaming of components 2024-04-30 08:10:59 -04:00
psychedelicious
3441187c23 tidy(ui): "regional prompts" -> "control layers" 2024-04-30 08:10:59 -04:00
psychedelicious
8de56fd77c tidy(ui): move regionalPrompts files to controlLayers 2024-04-30 08:10:59 -04:00
psychedelicious
22bd33b7c6 chore(ui): lint 2024-04-30 08:10:59 -04:00
psychedelicious
2af5c4be9f fix(ui): ip adapter layers are not selectable 2024-04-30 08:10:59 -04:00
psychedelicious
415a41e21a perf(ui): reset maskobjects when layer has no bbox (all objects erased) 2024-04-30 08:10:59 -04:00
psychedelicious
aa2ca03056 fix(ui): filter layers based on tab when disabling invoke button 2024-04-30 08:10:59 -04:00
psychedelicious
a20faca20f feat(ui): layer layout tweaks 2024-04-30 08:10:59 -04:00
psychedelicious
9d042baf48 fix(ui): ip adapter layers always at bottom of list 2024-04-30 08:10:59 -04:00
psychedelicious
6195741814 feat(ui): move global mask opacity to settings popover 2024-04-30 08:10:59 -04:00
psychedelicious
c2f8adf93e fix(ui): deselect other layers when new layer added 2024-04-30 08:10:59 -04:00
psychedelicious
ace3955760 fix(ui): tool preview/cursor when non-interactable layer selected 2024-04-30 08:10:59 -04:00
psychedelicious
720e16cea6 feat(ui): tweak layer list styling to better indicate selectablility 2024-04-30 08:10:59 -04:00
psychedelicious
a357a1ac9d feat(ui): remove select layer on click in canvas
It's very easy to end up in a spot where you cannot select a layer at all to move it around. Too tricky to handle otherwise.
2024-04-30 08:10:59 -04:00
psychedelicious
22f160bfcc fix(ui): unlink control adapter opaicty from global mask opacity 2024-04-30 08:10:59 -04:00
psychedelicious
fa637b5c59 fix(ui): add missed ca layer opacity logic
didn't stage the right changes a few commits back
2024-04-30 08:10:59 -04:00
psychedelicious
1f68a60752 feat(ui): hold shift to use control image size w/o model constraints 2024-04-30 08:10:59 -04:00
psychedelicious
048bd18e10 feat(ui): separate ca layer opacity 2024-04-30 08:10:59 -04:00
psychedelicious
e5ec529f0f feat(ui): fix layer arranging 2024-04-30 08:10:59 -04:00
psychedelicious
d884c15d0c feat(ui): update layer menus 2024-04-30 08:10:59 -04:00
psychedelicious
9ee7cad613 feat(ui): make control layer ui exclusive to txt2img tab 2024-04-30 08:10:59 -04:00
psychedelicious
629110784d fix(ui): delete control layers correctly 2024-04-30 08:10:59 -04:00
psychedelicious
c1666a8b5a fix(ui): select default control/ip adapter models in control layers 2024-04-30 08:10:59 -04:00
psychedelicious
d14b315bc6 fix(ui): use optimal size when using control image dims 2024-04-30 08:10:59 -04:00
psychedelicious
fe459295ea fix(ui): exclude disabled control adapters on control layers 2024-04-30 08:10:59 -04:00
psychedelicious
9d67ec9efe fix(ui): toggle control adapter layer vis 2024-04-30 08:10:59 -04:00
psychedelicious
5bf4d37949 perf(ui): reduce control image processing to when it is needed
Only should reprocess if the processor settings or the image has changed.
2024-04-30 08:10:59 -04:00
psychedelicious
387ab9cee7 feat(ui): reset controlnet model to null instead of disabling when base model changes 2024-04-30 08:10:59 -04:00
psychedelicious
56050f7887 fix(ui): fix canvas scaling when window is zoomed
Konva doesn't react to changes to window zoom/scale. If you open the tab at, say, 90%, then bump to 100%, the pixel ratio of the canvas doesn't change. This results in lower-quality renders on the canvas (generation is unaffected).
2024-04-30 08:10:59 -04:00
psychedelicious
c354470cd1 perf(ui): do not cache controlnet images unless required 2024-04-30 08:10:59 -04:00
psychedelicious
ded8267505 WIP control adapters in regional 2024-04-30 08:10:59 -04:00
psychedelicious
e822897b1c feat(nodes): add prototype heuristic image resize node
Uses the fancy cnet resize that retains edges.
2024-04-30 08:10:59 -04:00
psychedelicious
2d7b8c2a1b fix(backend): do not round image dims to 64 in controlnet processor resize
Rounding the dims results in control images that are subtly different than the input. We round to the nearest 8px later, there's no need to round now.
2024-04-30 08:10:59 -04:00
psychedelicious
ebeae41cb2 tidy(ui): minor ca component tidy 2024-04-30 08:10:59 -04:00
psychedelicious
6f5f3381f9 feat(ui): revise internal state for RCC 2024-04-30 08:10:59 -04:00
psychedelicious
2f6fec8c6c chore(ui): lint 2024-04-30 08:10:59 -04:00
psychedelicious
cc4bef4859 refactor(ui): move size state to regional 2024-04-30 08:10:59 -04:00
psychedelicious
b6a45e53f1 refactor(ui): move positive2 and negative2 prompt to regional 2024-04-30 08:10:59 -04:00
psychedelicious
1cf1e53a6c refactor(ui): move positive and negative prompt to regional 2024-04-30 08:10:59 -04:00
psychedelicious
c686625076 feat(ui): add 'control_layer' type 2024-04-30 08:10:59 -04:00
psychedelicious
d861bc690e feat(mm): handle PC_PATH_MAX on external drives on macOS
`PC_PATH_MAX` doesn't exist for (some?) external drives on macOS. We need error handling when retrieving this value.

Also added error handling for `PC_NAME_MAX` just in case. This does work for me for external drives on macOS, though.

Closes #6277
2024-04-30 07:57:03 -04:00
dunkeroni
f262b9032d fix: changed validation to not error on connection 2024-04-28 12:48:56 -04:00
dunkeroni
71c3197eab fix: denoise latents accepts CFG lists as input 2024-04-28 12:48:56 -04:00
psychedelicious
241a1fdb57 feat(mm): support sdxl ckpt inpainting models
There are only a couple SDXL inpainting models, and my tests indicate they are not as good as SD1.5 inpainting, but at least we support them now.

- Add the config file. This matches what is used in A1111. The only difference from the non-inpainting SDXL config is the number of in-channels.
- Update the legacy config maps to use this config file.
2024-04-28 12:57:27 +10:00
psychedelicious
3595beac1e docs: remove references to config script in CONFIGURATION.md 2024-04-25 17:49:32 -04:00
psychedelicious
caa7c0f2bd docs: more pruning and tidying readme 2024-04-26 00:00:18 +10:00
psychedelicious
d546823c4d docs: pruning and tidying readme 2024-04-26 00:00:18 +10:00
Kent Keirsey
dac2d78da6 Update README.md 2024-04-26 00:00:18 +10:00
psychedelicious
398f37c0ed tidy(backend): clean up controlnet_utils
- Use the our adaptation of the HWC3 function with better types
- Extraction some of the util functions, name them better, add comments
- Improve type annotations
- Remove unreachable codepaths
2024-04-25 13:20:09 +10:00
psychedelicious
6b0bf59682 feat(backend): update nms util to make blur/thresholding optional 2024-04-25 13:20:09 +10:00
psychedelicious
5b8f77f990 tidy(nodes): move cnet mode literals to utils
Now they can be used in type signatures without circular imports.
2024-04-25 13:20:09 +10:00
psychedelicious
07cb6c944e chore(ui): typegen 2024-04-03 17:18:12 +11:00
psychedelicious
1d45ef529b fix(ui): move tcd scheduler to current zod schemas
It was in the v2 schemas which should be immutable and only used for migrations
2024-04-03 17:08:02 +11:00
psychedelicious
0259114d9c Merge branch 'main' into main 2024-04-03 17:03:19 +11:00
psychedelicious
51e515b925 tidy: use lowercase for tcd scheduler identifier 2024-04-03 17:03:02 +11:00
psychedelicious
8c509295f9 chore: ruff 2024-04-03 17:02:45 +11:00
l0stl0rd
23da3de915 Update constants.ts 2024-03-29 12:39:08 +01:00
l0stl0rd
97579770e1 Update common.ts 2024-03-29 12:35:42 +01:00
l0stl0rd
1a83936cdd Merge branch 'invoke-ai:main' into main 2024-03-29 11:14:28 +01:00
l0stl0rd
80e311a069 Update schedulers.py 2024-03-28 22:52:15 +01:00
l0stl0rd
b6e6bdc195 Update schedulers.py 2024-03-28 22:51:59 +01:00
264 changed files with 12845 additions and 8478 deletions

495
README.md
View File

@@ -2,21 +2,102 @@
![project hero](https://github.com/invoke-ai/InvokeAI/assets/31807370/6e3728c7-e90e-4711-905c-3b55844ff5be)
# Invoke - Professional Creative AI Tools for Visual Media
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
# Invoke - Professional Creative AI Tools for Visual Media
#### To learn more about Invoke, or implement our Business solutions, visit [invoke.com]
[![discord badge]][discord link]
[![discord badge]][discord link] [![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link] [![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link] [![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
[![latest release badge]][latest release link] [![github stars badge]][github stars link] [![github forks badge]][github forks link]
</div>
[![CI checks on main badge]][CI checks on main link] [![latest commit to main badge]][latest commit to main link]
Invoke is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. Invoke offers an industry leading web-based UI, and serves as the foundation for multiple commercial products.
[![github open issues badge]][github open issues link] [![github open prs badge]][github open prs link] [![translation status badge]][translation status link]
[Installation and Updates][installation docs] - [Documentation and Tutorials][docs home] - [Bug Reports][github issues] - [Contributing][contributing docs]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div>
## Quick Start
1. Download and unzip the installer from the bottom of the [latest release][latest release link].
2. Run the installer script.
- **Windows**: Double-click on the `install.bat` script.
- **macOS**: Open a Terminal window, drag the file `install.sh` from Finder into the Terminal, and press enter.
- **Linux**: Run `install.sh`.
3. When prompted, enter a location for the install and select your GPU type.
4. Once the install finishes, find the directory you selected during install. The default location is `C:\Users\Username\invokeai` for Windows or `~/invokeai` for Linux/macOS.
5. Run the launcher script (`invoke.bat` for Windows, `invoke.sh` for macOS and Linux) the same way you ran the installer script in step 2.
6. Select option 1 to start the application. Once it starts up, open your browser and go to <http://localhost:9090>.
7. Open the model manager tab to install a starter model and then you'll be ready to generate.
More detail, including hardware requirements and manual install instructions, are available in the [installation documentation][installation docs].
## Troubleshooting, FAQ and Support
Please review our [FAQ][faq] for solutions to common installation problems and other issues.
For more help, please join our [Discord][discord link].
## Features
Full details on features can be found in [our documentation][features docs].
### Web Server & UI
Invoke runs a locally hosted web server & React UI with an industry-leading user experience.
### Unified Canvas
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/out-painting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### Workflows & Nodes
Invoke offers a fully featured workflow management solution, enabling users to combine the power of node-based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### Board & Gallery Management
Invoke features an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- Support for both ckpt and diffusers models
- SD1.5, SD2.0, and SDXL support
- Upscaling Tools
- Embedding Manager & Support
- Model Manager & Support
- Workflow creation & management
- Node-Based Architecture
## Contributing
Anyone who wishes to contribute to this project - whether documentation, features, bug fixes, code cleanup, testing, or code reviews - is very much encouraged to do so.
Get started with contributing by reading our [contribution documentation][contributing docs], joining the [#dev-chat] or the GitHub discussion board.
We hope you enjoy using Invoke as much as we enjoy creating it, and we hope you will elect to become part of our community.
## Thanks
Invoke is a combined effort of [passionate and talented people from across the world][contributors]. We thank them for their time, hard work and effort.
Original portions of the software are Copyright © 2024 by respective contributors.
[features docs]: https://invoke-ai.github.io/InvokeAI/features/
[faq]: https://invoke-ai.github.io/InvokeAI/help/FAQ/
[contributors]: https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/
[invoke.com]: https://www.invoke.com/about
[github issues]: https://github.com/invoke-ai/InvokeAI/issues
[docs home]: https://invoke-ai.github.io/InvokeAI
[installation docs]: https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/
[#dev-chat]: https://discord.com/channels/1020123559063990373/1049495067846524939
[contributing docs]: https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/
[CI checks on main badge]: https://flat.badgen.net/github/checks/invoke-ai/InvokeAI/main?label=CI%20status%20on%20main&cache=900&icon=github
[CI checks on main link]:https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[CI checks on main link]: https://github.com/invoke-ai/InvokeAI/actions?query=branch%3Amain
[discord badge]: https://flat.badgen.net/discord/members/ZmtBAhwWhy?icon=discord
[discord link]: https://discord.gg/ZmtBAhwWhy
[github forks badge]: https://flat.badgen.net/github/forks/invoke-ai/InvokeAI?icon=github
@@ -30,402 +111,6 @@
[latest commit to main badge]: https://flat.badgen.net/github/last-commit/invoke-ai/InvokeAI/main?icon=github&color=yellow&label=last%20dev%20commit&cache=900
[latest commit to main link]: https://github.com/invoke-ai/InvokeAI/commits/main
[latest release badge]: https://flat.badgen.net/github/release/invoke-ai/InvokeAI/development?icon=github
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases
[latest release link]: https://github.com/invoke-ai/InvokeAI/releases/latest
[translation status badge]: https://hosted.weblate.org/widgets/invokeai/-/svg-badge.svg
[translation status link]: https://hosted.weblate.org/engage/invokeai/
</div>
InvokeAI is a leading creative engine built to empower professionals
and enthusiasts alike. Generate and create stunning visual media using
the latest AI-driven technologies. InvokeAI offers an industry leading
Web Interface, interactive Command Line Interface, and also serves as
the foundation for multiple commercial products.
**Quick links**: [[How to
Install](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)] [<a
href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a
href="https://invoke-ai.github.io/InvokeAI/">Documentation and
Tutorials</a>]
[<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>]
[<a
href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion,
Ideas & Q&A</a>]
[<a
href="https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/">Contributing</a>]
<div align="center">
![Highlighted Features - Canvas and Workflows](https://github.com/invoke-ai/InvokeAI/assets/31807370/708f7a82-084f-4860-bfbe-e2588c53548d)
</div>
## Table of Contents
Table of Contents 📝
**Getting Started**
1. 🏁 [Quick Start](#quick-start)
3. 🖥️ [Hardware Requirements](#hardware-requirements)
**More About Invoke**
1. 🌟 [Features](#features)
2. 📣 [Latest Changes](#latest-changes)
3. 🛠️ [Troubleshooting](#troubleshooting)
**Supporting the Project**
1. 🤝 [Contributing](#contributing)
2. 👥 [Contributors](#contributors)
3. 💕 [Support](#support)
## Quick Start
For full installation and upgrade instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALLATION/)
If upgrading from version 2.3, please read [Migrating a 2.3 root
directory to 3.0](#migrating-to-3) first.
### Automatic Installer (suggested for 1st time users)
1. Go to the bottom of the [Latest Release Page](https://github.com/invoke-ai/InvokeAI/releases/latest)
2. Download the .zip file for your OS (Windows/macOS/Linux).
3. Unzip the file.
4. **Windows:** double-click on the `install.bat` script. **macOS:** Open a Terminal window, drag the file `install.sh` from Finder
into the Terminal, and press return. **Linux:** run `install.sh`.
5. You'll be asked to confirm the location of the folder in which
to install InvokeAI and its image generation model files. Pick a
location with at least 15 GB of free memory. More if you plan on
installing lots of models.
6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this
folder (if you didn't change it in step 5) is `~/invokeai` on
Linux/Mac systems, and `C:\Users\YourName\invokeai` on Windows. This directory will contain launcher scripts named `invoke.sh` and `invoke.bat`.
8. On Windows systems, double-click on the `invoke.bat` file. On
macOS, open a Terminal window, drag `invoke.sh` from the folder into
the Terminal, and press return. On Linux, run `invoke.sh`
9. Press 2 to open the "browser-based UI", press enter/return, wait a
minute or two for Stable Diffusion to start up, then open your browser
and go to http://localhost:9090.
10. Type `banana sushi` in the box on the top left and click `Invoke`
### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.10 through 3.11 installed on your machine. Earlier or
later versions are not supported.
Node.js also needs to be installed along with `pnpm` (can be installed with
the command `npm install -g pnpm` if needed)
1. Open a command-line window on your machine. The PowerShell is recommended for Windows.
2. Create a directory to install InvokeAI into. You'll need at least 15 GB of free space:
```terminal
mkdir invokeai
````
3. Create a virtual environment named `.venv` inside this directory and activate it:
```terminal
cd invokeai
python -m venv .venv --prompt InvokeAI
```
4. Activate the virtual environment (do it every time you run InvokeAI)
_For Linux/Mac users:_
```sh
source .venv/bin/activate
```
_For Windows users:_
```ps
.venv\Scripts\activate
```
5. Install the InvokeAI module and its dependencies. Choose the command suited for your platform & GPU.
_For Windows/Linux with an NVIDIA GPU:_
```terminal
pip install "InvokeAI[xformers]" --use-pep517 --extra-index-url https://download.pytorch.org/whl/cu121
```
_For Linux with an AMD GPU:_
```sh
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.6
```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2/M3:_
```sh
pip install InvokeAI --use-pep517
```
6. Configure InvokeAI and install a starting set of image generation models (you only need to do this once):
```terminal
invokeai-configure --root .
```
Don't miss the dot at the end!
7. Launch the web server (do it every time you run InvokeAI):
```terminal
invokeai-web
```
8. Point your browser to http://localhost:9090 to bring up the web interface.
9. Type `banana sushi` in the box on the top left and click `Invoke`.
Be sure to activate the virtual environment each time before re-launching InvokeAI,
using `source .venv/bin/activate` or `.venv\Scripts\activate`.
## Detailed Installation Instructions
This fork is supported across Linux, Windows and Macintosh. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_SOURCE/)
<a name="migrating-to-3"></a>
### Migrating a v2.3 InvokeAI root directory
The InvokeAI root directory is where the InvokeAI startup file,
installed models, and generated images are stored. It is ordinarily
named `invokeai` and located in your home directory. The contents and
layout of this directory has changed between versions 2.3 and 3.0 and
cannot be used directly.
We currently recommend that you use the installer to create a new root
directory named differently from the 2.3 one, e.g. `invokeai-3` and
then use a migration script to copy your 2.3 models into the new
location. However, if you choose, you can upgrade this directory in
place. This section gives both recipes.
#### Creating a new root directory and migrating old models
This is the safer recipe because it leaves your old root directory in
place to fall back on.
1. Follow the instructions above to create and install InvokeAI in a
directory that has a different name from the 2.3 invokeai directory.
In this example, we will use "invokeai-3"
2. When you are prompted to select models to install, select a minimal
set of models, such as stable-diffusion-v1.5 only.
3. After installation is complete launch `invokeai.sh` (Linux/Mac) or
`invokeai.bat` and select option 8 "Open the developers console". This
will take you to the command line.
4. Issue the command `invokeai-migrate3 --from /path/to/v2.3-root --to
/path/to/invokeai-3-root`. Provide the correct `--from` and `--to`
paths for your v2.3 and v3.0 root directories respectively.
This will copy and convert your old models from 2.3 format to 3.0
format and create a new `models` directory in the 3.0 directory. The
old models directory (which contains the models selected at install
time) will be renamed `models.orig` and can be deleted once you have
confirmed that the migration was successful.
If you wish, you can pass the 2.3 root directory to both `--from` and
`--to` in order to update in place. Warning: this directory will no
longer be usable with InvokeAI 2.3.
#### Migrating in place
For the adventurous, you may do an in-place upgrade from 2.3 to 3.0
without touching the command line. ***This recipe does not work on
Windows platforms due to a bug in the Windows version of the 2.3
upgrade script.** See the next section for a Windows recipe.
##### For Mac and Linux Users:
1. Launch the InvokeAI launcher script in your current v2.3 root directory.
2. Select option [9] "Update InvokeAI" to bring up the updater dialog.
3. Select option [1] to upgrade to the latest release.
4. Once the upgrade is finished you will be returned to the launcher
menu. Select option [6] "Re-run the configure script to fix a broken
install or to complete a major upgrade".
This will run the configure script against the v2.3 directory and
update it to the 3.0 format. The following files will be replaced:
- The invokeai.init file, replaced by invokeai.yaml
- The models directory
- The configs/models.yaml model index
The original versions of these files will be saved with the suffix
".orig" appended to the end. Once you have confirmed that the upgrade
worked, you can safely remove these files. Alternatively you can
restore a working v2.3 directory by removing the new files and
restoring the ".orig" files' original names.
##### For Windows Users:
Windows Users can upgrade with the
1. Enter the 2.3 root directory you wish to upgrade
2. Launch `invoke.sh` or `invoke.bat`
3. Select the "Developer's console" option [8]
4. Type the following commands
```
pip install "invokeai @ https://github.com/invoke-ai/InvokeAI/archive/refs/tags/v3.0.0" --use-pep517 --upgrade
invokeai-configure --root .
```
(Replace `v3.0.0` with the current release number if this document is out of date).
The first command will install and upgrade new software to run
InvokeAI. The second will prepare the 2.3 directory for use with 3.0.
You may now launch the WebUI in the usual way, by selecting option [1]
from the launcher script
#### Migrating Images
The migration script will migrate your invokeai settings and models,
including textual inversion models, LoRAs and merges that you may have
installed previously. However it does **not** migrate the generated
images stored in your 2.3-format outputs directory. To do this, you
need to run an additional step:
1. From a working InvokeAI 3.0 root directory, start the launcher and
enter menu option [8] to open the "developer's console".
2. At the developer's console command line, type the command:
```bash
invokeai-import-images
```
3. This will lead you through the process of confirming the desired
source and destination for the imported images. The images will
appear in the gallery board of your choice, and contain the
original prompt, model name, and other parameters used to generate
the image.
(Many kudos to **techjedi** for contributing this script.)
## Hardware Requirements
InvokeAI is supported across Linux, Windows and macOS. Linux
users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver).
### System
You will need one of the following:
- An NVIDIA-based graphics card with 4 GB or more VRAM memory. 6-8 GB
of VRAM is highly recommended for rendering using the Stable
Diffusion XL models
- An Apple computer with an M1 chip.
- An AMD-based graphics card with 4GB or more VRAM memory (Linux
only), 6-8 GB for XL rendering.
We do not recommend the GTX 1650 or 1660 series video cards. They are
unable to run in half-precision mode and do not have sufficient VRAM
to render 512x512 images.
**Memory** - At least 12 GB Main Memory RAM.
**Disk** - At least 12 GB of free disk space for the machine learning model, Python, and all its dependencies.
## Features
Feature documentation can be reviewed by navigating to [the InvokeAI Documentation page](https://invoke-ai.github.io/InvokeAI/features/)
### *Web Server & UI*
InvokeAI offers a locally hosted Web Server & React Frontend, with an industry leading user experience. The Web-based UI allows for simple and intuitive workflows, and is responsive for use on mobile devices and tablets accessing the web server.
### *Unified Canvas*
The Unified Canvas is a fully integrated canvas implementation with support for all core generation capabilities, in/outpainting, brush tools, and more. This creative tool unlocks the capability for artists to create with AI as a creative collaborator, and can be used to augment AI-generated imagery, sketches, photography, renders, and more.
### *Workflows & Nodes*
InvokeAI offers a fully featured workflow management solution, enabling users to combine the power of nodes based workflows with the easy of a UI. This allows for customizable generation pipelines to be developed and shared by users looking to create specific workflows to support their production use-cases.
### *Board & Gallery Management*
Invoke AI provides an organized gallery system for easily storing, accessing, and remixing your content in the Invoke workspace. Images can be dragged/dropped onto any Image-base UI element in the application, and rich metadata within the Image allows for easy recall of key prompts or settings used in your workflow.
### Other features
- *Support for both ckpt and diffusers models*
- *SD 2.0, 2.1, XL support*
- *Upscaling Tools*
- *Embedding Manager & Support*
- *Model Manager & Support*
- *Workflow creation & management*
- *Node-Based Architecture*
### Latest Changes
For our latest changes, view our [Release
Notes](https://github.com/invoke-ai/InvokeAI/releases) and the
[CHANGELOG](docs/CHANGELOG.md).
### Troubleshooting / FAQ
Please check out our **[FAQ](https://invoke-ai.github.io/InvokeAI/help/FAQ/)** to get solutions for common installation
problems and other issues. For more help, please join our [Discord][discord link]
## Contributing
Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code
cleanup, testing, or code reviews, is very much encouraged to do so.
Get started with contributing by reading our [Contribution documentation](https://invoke-ai.github.io/InvokeAI/contributing/CONTRIBUTING/), joining the [#dev-chat](https://discord.com/channels/1020123559063990373/1049495067846524939) or the GitHub discussion board.
If you are unfamiliar with how
to contribute to GitHub projects, we have a new contributor checklist you can follow to get started contributing:
[New Contributor Checklist](https://invoke-ai.github.io/InvokeAI/contributing/contribution_guides/newContributorChecklist/).
We hope you enjoy using our software as much as we enjoy creating it,
and we hope that some of those of you who are reading this will elect
to become part of our community.
Welcome to InvokeAI!
### Contributors
This fork is a combined effort of various people from across the world.
[Check out the list of all these amazing people](https://invoke-ai.github.io/InvokeAI/other/CONTRIBUTORS/). We thank them for
their time, hard work and effort.
### Support
For support, please use this repository's GitHub Issues tracking service, or join the [Discord][discord link].
Original portions of the software are Copyright (c) 2023 by respective contributors.

View File

@@ -51,13 +51,11 @@ The settings in this file will override the defaults. You only need
to change this file if the default for a particular setting doesn't
work for you.
You'll find an example file next to `invokeai.yaml` that shows the default values.
Some settings, like [Model Marketplace API Keys], require the YAML
to be formatted correctly. Here is a [basic guide to YAML files].
You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [6] in the launcher, "Re-run the
configure script".
#### Custom Config File Location
You can use any config file with the `--config` CLI arg. Pass in the path to the `invokeai.yaml` file you want to use.

View File

@@ -4,278 +4,6 @@ title: Training
# :material-file-document: Training
# Textual Inversion Training
## **Personalizing Text-to-Image Generation**
Invoke Training has moved to its own repository, with a dedicated UI for accessing common scripts like Textual Inversion and LoRA training.
You may personalize the generated images to provide your own styles or objects
by training a new LDM checkpoint and introducing a new vocabulary to the fixed
model as a (.pt) embeddings file. Alternatively, you may use or train
HuggingFace Concepts embeddings files (.bin) from
<https://huggingface.co/sd-concepts-library> and its associated
notebooks.
## **Hardware and Software Requirements**
You will need a GPU to perform training in a reasonable length of
time, and at least 12 GB of VRAM. We recommend using the [`xformers`
library](../installation/070_INSTALL_XFORMERS.md) to accelerate the
training process further. During training, about ~8 GB is temporarily
needed in order to store intermediate models, checkpoints and logs.
## **Preparing for Training**
To train, prepare a folder that contains 3-5 images that illustrate
the object or concept. It is good to provide a variety of examples or
poses to avoid overtraining the system. Format these images as PNG
(preferred) or JPG. You do not need to resize or crop the images in
advance, but for more control you may wish to do so.
Place the training images in a directory on the machine InvokeAI runs
on. We recommend placing them in a subdirectory of the
`text-inversion-training-data` folder located in the InvokeAI root
directory, ordinarily `~/invokeai` (Linux/Mac), or
`C:\Users\your_name\invokeai` (Windows). For example, to create an
embedding for the "psychedelic" style, you'd place the training images
into the directory
`~invokeai/text-inversion-training-data/psychedelic`.
## **Launching Training Using the Console Front End**
InvokeAI 2.3 and higher comes with a text console-based training front
end. From within the `invoke.sh`/`invoke.bat` Invoke launcher script,
start training tool selecting choice (3):
```sh
1 "Generate images with a browser-based interface"
2 "Explore InvokeAI nodes using a command-line interface"
3 "Textual inversion training"
4 "Merge models (diffusers type only)"
5 "Download and install models"
6 "Change InvokeAI startup options"
7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Open the developer console"
9 "Update InvokeAI"
```
Alternatively, you can select option (8) or from the command line, with the InvokeAI virtual environment active,
you can then launch the front end with the command `invokeai-ti --gui`.
This will launch a text-based front end that will look like this:
<figure markdown>
![ti-frontend](../assets/textual-inversion/ti-frontend.png)
</figure>
The interface is keyboard-based. Move from field to field using
control-N (^N) to move to the next field and control-P (^P) to the
previous one. <Tab> and <shift-TAB> work as well. Once a field is
active, use the cursor keys. In a checkbox group, use the up and down
cursor keys to move from choice to choice, and <space> to select a
choice. In a scrollbar, use the left and right cursor keys to increase
and decrease the value of the scroll. In textfields, type the desired
values.
The number of parameters may look intimidating, but in most cases the
predefined defaults work fine. The red circled fields in the above
illustration are the ones you will adjust most frequently.
### Model Name
This will list all the diffusers models that are currently
installed. Select the one you wish to use as the basis for your
embedding. Be aware that if you use a SD-1.X-based model for your
training, you will only be able to use this embedding with other
SD-1.X-based models. Similarly, if you train on SD-2.X, you will only
be able to use the embeddings with models based on SD-2.X.
### Trigger Term
This is the prompt term you will use to trigger the embedding. Type a
single word or phrase you wish to use as the trigger, example
"psychedelic" (without angle brackets). Within InvokeAI, you will then
be able to activate the trigger using the syntax `<psychedelic>`.
### Initializer
This is a single character that is used internally during the training
process as a placeholder for the trigger term. It defaults to "*" and
can usually be left alone.
### Resume from last saved checkpoint
As training proceeds, textual inversion will write a series of
intermediate files that can be used to resume training from where it
was left off in the case of an interruption. This checkbox will be
automatically selected if you provide a previously used trigger term
and at least one checkpoint file is found on disk.
Note that as of 20 January 2023, resume does not seem to be working
properly due to an issue with the upstream code.
### Data Training Directory
This is the location of the images to be used for training. When you
select a trigger term like "my-trigger", the frontend will prepopulate
this field with `~/invokeai/text-inversion-training-data/my-trigger`,
but you can change the path to wherever you want.
### Output Destination Directory
This is the location of the logs, checkpoint files, and embedding
files created during training. When you select a trigger term like
"my-trigger", the frontend will prepopulate this field with
`~/invokeai/text-inversion-output/my-trigger`, but you can change the
path to wherever you want.
### Image resolution
The images in the training directory will be automatically scaled to
the value you use here. For best results, you will want to use the
same default resolution of the underlying model (512 pixels for
SD-1.5, 768 for the larger version of SD-2.1).
### Center crop images
If this is selected, your images will be center cropped to make them
square before resizing them to the desired resolution. Center cropping
can indiscriminately cut off the top of subjects' heads for portrait
aspect images, so if you have images like this, you may wish to use a
photoeditor to manually crop them to a square aspect ratio.
### Mixed precision
Select the floating point precision for the embedding. "no" will
result in a full 32-bit precision, "fp16" will provide 16-bit
precision, and "bf16" will provide mixed precision (only available
when XFormers is used).
### Max training steps
How many steps the training will take before the model converges. Most
training sets will converge with 2000-3000 steps.
### Batch size
This adjusts how many training images are processed simultaneously in
each step. Higher values will cause the training process to run more
quickly, but use more memory. The default size will run with GPUs with
as little as 12 GB.
### Learning rate
The rate at which the system adjusts its internal weights during
training. Higher values risk overtraining (getting the same image each
time), and lower values will take more steps to train a good
model. The default of 0.0005 is conservative; you may wish to increase
it to 0.005 to speed up training.
### Scale learning rate by number of GPUs, steps and batch size
If this is selected (the default) the system will adjust the provided
learning rate to improve performance.
### Use xformers acceleration
This will activate XFormers memory-efficient attention. You need to
have XFormers installed for this to have an effect.
### Learning rate scheduler
This adjusts how the learning rate changes over the course of
training. The default "constant" means to use a constant learning rate
for the entire training session. The other values scale the learning
rate according to various formulas.
Only "constant" is supported by the XFormers library.
### Gradient accumulation steps
This is a parameter that allows you to use bigger batch sizes than
your GPU's VRAM would ordinarily accommodate, at the cost of some
performance.
### Warmup steps
If "constant_with_warmup" is selected in the learning rate scheduler,
then this provides the number of warmup steps. Warmup steps have a
very low learning rate, and are one way of preventing early
overtraining.
## The training run
Start the training run by advancing to the OK button (bottom right)
and pressing <enter>. A series of progress messages will be displayed
as the training process proceeds. This may take an hour or two,
depending on settings and the speed of your system. Various log and
checkpoint files will be written into the output directory (ordinarily
`~/invokeai/text-inversion-output/my-model/`)
At the end of successful training, the system will copy the file
`learned_embeds.bin` into the InvokeAI root directory's `embeddings`
directory, using a subdirectory named after the trigger token. For
example, if the trigger token was `psychedelic`, then look for the
embeddings file in
`~/invokeai/embeddings/psychedelic/learned_embeds.bin`
You may now launch InvokeAI and try out a prompt that uses the trigger
term. For example `a plate of banana sushi in <psychedelic> style`.
## **Training with the Command-Line Script**
Training can also be done using a traditional command-line script. It
can be launched from within the "developer's console", or from the
command line after activating InvokeAI's virtual environment.
It accepts a large number of arguments, which can be summarized by
passing the `--help` argument:
```sh
invokeai-ti --help
```
Typical usage is shown here:
```sh
invokeai-ti \
--model=stable-diffusion-1.5 \
--resolution=512 \
--learnable_property=style \
--initializer_token='*' \
--placeholder_token='<psychedelic>' \
--train_data_dir=/home/lstein/invokeai/training-data/psychedelic \
--output_dir=/home/lstein/invokeai/text-inversion-training/psychedelic \
--scale_lr \
--train_batch_size=8 \
--gradient_accumulation_steps=4 \
--max_train_steps=3000 \
--learning_rate=0.0005 \
--resume_from_checkpoint=latest \
--lr_scheduler=constant \
--mixed_precision=fp16 \
--only_save_embeds
```
## Troubleshooting
### `Cannot load embedding for <trigger>. It was trained on a model with token dimension 1024, but the current model has token dimension 768`
Messages like this indicate you trained the embedding on a different base model than the currently selected one.
For example, in the error above, the training was done on SD2.1 (768x768) but it was used on SD1.5 (512x512).
## Reading
For more information on textual inversion, please see the following
resources:
* The [textual inversion repository](https://github.com/rinongal/textual_inversion) and
associated paper for details and limitations.
* [HuggingFace's textual inversion training
page](https://huggingface.co/docs/diffusers/training/text_inversion)
* [HuggingFace example script
documentation](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion)
(Note that this script is similar to, but not identical, to
`textual_inversion`, but produces embed files that are completely compatible.
---
copyright (c) 2023, Lincoln Stein and the InvokeAI Development Team
You can find more by visiting the repo at https://github.com/invoke-ai/invoke-training

View File

@@ -1,8 +1,10 @@
# Automatic Install
# Automatic Install & Updates
The installer is used for both new installs and updates.
**The same packaged installer file can be used for both new installs and updates.**
Using the installer for updates will leave everything you've added since installation, and just update the core libraries used to run Invoke.
Simply use the same path you installed to originally.
Both release and pre-release versions can be installed using it. It also supports install a wheel if needed.
Both release and pre-release versions can be installed using the installer. It also supports install through a wheel if needed.
Be sure to review the [installation requirements] and ensure your system has everything it needs to install Invoke.

View File

@@ -1,4 +1,4 @@
# Installation Overview
# Installation and Updating Overview
Before installing, review the [installation requirements] to ensure your system is set up properly.
@@ -6,14 +6,21 @@ See the [FAQ] for frequently-encountered installation issues.
If you need more help, join our [discord] or [create an issue].
<h2>Automatic Install</h2>
<h2>Automatic Install & Updates </h2>
✅ The automatic install is the best way to run InvokeAI. Check out the [installation guide] to get started.
⬆️ The same installer is also the best way to update InvokeAI - Simply rerun it for the same folder you installed to.
The installation process simply manages installation for the core libraries & application dependencies that run Invoke.
Any models, images, or other assets in the Invoke root folder won't be affected by the installation process.
<h2>Manual Install</h2>
If you are familiar with python and want more control over the packages that are installed, you can [install InvokeAI manually via PyPI].
Updates are managed by reinstalling the latest version through PyPi.
<h2>Developer Install</h2>
If you want to contribute to InvokeAI, consult the [developer install guide].

View File

@@ -37,13 +37,13 @@ Invoke runs best with a dedicated GPU, but will fall back to running on CPU, alb
=== "Nvidia"
```
Any GPU with at least 8GB VRAM. Linux only.
Any GPU with at least 8GB VRAM.
```
=== "AMD"
```
Any GPU with at least 16GB VRAM.
Any GPU with at least 16GB VRAM. Linux only.
```
=== "Mac"

View File

@@ -13,7 +13,6 @@ from pydantic import BaseModel, Field
from invokeai.app.invocations.upscale import ESRGAN_MODELS
from invokeai.app.services.invocation_cache.invocation_cache_common import InvocationCacheStatus
from invokeai.backend.image_util.infill_methods.patchmatch import PatchMatch
from invokeai.backend.image_util.safety_checker import SafetyChecker
from invokeai.backend.util.logging import logging
from invokeai.version import __version__
@@ -109,9 +108,7 @@ async def get_config() -> AppConfig:
upscaling_models.append(str(Path(model).stem))
upscaler = Upscaler(upscaling_method="esrgan", upscaling_models=upscaling_models)
nsfw_methods = []
if SafetyChecker.safety_checker_available():
nsfw_methods.append("nsfw_checker")
nsfw_methods = ["nsfw_checker"]
watermarking_methods = ["invisible_watermark"]

View File

@@ -6,7 +6,7 @@ import pathlib
import shutil
import traceback
from copy import deepcopy
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Type
from fastapi import Body, Path, Query, Response, UploadFile
from fastapi.responses import FileResponse
@@ -16,6 +16,7 @@ from pydantic import AnyHttpUrl, BaseModel, ConfigDict, Field
from starlette.exceptions import HTTPException
from typing_extensions import Annotated
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
from invokeai.app.services.model_install import ModelInstallJob
from invokeai.app.services.model_records import (
DuplicateModelException,
@@ -52,6 +53,13 @@ class ModelsList(BaseModel):
model_config = ConfigDict(use_enum_values=True)
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
"""Add a cover image URL to a model configuration."""
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
config.cover_image = cover_image
return config
##############################################################################
# These are example inputs and outputs that are used in places where Swagger
# is unable to generate a correct example.
@@ -118,8 +126,7 @@ async def list_model_records(
record_store.search_by_attr(model_type=model_type, model_name=model_name, model_format=model_format)
)
for model in found_models:
cover_image = ApiDependencies.invoker.services.model_images.get_url(model.key)
model.cover_image = cover_image
model = add_cover_image_to_model_config(model, ApiDependencies)
return ModelsList(models=found_models)
@@ -160,12 +167,9 @@ async def get_model_record(
key: str = Path(description="Key of the model record to fetch."),
) -> AnyModelConfig:
"""Get a model record"""
record_store = ApiDependencies.invoker.services.model_manager.store
try:
config: AnyModelConfig = record_store.get_model(key)
cover_image = ApiDependencies.invoker.services.model_images.get_url(key)
config.cover_image = cover_image
return config
config = ApiDependencies.invoker.services.model_manager.store.get_model(key)
return add_cover_image_to_model_config(config, ApiDependencies)
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
@@ -294,14 +298,15 @@ async def update_model_record(
installer = ApiDependencies.invoker.services.model_manager.install
try:
record_store.update_model(key, changes=changes)
model_response: AnyModelConfig = installer.sync_model_path(key)
config = installer.sync_model_path(key)
config = add_cover_image_to_model_config(config, ApiDependencies)
logger.info(f"Updated model: {key}")
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
return model_response
return config
@model_manager_router.get(
@@ -648,6 +653,14 @@ async def convert_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
# Update the model image if the model had one
try:
model_image = ApiDependencies.invoker.services.model_images.get(key)
ApiDependencies.invoker.services.model_images.save(model_image, new_key)
ApiDependencies.invoker.services.model_images.delete(key)
except ModelImageFileNotFoundException:
pass
# delete the original safetensors file
installer.delete(key)
@@ -655,7 +668,8 @@ async def convert_model(
shutil.rmtree(cache_path)
# return the config record for the new diffusers directory
new_config: AnyModelConfig = store.get_model(new_key)
new_config = store.get_model(new_key)
new_config = add_cover_image_to_model_config(new_config, ApiDependencies)
return new_config

View File

@@ -35,22 +35,16 @@ from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from .baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
CONTROLNET_RESIZE_VALUES = Literal[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
from .baseinvocation import BaseInvocation, BaseInvocationOutput, Classification, invocation, invocation_output
class ControlField(BaseModel):
@@ -171,13 +165,13 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Canny Processor",
tags=["controlnet", "canny"],
category="controlnet",
version="1.3.2",
version="1.3.3",
)
class CannyImageProcessorInvocation(ImageProcessorInvocation):
"""Canny edge detection for ControlNet"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
low_threshold: int = InputField(
default=100, ge=0, le=255, description="The low threshold of the Canny pixel gradient (0-255)"
)
@@ -205,13 +199,13 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
title="HED (softedge) Processor",
tags=["controlnet", "hed", "softedge"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class HedImageProcessorInvocation(ImageProcessorInvocation):
"""Applies HED edge detection to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# safe not supported in controlnet_aux v0.0.3
# safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
@@ -234,13 +228,13 @@ class HedImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Processor",
tags=["controlnet", "lineart"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class LineartImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
coarse: bool = InputField(default=False, description="Whether to use coarse mode")
def run_processor(self, image: Image.Image) -> Image.Image:
@@ -256,13 +250,13 @@ class LineartImageProcessorInvocation(ImageProcessorInvocation):
title="Lineart Anime Processor",
tags=["controlnet", "lineart", "anime"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies line art anime processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
processor = LineartAnimeProcessor()
@@ -279,15 +273,15 @@ class LineartAnimeImageProcessorInvocation(ImageProcessorInvocation):
title="Midas Depth Processor",
tags=["controlnet", "midas"],
category="controlnet",
version="1.2.3",
version="1.2.4",
)
class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Midas depth processing to image"""
a_mult: float = InputField(default=2.0, ge=0, description="Midas parameter `a_mult` (a = a_mult * PI)")
bg_th: float = InputField(default=0.1, ge=0, description="Midas parameter `bg_th`")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
# depth_and_normal not supported in controlnet_aux v0.0.3
# depth_and_normal: bool = InputField(default=False, description="whether to use depth and normal mode")
@@ -310,13 +304,13 @@ class MidasDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Normal BAE Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
"""Applies NormalBae processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
@@ -327,13 +321,13 @@ class NormalbaeImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.2"
"mlsd_image_processor", title="MLSD Processor", tags=["controlnet", "mlsd"], category="controlnet", version="1.2.3"
)
class MlsdImageProcessorInvocation(ImageProcessorInvocation):
"""Applies MLSD processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
@@ -350,13 +344,13 @@ class MlsdImageProcessorInvocation(ImageProcessorInvocation):
@invocation(
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.2"
"pidi_image_processor", title="PIDI Processor", tags=["controlnet", "pidi"], category="controlnet", version="1.2.3"
)
class PidiImageProcessorInvocation(ImageProcessorInvocation):
"""Applies PIDI processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
safe: bool = InputField(default=False, description=FieldDescriptions.safe_mode)
scribble: bool = InputField(default=False, description=FieldDescriptions.scribble_mode)
@@ -377,13 +371,13 @@ class PidiImageProcessorInvocation(ImageProcessorInvocation):
title="Content Shuffle Processor",
tags=["controlnet", "contentshuffle"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
"""Applies content shuffle processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
@@ -407,7 +401,7 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
title="Zoe (Depth) Processor",
tags=["controlnet", "zoe", "depth"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
"""Applies Zoe depth processing to image"""
@@ -423,15 +417,15 @@ class ZoeDepthImageProcessorInvocation(ImageProcessorInvocation):
title="Mediapipe Face Processor",
tags=["controlnet", "mediapipe", "face"],
category="controlnet",
version="1.2.3",
version="1.2.4",
)
class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
"""Applies mediapipe face processing to image"""
max_faces: int = InputField(default=1, ge=1, description="Maximum number of faces to detect")
min_confidence: float = InputField(default=0.5, ge=0, le=1, description="Minimum confidence for face detection")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
mediapipe_face_processor = MediapipeFaceDetector()
@@ -450,7 +444,7 @@ class MediapipeFaceProcessorInvocation(ImageProcessorInvocation):
title="Leres (Depth) Processor",
tags=["controlnet", "leres", "depth"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class LeresImageProcessorInvocation(ImageProcessorInvocation):
"""Applies leres processing to image"""
@@ -458,8 +452,8 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
thr_a: float = InputField(default=0, description="Leres parameter `thr_a`")
thr_b: float = InputField(default=0, description="Leres parameter `thr_b`")
boost: bool = InputField(default=False, description="Whether to use boost mode")
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
leres_processor = LeresDetector.from_pretrained("lllyasviel/Annotators")
@@ -479,7 +473,7 @@ class LeresImageProcessorInvocation(ImageProcessorInvocation):
title="Tile Resample Processor",
tags=["controlnet", "tile"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class TileResamplerProcessorInvocation(ImageProcessorInvocation):
"""Tile resampler processor"""
@@ -519,13 +513,13 @@ class TileResamplerProcessorInvocation(ImageProcessorInvocation):
title="Segment Anything Processor",
tags=["controlnet", "segmentanything"],
category="controlnet",
version="1.2.3",
version="1.2.4",
)
class SegmentAnythingProcessorInvocation(ImageProcessorInvocation):
"""Applies segment anything processing to image"""
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
detect_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image):
# segment_anything_processor = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
@@ -566,12 +560,12 @@ class SamDetectorReproducibleColors(SamDetector):
title="Color Map Processor",
tags=["controlnet"],
category="controlnet",
version="1.2.2",
version="1.2.3",
)
class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a color map from the provided image"""
color_map_tile_size: int = InputField(default=64, ge=0, description=FieldDescriptions.tile_size)
color_map_tile_size: int = InputField(default=64, ge=1, description=FieldDescriptions.tile_size)
def run_processor(self, image: Image.Image):
np_image = np.array(image, dtype=np.uint8)
@@ -598,7 +592,7 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.1",
version="1.1.2",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
@@ -606,7 +600,7 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=64, multiple_of=64, description=FieldDescriptions.image_res)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
depth_anything_detector = DepthAnythingDetector()
@@ -621,7 +615,7 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
title="DW Openpose Image Processor",
tags=["controlnet", "dwpose", "openpose"],
category="controlnet",
version="1.1.0",
version="1.1.1",
)
class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
"""Generates an openpose pose from an image using DWPose"""
@@ -629,7 +623,7 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
draw_body: bool = InputField(default=True)
draw_face: bool = InputField(default=False)
draw_hands: bool = InputField(default=False)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
image_resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image):
dw_openpose = DWOpenposeDetector()
@@ -641,3 +635,27 @@ class DWOpenposeImageProcessorInvocation(ImageProcessorInvocation):
resolution=self.image_resolution,
)
return processed_image
@invocation(
"heuristic_resize",
title="Heuristic Resize",
tags=["image, controlnet"],
category="image",
version="1.0.1",
classification=Classification.Prototype,
)
class HeuristicResizeInvocation(BaseInvocation):
"""Resize an image using a heuristic method. Preserves edge maps."""
image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, ge=1, description="The width to resize to (px)")
height: int = InputField(default=512, ge=1, description="The height to resize to (px)")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
np_img = pil_to_np(image)
np_resized = heuristic_resize(np_img, (self.width, self.height))
resized = np_to_pil(np_resized)
image_dto = context.images.save(image=resized)
return ImageOutput.build(image_dto)

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from pathlib import Path
from typing import Literal, Optional
import cv2
@@ -504,7 +503,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithMetadata, WithBoard):
title="Blur NSFW Image",
tags=["image", "nsfw"],
category="image",
version="1.2.2",
version="1.2.3",
)
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Add blur to NSFW-flagged images"""
@@ -516,23 +515,12 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithBoard):
logger = context.logger
logger.debug("Running NSFW checker")
if SafetyChecker.has_nsfw_concept(image):
logger.info("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution, (0, 0), caution)
image = blurry_image
image = SafetyChecker.blur_if_nsfw(image)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _get_caution_img(self) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))
@invocation(
"img_watermark",

View File

@@ -3,7 +3,7 @@ import inspect
import math
from contextlib import ExitStack
from functools import singledispatchmethod
from typing import Any, Iterator, List, Literal, Optional, Tuple, Union
from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Union
import einops
import numpy as np
@@ -11,7 +11,6 @@ import numpy.typing as npt
import torch
import torchvision
import torchvision.transforms as T
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.configuration_utils import ConfigMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.adapter import T2IAdapter
@@ -21,9 +20,12 @@ from diffusers.models.attention_processor import (
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler
from diffusers.schedulers.scheduling_dpmsolver_sde import DPMSolverSDEScheduler
from diffusers.schedulers.scheduling_tcd import TCDScheduler
from diffusers.schedulers.scheduling_utils import SchedulerMixin as Scheduler
from PIL import Image, ImageFilter
from pydantic import field_validator
from torchvision.transforms.functional import resize as tv_resize
@@ -341,7 +343,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
default=7.5, description=FieldDescriptions.cfg_scale, title="CFG Scale"
)
denoising_start: float = InputField(
default=0.0,
@@ -521,9 +523,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
if is_sdxl:
return SDXLConditioningInfo(
embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids
), regions
return (
SDXLConditioningInfo(embeds=text_embedding, pooled_embeds=pooled_embedding, add_time_ids=add_time_ids),
regions,
)
return BasicConditioningInfo(embeds=text_embedding), regions
def get_conditioning_data(
@@ -563,6 +566,11 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype=unet.dtype,
)
if isinstance(self.cfg_scale, list):
assert (
len(self.cfg_scale) == self.steps
), "cfg_scale (list) must have the same length as the number of steps"
conditioning_data = TextConditioningData(
uncond_text=uncond_text_embedding,
cond_text=cond_text_embedding,
@@ -578,13 +586,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
unet: UNet2DConditionModel,
scheduler: Scheduler,
) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self) -> None:
@@ -820,7 +821,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_start: float,
denoising_end: float,
seed: int,
) -> Tuple[int, List[int], int]:
) -> Tuple[int, List[int], int, Dict[str, Any]]:
assert isinstance(scheduler, ConfigMixin)
if scheduler.config.get("cpu_only", False):
scheduler.set_timesteps(steps, device="cpu")
@@ -848,13 +849,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
num_inference_steps = len(timesteps) // scheduler.order
scheduler_step_kwargs = {}
scheduler_step_kwargs: Dict[str, Any] = {}
scheduler_step_signature = inspect.signature(scheduler.step)
if "generator" in scheduler_step_signature.parameters:
# At some point, someone decided that schedulers that accept a generator should use the original seed with
# all bits flipped. I don't know the original rationale for this, but now we must keep it like this for
# reproducibility.
scheduler_step_kwargs = {"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)}
scheduler_step_kwargs.update({"generator": torch.Generator(device=device).manual_seed(seed ^ 0xFFFFFFFF)})
if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0})
return num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs

View File

@@ -3,7 +3,6 @@ from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
@@ -14,6 +13,7 @@ from invokeai.app.invocations.fields import (
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES
from ...version import __version__

View File

@@ -8,11 +8,11 @@ from invokeai.app.invocations.baseinvocation import (
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
class T2IAdapterField(BaseModel):

View File

@@ -318,10 +318,8 @@ class DownloadQueueService(DownloadQueueServiceBase):
in_progress_path.rename(job.download_path)
def _validate_filename(self, directory: str, filename: str) -> bool:
pc_name_max = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 260 # hardcoded for windows
pc_path_max = (
os.pathconf(directory, "PC_PATH_MAX") if hasattr(os, "pathconf") else 32767
) # hardcoded for windows with long names enabled
pc_name_max = get_pc_name_max(directory)
pc_path_max = get_pc_path_max(directory)
if "/" in filename:
return False
if filename.startswith(".."):
@@ -419,6 +417,26 @@ class DownloadQueueService(DownloadQueueServiceBase):
self._logger.warning(excp)
def get_pc_name_max(directory: str) -> int:
if hasattr(os, "pathconf"):
try:
return os.pathconf(directory, "PC_NAME_MAX")
except OSError:
# macOS w/ external drives raise OSError
pass
return 260 # hardcoded for windows
def get_pc_path_max(directory: str) -> int:
if hasattr(os, "pathconf"):
try:
return os.pathconf(directory, "PC_PATH_MAX")
except OSError:
# some platforms may not have this value
pass
return 32767 # hardcoded for windows with long names enabled
# Example on_progress event handler to display a TQDM status bar
# Activate with:
# download_service.download(DownloadJob('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().update))

View File

@@ -1,13 +1,21 @@
from typing import Union
from typing import Any, Literal, Union
import cv2
import numpy as np
import torch
from controlnet_aux.util import HWC3
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
from PIL import Image
from invokeai.backend.image_util.util import nms, normalize_image_channel_count
CONTROLNET_RESIZE_VALUES = Literal[
"just_resize",
"crop_resize",
"fill_resize",
"just_resize_simple",
]
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
###################################################################
@@ -68,17 +76,6 @@ def lvmin_thin(x, prunings=True):
return y
def nake_nms(x):
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
return y
################################################################################
# copied from Mikubill/sd-webui-controlnet external_code.py and modified for InvokeAI
################################################################################
@@ -134,98 +131,122 @@ def pixel_perfect_resolution(
return int(np.round(estimation))
def clone_contiguous(x: np.ndarray[Any, Any]) -> np.ndarray[Any, Any]:
"""Get a memory-contiguous clone of the given numpy array, as a safety measure and to improve computation efficiency."""
return np.ascontiguousarray(x).copy()
def np_img_to_torch(np_img: np.ndarray[Any, Any], device: torch.device) -> torch.Tensor:
"""Convert a numpy image to a PyTorch tensor. The image is normalized to 0-1, rearranged to BCHW format and sent to
the specified device."""
torch_img = torch.from_numpy(np_img)
normalized = torch_img.float() / 255.0
bchw = rearrange(normalized, "h w c -> 1 c h w")
on_device = bchw.to(device)
return on_device.clone()
def heuristic_resize(np_img: np.ndarray[Any, Any], size: tuple[int, int]) -> np.ndarray[Any, Any]:
"""Resizes an image using a heuristic to choose the best resizing strategy.
- If the image appears to be an edge map, special handling will be applied to ensure the edges are not distorted.
- Single-pixel edge maps use NMS and thinning to keep the edges as single-pixel lines.
- Low-color-count images are resized with nearest-neighbor to preserve color information (for e.g. segmentation maps).
- The alpha channel is handled separately to ensure it is resized correctly.
Args:
np_img (np.ndarray): The input image.
size (tuple[int, int]): The target size for the image.
Returns:
np.ndarray: The resized image.
Adapted from https://github.com/Mikubill/sd-webui-controlnet.
"""
# Return early if the image is already at the requested size
if np_img.shape[0] == size[1] and np_img.shape[1] == size[0]:
return np_img
# If the image has an alpha channel, separate it for special handling later.
inpaint_mask = None
if np_img.ndim == 3 and np_img.shape[2] == 4:
inpaint_mask = np_img[:, :, 3]
np_img = np_img[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (np_img.shape[0] * np_img.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (np_img.shape[0] * np_img.shape[1])
unique_color_count = np.unique(np_img.reshape(-1, np_img.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
# If the image has only two colors, it is likely binary. Check if the image has one-pixel edges.
is_binary = np.min(np_img) < 16 and np.max(np_img) > 240
if is_binary:
eroded = cv2.erode(np_img, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
dilated = cv2.dilate(eroded, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(dilated < np_img)[0].shape[0]
all_edge_count = np.where(np_img > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
# With a low color count, we assume this is a map where exact colors are important. Near-neighbor preserves
# the colors as needed.
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
# This works best for downscaling
interpolation = cv2.INTER_AREA
else:
# Fall back for other cases
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
# This may be further transformed depending on the binary nature of the image.
resized = cv2.resize(np_img, size, interpolation=interpolation)
if inpaint_mask is not None:
# Resize the inpaint mask to match the resized image using the same interpolation method.
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
# If the image is binary, we will perform some additional processing to ensure the edges are preserved.
if is_binary:
resized = np.mean(resized.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
# Use NMS and thinning to keep the edges as single-pixel lines.
resized = nms(resized)
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
resized = lvmin_thin(resized, prunings=new_size_is_bigger)
else:
_, resized = cv2.threshold(resized, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
resized = np.stack([resized] * 3, axis=2)
# Restore the alpha channel if it was present.
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
resized = np.concatenate([resized, inpaint_mask], axis=2)
return resized
###########################################################################
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device: torch.device = torch.device("cpu")):
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
# np_img = HWC3(np_img)
np_img = HWC3(np_img)
def np_img_resize(
np_img: np.ndarray,
resize_mode: CONTROLNET_RESIZE_VALUES,
h: int,
w: int,
device: torch.device = torch.device("cpu"),
) -> tuple[torch.Tensor, np.ndarray[Any, Any]]:
np_img = normalize_image_channel_count(np_img)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, "h w c -> 1 c h w")
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = heuristic_resize(np_img, (w, h))
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
old_h, old_w, _ = np_img.shape
old_w = float(old_w)
@@ -236,7 +257,6 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
def safeint(x: Union[int, float]) -> int:
return int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT
k = min(k0, k1)
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
@@ -245,23 +265,23 @@ def np_img_resize(np_img: np.ndarray, resize_mode: str, h: int, w: int, device:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h : pad_h + new_h, pad_w : pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
np_img = heuristic_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h : pad_h + h, pad_w : pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
np_img = clone_contiguous(np_img)
return np_img_to_torch(np_img, device), np_img
def prepare_control_image(
@@ -269,12 +289,12 @@ def prepare_control_image(
width: int,
height: int,
num_channels: int = 3,
device="cuda",
dtype=torch.float16,
do_classifier_free_guidance=True,
control_mode="balanced",
resize_mode="just_resize_simple",
):
device: str = "cuda",
dtype: torch.dtype = torch.float16,
control_mode: CONTROLNET_MODE_VALUES = "balanced",
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
do_classifier_free_guidance: bool = True,
) -> torch.Tensor:
"""Pre-process images for ControlNets or T2I-Adapters.
Args:
@@ -292,26 +312,15 @@ def prepare_control_image(
resize_mode (str, optional): Defaults to "just_resize_simple".
Raises:
NotImplementedError: If resize_mode == "crop_resize_simple".
NotImplementedError: If resize_mode == "fill_resize_simple".
ValueError: If `resize_mode` is not recognized.
ValueError: If `num_channels` is out of range.
Returns:
torch.Tensor: The pre-processed input tensor.
"""
if (
resize_mode == "just_resize_simple"
or resize_mode == "crop_resize_simple"
or resize_mode == "fill_resize_simple"
):
if resize_mode == "just_resize_simple":
image = image.convert("RGB")
if resize_mode == "just_resize_simple":
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
elif resize_mode == "crop_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
elif resize_mode == "fill_resize_simple":
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
image = image.resize((width, height), resample=Image.LANCZOS)
nimage = np.array(image)
nimage = nimage[None, :]
nimage = np.concatenate([nimage], axis=0)
@@ -328,8 +337,7 @@ def prepare_control_image(
resize_mode=resize_mode,
h=height,
w=width,
# device=torch.device('cpu')
device=device,
device=torch.device(device),
)
else:
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")

View File

@@ -4,5 +4,4 @@ Initialization file for invokeai.backend.image_util methods.
from .infill_methods.patchmatch import PatchMatch # noqa: F401
from .pngwriter import PngWriter, PromptFormatter, retrieve_metadata, write_metadata # noqa: F401
from .seamless import configure_model_padding # noqa: F401
from .util import InitImageResizer, make_grid # noqa: F401

View File

@@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
non_maximum_suppression,
nms,
normalize_image_channel_count,
np_to_pil,
pil_to_np,
@@ -134,7 +134,7 @@ class HEDProcessor:
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
if scribble:
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0

View File

@@ -8,7 +8,7 @@ from pathlib import Path
import numpy as np
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from PIL import Image
from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor
import invokeai.backend.util.logging as logger
@@ -16,6 +16,7 @@ from invokeai.app.services.config.config_default import get_config
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.silence_warnings import SilenceWarnings
repo_id = "CompVis/stable-diffusion-safety-checker"
CHECKER_PATH = "core/convert/stable-diffusion-safety-checker"
@@ -24,30 +25,30 @@ class SafetyChecker:
Wrapper around SafetyChecker model.
"""
safety_checker = None
feature_extractor = None
tried_load: bool = False
safety_checker = None
@classmethod
def _load_safety_checker(cls):
if cls.tried_load:
if cls.safety_checker is not None and cls.feature_extractor is not None:
return
try:
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(get_config().models_path / CHECKER_PATH)
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(get_config().models_path / CHECKER_PATH)
model_path = get_config().models_path / CHECKER_PATH
if model_path.exists():
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_path)
else:
model_path.mkdir(parents=True, exist_ok=True)
cls.feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
cls.feature_extractor.save_pretrained(model_path, safe_serialization=True)
cls.safety_checker = StableDiffusionSafetyChecker.from_pretrained(repo_id)
cls.safety_checker.save_pretrained(model_path, safe_serialization=True)
except Exception as e:
logger.warning(f"Could not load NSFW checker: {str(e)}")
cls.tried_load = True
@classmethod
def safety_checker_available(cls) -> bool:
return Path(get_config().models_path, CHECKER_PATH).exists()
@classmethod
def has_nsfw_concept(cls, image: Image.Image) -> bool:
if not cls.safety_checker_available() and cls.tried_load:
return False
cls._load_safety_checker()
if cls.safety_checker is None or cls.feature_extractor is None:
return False
@@ -60,3 +61,24 @@ class SafetyChecker:
with SilenceWarnings():
checked_image, has_nsfw_concept = cls.safety_checker(images=x_image, clip_input=features.pixel_values)
return has_nsfw_concept[0]
@classmethod
def blur_if_nsfw(cls, image: Image.Image) -> Image.Image:
if cls.has_nsfw_concept(image):
logger.warning("A potentially NSFW image has been detected. Image will be blurred.")
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = cls._get_caution_img()
# Center the caution image on the blurred image
x = (blurry_image.width - caution.width) // 2
y = (blurry_image.height - caution.height) // 2
blurry_image.paste(caution, (x, y), caution)
image = blurry_image
return image
@classmethod
def _get_caution_img(cls) -> Image.Image:
import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
return caution.resize((caution.width // 2, caution.height // 2))

View File

@@ -1,52 +0,0 @@
import torch.nn as nn
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
def configure_model_padding(model, seamless, seamless_axes):
"""
Modifies the 2D convolution layers to use a circular padding mode based on
the `seamless` and `seamless_axes` options.
"""
# TODO: get an explicit interface for this in diffusers: https://github.com/huggingface/diffusers/issues/556
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if seamless:
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
else:
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding

View File

@@ -1,4 +1,5 @@
from math import ceil, floor, sqrt
from typing import Optional
import cv2
import numpy as np
@@ -143,20 +144,21 @@ def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.n
h = float(input_image.shape[0])
w = float(input_image.shape[1])
scaling_factor = float(resolution) / min(h, w)
h *= scaling_factor
w *= scaling_factor
h = int(np.round(h / 64.0)) * 64
w = int(np.round(w / 64.0)) * 64
h = int(h * scaling_factor)
w = int(w * scaling_factor)
if scaling_factor > 1:
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_LANCZOS4)
else:
return cv2.resize(input_image, (w, h), interpolation=cv2.INTER_AREA)
def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
def nms(np_img: np.ndarray, threshold: Optional[int] = None, sigma: Optional[float] = None) -> np.ndarray:
"""
Apply non-maximum suppression to an image.
If both threshold and sigma are provided, the image will blurred before the suppression and thresholded afterwards,
resulting in a binary output image.
This function is adapted from https://github.com/lllyasviel/ControlNet.
Args:
@@ -166,23 +168,36 @@ def non_maximum_suppression(image: np.ndarray, threshold: int, sigma: float):
Returns:
The image after non-maximum suppression.
Raises:
ValueError: If only one of threshold and sigma provided.
"""
image = cv2.GaussianBlur(image.astype(np.float32), (0, 0), sigma)
# Raise a value error if only one of threshold and sigma is provided
if (threshold is None) != (sigma is None):
raise ValueError("Both threshold and sigma must be provided if one is provided.")
if sigma is not None and threshold is not None:
# Blurring the image can help to thin out features
np_img = cv2.GaussianBlur(np_img.astype(np.float32), (0, 0), sigma)
filter_1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
filter_2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
filter_3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
filter_4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(image)
nms_img = np.zeros_like(np_img)
for f in [filter_1, filter_2, filter_3, filter_4]:
np.putmask(y, cv2.dilate(image, kernel=f) == image, image)
np.putmask(nms_img, cv2.dilate(np_img, kernel=f) == np_img, np_img)
z = np.zeros_like(y, dtype=np.uint8)
z[y > threshold] = 255
return z
if sigma is not None and threshold is not None:
# We blurred - now threshold to get a binary image
thresholded = np.zeros_like(nms_img, dtype=np.uint8)
thresholded[nms_img > threshold] = 255
return thresholded
return nms_img
def safe_step(x: np.ndarray, step: int = 2) -> np.ndarray:

View File

@@ -51,6 +51,7 @@ LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[Sched
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
ModelVariantType.Inpaint: "sd_xl_inpaint.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",

View File

@@ -13,6 +13,7 @@ from diffusers import (
LCMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
TCDScheduler,
UniPCMultistepScheduler,
)
@@ -40,4 +41,5 @@ SCHEDULER_MAP = {
"dpmpp_sde_k": (DPMSolverSDEScheduler, {"use_karras_sigmas": True, "noise_sampler_seed": 0}),
"unipc": (UniPCMultistepScheduler, {"cpu_only": True}),
"lcm": (LCMScheduler, {}),
"tcd": (TCDScheduler, {}),
}

View File

@@ -1,89 +1,51 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, List, Union
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
def _conv_forward_asymmetric(self, input, weight, bias):
"""
Patch for Conv2d._conv_forward that supports asymmetric padding
"""
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
return nn.functional.conv2d(
working,
weight,
bias,
self.stride,
nn.modules.utils._pair(0),
self.dilation,
self.groups,
)
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# Callable: (input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor
to_restore: list[tuple[nn.Conv2d | nn.ConvTranspose2d, Callable]] = []
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
# Hard coded to skip down block layers, allowing for seamless tiling at the expense of prompt adherence
skipped_layers = 1
for m_name, m in model.named_modules():
if not isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
continue
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
if isinstance(model, UNet2DConditionModel) and m_name.startswith("down_blocks.") and ".resnets." in m_name:
# down_blocks.1.resnets.1.conv1
_, block_num, _, resnet_num, submodule_name = m_name.split(".")
block_num = int(block_num)
resnet_num = int(resnet_num)
conv_layers: List[torch.nn.Conv2d] = []
if block_num >= len(model.down_blocks) - skipped_layers:
continue
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
# Skip the second resnet (could be configurable)
if resnet_num > 0:
continue
# Skip Conv2d layers (could be configurable)
if submodule_name == "conv2":
continue
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for module, orig_conv_forward in to_restore:
module._conv_forward = orig_conv_forward
if hasattr(module, "asymmetric_padding_mode"):
del module.asymmetric_padding_mode
if hasattr(module, "asymmetric_padding"):
del module.asymmetric_padding
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@@ -0,0 +1,98 @@
model:
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 9
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity

View File

@@ -25,7 +25,7 @@
"typegen": "node scripts/typegen.js",
"preview": "vite preview",
"lint:knip": "knip",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:0 src/main.tsx",
"lint:dpdm": "dpdm --no-warning --no-tree --transform --exit-code circular:1 src/main.tsx",
"lint:eslint": "eslint --max-warnings=0 .",
"lint:prettier": "prettier --check .",
"lint:tsc": "tsc --noEmit",
@@ -52,47 +52,48 @@
},
"dependencies": {
"@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.1",
"@dagrejs/graphlib": "^2.2.1",
"@dagrejs/dagre": "^1.1.2",
"@dagrejs/graphlib": "^2.2.2",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.0.17",
"@invoke-ai/ui-library": "^0.0.21",
"@fontsource-variable/inter": "^5.0.18",
"@invoke-ai/ui-library": "^0.0.25",
"@nanostores/react": "^0.7.2",
"@reduxjs/toolkit": "2.2.2",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"framer-motion": "^11.0.22",
"i18next": "^23.10.1",
"i18next-http-backend": "^2.5.0",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.6",
"lodash-es": "^4.17.21",
"nanostores": "^0.10.0",
"nanostores": "^0.10.3",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.6.1",
"overlayscrollbars-react": "^0.5.5",
"overlayscrollbars": "^2.7.3",
"overlayscrollbars-react": "^0.5.6",
"query-string": "^9.0.0",
"react": "^18.2.0",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.2.0",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.51.2",
"react-hook-form": "^7.51.4",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^14.1.0",
"react-icons": "^5.0.1",
"react-i18next": "^14.1.1",
"react-icons": "^5.2.0",
"react-konva": "^18.2.10",
"react-redux": "9.1.0",
"react-resizable-panels": "^2.0.16",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.0.19",
"react-select": "5.8.0",
"react-use": "^17.5.0",
"react-virtuoso": "^4.7.5",
"reactflow": "^11.10.4",
"react-virtuoso": "^4.7.10",
"reactflow": "^11.11.3",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
@@ -101,10 +102,11 @@
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",
"use-debounce": "^10.0.0",
"use-device-pixel-ratio": "^1.1.2",
"use-image": "^1.1.1",
"uuid": "^9.0.1",
"zod": "^3.22.4",
"zod-validation-error": "^3.0.3"
"zod": "^3.23.6",
"zod-validation-error": "^3.2.0"
},
"peerDependencies": {
"@chakra-ui/react": "^2.8.2",
@@ -115,19 +117,19 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.0.4",
"@storybook/addon-interactions": "^8.0.4",
"@storybook/addon-links": "^8.0.4",
"@storybook/addon-storysource": "^8.0.4",
"@storybook/manager-api": "^8.0.4",
"@storybook/react": "^8.0.4",
"@storybook/react-vite": "^8.0.4",
"@storybook/theming": "^8.0.4",
"@storybook/addon-essentials": "^8.0.10",
"@storybook/addon-interactions": "^8.0.10",
"@storybook/addon-links": "^8.0.10",
"@storybook/addon-storysource": "^8.0.10",
"@storybook/manager-api": "^8.0.10",
"@storybook/react": "^8.0.10",
"@storybook/react-vite": "^8.0.10",
"@storybook/theming": "^8.0.10",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.11.30",
"@types/react": "^18.2.73",
"@types/react-dom": "^18.2.22",
"@types/node": "^20.12.10",
"@types/react": "^18.3.1",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"concurrently": "^8.2.2",
@@ -135,20 +137,20 @@
"eslint": "^8.57.0",
"eslint-plugin-i18next": "^6.0.3",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.6.1",
"knip": "^5.12.3",
"openapi-types": "^12.1.3",
"openapi-typescript": "^6.7.5",
"prettier": "^3.2.5",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.0.4",
"storybook": "^8.0.10",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.6.6",
"typescript": "^5.4.3",
"vite": "^5.2.6",
"vite-plugin-css-injected-by-js": "^3.5.0",
"vite-plugin-dts": "^3.8.0",
"typescript": "^5.4.5",
"vite": "^5.2.11",
"vite-plugin-css-injected-by-js": "^3.5.1",
"vite-plugin-dts": "^3.9.1",
"vite-plugin-eslint": "^1.8.1",
"vite-tsconfig-paths": "^4.3.2",
"vitest": "^1.4.0"
"vitest": "^1.6.0"
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -76,7 +76,9 @@
"aboutHeading": "Nutzen Sie Ihre kreative Energie",
"toResolve": "Lösen",
"add": "Hinzufügen",
"loglevel": "Protokoll Stufe"
"loglevel": "Protokoll Stufe",
"selected": "Ausgewählt",
"beta": "Beta"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -86,7 +88,7 @@
"noImagesInGallery": "Keine Bilder in der Galerie",
"loading": "Lade",
"deleteImage_one": "Lösche Bild",
"deleteImage_other": "",
"deleteImage_other": "Lösche {{count}} Bilder",
"copy": "Kopieren",
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
@@ -397,7 +399,14 @@
"cancel": "Stornieren",
"defaultSettingsSaved": "Standardeinstellungen gespeichert",
"addModels": "Model hinzufügen",
"deleteModelImage": "Lösche Model Bild"
"deleteModelImage": "Lösche Model Bild",
"hfTokenInvalidErrorMessage": "Falscher oder fehlender HuggingFace Schlüssel.",
"huggingFaceRepoID": "HuggingFace Repo ID",
"hfToken": "HuggingFace Schlüssel",
"hfTokenInvalid": "Falscher oder fehlender HF Schlüssel",
"huggingFacePlaceholder": "besitzer/model-name",
"hfTokenSaved": "HF Schlüssel gespeichert",
"hfTokenUnableToVerify": "Konnte den HF Schlüssel nicht validieren"
},
"parameters": {
"images": "Bilder",
@@ -686,7 +695,11 @@
"hands": "Hände",
"dwOpenpose": "DW Openpose",
"dwOpenposeDescription": "Posenschätzung mit DW Openpose",
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus"
"selectCLIPVisionModel": "Wähle ein CLIP Vision Model aus",
"ipAdapterMethod": "Methode",
"composition": "Nur Komposition",
"full": "Voll",
"style": "Nur Style"
},
"queue": {
"status": "Status",
@@ -717,7 +730,6 @@
"resume": "Wieder aufnehmen",
"item": "Auftrag",
"notReady": "Warteschlange noch nicht bereit",
"queueCountPrediction": "{{promptsCount}} Prompts × {{iterations}} Iterationen -> {{count}} Generationen",
"clearQueueAlertDialog": "\"Die Warteschlange leeren\" stoppt den aktuellen Prozess und leert die Warteschlange komplett.",
"completedIn": "Fertig in",
"cancelBatchSucceeded": "Stapel abgebrochen",

View File

@@ -88,11 +88,13 @@
"negativePrompt": "Negative Prompt",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
"editor": "Editor",
"error": "Error",
"file": "File",
"folder": "Folder",
"format": "format",
"githubLabel": "Github",
"goTo": "Go to",
"hotkeysLabel": "Hotkeys",
"imageFailedToLoad": "Unable to Load Image",
"img2img": "Image To Image",
@@ -140,7 +142,11 @@
"blue": "Blue",
"alpha": "Alpha",
"selected": "Selected",
"viewer": "Viewer"
"tab": "Tab",
"viewing": "Viewing",
"viewingDesc": "Review images in a large gallery view",
"editing": "Editing",
"editingDesc": "Edit on the Control Layers canvas"
},
"controlnet": {
"controlAdapter_one": "Control Adapter",
@@ -156,6 +162,7 @@
"balanced": "Balanced",
"base": "Base",
"beginEndStepPercent": "Begin / End Step Percentage",
"beginEndStepPercentShort": "Begin/End %",
"bgth": "bg_th",
"canny": "Canny",
"cannyDescription": "Canny edge detection",
@@ -224,10 +231,11 @@
"composition": "Composition Only",
"safe": "Safe",
"saveControlImage": "Save Control Image",
"scribble": "scribble",
"scribble": "Scribble",
"selectModel": "Select a model",
"selectCLIPVisionModel": "Select a CLIP Vision model",
"setControlImageDimensions": "Set Control Image Dimensions To W/H",
"setControlImageDimensions": "Copy size to W/H (optimize for model)",
"setControlImageDimensionsForce": "Copy size to W/H (ignore model)",
"showAdvanced": "Show Advanced",
"small": "Small",
"toggleControlNet": "Toggle this ControlNet",
@@ -253,7 +261,6 @@
"queue": "Queue",
"queueFront": "Add to Front of Queue",
"queueBack": "Add to Queue",
"queueCountPrediction": "{{promptsCount}} prompts \u00d7 {{iterations}} iterations -> {{count}} generations",
"queueEmpty": "Queue Empty",
"enqueueing": "Queueing Batch",
"resume": "Resume",
@@ -306,7 +313,13 @@
"batchFailedToQueue": "Failed to Queue Batch",
"graphQueued": "Graph queued",
"graphFailedToQueue": "Failed to queue graph",
"openQueue": "Open Queue"
"openQueue": "Open Queue",
"prompts_one": "Prompt",
"prompts_other": "Prompts",
"iterations_one": "Iteration",
"iterations_other": "Iterations",
"generations_one": "Generation",
"generations_other": "Generations"
},
"invocationCache": {
"invocationCache": "Invocation Cache",
@@ -582,6 +595,10 @@
"upscale": {
"desc": "Upscale the current image",
"title": "Upscale"
},
"toggleViewer": {
"desc": "Switches between the Image Viewer and workspace for the current tab.",
"title": "Toggle Image Viewer"
}
},
"metadata": {
@@ -915,23 +932,37 @@
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} missing input",
"missingNodeTemplate": "Missing node template",
"noControlImageForControlAdapter": "Control Adapter #{{number}} has no control image",
"imageNotProcessedForControlAdapter": "Control Adapter #{{number}}'s image is not processed",
"noInitialImageSelected": "No initial image selected",
"noModelForControlAdapter": "Control Adapter #{{number}} has no model selected.",
"incompatibleBaseModelForControlAdapter": "Control Adapter #{{number}} model is incompatible with main model.",
"noModelSelected": "No model selected",
"noPrompts": "No prompts generated",
"noNodesInGraph": "No nodes in graph",
"systemDisconnected": "System disconnected"
"systemDisconnected": "System disconnected",
"layer": {
"initialImageNoImageSelected": "no initial image selected",
"controlAdapterNoModelSelected": "no Control Adapter model selected",
"controlAdapterIncompatibleBaseModel": "incompatible Control Adapter base model",
"controlAdapterNoImageSelected": "no Control Adapter image selected",
"controlAdapterImageNotProcessed": "Control Adapter image not processed",
"t2iAdapterIncompatibleDimensions": "T2I Adapter requires image dimension to be multiples of 64",
"ipAdapterNoModelSelected": "no IP adapter selected",
"ipAdapterIncompatibleBaseModel": "incompatible IP Adapter base model",
"ipAdapterNoImageSelected": "no IP Adapter image selected",
"rgNoPromptsOrIPAdapters": "no text prompts or IP Adapters",
"rgNoRegion": "no region selected"
}
},
"maskBlur": "Mask Blur",
"negativePromptPlaceholder": "Negative Prompt",
"globalNegativePromptPlaceholder": "Global Negative Prompt",
"noiseThreshold": "Noise Threshold",
"patchmatchDownScaleSize": "Downscale",
"perlinNoise": "Perlin Noise",
"positivePromptPlaceholder": "Positive Prompt",
"globalPositivePromptPlaceholder": "Global Positive Prompt",
"iterations": "Iterations",
"iterationsWithCount_one": "{{count}} Iteration",
"iterationsWithCount_other": "{{count}} Iterations",
"scale": "Scale",
"scaleBeforeProcessing": "Scale Before Processing",
"scaledHeight": "Scaled H",
@@ -1511,7 +1542,7 @@
"app": {
"storeNotInitialized": "Store is not initialized"
},
"regionalPrompts": {
"controlLayers": {
"deleteAll": "Delete All",
"addLayer": "Add Layer",
"moveToFront": "Move to Front",
@@ -1519,8 +1550,7 @@
"moveForward": "Move Forward",
"moveBackward": "Move Backward",
"brushSize": "Brush Size",
"regionalControl": "Regional Control (ALPHA)",
"enableRegionalPrompts": "Enable $t(regionalPrompts.regionalPrompts)",
"controlLayers": "Control Layers",
"globalMaskOpacity": "Global Mask Opacity",
"autoNegative": "Auto Negative",
"toggleVisibility": "Toggle Layer Visibility",
@@ -1531,6 +1561,35 @@
"maskPreviewColor": "Mask Preview Color",
"addPositivePrompt": "Add $t(common.positivePrompt)",
"addNegativePrompt": "Add $t(common.negativePrompt)",
"addIPAdapter": "Add $t(common.ipAdapter)"
"addIPAdapter": "Add $t(common.ipAdapter)",
"regionalGuidance": "Regional Guidance",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
"opacity": "Opacity",
"globalControlAdapter": "Global $t(controlnet.controlAdapter_one)",
"globalControlAdapterLayer": "Global $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"globalIPAdapter": "Global $t(common.ipAdapter)",
"globalIPAdapterLayer": "Global $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"globalInitialImage": "Global Initial Image",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) $t(unifiedCanvas.layer)",
"opacityFilter": "Opacity Filter",
"clearProcessor": "Clear Processor",
"resetProcessor": "Reset Processor to Defaults",
"noLayersAdded": "No Layers Added",
"layers_one": "Layer",
"layers_other": "Layers"
},
"ui": {
"tabs": {
"generation": "Generation",
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"canvas": "Canvas",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"workflows": "Workflows",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Models",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Queue",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)"
}
}
}

View File

@@ -25,7 +25,24 @@
"areYouSure": "¿Estas seguro?",
"batch": "Administrador de lotes",
"modelManager": "Administrador de modelos",
"communityLabel": "Comunidad"
"communityLabel": "Comunidad",
"direction": "Dirección",
"ai": "Ia",
"add": "Añadir",
"auto": "Automático",
"copyError": "Error $t(gallery.copy)",
"details": "Detalles",
"or": "o",
"checkpoint": "Punto de control",
"controlNet": "ControlNet",
"aboutHeading": "Sea dueño de su poder creativo",
"advanced": "Avanzado",
"data": "Fecha",
"delete": "Borrar",
"copy": "Copiar",
"beta": "Beta",
"on": "En",
"aboutDesc": "¿Utilizas Invoke para trabajar? Mira aquí:"
},
"gallery": {
"galleryImageSize": "Tamaño de la imagen",
@@ -443,7 +460,13 @@
"previousImage": "Imagen anterior",
"nextImage": "Siguiente imagen",
"showOptionsPanel": "Mostrar el panel lateral",
"menu": "Menú"
"menu": "Menú",
"showGalleryPanel": "Mostrar panel de galería",
"loadMore": "Cargar más",
"about": "Acerca de",
"createIssue": "Crear un problema",
"resetUI": "Interfaz de usuario $t(accessibility.reset)",
"mode": "Modo"
},
"nodes": {
"zoomInNodes": "Acercar",
@@ -456,5 +479,68 @@
"reloadNodeTemplates": "Recargar las plantillas de nodos",
"loadWorkflow": "Cargar el flujo de trabajo",
"downloadWorkflow": "Descargar el flujo de trabajo en un archivo JSON"
},
"boards": {
"autoAddBoard": "Agregar panel automáticamente",
"changeBoard": "Cambiar el panel",
"clearSearch": "Borrar la búsqueda",
"deleteBoard": "Borrar el panel",
"selectBoard": "Seleccionar un panel",
"uncategorized": "Sin categoría",
"cancel": "Cancelar",
"addBoard": "Agregar un panel",
"movingImagesToBoard_one": "Moviendo {{count}} imagen al panel:",
"movingImagesToBoard_many": "Moviendo {{count}} imágenes al panel:",
"movingImagesToBoard_other": "Moviendo {{count}} imágenes al panel:",
"bottomMessage": "Al eliminar este panel y las imágenes que contiene, se restablecerán las funciones que los estén utilizando actualmente.",
"deleteBoardAndImages": "Borrar el panel y las imágenes",
"loading": "Cargando...",
"deletedBoardsCannotbeRestored": "Los paneles eliminados no se pueden restaurar",
"move": "Mover",
"menuItemAutoAdd": "Agregar automáticamente a este panel",
"searchBoard": "Buscando paneles…",
"topMessage": "Este panel contiene imágenes utilizadas en las siguientes funciones:",
"downloadBoard": "Descargar panel",
"deleteBoardOnly": "Borrar solo el panel",
"myBoard": "Mi panel",
"noMatching": "No hay paneles que coincidan"
},
"accordions": {
"compositing": {
"title": "Composición",
"infillTab": "Relleno"
},
"generation": {
"title": "Generación"
},
"image": {
"title": "Imagen"
},
"control": {
"title": "Control"
},
"advanced": {
"options": "$t(accordions.advanced.title) opciones",
"title": "Avanzado"
}
},
"ui": {
"tabs": {
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"canvas": "Lienzo",
"generation": "Generación",
"queue": "Cola",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"workflows": "Flujos de trabajo",
"models": "Modelos",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)"
}
},
"controlLayers": {
"layers_one": "Capa",
"layers_many": "Capas",
"layers_other": "Capas"
}
}

View File

@@ -5,7 +5,7 @@
"reportBugLabel": "Segnala un errore",
"settingsLabel": "Impostazioni",
"img2img": "Immagine a Immagine",
"unifiedCanvas": "Tela unificata",
"unifiedCanvas": "Tela",
"nodes": "Flussi di lavoro",
"upload": "Caricamento",
"load": "Carica",
@@ -74,7 +74,18 @@
"file": "File",
"toResolve": "Da risolvere",
"add": "Aggiungi",
"loglevel": "Livello di log"
"loglevel": "Livello di log",
"beta": "Beta",
"positivePrompt": "Prompt positivo",
"negativePrompt": "Prompt negativo",
"selected": "Selezionato",
"goTo": "Vai a",
"editor": "Editor",
"tab": "Scheda",
"viewing": "Visualizza",
"viewingDesc": "Rivedi le immagini in un'ampia vista della galleria",
"editing": "Modifica",
"editingDesc": "Modifica nell'area Livelli di controllo"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -180,8 +191,8 @@
"desc": "Mostra le informazioni sui metadati dell'immagine corrente"
},
"sendToImageToImage": {
"title": "Invia a Immagine a Immagine",
"desc": "Invia l'immagine corrente a da Immagine a Immagine"
"title": "Invia a Generazione da immagine",
"desc": "Invia l'immagine corrente a Generazione da immagine"
},
"deleteImage": {
"title": "Elimina immagine",
@@ -334,6 +345,10 @@
"remixImage": {
"desc": "Utilizza tutti i parametri tranne il seme dell'immagine corrente",
"title": "Remixa l'immagine"
},
"toggleViewer": {
"title": "Attiva/disattiva il visualizzatore di immagini",
"desc": "Passa dal Visualizzatore immagini all'area di lavoro per la scheda corrente."
}
},
"modelManager": {
@@ -471,8 +486,8 @@
"scaledHeight": "Altezza ridimensionata",
"infillMethod": "Metodo di riempimento",
"tileSize": "Dimensione piastrella",
"sendToImg2Img": "Invia a Immagine a Immagine",
"sendToUnifiedCanvas": "Invia a Tela Unificata",
"sendToImg2Img": "Invia a Generazione da immagine",
"sendToUnifiedCanvas": "Invia alla Tela",
"downloadImage": "Scarica l'immagine",
"usePrompt": "Usa Prompt",
"useSeed": "Usa Seme",
@@ -508,13 +523,11 @@
"incompatibleBaseModelForControlAdapter": "Il modello dell'adattatore di controllo #{{number}} non è compatibile con il modello principale.",
"missingNodeTemplate": "Modello di nodo mancante",
"missingInputForField": "{{nodeLabel}} -> {{fieldLabel}} ingresso mancante",
"missingFieldTemplate": "Modello di campo mancante"
"missingFieldTemplate": "Modello di campo mancante",
"imageNotProcessedForControlAdapter": "L'immagine dell'adattatore di controllo #{{number}} non è stata elaborata"
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
"iterationsWithCount_one": "{{count}} Iterazione",
"iterationsWithCount_many": "{{count}} Iterazioni",
"iterationsWithCount_other": "{{count}} Iterazioni",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
"tooLarge": "L'immagine è troppo grande per l'ampliamento, seleziona un'immagine più piccola"
@@ -534,7 +547,10 @@
"infillMosaicMinColor": "Colore minimo",
"infillMosaicMaxColor": "Colore massimo",
"infillMosaicTileHeight": "Altezza piastrella",
"infillColorValue": "Colore di riempimento"
"infillColorValue": "Colore di riempimento",
"globalSettings": "Impostazioni globali",
"globalPositivePromptPlaceholder": "Prompt positivo globale",
"globalNegativePromptPlaceholder": "Prompt negativo globale"
},
"settings": {
"models": "Modelli",
@@ -559,7 +575,7 @@
"intermediatesCleared_one": "Cancellata {{count}} immagine intermedia",
"intermediatesCleared_many": "Cancellate {{count}} immagini intermedie",
"intermediatesCleared_other": "Cancellate {{count}} immagini intermedie",
"clearIntermediatesDesc1": "La cancellazione delle immagini intermedie ripristinerà lo stato di Tela Unificata e ControlNet.",
"clearIntermediatesDesc1": "La cancellazione delle immagini intermedie ripristinerà lo stato della Tela e degli Adattatori di Controllo.",
"intermediatesClearedFailed": "Problema con la cancellazione delle immagini intermedie",
"clearIntermediatesWithCount_one": "Cancella {{count}} immagine intermedia",
"clearIntermediatesWithCount_many": "Cancella {{count}} immagini intermedie",
@@ -575,8 +591,8 @@
"imageCopied": "Immagine copiata",
"imageNotLoadedDesc": "Impossibile trovare l'immagine",
"canvasMerged": "Tela unita",
"sentToImageToImage": "Inviato a Immagine a Immagine",
"sentToUnifiedCanvas": "Inviato a Tela Unificata",
"sentToImageToImage": "Inviato a Generazione da immagine",
"sentToUnifiedCanvas": "Inviato alla Tela",
"parametersNotSet": "Parametri non impostati",
"metadataLoadFailed": "Impossibile caricare i metadati",
"serverError": "Errore del Server",
@@ -795,7 +811,7 @@
"float": "In virgola mobile",
"currentImageDescription": "Visualizza l'immagine corrente nell'editor dei nodi",
"fieldTypesMustMatch": "I tipi di campo devono corrispondere",
"edge": "Bordo",
"edge": "Collegamento",
"currentImage": "Immagine corrente",
"integer": "Numero Intero",
"inputMayOnlyHaveOneConnection": "L'ingresso può avere solo una connessione",
@@ -845,7 +861,9 @@
"resetToDefaultValue": "Ripristina il valore predefinito",
"noFieldsViewMode": "Questo flusso di lavoro non ha campi selezionati da visualizzare. Visualizza il flusso di lavoro completo per configurare i valori.",
"edit": "Modifica",
"graph": "Grafico"
"graph": "Grafico",
"showEdgeLabelsHelp": "Mostra etichette sui collegamenti, che indicano i nodi collegati",
"showEdgeLabels": "Mostra le etichette del collegamento"
},
"boards": {
"autoAddBoard": "Aggiungi automaticamente bacheca",
@@ -922,7 +940,7 @@
"colorMapTileSize": "Dimensione piastrella",
"mediapipeFaceDescription": "Rilevamento dei volti tramite Mediapipe",
"hedDescription": "Rilevamento dei bordi nidificati olisticamente",
"setControlImageDimensions": "Imposta le dimensioni dell'immagine di controllo su L/A",
"setControlImageDimensions": "Copia le dimensioni in L/A (ottimizza per il modello)",
"maxFaces": "Numero massimo di volti",
"addT2IAdapter": "Aggiungi $t(common.t2iAdapter)",
"addControlNet": "Aggiungi $t(common.controlNet)",
@@ -951,12 +969,17 @@
"mediapipeFace": "Mediapipe Volto",
"ip_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.ipAdapter))",
"t2i_adapter": "$t(controlnet.controlAdapter_one) #{{number}} ($t(common.t2iAdapter))",
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision"
"selectCLIPVisionModel": "Seleziona un modello CLIP Vision",
"ipAdapterMethod": "Metodo",
"full": "Completo",
"composition": "Solo la composizione",
"style": "Solo lo stile",
"beginEndStepPercentShort": "Inizio/Fine %",
"setControlImageDimensionsForce": "Copia le dimensioni in L/A (ignora il modello)"
},
"queue": {
"queueFront": "Aggiungi all'inizio della coda",
"queueBack": "Aggiungi alla coda",
"queueCountPrediction": "{{promptsCount}} prompt × {{iterations}} iterazioni -> {{count}} generazioni",
"queue": "Coda",
"status": "Stato",
"pruneSucceeded": "Rimossi {{item_count}} elementi completati dalla coda",
@@ -993,7 +1016,7 @@
"cancelBatchSucceeded": "Lotto annullato",
"clearTooltip": "Annulla e cancella tutti gli elementi",
"current": "Attuale",
"pauseTooltip": "Sospende l'elaborazione",
"pauseTooltip": "Sospendi l'elaborazione",
"failed": "Falliti",
"cancelItem": "Annulla l'elemento",
"next": "Prossimo",
@@ -1394,6 +1417,12 @@
"paragraphs": [
"La dimensione del bordo del passaggio di coerenza."
]
},
"ipAdapterMethod": {
"heading": "Metodo",
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
]
}
},
"sdxl": {
@@ -1522,5 +1551,56 @@
"compatibleEmbeddings": "Incorporamenti compatibili",
"addPromptTrigger": "Aggiungi Trigger nel prompt",
"noMatchingTriggers": "Nessun Trigger corrispondente"
},
"controlLayers": {
"opacityFilter": "Filtro opacità",
"deleteAll": "Cancella tutto",
"addLayer": "Aggiungi Livello",
"moveToFront": "Sposta in primo piano",
"moveToBack": "Sposta in fondo",
"moveForward": "Sposta avanti",
"moveBackward": "Sposta indietro",
"brushSize": "Dimensioni del pennello",
"globalMaskOpacity": "Opacità globale della maschera",
"autoNegative": "Auto Negativo",
"toggleVisibility": "Attiva/disattiva la visibilità dei livelli",
"deletePrompt": "Cancella il prompt",
"debugLayers": "Debug dei Livelli",
"rectangle": "Rettangolo",
"maskPreviewColor": "Colore anteprima maschera",
"addPositivePrompt": "Aggiungi $t(common.positivePrompt)",
"addNegativePrompt": "Aggiungi $t(common.negativePrompt)",
"addIPAdapter": "Aggiungi $t(common.ipAdapter)",
"regionalGuidance": "Guida regionale",
"regionalGuidanceLayer": "$t(unifiedCanvas.layer) $t(controlLayers.regionalGuidance)",
"opacity": "Opacità",
"globalControlAdapter": "$t(controlnet.controlAdapter_one) Globale",
"globalControlAdapterLayer": "$t(controlnet.controlAdapter_one) - $t(unifiedCanvas.layer) Globale",
"globalIPAdapter": "$t(common.ipAdapter) Globale",
"globalIPAdapterLayer": "$t(common.ipAdapter) - $t(unifiedCanvas.layer) Globale",
"globalInitialImage": "Immagine iniziale",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) - $t(unifiedCanvas.layer) Globale",
"clearProcessor": "Cancella processore",
"resetProcessor": "Ripristina il processore alle impostazioni predefinite",
"noLayersAdded": "Nessun livello aggiunto",
"resetRegion": "Reimposta la regione",
"controlLayers": "Livelli di controllo",
"layers_one": "Livello",
"layers_many": "Livelli",
"layers_other": "Livelli"
},
"ui": {
"tabs": {
"generation": "Generazione",
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"canvas": "Tela",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"workflows": "Flussi di lavoro",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Modelli",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Coda",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)"
}
}
}

View File

@@ -570,7 +570,6 @@
"pauseSucceeded": "処理が一時停止されました",
"queueFront": "キューの先頭へ追加",
"queueBack": "キューに追加",
"queueCountPrediction": "{{promptsCount}} プロンプト × {{iterations}} イテレーション -> {{count}} 枚生成",
"pause": "一時停止",
"queue": "キュー",
"pauseTooltip": "処理を一時停止",

View File

@@ -505,7 +505,6 @@
"completed": "완성된",
"queueBack": "Queue에 추가",
"cancelFailed": "항목 취소 중 발생한 문제",
"queueCountPrediction": "Queue에 {{predicted}} 추가",
"batchQueued": "Batch Queued",
"pauseFailed": "프로세서 중지 중 발생한 문제",
"clearFailed": "Queue 제거 중 발생한 문제",

View File

@@ -383,8 +383,6 @@
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",
"iterations": "Iteraties",
"iterationsWithCount_one": "{{count}} iteratie",
"iterationsWithCount_other": "{{count}} iteraties",
"coherenceMode": "Modus"
},
"settings": {
@@ -940,7 +938,6 @@
"completed": "Voltooid",
"queueBack": "Voeg toe aan wachtrij",
"cancelFailed": "Fout bij annuleren onderdeel",
"queueCountPrediction": "Voeg {{predicted}} toe aan wachtrij",
"batchQueued": "Reeks in wachtrij geplaatst",
"pauseFailed": "Fout bij onderbreken verwerker",
"clearFailed": "Fout bij wissen van wachtrij",

View File

@@ -76,7 +76,18 @@
"localSystem": "Локальная система",
"aboutDesc": "Используя Invoke для работы? Проверьте это:",
"add": "Добавить",
"loglevel": "Уровень логов"
"loglevel": "Уровень логов",
"beta": "Бета",
"selected": "Выбрано",
"positivePrompt": "Позитивный запрос",
"negativePrompt": "Негативный запрос",
"editor": "Редактор",
"goTo": "Перейти к",
"tab": "Вкладка",
"viewing": "Просмотр",
"editing": "Редактирование",
"viewingDesc": "Просмотр изображений в режиме большой галереи",
"editingDesc": "Редактировать на холсте слоёв управления"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@@ -87,8 +98,8 @@
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
"deleteImage_one": "Удалить изображение",
"deleteImage_few": "",
"deleteImage_many": "",
"deleteImage_few": "Удалить {{count}} изображения",
"deleteImage_many": "Удалить {{count}} изображений",
"assets": "Ресурсы",
"autoAssignBoardOnClick": "Авто-назначение доски по клику",
"deleteSelection": "Удалить выделенное",
@@ -336,6 +347,10 @@
"remixImage": {
"desc": "Используйте все параметры, кроме сида из текущего изображения",
"title": "Ремикс изображения"
},
"toggleViewer": {
"title": "Переключить просмотр изображений",
"desc": "Переключение между средством просмотра изображений и рабочей областью для текущей вкладки."
}
},
"modelManager": {
@@ -512,7 +527,8 @@
"missingNodeTemplate": "Отсутствует шаблон узла",
"missingFieldTemplate": "Отсутствует шаблон поля",
"addingImagesTo": "Добавление изображений в",
"invoke": "Создать"
"invoke": "Создать",
"imageNotProcessedForControlAdapter": "Изображение адаптера контроля №{{number}} не обрабатывается"
},
"isAllowedToUpscale": {
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
@@ -523,9 +539,6 @@
"useCpuNoise": "Использовать шум CPU",
"imageActions": "Действия с изображениями",
"iterations": "Кол-во",
"iterationsWithCount_one": "{{count}} Интеграция",
"iterationsWithCount_few": "{{count}} Итерации",
"iterationsWithCount_many": "{{count}} Итераций",
"useSize": "Использовать размер",
"coherenceMode": "Режим",
"aspect": "Соотношение",
@@ -541,7 +554,10 @@
"infillMosaicTileHeight": "Высота плиток",
"infillMosaicMinColor": "Мин цвет",
"infillMosaicMaxColor": "Макс цвет",
"infillColorValue": "Цвет заливки"
"infillColorValue": "Цвет заливки",
"globalSettings": "Глобальные настройки",
"globalNegativePromptPlaceholder": "Глобальный негативный запрос",
"globalPositivePromptPlaceholder": "Глобальный запрос"
},
"settings": {
"models": "Модели",
@@ -706,7 +722,9 @@
"coherenceModeBoxBlur": "коробчатое размытие",
"discardCurrent": "Отбросить текущее",
"invertBrushSizeScrollDirection": "Инвертировать прокрутку для размера кисти",
"initialFitImageSize": "Подогнать размер изображения при перебросе"
"initialFitImageSize": "Подогнать размер изображения при перебросе",
"hideBoundingBox": "Скрыть ограничительную рамку",
"showBoundingBox": "Показать ограничительную рамку"
},
"accessibility": {
"uploadImage": "Загрузить изображение",
@@ -849,7 +867,10 @@
"editMode": "Открыть в редакторе узлов",
"resetToDefaultValue": "Сбросить к стандартному значкнию",
"edit": "Редактировать",
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений."
"noFieldsViewMode": "В этом рабочем процессе нет выбранных полей для отображения. Просмотрите полный рабочий процесс для настройки значений.",
"graph": "График",
"showEdgeLabels": "Показать метки на ребрах",
"showEdgeLabelsHelp": "Показать метки на ребрах, указывающие на соединенные узлы"
},
"controlnet": {
"amult": "a_mult",
@@ -917,8 +938,8 @@
"lineartAnime": "Контурный рисунок в стиле аниме",
"mediapipeFaceDescription": "Обнаружение лиц с помощью Mediapipe",
"hedDescription": "Целостное обнаружение границ",
"setControlImageDimensions": "Установите размеры контрольного изображения на Ш/В",
"scribble": "каракули",
"setControlImageDimensions": "Скопируйте размер в Ш/В (оптимизируйте для модели)",
"scribble": "Штрихи",
"maxFaces": "Макс Лица",
"mlsdDescription": "Минималистичный детектор отрезков линии",
"resizeSimple": "Изменить размер (простой)",
@@ -933,7 +954,18 @@
"small": "Маленький",
"body": "Тело",
"hands": "Руки",
"selectCLIPVisionModel": "Выбрать модель CLIP Vision"
"selectCLIPVisionModel": "Выбрать модель CLIP Vision",
"ipAdapterMethod": "Метод",
"full": "Всё",
"mlsd": "M-LSD",
"h": "H",
"style": "Только стиль",
"dwOpenpose": "DW Openpose",
"pidi": "PIDI",
"composition": "Только композиция",
"hed": "HED",
"beginEndStepPercentShort": "Начало/конец %",
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@@ -1312,6 +1344,12 @@
"paragraphs": [
"Плавно укладывайте изображение вдоль вертикальной оси."
]
},
"ipAdapterMethod": {
"heading": "Метод",
"paragraphs": [
"Метод, с помощью которого применяется текущий IP-адаптер."
]
}
},
"metadata": {
@@ -1359,7 +1397,6 @@
"completed": "Выполнено",
"queueBack": "Добавить в очередь",
"cancelFailed": "Проблема с отменой элемента",
"queueCountPrediction": "{{promptsCount}} запросов × {{iterations}} изображений -> {{count}} генераций",
"batchQueued": "Пакетная очередь",
"pauseFailed": "Проблема с приостановкой рендеринга",
"clearFailed": "Проблема с очисткой очереди",
@@ -1475,7 +1512,11 @@
"projectWorkflows": "Рабочие процессы проекта",
"defaultWorkflows": "Стандартные рабочие процессы",
"name": "Имя",
"noRecentWorkflows": "Нет последних рабочих процессов"
"noRecentWorkflows": "Нет последних рабочих процессов",
"loadWorkflow": "Рабочий процесс $t(common.load)",
"convertGraph": "Конвертировать график",
"loadFromGraph": "Загрузка рабочего процесса из графика",
"autoLayout": "Автоматическое расположение"
},
"hrf": {
"enableHrf": "Включить исправление высокого разрешения",
@@ -1528,5 +1569,56 @@
"addPromptTrigger": "Добавить триггер запроса",
"compatibleEmbeddings": "Совместимые встраивания",
"noMatchingTriggers": "Нет соответствующих триггеров"
},
"controlLayers": {
"moveToBack": "На задний план",
"moveForward": "Переместить вперёд",
"moveBackward": "Переместить назад",
"brushSize": "Размер кисти",
"controlLayers": "Слои управления",
"globalMaskOpacity": "Глобальная непрозрачность маски",
"autoNegative": "Авто негатив",
"deletePrompt": "Удалить запрос",
"resetRegion": "Сбросить регион",
"debugLayers": "Слои отладки",
"rectangle": "Прямоугольник",
"maskPreviewColor": "Цвет предпросмотра маски",
"addNegativePrompt": "Добавить $t(common.negativePrompt)",
"regionalGuidance": "Региональная точность",
"opacity": "Непрозрачность",
"globalControlAdapter": "Глобальный $t(controlnet.controlAdapter_one)",
"globalControlAdapterLayer": "Глобальный $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"globalIPAdapter": "Глобальный $t(common.ipAdapter)",
"globalIPAdapterLayer": "Глобальный $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"opacityFilter": "Фильтр непрозрачности",
"deleteAll": "Удалить всё",
"addLayer": "Добавить слой",
"moveToFront": "На передний план",
"toggleVisibility": "Переключить видимость слоя",
"addPositivePrompt": "Добавить $t(common.positivePrompt)",
"addIPAdapter": "Добавить $t(common.ipAdapter)",
"regionalGuidanceLayer": "$t(controlLayers.regionalGuidance) $t(unifiedCanvas.layer)",
"resetProcessor": "Сброс процессора по умолчанию",
"clearProcessor": "Чистый процессор",
"globalInitialImage": "Глобальное исходное изображение",
"globalInitialImageLayer": "$t(controlLayers.globalInitialImage) $t(unifiedCanvas.layer)",
"noLayersAdded": "Без слоев",
"layers_one": "Слой",
"layers_few": "Слоя",
"layers_many": "Слоев"
},
"ui": {
"tabs": {
"generation": "Генерация",
"canvas": "Холст",
"workflowsTab": "$t(ui.tabs.workflows) $t(common.tab)",
"models": "Модели",
"generationTab": "$t(ui.tabs.generation) $t(common.tab)",
"workflows": "Рабочие процессы",
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Очередь"
}
}
}

View File

@@ -66,7 +66,7 @@
"saveAs": "保存为",
"ai": "ai",
"or": "或",
"aboutDesc": "使用 Invoke 工作?看:",
"aboutDesc": "使用 Invoke 工作?来看看:",
"add": "添加",
"loglevel": "日志级别",
"copy": "复制",
@@ -445,7 +445,6 @@
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"iterationsWithCount_other": "{{count}} 次迭代生成",
"cfgRescaleMultiplier": "CFG 重缩放倍数",
"useSize": "使用尺寸",
"setToOptimalSize": "优化模型大小",
@@ -853,7 +852,6 @@
"pruneSucceeded": "从队列修剪 {{item_count}} 个已完成的项目",
"notReady": "无法排队",
"batchFailedToQueue": "批次加入队列失败",
"queueCountPrediction": "{{promptsCount}} 提示词 × {{iterations}} 迭代次数 -> {{count}} 次生成",
"batchQueued": "加入队列的批次",
"front": "前",
"pruneTooltip": "修剪 {{item_count}} 个已完成的项目",

View File

@@ -20,15 +20,14 @@ export type LoggerNamespace =
| 'models'
| 'config'
| 'canvas'
| 'txt2img'
| 'img2img'
| 'generation'
| 'nodes'
| 'system'
| 'socketio'
| 'session'
| 'queue'
| 'dnd'
| 'regionalPrompts';
| 'controlLayers';
export const logger = (namespace: LoggerNamespace) => $logger.get().child({ namespace });

View File

@@ -16,6 +16,7 @@ import { addCanvasMaskSavedToGalleryListener } from 'app/store/middleware/listen
import { addCanvasMaskToControlNetListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMaskToControlNet';
import { addCanvasMergedListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasMerged';
import { addCanvasSavedToGalleryListener } from 'app/store/middleware/listenerMiddleware/listeners/canvasSavedToGallery';
import { addControlAdapterPreprocessor } from 'app/store/middleware/listenerMiddleware/listeners/controlAdapterPreprocessor';
import { addControlNetAutoProcessListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetAutoProcess';
import { addControlNetImageProcessedListener } from 'app/store/middleware/listenerMiddleware/listeners/controlNetImageProcessed';
import { addEnqueueRequestedCanvasListener } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedCanvas';
@@ -31,7 +32,6 @@ import { addImagesStarredListener } from 'app/store/middleware/listenerMiddlewar
import { addImagesUnstarredListener } from 'app/store/middleware/listenerMiddleware/listeners/imagesUnstarred';
import { addImageToDeleteSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/imageToDeleteSelected';
import { addImageUploadedFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/imageUploaded';
import { addInitialImageSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/initialImageSelected';
import { addModelSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelSelected';
import { addModelsLoadedListener } from 'app/store/middleware/listenerMiddleware/listeners/modelsLoaded';
import { addDynamicPromptsListener } from 'app/store/middleware/listenerMiddleware/listeners/promptChanged';
@@ -72,9 +72,6 @@ const startAppListening = listenerMiddleware.startListening as AppStartListening
// Image uploaded
addImageUploadedFulfilledListener(startAppListening);
// Image selected
addInitialImageSelectedListener(startAppListening);
// Image deleted
addRequestedSingleImageDeletionListener(startAppListening);
addDeleteBoardAndImagesFulfilledListener(startAppListening);
@@ -157,3 +154,4 @@ addUpscaleRequestedListener(startAppListening);
addDynamicPromptsListener(startAppListening);
addSetDefaultSettingsListener(startAppListening);
addControlAdapterPreprocessor(startAppListening);

View File

@@ -1,9 +1,9 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import { controlAdaptersReset } from 'features/controlAdapters/store/controlAdaptersSlice';
import { allLayersDeleted } from 'features/controlLayers/store/controlLayersSlice';
import { getImageUsage } from 'features/deleteImageModal/store/selectors';
import { nodeEditorReset } from 'features/nodes/store/nodesSlice';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { imagesApi } from 'services/api/endpoints/images';
export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppStartListening) => {
@@ -14,19 +14,14 @@ export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppS
// Remove all deleted images from the UI
let wasInitialImageReset = false;
let wasCanvasReset = false;
let wasNodeEditorReset = false;
let wereControlAdaptersReset = false;
let wereControlLayersReset = false;
const { generation, canvas, nodes, controlAdapters } = getState();
const { canvas, nodes, controlAdapters, controlLayers } = getState();
deleted_images.forEach((image_name) => {
const imageUsage = getImageUsage(generation, canvas, nodes, controlAdapters, image_name);
if (imageUsage.isInitialImage && !wasInitialImageReset) {
dispatch(clearInitialImage());
wasInitialImageReset = true;
}
const imageUsage = getImageUsage(canvas, nodes, controlAdapters, controlLayers.present, image_name);
if (imageUsage.isCanvasImage && !wasCanvasReset) {
dispatch(resetCanvas());
@@ -42,6 +37,11 @@ export const addDeleteBoardAndImagesFulfilledListener = (startAppListening: AppS
dispatch(controlAdaptersReset());
wereControlAdaptersReset = true;
}
if (imageUsage.isControlLayerImage && !wereControlLayersReset) {
dispatch(allLayersDeleted());
wereControlLayersReset = true;
}
});
},
});

View File

@@ -0,0 +1,175 @@
import { isAnyOf } from '@reduxjs/toolkit';
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { AppDispatch } from 'app/store/store';
import { parseify } from 'common/util/serialize';
import {
caLayerImageChanged,
caLayerModelChanged,
caLayerProcessedImageChanged,
caLayerProcessorConfigChanged,
caLayerProcessorPendingBatchIdChanged,
caLayerRecalled,
isControlAdapterLayer,
} from 'features/controlLayers/store/controlLayersSlice';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { isImageOutput } from 'features/nodes/types/common';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { getImageDTO } from 'services/api/endpoints/images';
import { queueApi } from 'services/api/endpoints/queue';
import type { BatchConfig } from 'services/api/types';
import { socketInvocationComplete } from 'services/events/actions';
import { assert } from 'tsafe';
const matcher = isAnyOf(caLayerImageChanged, caLayerProcessorConfigChanged, caLayerModelChanged, caLayerRecalled);
const DEBOUNCE_MS = 300;
const log = logger('session');
/**
* Simple helper to cancel a batch and reset the pending batch ID
*/
const cancelProcessorBatch = async (dispatch: AppDispatch, layerId: string, batchId: string) => {
const req = dispatch(queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: [batchId] }));
log.trace({ batchId }, 'Cancelling existing preprocessor batch');
try {
await req.unwrap();
} catch {
// no-op
} finally {
req.reset();
// Always reset the pending batch ID - the cancel req could fail if the batch doesn't exist
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
}
};
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
startAppListening({
matcher,
effect: async (action, { dispatch, getState, cancelActiveListeners, delay, take, signal }) => {
const layerId = caLayerRecalled.match(action) ? action.payload.id : action.payload.layerId;
// Cancel any in-progress instances of this listener
cancelActiveListeners();
log.trace('Control Layer CA auto-process triggered');
// Delay before starting actual work
await delay(DEBOUNCE_MS);
// Double-check that we are still eligible for processing
const state = getState();
const layer = state.controlLayers.present.layers.filter(isControlAdapterLayer).find((l) => l.id === layerId);
// If we have no image or there is no processor config, bail
if (!layer) {
return;
}
const image = layer.controlAdapter.image;
const config = layer.controlAdapter.processorConfig;
if (!image || !config) {
// The user has reset the image or config, so we should clear the processed image
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO: null }));
}
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
// If there is a pending processor batch, cancel it.
if (layer.controlAdapter.processorPendingBatchId) {
cancelProcessorBatch(dispatch, layerId, layer.controlAdapter.processorPendingBatchId);
}
// @ts-expect-error: TS isn't able to narrow the typing of buildNode and `config` will error...
const processorNode = CA_PROCESSOR_DATA[config.type].buildNode(image, config);
const enqueueBatchArg: BatchConfig = {
prepend: true,
batch: {
graph: {
nodes: {
[processorNode.id]: {
...processorNode,
// Control images are always intermediate - do not save to gallery
is_intermediate: true,
},
},
edges: [],
},
runs: 1,
},
};
// Kick off the processor batch
const req = dispatch(
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
fixedCacheKey: 'enqueueBatch',
})
);
try {
const enqueueResult = await req.unwrap();
// TODO(psyche): Update the pydantic models, pretty sure we will _always_ have a batch_id here, but the model says it's optional
assert(enqueueResult.batch.batch_id, 'Batch ID not returned from queue');
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: enqueueResult.batch.batch_id }));
log.debug({ enqueueResult: parseify(enqueueResult) }, t('queue.graphQueued'));
// Wait for the processor node to complete
const [invocationCompleteAction] = await take(
(action): action is ReturnType<typeof socketInvocationComplete> =>
socketInvocationComplete.match(action) &&
action.payload.data.queue_batch_id === enqueueResult.batch.batch_id &&
action.payload.data.source_node_id === processorNode.id
);
// We still have to check the output type
assert(
isImageOutput(invocationCompleteAction.payload.data.result),
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
);
const { image_name } = invocationCompleteAction.payload.data.result.image;
const imageDTO = await getImageDTO(image_name);
assert(imageDTO, "Failed to fetch processor output's image DTO");
// Whew! We made it. Update the layer with the processed image
log.debug({ layerId, imageDTO }, 'ControlNet image processed');
dispatch(caLayerProcessedImageChanged({ layerId, imageDTO }));
dispatch(caLayerProcessorPendingBatchIdChanged({ layerId, batchId: null }));
} catch (error) {
if (signal.aborted) {
// The listener was canceled - we need to cancel the pending processor batch, if there is one (could have changed by now).
const pendingBatchId = getState()
.controlLayers.present.layers.filter(isControlAdapterLayer)
.find((l) => l.id === layerId)?.controlAdapter.processorPendingBatchId;
if (pendingBatchId) {
cancelProcessorBatch(dispatch, layerId, pendingBatchId);
}
log.trace('Control Adapter preprocessor cancelled');
} else {
// Some other error condition...
console.log(error);
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
if (error instanceof Object) {
if ('data' in error && 'status' in error) {
if (error.status === 403) {
dispatch(caLayerImageChanged({ layerId, imageDTO: null }));
return;
}
}
}
dispatch(
addToast({
title: t('queue.graphFailedToQueue'),
status: 'error',
})
);
}
} finally {
req.reset();
}
},
});
};

View File

@@ -30,7 +30,7 @@ import type { ImageDTO } from 'services/api/types';
export const addEnqueueRequestedCanvasListener = (startAppListening: AppStartListening) => {
startAppListening({
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
enqueueRequested.match(action) && action.payload.tabName === 'unifiedCanvas',
enqueueRequested.match(action) && action.payload.tabName === 'canvas',
effect: async (action, { getState, dispatch }) => {
const log = logger('queue');
const { prepend } = action.payload;

View File

@@ -1,35 +1,27 @@
import { enqueueRequested } from 'app/store/actions';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { isImageViewerOpenChanged } from 'features/gallery/store/gallerySlice';
import { buildGenerationTabGraph } from 'features/nodes/util/graph/buildGenerationTabGraph';
import { buildGenerationTabSDXLGraph } from 'features/nodes/util/graph/buildGenerationTabSDXLGraph';
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
import { buildLinearImageToImageGraph } from 'features/nodes/util/graph/buildLinearImageToImageGraph';
import { buildLinearSDXLImageToImageGraph } from 'features/nodes/util/graph/buildLinearSDXLImageToImageGraph';
import { buildLinearSDXLTextToImageGraph } from 'features/nodes/util/graph/buildLinearSDXLTextToImageGraph';
import { buildLinearTextToImageGraph } from 'features/nodes/util/graph/buildLinearTextToImageGraph';
import { queueApi } from 'services/api/endpoints/queue';
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
startAppListening({
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
enqueueRequested.match(action) && (action.payload.tabName === 'txt2img' || action.payload.tabName === 'img2img'),
enqueueRequested.match(action) && action.payload.tabName === 'generation',
effect: async (action, { getState, dispatch }) => {
const state = getState();
const { shouldShowProgressInViewer } = state.ui;
const model = state.generation.model;
const { prepend } = action.payload;
let graph;
if (model && model.base === 'sdxl') {
if (action.payload.tabName === 'txt2img') {
graph = await buildLinearSDXLTextToImageGraph(state);
} else {
graph = await buildLinearSDXLImageToImageGraph(state);
}
graph = await buildGenerationTabSDXLGraph(state);
} else {
if (action.payload.tabName === 'txt2img') {
graph = await buildLinearTextToImageGraph(state);
} else {
graph = await buildLinearImageToImageGraph(state);
}
graph = await buildGenerationTabGraph(state);
}
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
@@ -39,7 +31,14 @@ export const addEnqueueRequestedLinear = (startAppListening: AppStartListening)
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
try {
await req.unwrap();
if (shouldShowProgressInViewer) {
dispatch(isImageViewerOpenChanged(true));
}
} finally {
req.reset();
}
},
});
};

View File

@@ -8,7 +8,7 @@ import type { BatchConfig } from 'services/api/types';
export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) => {
startAppListening({
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
enqueueRequested.match(action) && action.payload.tabName === 'nodes',
enqueueRequested.match(action) && action.payload.tabName === 'workflows',
effect: async (action, { getState, dispatch }) => {
const state = getState();
const { nodes, edges } = state.nodes;
@@ -39,7 +39,11 @@ export const addEnqueueRequestedNodes = (startAppListening: AppStartListening) =
fixedCacheKey: 'enqueueBatch',
})
);
req.reset();
try {
await req.unwrap();
} finally {
req.reset();
}
},
});
};

View File

@@ -1,5 +1,6 @@
import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import type { AppDispatch, RootState } from 'app/store/store';
import { resetCanvas } from 'features/canvas/store/canvasSlice';
import {
controlAdapterImageChanged,
@@ -7,6 +8,13 @@ import {
selectControlAdapterAll,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
import {
isControlAdapterLayer,
isInitialImageLayer,
isIPAdapterLayer,
isRegionalGuidanceLayer,
layerDeleted,
} from 'features/controlLayers/store/controlLayersSlice';
import { imageDeletionConfirmed } from 'features/deleteImageModal/store/actions';
import { isModalOpenChanged } from 'features/deleteImageModal/store/slice';
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
@@ -14,12 +22,82 @@ import { imageSelected } from 'features/gallery/store/gallerySlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { isImageFieldInputInstance } from 'features/nodes/types/field';
import { isInvocationNode } from 'features/nodes/types/invocation';
import { clearInitialImage } from 'features/parameters/store/generationSlice';
import { clamp, forEach } from 'lodash-es';
import { api } from 'services/api';
import { imagesApi } from 'services/api/endpoints/images';
import type { ImageDTO } from 'services/api/types';
import { imagesSelectors } from 'services/api/util';
const deleteNodesImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
state.nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
forEach(node.data.inputs, (input) => {
if (isImageFieldInputInstance(input) && input.value?.image_name === imageDTO.image_name) {
dispatch(
fieldImageValueChanged({
nodeId: node.data.id,
fieldName: input.name,
value: undefined,
})
);
}
});
});
};
const deleteControlAdapterImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
forEach(selectControlAdapterAll(state.controlAdapters), (ca) => {
if (
ca.controlImage === imageDTO.image_name ||
(isControlNetOrT2IAdapter(ca) && ca.processedControlImage === imageDTO.image_name)
) {
dispatch(
controlAdapterImageChanged({
id: ca.id,
controlImage: null,
})
);
dispatch(
controlAdapterProcessedImageChanged({
id: ca.id,
processedControlImage: null,
})
);
}
});
};
const deleteControlLayerImages = (state: RootState, dispatch: AppDispatch, imageDTO: ImageDTO) => {
state.controlLayers.present.layers.forEach((l) => {
if (isRegionalGuidanceLayer(l)) {
if (l.ipAdapters.some((ipa) => ipa.image?.name === imageDTO.image_name)) {
dispatch(layerDeleted(l.id));
}
}
if (isControlAdapterLayer(l)) {
if (
l.controlAdapter.image?.name === imageDTO.image_name ||
l.controlAdapter.processedImage?.name === imageDTO.image_name
) {
dispatch(layerDeleted(l.id));
}
}
if (isIPAdapterLayer(l)) {
if (l.ipAdapter.image?.name === imageDTO.image_name) {
dispatch(layerDeleted(l.id));
}
}
if (isInitialImageLayer(l)) {
if (l.image?.name === imageDTO.image_name) {
dispatch(layerDeleted(l.id));
}
}
});
};
export const addRequestedSingleImageDeletionListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: imageDeletionConfirmed,
@@ -73,50 +151,9 @@ export const addRequestedSingleImageDeletionListener = (startAppListening: AppSt
}
imageDTOs.forEach((imageDTO) => {
// reset init image if we deleted it
if (getState().generation.initialImage?.imageName === imageDTO.image_name) {
dispatch(clearInitialImage());
}
// reset control adapters that use the deleted images
forEach(selectControlAdapterAll(getState().controlAdapters), (ca) => {
if (
ca.controlImage === imageDTO.image_name ||
(isControlNetOrT2IAdapter(ca) && ca.processedControlImage === imageDTO.image_name)
) {
dispatch(
controlAdapterImageChanged({
id: ca.id,
controlImage: null,
})
);
dispatch(
controlAdapterProcessedImageChanged({
id: ca.id,
processedControlImage: null,
})
);
}
});
// reset nodes that use the deleted images
getState().nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
forEach(node.data.inputs, (input) => {
if (isImageFieldInputInstance(input) && input.value?.image_name === imageDTO.image_name) {
dispatch(
fieldImageValueChanged({
nodeId: node.data.id,
fieldName: input.name,
value: undefined,
})
);
}
});
});
deleteControlAdapterImages(state, dispatch, imageDTO);
deleteNodesImages(state, dispatch, imageDTO);
deleteControlLayerImages(state, dispatch, imageDTO);
});
// Delete from server
@@ -168,50 +205,9 @@ export const addRequestedSingleImageDeletionListener = (startAppListening: AppSt
}
imageDTOs.forEach((imageDTO) => {
// reset init image if we deleted it
if (getState().generation.initialImage?.imageName === imageDTO.image_name) {
dispatch(clearInitialImage());
}
// reset control adapters that use the deleted images
forEach(selectControlAdapterAll(getState().controlAdapters), (ca) => {
if (
ca.controlImage === imageDTO.image_name ||
(isControlNetOrT2IAdapter(ca) && ca.processedControlImage === imageDTO.image_name)
) {
dispatch(
controlAdapterImageChanged({
id: ca.id,
controlImage: null,
})
);
dispatch(
controlAdapterProcessedImageChanged({
id: ca.id,
processedControlImage: null,
})
);
}
});
// reset nodes that use the deleted images
getState().nodes.nodes.forEach((node) => {
if (!isInvocationNode(node)) {
return;
}
forEach(node.data.inputs, (input) => {
if (isImageFieldInputInstance(input) && input.value?.image_name === imageDTO.image_name) {
dispatch(
fieldImageValueChanged({
nodeId: node.data.id,
fieldName: input.name,
value: undefined,
})
);
}
});
});
deleteControlAdapterImages(state, dispatch, imageDTO);
deleteNodesImages(state, dispatch, imageDTO);
deleteControlLayerImages(state, dispatch, imageDTO);
});
} catch {
// no-op

View File

@@ -7,10 +7,16 @@ import {
controlAdapterImageChanged,
controlAdapterIsEnabledChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import {
caLayerImageChanged,
iiLayerImageChanged,
ipaLayerImageChanged,
rgLayerIPAdapterImageChanged,
} from 'features/controlLayers/store/controlLayersSlice';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { imageSelected } from 'features/gallery/store/gallerySlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged, selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { imagesApi } from 'services/api/endpoints/images';
export const dndDropped = createAction<{
@@ -47,18 +53,6 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
return;
}
/**
* Image dropped on initial image
*/
if (
overData.actionType === 'SET_INITIAL_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
dispatch(initialImageChanged(activeData.payload.imageDTO));
return;
}
/**
* Image dropped on ControlNet
*/
@@ -83,6 +77,79 @@ export const addImageDroppedListener = (startAppListening: AppStartListening) =>
return;
}
/**
* Image dropped on Control Adapter Layer
*/
if (
overData.actionType === 'SET_CA_LAYER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { layerId } = overData.context;
dispatch(
caLayerImageChanged({
layerId,
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on IP Adapter Layer
*/
if (
overData.actionType === 'SET_IPA_LAYER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { layerId } = overData.context;
dispatch(
ipaLayerImageChanged({
layerId,
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on RG Layer IP Adapter
*/
if (
overData.actionType === 'SET_RG_LAYER_IP_ADAPTER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { layerId, ipAdapterId } = overData.context;
dispatch(
rgLayerIPAdapterImageChanged({
layerId,
ipAdapterId,
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on II Layer Image
*/
if (
overData.actionType === 'SET_II_LAYER_IMAGE' &&
activeData.payloadType === 'IMAGE_DTO' &&
activeData.payload.imageDTO
) {
const { layerId } = overData.context;
dispatch(
iiLayerImageChanged({
layerId,
imageDTO: activeData.payload.imageDTO,
})
);
return;
}
/**
* Image dropped on Canvas
*/

View File

@@ -14,7 +14,6 @@ export const addImageToDeleteSelectedListener = (startAppListening: AppStartList
const isImageInUse =
imagesUsage.some((i) => i.isCanvasImage) ||
imagesUsage.some((i) => i.isInitialImage) ||
imagesUsage.some((i) => i.isControlImage) ||
imagesUsage.some((i) => i.isNodesImage);

View File

@@ -6,8 +6,14 @@ import {
controlAdapterImageChanged,
controlAdapterIsEnabledChanged,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import {
caLayerImageChanged,
iiLayerImageChanged,
ipaLayerImageChanged,
rgLayerIPAdapterImageChanged,
} from 'features/controlLayers/store/controlLayersSlice';
import { fieldImageValueChanged } from 'features/nodes/store/nodesSlice';
import { initialImageChanged, selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { addToast } from 'features/system/store/systemSlice';
import { t } from 'i18next';
import { omit } from 'lodash-es';
@@ -108,15 +114,48 @@ export const addImageUploadedFulfilledListener = (startAppListening: AppStartLis
return;
}
if (postUploadAction?.type === 'SET_INITIAL_IMAGE') {
dispatch(initialImageChanged(imageDTO));
if (postUploadAction?.type === 'SET_CA_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(caLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setInitialImage'),
description: t('toast.setControlImage'),
})
);
}
if (postUploadAction?.type === 'SET_IPA_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(ipaLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
}
if (postUploadAction?.type === 'SET_RG_LAYER_IP_ADAPTER_IMAGE') {
const { layerId, ipAdapterId } = postUploadAction;
dispatch(rgLayerIPAdapterImageChanged({ layerId, ipAdapterId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
}
if (postUploadAction?.type === 'SET_II_LAYER_IMAGE') {
const { layerId } = postUploadAction;
dispatch(iiLayerImageChanged({ layerId, imageDTO }));
dispatch(
addToast({
...DEFAULT_UPLOADED_TOAST,
description: t('toast.setControlImage'),
})
);
return;
}
if (postUploadAction?.type === 'SET_NODES_IMAGE') {

View File

@@ -1,21 +0,0 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { initialImageSelected } from 'features/parameters/store/actions';
import { initialImageChanged } from 'features/parameters/store/generationSlice';
import { addToast } from 'features/system/store/systemSlice';
import { makeToast } from 'features/system/util/makeToast';
import { t } from 'i18next';
export const addInitialImageSelectedListener = (startAppListening: AppStartListening) => {
startAppListening({
actionCreator: initialImageSelected,
effect: (action, { dispatch }) => {
if (!action.payload) {
dispatch(addToast(makeToast({ title: t('toast.imageNotLoadedDesc'), status: 'error' })));
return;
}
dispatch(initialImageChanged(action.payload));
dispatch(addToast(makeToast(t('toast.sentToImageToImage'))));
},
});
};

View File

@@ -6,9 +6,10 @@ import {
controlAdapterModelCleared,
selectControlAdapterAll,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
import { loraRemoved } from 'features/lora/store/loraSlice';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { heightChanged, modelChanged, vaeSelected, widthChanged } from 'features/parameters/store/generationSlice';
import { modelChanged, vaeSelected } from 'features/parameters/store/generationSlice';
import { zParameterModel, zParameterVAEModel } from 'features/parameters/types/parameterSchemas';
import { getIsSizeOptimal, getOptimalDimension } from 'features/parameters/util/optimalDimension';
import { refinerModelChanged } from 'features/sdxl/store/sdxlSlice';
@@ -69,16 +70,22 @@ const handleMainModels: ModelHandler = (models, state, dispatch, log) => {
dispatch(modelChanged(defaultModelInList, currentModel));
const optimalDimension = getOptimalDimension(defaultModelInList);
if (getIsSizeOptimal(state.generation.width, state.generation.height, optimalDimension)) {
if (
getIsSizeOptimal(
state.controlLayers.present.size.width,
state.controlLayers.present.size.height,
optimalDimension
)
) {
return;
}
const { width, height } = calculateNewSize(
state.generation.aspectRatio.value,
state.controlLayers.present.size.aspectRatio.value,
optimalDimension * optimalDimension
);
dispatch(widthChanged(width));
dispatch(heightChanged(height));
dispatch(widthChanged({ width }));
dispatch(heightChanged({ height }));
return;
}
}

View File

@@ -1,5 +1,6 @@
import { isAnyOf } from '@reduxjs/toolkit';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { positivePromptChanged } from 'features/controlLayers/store/controlLayersSlice';
import {
combinatorialToggled,
isErrorChanged,
@@ -10,11 +11,16 @@ import {
promptsChanged,
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { setPositivePrompt } from 'features/parameters/store/generationSlice';
import { utilitiesApi } from 'services/api/endpoints/utilities';
import { socketConnected } from 'services/events/actions';
const matcher = isAnyOf(setPositivePrompt, combinatorialToggled, maxPromptsChanged, maxPromptsReset, socketConnected);
const matcher = isAnyOf(
positivePromptChanged,
combinatorialToggled,
maxPromptsChanged,
maxPromptsReset,
socketConnected
);
export const addDynamicPromptsListener = (startAppListening: AppStartListening) => {
startAppListening({
@@ -22,7 +28,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
effect: async (action, { dispatch, getState, cancelActiveListeners, delay }) => {
cancelActiveListeners();
const state = getState();
const { positivePrompt } = state.generation;
const { positivePrompt } = state.controlLayers.present;
const { maxPrompts } = state.dynamicPrompts;
if (state.config.disabledFeatures.includes('dynamicPrompting')) {
@@ -32,7 +38,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
const cachedPrompts = utilitiesApi.endpoints.dynamicPrompts.select({
prompt: positivePrompt,
max_prompts: maxPrompts,
})(getState()).data;
})(state).data;
if (cachedPrompts) {
dispatch(promptsChanged(cachedPrompts.prompts));
@@ -40,8 +46,8 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
return;
}
if (!getShouldProcessPrompt(state.generation.positivePrompt)) {
dispatch(promptsChanged([state.generation.positivePrompt]));
if (!getShouldProcessPrompt(positivePrompt)) {
dispatch(promptsChanged([positivePrompt]));
dispatch(parsingErrorChanged(undefined));
dispatch(isErrorChanged(false));
return;

View File

@@ -1,14 +1,13 @@
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
import { setDefaultSettings } from 'features/parameters/store/actions';
import {
heightRecalled,
setCfgRescaleMultiplier,
setCfgScale,
setScheduler,
setSteps,
vaePrecisionChanged,
vaeSelected,
widthRecalled,
} from 'features/parameters/store/generationSlice';
import {
isParameterCFGRescaleMultiplier,
@@ -97,16 +96,16 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
dispatch(setScheduler(scheduler));
}
}
const setSizeOptions = { updateAspectRatio: true, clamp: true };
if (width) {
if (isParameterWidth(width)) {
dispatch(widthRecalled(width));
dispatch(widthChanged({ width, ...setSizeOptions }));
}
}
if (height) {
if (isParameterHeight(height)) {
dispatch(heightRecalled(height));
dispatch(heightChanged({ height, ...setSizeOptions }));
}
}

View File

@@ -2,7 +2,12 @@ import { logger } from 'app/logging/logger';
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
import { parseify } from 'common/util/serialize';
import { addImageToStagingArea } from 'features/canvas/store/canvasSlice';
import { boardIdSelected, galleryViewChanged, imageSelected } from 'features/gallery/store/gallerySlice';
import {
boardIdSelected,
galleryViewChanged,
imageSelected,
isImageViewerOpenChanged,
} from 'features/gallery/store/gallerySlice';
import { IMAGE_CATEGORIES } from 'features/gallery/store/types';
import { isImageOutput } from 'features/nodes/types/common';
import { CANVAS_OUTPUT } from 'features/nodes/util/graph/constants';
@@ -101,6 +106,7 @@ export const addInvocationCompleteEventListener = (startAppListening: AppStartLi
}
dispatch(imageSelected(imageDTO));
dispatch(isImageViewerOpenChanged(true));
}
}
}

View File

@@ -10,6 +10,11 @@ import {
controlAdaptersPersistConfig,
controlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import {
controlLayersPersistConfig,
controlLayersSlice,
controlLayersUndoableConfig,
} from 'features/controlLayers/store/controlLayersSlice';
import { deleteImageModalSlice } from 'features/deleteImageModal/store/slice';
import { dynamicPromptsPersistConfig, dynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { galleryPersistConfig, gallerySlice } from 'features/gallery/store/gallerySlice';
@@ -21,11 +26,6 @@ import { workflowPersistConfig, workflowSlice } from 'features/nodes/store/workf
import { generationPersistConfig, generationSlice } from 'features/parameters/store/generationSlice';
import { postprocessingPersistConfig, postprocessingSlice } from 'features/parameters/store/postprocessingSlice';
import { queueSlice } from 'features/queue/store/queueSlice';
import {
regionalPromptsPersistConfig,
regionalPromptsSlice,
regionalPromptsUndoableConfig,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
import { sdxlPersistConfig, sdxlSlice } from 'features/sdxl/store/sdxlSlice';
import { configSlice } from 'features/system/store/configSlice';
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
@@ -65,7 +65,7 @@ const allReducers = {
[queueSlice.name]: queueSlice.reducer,
[workflowSlice.name]: workflowSlice.reducer,
[hrfSlice.name]: hrfSlice.reducer,
[regionalPromptsSlice.name]: undoable(regionalPromptsSlice.reducer, regionalPromptsUndoableConfig),
[controlLayersSlice.name]: undoable(controlLayersSlice.reducer, controlLayersUndoableConfig),
[api.reducerPath]: api.reducer,
};
@@ -110,7 +110,7 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
[loraPersistConfig.name]: loraPersistConfig,
[modelManagerV2PersistConfig.name]: modelManagerV2PersistConfig,
[hrfPersistConfig.name]: hrfPersistConfig,
[regionalPromptsPersistConfig.name]: regionalPromptsPersistConfig,
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
};
const unserialize: UnserializeFunction = (data, key) => {

View File

@@ -70,6 +70,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
onMouseOver,
onMouseOut,
dataTestId,
...rest
} = props;
const [isHovered, setIsHovered] = useState(false);
@@ -138,6 +139,7 @@ const IAIDndImage = (props: IAIDndImageProps) => {
minH={minSize ? minSize : undefined}
userSelect="none"
cursor={isDragDisabled || !imageDTO ? 'default' : 'pointer'}
{...rest}
>
{imageDTO && (
<Flex

View File

@@ -17,14 +17,10 @@ const accept: Accept = {
const selectPostUploadAction = createMemoizedSelector(activeTabNameSelector, (activeTabName) => {
let postUploadAction: PostUploadAction = { type: 'TOAST' };
if (activeTabName === 'unifiedCanvas') {
if (activeTabName === 'canvas') {
postUploadAction = { type: 'SET_CANVAS_INITIAL_IMAGE' };
}
if (activeTabName === 'img2img') {
postUploadAction = { type: 'SET_INITIAL_IMAGE' };
}
return postUploadAction;
});

View File

@@ -67,7 +67,7 @@ export const useGlobalHotkeys = () => {
useHotkeys(
'1',
() => {
dispatch(setActiveTab('txt2img'));
dispatch(setActiveTab('generation'));
},
[dispatch]
);
@@ -75,7 +75,7 @@ export const useGlobalHotkeys = () => {
useHotkeys(
'2',
() => {
dispatch(setActiveTab('img2img'));
dispatch(setActiveTab('canvas'));
},
[dispatch]
);
@@ -83,31 +83,23 @@ export const useGlobalHotkeys = () => {
useHotkeys(
'3',
() => {
dispatch(setActiveTab('unifiedCanvas'));
dispatch(setActiveTab('workflows'));
},
[dispatch]
);
useHotkeys(
'4',
() => {
dispatch(setActiveTab('nodes'));
},
[dispatch]
);
useHotkeys(
'5',
() => {
if (isModelManagerEnabled) {
dispatch(setActiveTab('modelManager'));
dispatch(setActiveTab('models'));
}
},
[dispatch, isModelManagerEnabled]
);
useHotkeys(
isModelManagerEnabled ? '6' : '5',
isModelManagerEnabled ? '5' : '4',
() => {
dispatch(setActiveTab('queue'));
},

View File

@@ -13,6 +13,7 @@ type UseGroupedModelComboboxArg<T extends AnyModelConfig> = {
onChange: (value: T | null) => void;
getIsDisabled?: (model: T) => boolean;
isLoading?: boolean;
groupByType?: boolean;
};
type UseGroupedModelComboboxReturn = {
@@ -23,17 +24,21 @@ type UseGroupedModelComboboxReturn = {
noOptionsMessage: () => string;
};
const groupByBaseFunc = <T extends AnyModelConfig>(model: T) => model.base.toUpperCase();
const groupByBaseAndTypeFunc = <T extends AnyModelConfig>(model: T) =>
`${model.base.toUpperCase()} / ${model.type.replaceAll('_', ' ').toUpperCase()}`;
export const useGroupedModelCombobox = <T extends AnyModelConfig>(
arg: UseGroupedModelComboboxArg<T>
): UseGroupedModelComboboxReturn => {
const { t } = useTranslation();
const base_model = useAppSelector((s) => s.generation.model?.base ?? 'sdxl');
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading } = arg;
const { modelConfigs, selectedModel, getIsDisabled, onChange, isLoading, groupByType = false } = arg;
const options = useMemo<GroupBase<ComboboxOption>[]>(() => {
if (!modelConfigs) {
return [];
}
const groupedModels = groupBy(modelConfigs, 'base');
const groupedModels = groupBy(modelConfigs, groupByType ? groupByBaseAndTypeFunc : groupByBaseFunc);
const _options = reduce(
groupedModels,
(acc, val, label) => {
@@ -49,9 +54,9 @@ export const useGroupedModelCombobox = <T extends AnyModelConfig>(
},
[] as GroupBase<ComboboxOption>[]
);
_options.sort((a) => (a.label === base_model ? -1 : 1));
_options.sort((a) => (a.label?.split('/')[0]?.toLowerCase().includes(base_model) ? -1 : 1));
return _options;
}, [getIsDisabled, modelConfigs, base_model]);
}, [modelConfigs, groupByType, getIsDisabled, base_model]);
const value = useMemo(
() =>

View File

@@ -5,6 +5,8 @@ import {
selectControlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { isControlNetOrT2IAdapter } from 'features/controlAdapters/store/types';
import { selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import type { Layer } from 'features/controlLayers/store/types';
import { selectDynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { selectNodesSlice } from 'features/nodes/store/nodesSlice';
@@ -13,9 +15,16 @@ import { selectGenerationSlice } from 'features/parameters/store/generationSlice
import { selectSystemSlice } from 'features/system/store/systemSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import i18n from 'i18next';
import { forEach } from 'lodash-es';
import { forEach, upperFirst } from 'lodash-es';
import { getConnectedEdges } from 'reactflow';
const LAYER_TYPE_TO_TKEY: Record<Layer['type'], string> = {
initial_image_layer: 'controlLayers.globalInitialImage',
control_adapter_layer: 'controlLayers.globalControlAdapter',
ip_adapter_layer: 'controlLayers.globalIPAdapter',
regional_guidance_layer: 'controlLayers.regionalGuidance',
};
const selector = createMemoizedSelector(
[
selectControlAdaptersSlice,
@@ -23,28 +32,27 @@ const selector = createMemoizedSelector(
selectSystemSlice,
selectNodesSlice,
selectDynamicPromptsSlice,
selectControlLayersSlice,
activeTabNameSelector,
],
(controlAdapters, generation, system, nodes, dynamicPrompts, activeTabName) => {
const { initialImage, model, positivePrompt } = generation;
(controlAdapters, generation, system, nodes, dynamicPrompts, controlLayers, activeTabName) => {
const { model } = generation;
const { size } = controlLayers.present;
const { positivePrompt } = controlLayers.present;
const { isConnected } = system;
const reasons: string[] = [];
const reasons: { prefix?: string; content: string }[] = [];
// Cannot generate if not connected
if (!isConnected) {
reasons.push(i18n.t('parameters.invoke.systemDisconnected'));
reasons.push({ content: i18n.t('parameters.invoke.systemDisconnected') });
}
if (activeTabName === 'img2img' && !initialImage) {
reasons.push(i18n.t('parameters.invoke.noInitialImageSelected'));
}
if (activeTabName === 'nodes') {
if (activeTabName === 'workflows') {
if (nodes.shouldValidateGraph) {
if (!nodes.nodes.length) {
reasons.push(i18n.t('parameters.invoke.noNodesInGraph'));
reasons.push({ content: i18n.t('parameters.invoke.noNodesInGraph') });
}
nodes.nodes.forEach((node) => {
@@ -56,7 +64,7 @@ const selector = createMemoizedSelector(
if (!nodeTemplate) {
// Node type not found
reasons.push(i18n.t('parameters.invoke.missingNodeTemplate'));
reasons.push({ content: i18n.t('parameters.invoke.missingNodeTemplate') });
return;
}
@@ -69,17 +77,17 @@ const selector = createMemoizedSelector(
);
if (!fieldTemplate) {
reasons.push(i18n.t('parameters.invoke.missingFieldTemplate'));
reasons.push({ content: i18n.t('parameters.invoke.missingFieldTemplate') });
return;
}
if (fieldTemplate.required && field.value === undefined && !hasConnection) {
reasons.push(
i18n.t('parameters.invoke.missingInputForField', {
reasons.push({
content: i18n.t('parameters.invoke.missingInputForField', {
nodeLabel: node.data.label || nodeTemplate.title,
fieldLabel: field.label || fieldTemplate.title,
})
);
}),
});
return;
}
});
@@ -87,44 +95,122 @@ const selector = createMemoizedSelector(
}
} else {
if (dynamicPrompts.prompts.length === 0 && getShouldProcessPrompt(positivePrompt)) {
reasons.push(i18n.t('parameters.invoke.noPrompts'));
reasons.push({ content: i18n.t('parameters.invoke.noPrompts') });
}
if (!model) {
reasons.push(i18n.t('parameters.invoke.noModelSelected'));
reasons.push({ content: i18n.t('parameters.invoke.noModelSelected') });
}
selectControlAdapterAll(controlAdapters).forEach((ca, i) => {
if (!ca.isEnabled) {
return;
}
if (activeTabName === 'generation') {
// Handling for generation tab
controlLayers.present.layers
.filter((l) => l.isEnabled)
.forEach((l, i) => {
const layerLiteral = i18n.t('controlLayers.layers_one');
const layerNumber = i + 1;
const layerType = i18n.t(LAYER_TYPE_TO_TKEY[l.type]);
const prefix = `${layerLiteral} #${layerNumber} (${layerType})`;
const problems: string[] = [];
if (l.type === 'control_adapter_layer') {
// Must have model
if (!l.controlAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoModelSelected'));
}
// Model base must match
if (l.controlAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterIncompatibleBaseModel'));
}
// Must have a control image OR, if it has a processor, it must have a processed image
if (!l.controlAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterNoImageSelected'));
} else if (l.controlAdapter.processorConfig && !l.controlAdapter.processedImage) {
problems.push(i18n.t('parameters.invoke.layer.controlAdapterImageNotProcessed'));
}
// T2I Adapters require images have dimensions that are multiples of 64
if (l.controlAdapter.type === 't2i_adapter' && (size.width % 64 !== 0 || size.height % 64 !== 0)) {
problems.push(i18n.t('parameters.invoke.layer.t2iAdapterIncompatibleDimensions'));
}
}
if (!ca.model) {
reasons.push(
i18n.t('parameters.invoke.noModelForControlAdapter', {
number: i + 1,
})
);
} else if (ca.model.base !== model?.base) {
// This should never happen, just a sanity check
reasons.push(
i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', {
number: i + 1,
})
);
}
if (l.type === 'ip_adapter_layer') {
// Must have model
if (!l.ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (l.ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!l.ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
}
if (
!ca.controlImage ||
(isControlNetOrT2IAdapter(ca) && !ca.processedControlImage && ca.processorType !== 'none')
) {
reasons.push(
i18n.t('parameters.invoke.noControlImageForControlAdapter', {
number: i + 1,
})
);
}
});
if (l.type === 'initial_image_layer') {
// Must have an image
if (!l.image) {
problems.push(i18n.t('parameters.invoke.layer.initialImageNoImageSelected'));
}
}
if (l.type === 'regional_guidance_layer') {
// Must have a region
if (l.maskObjects.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoRegion'));
}
// Must have at least 1 prompt or IP Adapter
if (l.positivePrompt === null && l.negativePrompt === null && l.ipAdapters.length === 0) {
problems.push(i18n.t('parameters.invoke.layer.rgNoPromptsOrIPAdapters'));
}
l.ipAdapters.forEach((ipAdapter) => {
// Must have model
if (!ipAdapter.model) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoModelSelected'));
}
// Model base must match
if (ipAdapter.model?.base !== model?.base) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterIncompatibleBaseModel'));
}
// Must have an image
if (!ipAdapter.image) {
problems.push(i18n.t('parameters.invoke.layer.ipAdapterNoImageSelected'));
}
});
}
if (problems.length) {
const content = upperFirst(problems.join(', '));
reasons.push({ prefix, content });
}
});
} else {
// Handling for all other tabs
selectControlAdapterAll(controlAdapters)
.filter((ca) => ca.isEnabled)
.forEach((ca, i) => {
if (!ca.isEnabled) {
return;
}
if (!ca.model) {
reasons.push({ content: i18n.t('parameters.invoke.noModelForControlAdapter', { number: i + 1 }) });
} else if (ca.model.base !== model?.base) {
// This should never happen, just a sanity check
reasons.push({
content: i18n.t('parameters.invoke.incompatibleBaseModelForControlAdapter', { number: i + 1 }),
});
}
if (
!ca.controlImage ||
(isControlNetOrT2IAdapter(ca) && !ca.processedControlImage && ca.processorType !== 'none')
) {
reasons.push({ content: i18n.t('parameters.invoke.noControlImageForControlAdapter', { number: i + 1 }) });
}
});
}
}
return { isReady: !reasons.length, reasons };
@@ -132,6 +218,6 @@ const selector = createMemoizedSelector(
);
export const useIsReadyToEnqueue = () => {
const { isReady, reasons } = useAppSelector(selector);
return { isReady, reasons };
const value = useAppSelector(selector);
return value;
};

View File

@@ -0,0 +1,3 @@
export const stopPropagation = (e: React.MouseEvent) => {
e.stopPropagation();
};

View File

@@ -21,7 +21,6 @@ import {
setShouldShowBoundingBox,
} from 'features/canvas/store/canvasSlice';
import type { CanvasLayer } from 'features/canvas/store/canvasTypes';
import { LAYER_NAMES_DICT } from 'features/canvas/store/canvasTypes';
import { memo, useCallback, useMemo } from 'react';
import { useHotkeys } from 'react-hotkeys-hook';
import { useTranslation } from 'react-i18next';
@@ -216,13 +215,20 @@ const IAICanvasToolbar = () => {
[dispatch, isMaskEnabled]
);
const value = useMemo(() => LAYER_NAMES_DICT.filter((o) => o.value === layer)[0], [layer]);
const layerOptions = useMemo<{ label: string; value: CanvasLayer }[]>(
() => [
{ label: t('unifiedCanvas.base'), value: 'base' },
{ label: t('unifiedCanvas.mask'), value: 'mask' },
],
[t]
);
const layerValue = useMemo(() => layerOptions.filter((o) => o.value === layer)[0] ?? null, [layer, layerOptions]);
return (
<Flex alignItems="center" gap={2} flexWrap="wrap">
<Tooltip label={`${t('unifiedCanvas.layer')} (Q)`}>
<FormControl isDisabled={isStaging} w="5rem">
<Combobox value={value} options={LAYER_NAMES_DICT} onChange={handleChangeLayer} />
<Combobox value={layerValue} options={layerOptions} onChange={handleChangeLayer} />
</FormControl>
</Tooltip>

View File

@@ -75,7 +75,7 @@ const useInpaintingCanvasHotkeys = () => {
const onKeyDown = useCallback(
(e: KeyboardEvent) => {
if (e.repeat || e.key !== ' ' || isInteractiveTarget(e.target) || activeTabName !== 'unifiedCanvas') {
if (e.repeat || e.key !== ' ' || isInteractiveTarget(e.target) || activeTabName !== 'canvas') {
return;
}
if ($toolStash.get() || $tool.get() === 'move') {
@@ -90,7 +90,7 @@ const useInpaintingCanvasHotkeys = () => {
);
const onKeyUp = useCallback(
(e: KeyboardEvent) => {
if (e.repeat || e.key !== ' ' || isInteractiveTarget(e.target) || activeTabName !== 'unifiedCanvas') {
if (e.repeat || e.key !== ' ' || isInteractiveTarget(e.target) || activeTabName !== 'canvas') {
return;
}
if (!$toolStash.get() || $tool.get() !== 'move') {

View File

@@ -8,6 +8,7 @@ import calculateScale from 'features/canvas/util/calculateScale';
import { STAGE_PADDING_PERCENTAGE } from 'features/canvas/util/constants';
import floorCoordinates from 'features/canvas/util/floorCoordinates';
import getScaledBoundingBoxDimensions from 'features/canvas/util/getScaledBoundingBoxDimensions';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { initialAspectRatioState } from 'features/parameters/components/ImageSize/constants';
import type { AspectRatioState } from 'features/parameters/components/ImageSize/types';
import { modelChanged } from 'features/parameters/store/generationSlice';
@@ -588,8 +589,9 @@ export const canvasSlice = createSlice({
},
extraReducers: (builder) => {
builder.addCase(modelChanged, (state, action) => {
if (action.meta.previousModel?.base === action.payload?.base) {
// The base model hasn't changed, we don't need to optimize the size
const newModel = action.payload;
if (!newModel || action.meta.previousModel?.base === newModel.base) {
// Model was cleared or the base didn't change
return;
}
const optimalDimension = getOptimalDimension(action.payload);
@@ -597,14 +599,8 @@ export const canvasSlice = createSlice({
if (getIsSizeOptimal(width, height, optimalDimension)) {
return;
}
setBoundingBoxDimensionsReducer(
state,
{
width,
height,
},
optimalDimension
);
const newSize = calculateNewSize(state.aspectRatio.value, optimalDimension * optimalDimension);
setBoundingBoxDimensionsReducer(state, newSize, optimalDimension);
});
builder.addCase(socketQueueItemStatusChanged, (state, action) => {

View File

@@ -5,11 +5,6 @@ import { z } from 'zod';
export type CanvasLayer = 'base' | 'mask';
export const LAYER_NAMES_DICT: { label: string; value: CanvasLayer }[] = [
{ label: 'Base', value: 'base' },
{ label: 'Mask', value: 'mask' },
];
const zBoundingBoxScaleMethod = z.enum(['none', 'auto', 'manual']);
export type BoundingBoxScaleMethod = z.infer<typeof zBoundingBoxScaleMethod>;
export const isBoundingBoxScaleMethod = (v: unknown): v is BoundingBoxScaleMethod =>

View File

@@ -76,7 +76,7 @@ const ControlAdapterConfig = (props: { id: string; number: number }) => {
<Box minW={0} w="full" transitionProperty="common" transitionDuration="0.1s">
<ParamControlAdapterModel id={id} />
</Box>
{activeTabName === 'unifiedCanvas' && <ControlNetCanvasImageImports id={id} />}
{activeTabName === 'canvas' && <ControlNetCanvasImageImports id={id} />}
<IconButton
size="sm"
tooltip={t('controlnet.duplicate')}

View File

@@ -13,9 +13,10 @@ import {
controlAdapterImageChanged,
selectControlAdaptersSlice,
} from 'features/controlAdapters/store/controlAdaptersSlice';
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
import type { TypesafeDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { heightChanged, selectOptimalDimension, widthChanged } from 'features/parameters/store/generationSlice';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback, useEffect, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
@@ -92,15 +93,16 @@ const ControlAdapterImagePreview = ({ isSmall, id }: Props) => {
return;
}
if (activeTabName === 'unifiedCanvas') {
if (activeTabName === 'canvas') {
dispatch(setBoundingBoxDimensions({ width: controlImage.width, height: controlImage.height }, optimalDimension));
} else {
const options = { updateAspectRatio: true, clamp: true };
const { width, height } = calculateNewSize(
controlImage.width / controlImage.height,
optimalDimension * optimalDimension
);
dispatch(widthChanged(width));
dispatch(heightChanged(height));
dispatch(widthChanged({ width, ...options }));
dispatch(heightChanged({ height, ...options }));
}
}, [controlImage, activeTabName, dispatch, optimalDimension]);

View File

@@ -52,7 +52,7 @@ const ParamControlAdapterIPMethod = ({ id }: Props) => {
return (
<FormControl>
<InformationalPopover feature="ipAdapterMethod">
<InformationalPopover feature="controlNetResizeMode">
<FormLabel>{t('controlnet.ipAdapterMethod')}</FormLabel>
</InformationalPopover>
<Combobox value={value} options={options} isDisabled={!isEnabled} onChange={handleIPMethodChanged} />

View File

@@ -1,12 +1,11 @@
import type { PayloadAction, Update } from '@reduxjs/toolkit';
import { createEntityAdapter, createSlice, isAnyOf } from '@reduxjs/toolkit';
import { createEntityAdapter, createSlice } from '@reduxjs/toolkit';
import { getSelectorsOptions } from 'app/store/createMemoizedSelector';
import type { PersistConfig, RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { buildControlAdapter } from 'features/controlAdapters/util/buildControlAdapter';
import { buildControlAdapterProcessor } from 'features/controlAdapters/util/buildControlAdapterProcessor';
import { zModelIdentifierField } from 'features/nodes/types/common';
import { maskLayerIPAdapterAdded } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { merge, uniq } from 'lodash-es';
import type { ControlNetModelConfig, IPAdapterModelConfig, T2IAdapterModelConfig } from 'services/api/types';
import { socketInvocationError } from 'services/events/actions';
@@ -383,10 +382,6 @@ export const controlAdaptersSlice = createSlice({
builder.addCase(socketInvocationError, (state) => {
state.pendingControlImages = [];
});
builder.addCase(maskLayerIPAdapterAdded, (state, action) => {
caAdapter.addOne(state, buildControlAdapter(action.meta.uuid, 'ip_adapter'));
});
},
});
@@ -417,8 +412,6 @@ export const {
t2iAdaptersReset,
} = controlAdaptersSlice.actions;
export const isAnyControlAdapterAdded = isAnyOf(controlAdapterAdded, controlAdapterRecalled);
export const selectControlAdaptersSlice = (state: RootState) => state.controlAdapters;
/* eslint-disable-next-line @typescript-eslint/no-explicit-any */

View File

@@ -0,0 +1,47 @@
import { Button, Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useAddCALayer, useAddIILayer, useAddIPALayer } from 'features/controlLayers/hooks/addLayerHooks';
import { rgLayerAdded } from 'features/controlLayers/store/controlLayersSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
export const AddLayerButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const [addCALayer, isAddCALayerDisabled] = useAddCALayer();
const [addIPALayer, isAddIPALayerDisabled] = useAddIPALayer();
const [addIILayer, isAddIILayerDisabled] = useAddIILayer();
const addRGLayer = useCallback(() => {
dispatch(rgLayerAdded());
}, [dispatch]);
return (
<Menu>
<MenuButton
as={Button}
leftIcon={<PiPlusBold />}
variant="ghost"
data-testid="control-layers-add-layer-menu-button"
>
{t('controlLayers.addLayer')}
</MenuButton>
<MenuList>
<MenuItem icon={<PiPlusBold />} onClick={addRGLayer}>
{t('controlLayers.regionalGuidanceLayer')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addCALayer} isDisabled={isAddCALayerDisabled}>
{t('controlLayers.globalControlAdapterLayer')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addIPALayer} isDisabled={isAddIPALayerDisabled}>
{t('controlLayers.globalIPAdapterLayer')}
</MenuItem>
<MenuItem icon={<PiPlusBold />} onClick={addIILayer} isDisabled={isAddIILayerDisabled}>
{t('controlLayers.globalInitialImageLayer')}
</MenuItem>
</MenuList>
</Menu>
);
});
AddLayerButton.displayName = 'AddLayerButton';

View File

@@ -1,13 +1,13 @@
import { Button, Flex } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAddIPAdapterToIPALayer } from 'features/controlLayers/hooks/addLayerHooks';
import {
isVectorMaskLayer,
maskLayerIPAdapterAdded,
maskLayerNegativePromptChanged,
maskLayerPositivePromptChanged,
selectRegionalPromptsSlice,
} from 'features/regionalPrompts/store/regionalPromptsSlice';
isRegionalGuidanceLayer,
rgLayerNegativePromptChanged,
rgLayerPositivePromptChanged,
selectControlLayersSlice,
} from 'features/controlLayers/store/controlLayersSlice';
import { useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusBold } from 'react-icons/pi';
@@ -19,11 +19,12 @@ type AddPromptButtonProps = {
export const AddPromptButtons = ({ layerId }: AddPromptButtonProps) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const [addIPAdapter, isAddIPAdapterDisabled] = useAddIPAdapterToIPALayer(layerId);
const selectValidActions = useMemo(
() =>
createMemoizedSelector(selectRegionalPromptsSlice, (regionalPrompts) => {
const layer = regionalPrompts.present.layers.find((l) => l.id === layerId);
assert(isVectorMaskLayer(layer), `Layer ${layerId} not found or not an RP layer`);
createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
const layer = controlLayers.present.layers.find((l) => l.id === layerId);
assert(isRegionalGuidanceLayer(layer), `Layer ${layerId} not found or not an RP layer`);
return {
canAddPositivePrompt: layer.positivePrompt === null,
canAddNegativePrompt: layer.negativePrompt === null,
@@ -33,13 +34,10 @@ export const AddPromptButtons = ({ layerId }: AddPromptButtonProps) => {
);
const validActions = useAppSelector(selectValidActions);
const addPositivePrompt = useCallback(() => {
dispatch(maskLayerPositivePromptChanged({ layerId, prompt: '' }));
dispatch(rgLayerPositivePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addNegativePrompt = useCallback(() => {
dispatch(maskLayerNegativePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
const addIPAdapter = useCallback(() => {
dispatch(maskLayerIPAdapterAdded(layerId));
dispatch(rgLayerNegativePromptChanged({ layerId, prompt: '' }));
}, [dispatch, layerId]);
return (
@@ -62,7 +60,13 @@ export const AddPromptButtons = ({ layerId }: AddPromptButtonProps) => {
>
{t('common.negativePrompt')}
</Button>
<Button size="sm" variant="ghost" leftIcon={<PiPlusBold />} onClick={addIPAdapter}>
<Button
size="sm"
variant="ghost"
leftIcon={<PiPlusBold />}
onClick={addIPAdapter}
isDisabled={isAddIPAdapterDisabled}
>
{t('common.ipAdapter')}
</Button>
</Flex>

View File

@@ -10,7 +10,7 @@ import {
PopoverTrigger,
} from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { brushSizeChanged, initialRegionalPromptsState } from 'features/regionalPrompts/store/regionalPromptsSlice';
import { brushSizeChanged, initialControlLayersState } from 'features/controlLayers/store/controlLayersSlice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -20,22 +20,22 @@ const formatPx = (v: number | string) => `${v} px`;
export const BrushSize = memo(() => {
const dispatch = useAppDispatch();
const { t } = useTranslation();
const brushSize = useAppSelector((s) => s.regionalPrompts.present.brushSize);
const brushSize = useAppSelector((s) => s.controlLayers.present.brushSize);
const onChange = useCallback(
(v: number) => {
dispatch(brushSizeChanged(v));
dispatch(brushSizeChanged(Math.round(v)));
},
[dispatch]
);
return (
<FormControl w="min-content">
<FormLabel m={0}>{t('regionalPrompts.brushSize')}</FormLabel>
<FormLabel m={0}>{t('controlLayers.brushSize')}</FormLabel>
<Popover isLazy>
<PopoverTrigger>
<CompositeNumberInput
min={1}
max={600}
defaultValue={initialRegionalPromptsState.brushSize}
defaultValue={initialControlLayersState.brushSize}
value={brushSize}
onChange={onChange}
w={24}
@@ -48,7 +48,7 @@ export const BrushSize = memo(() => {
<CompositeSlider
min={1}
max={300}
defaultValue={initialRegionalPromptsState.brushSize}
defaultValue={initialControlLayersState.brushSize}
value={brushSize}
onChange={onChange}
marks={marks}

View File

@@ -0,0 +1,45 @@
import { Flex, Spacer, useDisclosure } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { CALayerControlAdapterWrapper } from 'features/controlLayers/components/CALayer/CALayerControlAdapterWrapper';
import { LayerDeleteButton } from 'features/controlLayers/components/LayerCommon/LayerDeleteButton';
import { LayerMenu } from 'features/controlLayers/components/LayerCommon/LayerMenu';
import { LayerTitle } from 'features/controlLayers/components/LayerCommon/LayerTitle';
import { LayerVisibilityToggle } from 'features/controlLayers/components/LayerCommon/LayerVisibilityToggle';
import { LayerWrapper } from 'features/controlLayers/components/LayerCommon/LayerWrapper';
import { layerSelected, selectCALayerOrThrow } from 'features/controlLayers/store/controlLayersSlice';
import { memo, useCallback } from 'react';
import CALayerOpacity from './CALayerOpacity';
type Props = {
layerId: string;
};
export const CALayer = memo(({ layerId }: Props) => {
const dispatch = useAppDispatch();
const isSelected = useAppSelector((s) => selectCALayerOrThrow(s.controlLayers.present, layerId).isSelected);
const onClick = useCallback(() => {
dispatch(layerSelected(layerId));
}, [dispatch, layerId]);
const { isOpen, onToggle } = useDisclosure({ defaultIsOpen: true });
return (
<LayerWrapper onClick={onClick} borderColor={isSelected ? 'base.400' : 'base.800'}>
<Flex gap={3} alignItems="center" p={3} cursor="pointer" onDoubleClick={onToggle}>
<LayerVisibilityToggle layerId={layerId} />
<LayerTitle type="control_adapter_layer" />
<Spacer />
<CALayerOpacity layerId={layerId} />
<LayerMenu layerId={layerId} />
<LayerDeleteButton layerId={layerId} />
</Flex>
{isOpen && (
<Flex flexDir="column" gap={3} px={3} pb={3}>
<CALayerControlAdapterWrapper layerId={layerId} />
</Flex>
)}
</LayerWrapper>
);
});
CALayer.displayName = 'CALayer';

View File

@@ -0,0 +1,121 @@
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { ControlAdapter } from 'features/controlLayers/components/ControlAndIPAdapter/ControlAdapter';
import {
caLayerControlModeChanged,
caLayerImageChanged,
caLayerModelChanged,
caLayerProcessorConfigChanged,
caOrIPALayerBeginEndStepPctChanged,
caOrIPALayerWeightChanged,
selectCALayerOrThrow,
} from 'features/controlLayers/store/controlLayersSlice';
import type { ControlModeV2, ProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import type { CALayerImageDropData } from 'features/dnd/types';
import { memo, useCallback, useMemo } from 'react';
import type {
CALayerImagePostUploadAction,
ControlNetModelConfig,
ImageDTO,
T2IAdapterModelConfig,
} from 'services/api/types';
type Props = {
layerId: string;
};
export const CALayerControlAdapterWrapper = memo(({ layerId }: Props) => {
const dispatch = useAppDispatch();
const controlAdapter = useAppSelector((s) => selectCALayerOrThrow(s.controlLayers.present, layerId).controlAdapter);
const onChangeBeginEndStepPct = useCallback(
(beginEndStepPct: [number, number]) => {
dispatch(
caOrIPALayerBeginEndStepPctChanged({
layerId,
beginEndStepPct,
})
);
},
[dispatch, layerId]
);
const onChangeControlMode = useCallback(
(controlMode: ControlModeV2) => {
dispatch(
caLayerControlModeChanged({
layerId,
controlMode,
})
);
},
[dispatch, layerId]
);
const onChangeWeight = useCallback(
(weight: number) => {
dispatch(caOrIPALayerWeightChanged({ layerId, weight }));
},
[dispatch, layerId]
);
const onChangeProcessorConfig = useCallback(
(processorConfig: ProcessorConfig | null) => {
dispatch(caLayerProcessorConfigChanged({ layerId, processorConfig }));
},
[dispatch, layerId]
);
const onChangeModel = useCallback(
(modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => {
dispatch(
caLayerModelChanged({
layerId,
modelConfig,
})
);
},
[dispatch, layerId]
);
const onChangeImage = useCallback(
(imageDTO: ImageDTO | null) => {
dispatch(caLayerImageChanged({ layerId, imageDTO }));
},
[dispatch, layerId]
);
const droppableData = useMemo<CALayerImageDropData>(
() => ({
actionType: 'SET_CA_LAYER_IMAGE',
context: {
layerId,
},
id: layerId,
}),
[layerId]
);
const postUploadAction = useMemo<CALayerImagePostUploadAction>(
() => ({
layerId,
type: 'SET_CA_LAYER_IMAGE',
}),
[layerId]
);
return (
<ControlAdapter
controlAdapter={controlAdapter}
onChangeBeginEndStepPct={onChangeBeginEndStepPct}
onChangeControlMode={onChangeControlMode}
onChangeWeight={onChangeWeight}
onChangeProcessorConfig={onChangeProcessorConfig}
onChangeModel={onChangeModel}
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
/>
);
});
CALayerControlAdapterWrapper.displayName = 'CALayerControlAdapterWrapper';

View File

@@ -0,0 +1,98 @@
import {
CompositeNumberInput,
CompositeSlider,
Flex,
FormControl,
FormLabel,
IconButton,
Popover,
PopoverArrow,
PopoverBody,
PopoverContent,
PopoverTrigger,
Switch,
} from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { stopPropagation } from 'common/util/stopPropagation';
import { useLayerOpacity } from 'features/controlLayers/hooks/layerStateHooks';
import { caLayerIsFilterEnabledChanged, caLayerOpacityChanged } from 'features/controlLayers/store/controlLayersSlice';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiDropHalfFill } from 'react-icons/pi';
type Props = {
layerId: string;
};
const marks = [0, 25, 50, 75, 100];
const formatPct = (v: number | string) => `${v} %`;
const CALayerOpacity = ({ layerId }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { opacity, isFilterEnabled } = useLayerOpacity(layerId);
const onChangeOpacity = useCallback(
(v: number) => {
dispatch(caLayerOpacityChanged({ layerId, opacity: v / 100 }));
},
[dispatch, layerId]
);
const onChangeFilter = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
dispatch(caLayerIsFilterEnabledChanged({ layerId, isFilterEnabled: e.target.checked }));
},
[dispatch, layerId]
);
return (
<Popover isLazy>
<PopoverTrigger>
<IconButton
aria-label={t('controlLayers.opacity')}
size="sm"
icon={<PiDropHalfFill size={16} />}
variant="ghost"
onDoubleClick={stopPropagation}
/>
</PopoverTrigger>
<PopoverContent onDoubleClick={stopPropagation}>
<PopoverArrow />
<PopoverBody>
<Flex direction="column" gap={2}>
<FormControl orientation="horizontal" w="full">
<FormLabel m={0} flexGrow={1} cursor="pointer">
{t('controlLayers.opacityFilter')}
</FormLabel>
<Switch isChecked={isFilterEnabled} onChange={onChangeFilter} />
</FormControl>
<FormControl orientation="horizontal">
<FormLabel m={0}>{t('controlLayers.opacity')}</FormLabel>
<CompositeSlider
min={0}
max={100}
step={1}
value={opacity}
defaultValue={100}
onChange={onChangeOpacity}
marks={marks}
w={48}
/>
<CompositeNumberInput
min={0}
max={100}
step={1}
value={opacity}
defaultValue={100}
onChange={onChangeOpacity}
w={24}
format={formatPct}
/>
</FormControl>
</Flex>
</PopoverBody>
</PopoverContent>
</Popover>
);
};
export default memo(CALayerOpacity);

View File

@@ -0,0 +1,117 @@
import { Box, Divider, Flex, Icon, IconButton } from '@invoke-ai/ui-library';
import { ControlAdapterModelCombobox } from 'features/controlLayers/components/ControlAndIPAdapter/ControlAdapterModelCombobox';
import type {
ControlModeV2,
ControlNetConfigV2,
ProcessorConfig,
T2IAdapterConfigV2,
} from 'features/controlLayers/util/controlAdapters';
import type { TypesafeDroppableData } from 'features/dnd/types';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiCaretUpBold } from 'react-icons/pi';
import { useToggle } from 'react-use';
import type { ControlNetModelConfig, ImageDTO, PostUploadAction, T2IAdapterModelConfig } from 'services/api/types';
import { ControlAdapterBeginEndStepPct } from './ControlAdapterBeginEndStepPct';
import { ControlAdapterControlModeSelect } from './ControlAdapterControlModeSelect';
import { ControlAdapterImagePreview } from './ControlAdapterImagePreview';
import { ControlAdapterProcessorConfig } from './ControlAdapterProcessorConfig';
import { ControlAdapterProcessorTypeSelect } from './ControlAdapterProcessorTypeSelect';
import { ControlAdapterWeight } from './ControlAdapterWeight';
type Props = {
controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2;
onChangeBeginEndStepPct: (beginEndStepPct: [number, number]) => void;
onChangeControlMode: (controlMode: ControlModeV2) => void;
onChangeWeight: (weight: number) => void;
onChangeProcessorConfig: (processorConfig: ProcessorConfig | null) => void;
onChangeModel: (modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => void;
onChangeImage: (imageDTO: ImageDTO | null) => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
export const ControlAdapter = memo(
({
controlAdapter,
onChangeBeginEndStepPct,
onChangeControlMode,
onChangeWeight,
onChangeProcessorConfig,
onChangeModel,
onChangeImage,
droppableData,
postUploadAction,
}: Props) => {
const { t } = useTranslation();
const [isExpanded, toggleIsExpanded] = useToggle(false);
return (
<Flex flexDir="column" gap={3} position="relative" w="full">
<Flex gap={3} alignItems="center" w="full">
<Box minW={0} w="full" transitionProperty="common" transitionDuration="0.1s">
<ControlAdapterModelCombobox modelKey={controlAdapter.model?.key ?? null} onChange={onChangeModel} />
</Box>
<IconButton
size="sm"
tooltip={isExpanded ? t('controlnet.hideAdvanced') : t('controlnet.showAdvanced')}
aria-label={isExpanded ? t('controlnet.hideAdvanced') : t('controlnet.showAdvanced')}
onClick={toggleIsExpanded}
variant="ghost"
icon={
<Icon
boxSize={4}
as={PiCaretUpBold}
transform={isExpanded ? 'rotate(0deg)' : 'rotate(180deg)'}
transitionProperty="common"
transitionDuration="normal"
/>
}
/>
</Flex>
<Flex gap={3} w="full">
<Flex flexDir="column" gap={3} w="full" h="full">
{controlAdapter.type === 'controlnet' && (
<ControlAdapterControlModeSelect
controlMode={controlAdapter.controlMode}
onChange={onChangeControlMode}
/>
)}
<ControlAdapterWeight weight={controlAdapter.weight} onChange={onChangeWeight} />
<ControlAdapterBeginEndStepPct
beginEndStepPct={controlAdapter.beginEndStepPct}
onChange={onChangeBeginEndStepPct}
/>
</Flex>
<Flex alignItems="center" justifyContent="center" h={36} w={36} aspectRatio="1/1">
<ControlAdapterImagePreview
controlAdapter={controlAdapter}
onChangeImage={onChangeImage}
droppableData={droppableData}
postUploadAction={postUploadAction}
/>
</Flex>
</Flex>
{isExpanded && (
<>
<Divider />
<Flex flexDir="column" gap={3} w="full">
<ControlAdapterProcessorTypeSelect
config={controlAdapter.processorConfig}
onChange={onChangeProcessorConfig}
/>
<ControlAdapterProcessorConfig
config={controlAdapter.processorConfig}
onChange={onChangeProcessorConfig}
/>
</Flex>
</>
)}
</Flex>
);
}
);
ControlAdapter.displayName = 'ControlAdapter';

View File

@@ -0,0 +1,43 @@
import { CompositeRangeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
beginEndStepPct: [number, number];
onChange: (beginEndStepPct: [number, number]) => void;
};
const formatPct = (v: number) => `${Math.round(v * 100)}%`;
const ariaLabel = ['Begin Step %', 'End Step %'];
export const ControlAdapterBeginEndStepPct = memo(({ beginEndStepPct, onChange }: Props) => {
const { t } = useTranslation();
const onReset = useCallback(() => {
onChange([0, 1]);
}, [onChange]);
return (
<FormControl orientation="horizontal">
<InformationalPopover feature="controlNetBeginEnd">
<FormLabel m={0}>{t('controlnet.beginEndStepPercentShort')}</FormLabel>
</InformationalPopover>
<CompositeRangeSlider
aria-label={ariaLabel}
value={beginEndStepPct}
onChange={onChange}
onReset={onReset}
min={0}
max={1}
step={0.05}
fineStep={0.01}
minStepsBetweenThumbs={1}
formatValue={formatPct}
marks
withThumbTooltip
/>
</FormControl>
);
});
ControlAdapterBeginEndStepPct.displayName = 'ControlAdapterBeginEndStepPct';

View File

@@ -0,0 +1,60 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import type { ControlModeV2 } from 'features/controlLayers/util/controlAdapters';
import { isControlModeV2 } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
type Props = {
controlMode: ControlModeV2;
onChange: (controlMode: ControlModeV2) => void;
};
export const ControlAdapterControlModeSelect = memo(({ controlMode, onChange }: Props) => {
const { t } = useTranslation();
const CONTROL_MODE_DATA = useMemo(
() => [
{ label: t('controlnet.balanced'), value: 'balanced' },
{ label: t('controlnet.prompt'), value: 'more_prompt' },
{ label: t('controlnet.control'), value: 'more_control' },
{ label: t('controlnet.megaControl'), value: 'unbalanced' },
],
[t]
);
const handleControlModeChange = useCallback<ComboboxOnChange>(
(v) => {
assert(isControlModeV2(v?.value));
onChange(v.value);
},
[onChange]
);
const value = useMemo(
() => CONTROL_MODE_DATA.filter((o) => o.value === controlMode)[0],
[CONTROL_MODE_DATA, controlMode]
);
if (!controlMode) {
return null;
}
return (
<FormControl>
<InformationalPopover feature="controlNetControlMode">
<FormLabel m={0}>{t('controlnet.control')}</FormLabel>
</InformationalPopover>
<Combobox
value={value}
options={CONTROL_MODE_DATA}
onChange={handleControlModeChange}
isClearable={false}
isSearchable={false}
/>
</FormControl>
);
});
ControlAdapterControlModeSelect.displayName = 'ControlAdapterControlModeSelect';

View File

@@ -0,0 +1,217 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Box, Flex, Spinner, useShiftModifier } from '@invoke-ai/ui-library';
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDndImage from 'common/components/IAIDndImage';
import IAIDndImageIcon from 'common/components/IAIDndImageIcon';
import { setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
import type { ControlNetConfigV2, T2IAdapterConfigV2 } from 'features/controlLayers/util/controlAdapters';
import type { ImageDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback, useEffect, useMemo, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowCounterClockwiseBold, PiFloppyDiskBold, PiRulerBold } from 'react-icons/pi';
import {
useAddImageToBoardMutation,
useChangeImageIsIntermediateMutation,
useGetImageDTOQuery,
useRemoveImageFromBoardMutation,
} from 'services/api/endpoints/images';
import type { ImageDTO, PostUploadAction } from 'services/api/types';
type Props = {
controlAdapter: ControlNetConfigV2 | T2IAdapterConfigV2;
onChangeImage: (imageDTO: ImageDTO | null) => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
export const ControlAdapterImagePreview = memo(
({ controlAdapter, onChangeImage, droppableData, postUploadAction }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const autoAddBoardId = useAppSelector((s) => s.gallery.autoAddBoardId);
const isConnected = useAppSelector((s) => s.system.isConnected);
const activeTabName = useAppSelector(activeTabNameSelector);
const optimalDimension = useAppSelector(selectOptimalDimension);
const shift = useShiftModifier();
const [isMouseOverImage, setIsMouseOverImage] = useState(false);
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(
controlAdapter.image?.name ?? skipToken
);
const { currentData: processedControlImage, isError: isErrorProcessedControlImage } = useGetImageDTOQuery(
controlAdapter.processedImage?.name ?? skipToken
);
const [changeIsIntermediate] = useChangeImageIsIntermediateMutation();
const [addToBoard] = useAddImageToBoardMutation();
const [removeFromBoard] = useRemoveImageFromBoardMutation();
const handleResetControlImage = useCallback(() => {
onChangeImage(null);
}, [onChangeImage]);
const handleSaveControlImage = useCallback(async () => {
if (!processedControlImage) {
return;
}
await changeIsIntermediate({
imageDTO: processedControlImage,
is_intermediate: false,
}).unwrap();
if (autoAddBoardId !== 'none') {
addToBoard({
imageDTO: processedControlImage,
board_id: autoAddBoardId,
});
} else {
removeFromBoard({ imageDTO: processedControlImage });
}
}, [processedControlImage, changeIsIntermediate, autoAddBoardId, addToBoard, removeFromBoard]);
const handleSetControlImageToDimensions = useCallback(() => {
if (!controlImage) {
return;
}
if (activeTabName === 'canvas') {
dispatch(
setBoundingBoxDimensions({ width: controlImage.width, height: controlImage.height }, optimalDimension)
);
} else {
const options = { updateAspectRatio: true, clamp: true };
if (shift) {
const { width, height } = controlImage;
dispatch(widthChanged({ width, ...options }));
dispatch(heightChanged({ height, ...options }));
} else {
const { width, height } = calculateNewSize(
controlImage.width / controlImage.height,
optimalDimension * optimalDimension
);
dispatch(widthChanged({ width, ...options }));
dispatch(heightChanged({ height, ...options }));
}
}
}, [controlImage, activeTabName, dispatch, optimalDimension, shift]);
const handleMouseEnter = useCallback(() => {
setIsMouseOverImage(true);
}, []);
const handleMouseLeave = useCallback(() => {
setIsMouseOverImage(false);
}, []);
const draggableData = useMemo<ImageDraggableData | undefined>(() => {
if (controlImage) {
return {
id: controlAdapter.id,
payloadType: 'IMAGE_DTO',
payload: { imageDTO: controlImage },
};
}
}, [controlImage, controlAdapter.id]);
const shouldShowProcessedImage =
controlImage &&
processedControlImage &&
!isMouseOverImage &&
!controlAdapter.processorPendingBatchId &&
controlAdapter.processorConfig !== null;
useEffect(() => {
if (isConnected && (isErrorControlImage || isErrorProcessedControlImage)) {
handleResetControlImage();
}
}, [handleResetControlImage, isConnected, isErrorControlImage, isErrorProcessedControlImage]);
return (
<Flex
onMouseEnter={handleMouseEnter}
onMouseLeave={handleMouseLeave}
position="relative"
w="full"
h={36}
alignItems="center"
justifyContent="center"
>
<IAIDndImage
draggableData={draggableData}
droppableData={droppableData}
imageDTO={controlImage}
isDropDisabled={shouldShowProcessedImage}
postUploadAction={postUploadAction}
/>
<Box
position="absolute"
top={0}
insetInlineStart={0}
w="full"
h="full"
opacity={shouldShowProcessedImage ? 1 : 0}
transitionProperty="common"
transitionDuration="normal"
pointerEvents="none"
>
<IAIDndImage
draggableData={draggableData}
droppableData={droppableData}
imageDTO={processedControlImage}
isUploadDisabled={true}
/>
</Box>
<>
<IAIDndImageIcon
onClick={handleResetControlImage}
icon={controlImage ? <PiArrowCounterClockwiseBold size={16} /> : undefined}
tooltip={t('controlnet.resetControlImage')}
/>
<IAIDndImageIcon
onClick={handleSaveControlImage}
icon={controlImage ? <PiFloppyDiskBold size={16} /> : undefined}
tooltip={t('controlnet.saveControlImage')}
styleOverrides={saveControlImageStyleOverrides}
/>
<IAIDndImageIcon
onClick={handleSetControlImageToDimensions}
icon={controlImage ? <PiRulerBold size={16} /> : undefined}
tooltip={shift ? t('controlnet.setControlImageDimensionsForce') : t('controlnet.setControlImageDimensions')}
styleOverrides={setControlImageDimensionsStyleOverrides}
/>
</>
{controlAdapter.processorPendingBatchId !== null && (
<Flex
position="absolute"
top={0}
insetInlineStart={0}
w="full"
h="full"
alignItems="center"
justifyContent="center"
opacity={0.8}
borderRadius="base"
bg="base.900"
>
<Spinner size="xl" color="base.400" />
</Flex>
)}
</Flex>
);
}
);
ControlAdapterImagePreview.displayName = 'ControlAdapterImagePreview';
const saveControlImageStyleOverrides: SystemStyleObject = { mt: 6 };
const setControlImageDimensionsStyleOverrides: SystemStyleObject = { mt: 12 };

View File

@@ -0,0 +1,63 @@
import { Combobox, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useControlNetAndT2IAdapterModels } from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, ControlNetModelConfig, T2IAdapterModelConfig } from 'services/api/types';
type Props = {
modelKey: string | null;
onChange: (modelConfig: ControlNetModelConfig | T2IAdapterModelConfig) => void;
};
export const ControlAdapterModelCombobox = memo(({ modelKey, onChange: onChangeModel }: Props) => {
const { t } = useTranslation();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const [modelConfigs, { isLoading }] = useControlNetAndT2IAdapterModels();
const selectedModel = useMemo(() => modelConfigs.find((m) => m.key === modelKey), [modelConfigs, modelKey]);
const _onChange = useCallback(
(modelConfig: ControlNetModelConfig | T2IAdapterModelConfig | null) => {
if (!modelConfig) {
return;
}
onChangeModel(modelConfig);
},
[onChangeModel]
);
const getIsDisabled = useCallback(
(model: AnyModelConfig): boolean => {
const isCompatible = currentBaseModel === model.base;
const hasMainModel = Boolean(currentBaseModel);
return !hasMainModel || !isCompatible;
},
[currentBaseModel]
);
const { options, value, onChange, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChange,
selectedModel,
getIsDisabled,
isLoading,
groupByType: true,
});
return (
<Tooltip label={selectedModel?.description}>
<FormControl isInvalid={!value || currentBaseModel !== selectedModel?.base} w="full">
<Combobox
options={options}
placeholder={t('controlnet.selectModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
);
});
ControlAdapterModelCombobox.displayName = 'ControlAdapterModelCombobox';

View File

@@ -0,0 +1,85 @@
import type { ProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { memo } from 'react';
import { CannyProcessor } from './processors/CannyProcessor';
import { ColorMapProcessor } from './processors/ColorMapProcessor';
import { ContentShuffleProcessor } from './processors/ContentShuffleProcessor';
import { DepthAnythingProcessor } from './processors/DepthAnythingProcessor';
import { DWOpenposeProcessor } from './processors/DWOpenposeProcessor';
import { HedProcessor } from './processors/HedProcessor';
import { LineartProcessor } from './processors/LineartProcessor';
import { MediapipeFaceProcessor } from './processors/MediapipeFaceProcessor';
import { MidasDepthProcessor } from './processors/MidasDepthProcessor';
import { MlsdImageProcessor } from './processors/MlsdImageProcessor';
import { PidiProcessor } from './processors/PidiProcessor';
type Props = {
config: ProcessorConfig | null;
onChange: (config: ProcessorConfig | null) => void;
};
export const ControlAdapterProcessorConfig = memo(({ config, onChange }: Props) => {
if (!config) {
return null;
}
if (config.type === 'canny_image_processor') {
return <CannyProcessor onChange={onChange} config={config} />;
}
if (config.type === 'color_map_image_processor') {
return <ColorMapProcessor onChange={onChange} config={config} />;
}
if (config.type === 'depth_anything_image_processor') {
return <DepthAnythingProcessor onChange={onChange} config={config} />;
}
if (config.type === 'hed_image_processor') {
return <HedProcessor onChange={onChange} config={config} />;
}
if (config.type === 'lineart_image_processor') {
return <LineartProcessor onChange={onChange} config={config} />;
}
if (config.type === 'content_shuffle_image_processor') {
return <ContentShuffleProcessor onChange={onChange} config={config} />;
}
if (config.type === 'lineart_anime_image_processor') {
// No configurable options for this processor
return null;
}
if (config.type === 'mediapipe_face_processor') {
return <MediapipeFaceProcessor onChange={onChange} config={config} />;
}
if (config.type === 'midas_depth_image_processor') {
return <MidasDepthProcessor onChange={onChange} config={config} />;
}
if (config.type === 'mlsd_image_processor') {
return <MlsdImageProcessor onChange={onChange} config={config} />;
}
if (config.type === 'normalbae_image_processor') {
// No configurable options for this processor
return null;
}
if (config.type === 'dw_openpose_image_processor') {
return <DWOpenposeProcessor onChange={onChange} config={config} />;
}
if (config.type === 'pidi_image_processor') {
return <PidiProcessor onChange={onChange} config={config} />;
}
if (config.type === 'zoe_depth_image_processor') {
return null;
}
});
ControlAdapterProcessorConfig.displayName = 'ControlAdapterProcessorConfig';

View File

@@ -0,0 +1,70 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, Flex, FormControl, FormLabel, IconButton } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import type { ProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA, isProcessorTypeV2 } from 'features/controlLayers/util/controlAdapters';
import { configSelector } from 'features/system/store/configSelectors';
import { includes, map } from 'lodash-es';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiXBold } from 'react-icons/pi';
import { assert } from 'tsafe';
type Props = {
config: ProcessorConfig | null;
onChange: (config: ProcessorConfig | null) => void;
};
const selectDisabledProcessors = createMemoizedSelector(
configSelector,
(config) => config.sd.disabledControlNetProcessors
);
export const ControlAdapterProcessorTypeSelect = memo(({ config, onChange }: Props) => {
const { t } = useTranslation();
const disabledProcessors = useAppSelector(selectDisabledProcessors);
const options = useMemo(() => {
return map(CA_PROCESSOR_DATA, ({ labelTKey }, type) => ({ value: type, label: t(labelTKey) })).filter(
(o) => !includes(disabledProcessors, o.value)
);
}, [disabledProcessors, t]);
const _onChange = useCallback<ComboboxOnChange>(
(v) => {
if (!v) {
onChange(null);
} else {
assert(isProcessorTypeV2(v.value));
onChange(CA_PROCESSOR_DATA[v.value].buildDefaults());
}
},
[onChange]
);
const clearProcessor = useCallback(() => {
onChange(null);
}, [onChange]);
const value = useMemo(() => options.find((o) => o.value === config?.type) ?? null, [options, config?.type]);
return (
<Flex gap={2}>
<FormControl>
<InformationalPopover feature="controlNetProcessor">
<FormLabel m={0}>{t('controlnet.processor')}</FormLabel>
</InformationalPopover>
<Combobox value={value} options={options} onChange={_onChange} isSearchable={false} isClearable={false} />
</FormControl>
<IconButton
aria-label={t('controlLayers.clearProcessor')}
onClick={clearProcessor}
isDisabled={!config}
icon={<PiXBold />}
variant="ghost"
size="sm"
/>
</Flex>
);
});
ControlAdapterProcessorTypeSelect.displayName = 'ControlAdapterProcessorTypeSelect';

View File

@@ -0,0 +1,55 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
type Props = {
weight: number;
onChange: (weight: number) => void;
};
const formatValue = (v: number) => v.toFixed(2);
const marks = [0, 1, 2];
export const ControlAdapterWeight = memo(({ weight, onChange }: Props) => {
const { t } = useTranslation();
const initial = useAppSelector((s) => s.config.sd.ca.weight.initial);
const sliderMin = useAppSelector((s) => s.config.sd.ca.weight.sliderMin);
const sliderMax = useAppSelector((s) => s.config.sd.ca.weight.sliderMax);
const numberInputMin = useAppSelector((s) => s.config.sd.ca.weight.numberInputMin);
const numberInputMax = useAppSelector((s) => s.config.sd.ca.weight.numberInputMax);
const coarseStep = useAppSelector((s) => s.config.sd.ca.weight.coarseStep);
const fineStep = useAppSelector((s) => s.config.sd.ca.weight.fineStep);
return (
<FormControl orientation="horizontal">
<InformationalPopover feature="controlNetWeight">
<FormLabel m={0}>{t('controlnet.weight')}</FormLabel>
</InformationalPopover>
<CompositeSlider
value={weight}
onChange={onChange}
defaultValue={initial}
min={sliderMin}
max={sliderMax}
step={coarseStep}
fineStep={fineStep}
marks={marks}
formatValue={formatValue}
/>
<CompositeNumberInput
value={weight}
onChange={onChange}
min={numberInputMin}
max={numberInputMax}
step={coarseStep}
fineStep={fineStep}
maxW={20}
defaultValue={initial}
/>
</FormControl>
);
});
ControlAdapterWeight.displayName = 'ControlAdapterWeight';

View File

@@ -0,0 +1,72 @@
import { Box, Flex } from '@invoke-ai/ui-library';
import { ControlAdapterBeginEndStepPct } from 'features/controlLayers/components/ControlAndIPAdapter/ControlAdapterBeginEndStepPct';
import { ControlAdapterWeight } from 'features/controlLayers/components/ControlAndIPAdapter/ControlAdapterWeight';
import { IPAdapterImagePreview } from 'features/controlLayers/components/ControlAndIPAdapter/IPAdapterImagePreview';
import { IPAdapterMethod } from 'features/controlLayers/components/ControlAndIPAdapter/IPAdapterMethod';
import { IPAdapterModelSelect } from 'features/controlLayers/components/ControlAndIPAdapter/IPAdapterModelSelect';
import type { CLIPVisionModelV2, IPAdapterConfigV2, IPMethodV2 } from 'features/controlLayers/util/controlAdapters';
import type { TypesafeDroppableData } from 'features/dnd/types';
import { memo } from 'react';
import type { ImageDTO, IPAdapterModelConfig, PostUploadAction } from 'services/api/types';
type Props = {
ipAdapter: IPAdapterConfigV2;
onChangeBeginEndStepPct: (beginEndStepPct: [number, number]) => void;
onChangeWeight: (weight: number) => void;
onChangeIPMethod: (method: IPMethodV2) => void;
onChangeModel: (modelConfig: IPAdapterModelConfig) => void;
onChangeCLIPVisionModel: (clipVisionModel: CLIPVisionModelV2) => void;
onChangeImage: (imageDTO: ImageDTO | null) => void;
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
export const IPAdapter = memo(
({
ipAdapter,
onChangeBeginEndStepPct,
onChangeWeight,
onChangeIPMethod,
onChangeModel,
onChangeCLIPVisionModel,
onChangeImage,
droppableData,
postUploadAction,
}: Props) => {
return (
<Flex flexDir="column" gap={4} position="relative" w="full">
<Flex gap={3} alignItems="center" w="full">
<Box minW={0} w="full" transitionProperty="common" transitionDuration="0.1s">
<IPAdapterModelSelect
modelKey={ipAdapter.model?.key ?? null}
onChangeModel={onChangeModel}
clipVisionModel={ipAdapter.clipVisionModel}
onChangeCLIPVisionModel={onChangeCLIPVisionModel}
/>
</Box>
</Flex>
<Flex gap={4} w="full" alignItems="center">
<Flex flexDir="column" gap={3} w="full">
<IPAdapterMethod method={ipAdapter.method} onChange={onChangeIPMethod} />
<ControlAdapterWeight weight={ipAdapter.weight} onChange={onChangeWeight} />
<ControlAdapterBeginEndStepPct
beginEndStepPct={ipAdapter.beginEndStepPct}
onChange={onChangeBeginEndStepPct}
/>
</Flex>
<Flex alignItems="center" justifyContent="center" h={36} w={36} aspectRatio="1/1">
<IPAdapterImagePreview
image={ipAdapter.image}
onChangeImage={onChangeImage}
ipAdapterId={ipAdapter.id}
droppableData={droppableData}
postUploadAction={postUploadAction}
/>
</Flex>
</Flex>
</Flex>
);
}
);
IPAdapter.displayName = 'IPAdapter';

View File

@@ -0,0 +1,113 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Flex, useShiftModifier } from '@invoke-ai/ui-library';
import { skipToken } from '@reduxjs/toolkit/query';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import IAIDndImage from 'common/components/IAIDndImage';
import IAIDndImageIcon from 'common/components/IAIDndImageIcon';
import { setBoundingBoxDimensions } from 'features/canvas/store/canvasSlice';
import { heightChanged, widthChanged } from 'features/controlLayers/store/controlLayersSlice';
import type { ImageWithDims } from 'features/controlLayers/util/controlAdapters';
import type { ImageDraggableData, TypesafeDroppableData } from 'features/dnd/types';
import { calculateNewSize } from 'features/parameters/components/ImageSize/calculateNewSize';
import { selectOptimalDimension } from 'features/parameters/store/generationSlice';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo, useCallback, useEffect, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowCounterClockwiseBold, PiRulerBold } from 'react-icons/pi';
import { useGetImageDTOQuery } from 'services/api/endpoints/images';
import type { ImageDTO, PostUploadAction } from 'services/api/types';
type Props = {
image: ImageWithDims | null;
onChangeImage: (imageDTO: ImageDTO | null) => void;
ipAdapterId: string; // required for the dnd/upload interactions
droppableData: TypesafeDroppableData;
postUploadAction: PostUploadAction;
};
export const IPAdapterImagePreview = memo(
({ image, onChangeImage, ipAdapterId, droppableData, postUploadAction }: Props) => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const isConnected = useAppSelector((s) => s.system.isConnected);
const activeTabName = useAppSelector(activeTabNameSelector);
const optimalDimension = useAppSelector(selectOptimalDimension);
const shift = useShiftModifier();
const { currentData: controlImage, isError: isErrorControlImage } = useGetImageDTOQuery(image?.name ?? skipToken);
const handleResetControlImage = useCallback(() => {
onChangeImage(null);
}, [onChangeImage]);
const handleSetControlImageToDimensions = useCallback(() => {
if (!controlImage) {
return;
}
if (activeTabName === 'canvas') {
dispatch(
setBoundingBoxDimensions({ width: controlImage.width, height: controlImage.height }, optimalDimension)
);
} else {
const options = { updateAspectRatio: true, clamp: true };
if (shift) {
const { width, height } = controlImage;
dispatch(widthChanged({ width, ...options }));
dispatch(heightChanged({ height, ...options }));
} else {
const { width, height } = calculateNewSize(
controlImage.width / controlImage.height,
optimalDimension * optimalDimension
);
dispatch(widthChanged({ width, ...options }));
dispatch(heightChanged({ height, ...options }));
}
}
}, [controlImage, activeTabName, dispatch, optimalDimension, shift]);
const draggableData = useMemo<ImageDraggableData | undefined>(() => {
if (controlImage) {
return {
id: ipAdapterId,
payloadType: 'IMAGE_DTO',
payload: { imageDTO: controlImage },
};
}
}, [controlImage, ipAdapterId]);
useEffect(() => {
if (isConnected && isErrorControlImage) {
handleResetControlImage();
}
}, [handleResetControlImage, isConnected, isErrorControlImage]);
return (
<Flex position="relative" w="full" h={36} alignItems="center" justifyContent="center">
<IAIDndImage
draggableData={draggableData}
droppableData={droppableData}
imageDTO={controlImage}
postUploadAction={postUploadAction}
/>
<>
<IAIDndImageIcon
onClick={handleResetControlImage}
icon={controlImage ? <PiArrowCounterClockwiseBold size={16} /> : undefined}
tooltip={t('controlnet.resetControlImage')}
/>
<IAIDndImageIcon
onClick={handleSetControlImageToDimensions}
icon={controlImage ? <PiRulerBold size={16} /> : undefined}
tooltip={shift ? t('controlnet.setControlImageDimensionsForce') : t('controlnet.setControlImageDimensions')}
styleOverrides={setControlImageDimensionsStyleOverrides}
/>
</>
</Flex>
);
}
);
IPAdapterImagePreview.displayName = 'IPAdapterImagePreview';
const setControlImageDimensionsStyleOverrides: SystemStyleObject = { mt: 6 };

View File

@@ -0,0 +1,44 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import type { IPMethodV2 } from 'features/controlLayers/util/controlAdapters';
import { isIPMethodV2 } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { assert } from 'tsafe';
type Props = {
method: IPMethodV2;
onChange: (method: IPMethodV2) => void;
};
export const IPAdapterMethod = memo(({ method, onChange }: Props) => {
const { t } = useTranslation();
const options: { label: string; value: IPMethodV2 }[] = useMemo(
() => [
{ label: t('controlnet.full'), value: 'full' },
{ label: `${t('controlnet.style')} (${t('common.beta')})`, value: 'style' },
{ label: `${t('controlnet.composition')} (${t('common.beta')})`, value: 'composition' },
],
[t]
);
const _onChange = useCallback<ComboboxOnChange>(
(v) => {
assert(isIPMethodV2(v?.value));
onChange(v.value);
},
[onChange]
);
const value = useMemo(() => options.find((o) => o.value === method), [options, method]);
return (
<FormControl>
<InformationalPopover feature="ipAdapterMethod">
<FormLabel>{t('controlnet.ipAdapterMethod')}</FormLabel>
</InformationalPopover>
<Combobox value={value} options={options} onChange={_onChange} />
</FormControl>
);
});
IPAdapterMethod.displayName = 'IPAdapterMethod';

View File

@@ -0,0 +1,100 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
import type { CLIPVisionModelV2 } from 'features/controlLayers/util/controlAdapters';
import { isCLIPVisionModelV2 } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { useIPAdapterModels } from 'services/api/hooks/modelsByType';
import type { AnyModelConfig, IPAdapterModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
const CLIP_VISION_OPTIONS = [
{ label: 'ViT-H', value: 'ViT-H' },
{ label: 'ViT-G', value: 'ViT-G' },
];
type Props = {
modelKey: string | null;
onChangeModel: (modelConfig: IPAdapterModelConfig) => void;
clipVisionModel: CLIPVisionModelV2;
onChangeCLIPVisionModel: (clipVisionModel: CLIPVisionModelV2) => void;
};
export const IPAdapterModelSelect = memo(
({ modelKey, onChangeModel, clipVisionModel, onChangeCLIPVisionModel }: Props) => {
const { t } = useTranslation();
const currentBaseModel = useAppSelector((s) => s.generation.model?.base);
const [modelConfigs, { isLoading }] = useIPAdapterModels();
const selectedModel = useMemo(() => modelConfigs.find((m) => m.key === modelKey), [modelConfigs, modelKey]);
const _onChangeModel = useCallback(
(modelConfig: IPAdapterModelConfig | null) => {
if (!modelConfig) {
return;
}
onChangeModel(modelConfig);
},
[onChangeModel]
);
const _onChangeCLIPVisionModel = useCallback<ComboboxOnChange>(
(v) => {
assert(isCLIPVisionModelV2(v?.value));
onChangeCLIPVisionModel(v.value);
},
[onChangeCLIPVisionModel]
);
const getIsDisabled = useCallback(
(model: AnyModelConfig): boolean => {
const isCompatible = currentBaseModel === model.base;
const hasMainModel = Boolean(currentBaseModel);
return !hasMainModel || !isCompatible;
},
[currentBaseModel]
);
const { options, value, onChange, noOptionsMessage } = useGroupedModelCombobox({
modelConfigs,
onChange: _onChangeModel,
selectedModel,
getIsDisabled,
isLoading,
});
const clipVisionModelValue = useMemo(
() => CLIP_VISION_OPTIONS.find((o) => o.value === clipVisionModel),
[clipVisionModel]
);
return (
<Flex gap={4}>
<Tooltip label={selectedModel?.description}>
<FormControl isInvalid={!value || currentBaseModel !== selectedModel?.base} w="full">
<Combobox
options={options}
placeholder={t('controlnet.selectModel')}
value={value}
onChange={onChange}
noOptionsMessage={noOptionsMessage}
/>
</FormControl>
</Tooltip>
{selectedModel?.format === 'checkpoint' && (
<FormControl isInvalid={!value || currentBaseModel !== selectedModel?.base} width="max-content" minWidth={28}>
<Combobox
options={CLIP_VISION_OPTIONS}
placeholder={t('controlnet.selectCLIPVisionModel')}
value={clipVisionModelValue}
onChange={_onChangeCLIPVisionModel}
/>
</FormControl>
)}
</Flex>
);
}
);
IPAdapterModelSelect.displayName = 'IPAdapterModelSelect';

View File

@@ -0,0 +1,67 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import { CA_PROCESSOR_DATA, type CannyProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<CannyProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['canny_image_processor'].buildDefaults();
export const CannyProcessor = ({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleLowThresholdChanged = useCallback(
(v: number) => {
onChange({ ...config, low_threshold: v });
},
[onChange, config]
);
const handleHighThresholdChanged = useCallback(
(v: number) => {
onChange({ ...config, high_threshold: v });
},
[onChange, config]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.lowThreshold')}</FormLabel>
<CompositeSlider
value={config.low_threshold}
onChange={handleLowThresholdChanged}
defaultValue={DEFAULTS.low_threshold}
min={0}
max={255}
/>
<CompositeNumberInput
value={config.low_threshold}
onChange={handleLowThresholdChanged}
defaultValue={DEFAULTS.low_threshold}
min={0}
max={255}
/>
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.highThreshold')}</FormLabel>
<CompositeSlider
value={config.high_threshold}
onChange={handleHighThresholdChanged}
defaultValue={DEFAULTS.high_threshold}
min={0}
max={255}
/>
<CompositeNumberInput
value={config.high_threshold}
onChange={handleHighThresholdChanged}
defaultValue={DEFAULTS.high_threshold}
min={0}
max={255}
/>
</FormControl>
</ProcessorWrapper>
);
};
CannyProcessor.displayName = 'CannyProcessor';

View File

@@ -0,0 +1,47 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import { CA_PROCESSOR_DATA, type ColorMapProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<ColorMapProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['color_map_image_processor'].buildDefaults();
export const ColorMapProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleColorMapTileSizeChanged = useCallback(
(v: number) => {
onChange({ ...config, color_map_tile_size: v });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.colorMapTileSize')}</FormLabel>
<CompositeSlider
value={config.color_map_tile_size}
defaultValue={DEFAULTS.color_map_tile_size}
onChange={handleColorMapTileSizeChanged}
min={1}
max={256}
step={1}
marks
/>
<CompositeNumberInput
value={config.color_map_tile_size}
defaultValue={DEFAULTS.color_map_tile_size}
onChange={handleColorMapTileSizeChanged}
min={1}
max={4096}
step={1}
/>
</FormControl>
</ProcessorWrapper>
);
});
ColorMapProcessor.displayName = 'ColorMapProcessor';

View File

@@ -0,0 +1,79 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { ContentShuffleProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<ContentShuffleProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['content_shuffle_image_processor'].buildDefaults();
export const ContentShuffleProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleWChanged = useCallback(
(v: number) => {
onChange({ ...config, w: v });
},
[config, onChange]
);
const handleHChanged = useCallback(
(v: number) => {
onChange({ ...config, h: v });
},
[config, onChange]
);
const handleFChanged = useCallback(
(v: number) => {
onChange({ ...config, f: v });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.w')}</FormLabel>
<CompositeSlider
value={config.w}
defaultValue={DEFAULTS.w}
onChange={handleWChanged}
min={0}
max={4096}
marks
/>
<CompositeNumberInput value={config.w} defaultValue={DEFAULTS.w} onChange={handleWChanged} min={0} max={4096} />
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.h')}</FormLabel>
<CompositeSlider
value={config.h}
defaultValue={DEFAULTS.h}
onChange={handleHChanged}
min={0}
max={4096}
marks
/>
<CompositeNumberInput value={config.h} defaultValue={DEFAULTS.h} onChange={handleHChanged} min={0} max={4096} />
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.f')}</FormLabel>
<CompositeSlider
value={config.f}
defaultValue={DEFAULTS.f}
onChange={handleFChanged}
min={0}
max={4096}
marks
/>
<CompositeNumberInput value={config.f} defaultValue={DEFAULTS.f} onChange={handleFChanged} min={0} max={4096} />
</FormControl>
</ProcessorWrapper>
);
});
ContentShuffleProcessor.displayName = 'ContentShuffleProcessor';

View File

@@ -0,0 +1,62 @@
import { Flex, FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { DWOpenposeProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<DWOpenposeProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['dw_openpose_image_processor'].buildDefaults();
export const DWOpenposeProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleDrawBodyChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, draw_body: e.target.checked });
},
[config, onChange]
);
const handleDrawFaceChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, draw_face: e.target.checked });
},
[config, onChange]
);
const handleDrawHandsChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, draw_hands: e.target.checked });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<Flex sx={{ flexDir: 'row', gap: 6 }}>
<FormControl w="max-content">
<FormLabel m={0}>{t('controlnet.body')}</FormLabel>
<Switch defaultChecked={DEFAULTS.draw_body} isChecked={config.draw_body} onChange={handleDrawBodyChanged} />
</FormControl>
<FormControl w="max-content">
<FormLabel m={0}>{t('controlnet.face')}</FormLabel>
<Switch defaultChecked={DEFAULTS.draw_face} isChecked={config.draw_face} onChange={handleDrawFaceChanged} />
</FormControl>
<FormControl w="max-content">
<FormLabel m={0}>{t('controlnet.hands')}</FormLabel>
<Switch
defaultChecked={DEFAULTS.draw_hands}
isChecked={config.draw_hands}
onChange={handleDrawHandsChanged}
/>
</FormControl>
</Flex>
</ProcessorWrapper>
);
});
DWOpenposeProcessor.displayName = 'DWOpenposeProcessor';

View File

@@ -0,0 +1,46 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { DepthAnythingModelSize, DepthAnythingProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { isDepthAnythingModelSize } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<DepthAnythingProcessorConfig>;
export const DepthAnythingProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleModelSizeChange = useCallback<ComboboxOnChange>(
(v) => {
if (!isDepthAnythingModelSize(v?.value)) {
return;
}
onChange({ ...config, model_size: v.value });
},
[config, onChange]
);
const options: { label: string; value: DepthAnythingModelSize }[] = useMemo(
() => [
{ label: t('controlnet.small'), value: 'small' },
{ label: t('controlnet.base'), value: 'base' },
{ label: t('controlnet.large'), value: 'large' },
],
[t]
);
const value = useMemo(() => options.filter((o) => o.value === config.model_size)[0], [options, config.model_size]);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.modelSize')}</FormLabel>
<Combobox value={value} options={options} onChange={handleModelSizeChange} isSearchable={false} />
</FormControl>
</ProcessorWrapper>
);
});
DepthAnythingProcessor.displayName = 'DepthAnythingProcessor';

View File

@@ -0,0 +1,32 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { HedProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<HedProcessorConfig>;
export const HedProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleScribbleChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, scribble: e.target.checked });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.scribble')}</FormLabel>
<Switch isChecked={config.scribble} onChange={handleScribbleChanged} />
</FormControl>
</ProcessorWrapper>
);
});
HedProcessor.displayName = 'HedProcessor';

View File

@@ -0,0 +1,32 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { LineartProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import type { ChangeEvent } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<LineartProcessorConfig>;
export const LineartProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleCoarseChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, coarse: e.target.checked });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.coarse')}</FormLabel>
<Switch isChecked={config.coarse} onChange={handleCoarseChanged} />
</FormControl>
</ProcessorWrapper>
);
});
LineartProcessor.displayName = 'LineartProcessor';

View File

@@ -0,0 +1,73 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import { CA_PROCESSOR_DATA, type MediapipeFaceProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<MediapipeFaceProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['mediapipe_face_processor'].buildDefaults();
export const MediapipeFaceProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleMaxFacesChanged = useCallback(
(v: number) => {
onChange({ ...config, max_faces: v });
},
[config, onChange]
);
const handleMinConfidenceChanged = useCallback(
(v: number) => {
onChange({ ...config, min_confidence: v });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.maxFaces')}</FormLabel>
<CompositeSlider
value={config.max_faces}
onChange={handleMaxFacesChanged}
defaultValue={DEFAULTS.max_faces}
min={1}
max={20}
marks
/>
<CompositeNumberInput
value={config.max_faces}
onChange={handleMaxFacesChanged}
defaultValue={DEFAULTS.max_faces}
min={1}
max={20}
/>
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.minConfidence')}</FormLabel>
<CompositeSlider
value={config.min_confidence}
onChange={handleMinConfidenceChanged}
defaultValue={DEFAULTS.min_confidence}
min={0}
max={1}
step={0.01}
marks
/>
<CompositeNumberInput
value={config.min_confidence}
onChange={handleMinConfidenceChanged}
defaultValue={DEFAULTS.min_confidence}
min={0}
max={1}
step={0.01}
/>
</FormControl>
</ProcessorWrapper>
);
});
MediapipeFaceProcessor.displayName = 'MediapipeFaceProcessor';

View File

@@ -0,0 +1,76 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { MidasDepthProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<MidasDepthProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['midas_depth_image_processor'].buildDefaults();
export const MidasDepthProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleAMultChanged = useCallback(
(v: number) => {
onChange({ ...config, a_mult: v });
},
[config, onChange]
);
const handleBgThChanged = useCallback(
(v: number) => {
onChange({ ...config, bg_th: v });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.amult')}</FormLabel>
<CompositeSlider
value={config.a_mult}
onChange={handleAMultChanged}
defaultValue={DEFAULTS.a_mult}
min={0}
max={20}
step={0.01}
marks
/>
<CompositeNumberInput
value={config.a_mult}
onChange={handleAMultChanged}
defaultValue={DEFAULTS.a_mult}
min={0}
max={20}
step={0.01}
/>
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.bgth')}</FormLabel>
<CompositeSlider
value={config.bg_th}
onChange={handleBgThChanged}
defaultValue={DEFAULTS.bg_th}
min={0}
max={20}
step={0.01}
marks
/>
<CompositeNumberInput
value={config.bg_th}
onChange={handleBgThChanged}
defaultValue={DEFAULTS.bg_th}
min={0}
max={20}
step={0.01}
/>
</FormControl>
</ProcessorWrapper>
);
});
MidasDepthProcessor.displayName = 'MidasDepthProcessor';

View File

@@ -0,0 +1,76 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { MlsdProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import { CA_PROCESSOR_DATA } from 'features/controlLayers/util/controlAdapters';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<MlsdProcessorConfig>;
const DEFAULTS = CA_PROCESSOR_DATA['mlsd_image_processor'].buildDefaults();
export const MlsdImageProcessor = memo(({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleThrDChanged = useCallback(
(v: number) => {
onChange({ ...config, thr_d: v });
},
[config, onChange]
);
const handleThrVChanged = useCallback(
(v: number) => {
onChange({ ...config, thr_v: v });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.w')} </FormLabel>
<CompositeSlider
value={config.thr_d}
onChange={handleThrDChanged}
defaultValue={DEFAULTS.thr_d}
min={0}
max={1}
step={0.01}
marks
/>
<CompositeNumberInput
value={config.thr_d}
onChange={handleThrDChanged}
defaultValue={DEFAULTS.thr_d}
min={0}
max={1}
step={0.01}
/>
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.h')} </FormLabel>
<CompositeSlider
value={config.thr_v}
onChange={handleThrVChanged}
defaultValue={DEFAULTS.thr_v}
min={0}
max={1}
step={0.01}
marks
/>
<CompositeNumberInput
value={config.thr_v}
onChange={handleThrVChanged}
defaultValue={DEFAULTS.thr_v}
min={0}
max={1}
step={0.01}
/>
</FormControl>
</ProcessorWrapper>
);
});
MlsdImageProcessor.displayName = 'MlsdImageProcessor';

View File

@@ -0,0 +1,43 @@
import { FormControl, FormLabel, Switch } from '@invoke-ai/ui-library';
import type { ProcessorComponentProps } from 'features/controlLayers/components/ControlAndIPAdapter/processors/types';
import type { PidiProcessorConfig } from 'features/controlLayers/util/controlAdapters';
import type { ChangeEvent } from 'react';
import { useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import ProcessorWrapper from './ProcessorWrapper';
type Props = ProcessorComponentProps<PidiProcessorConfig>;
export const PidiProcessor = ({ onChange, config }: Props) => {
const { t } = useTranslation();
const handleScribbleChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, scribble: e.target.checked });
},
[config, onChange]
);
const handleSafeChanged = useCallback(
(e: ChangeEvent<HTMLInputElement>) => {
onChange({ ...config, safe: e.target.checked });
},
[config, onChange]
);
return (
<ProcessorWrapper>
<FormControl>
<FormLabel m={0}>{t('controlnet.scribble')}</FormLabel>
<Switch isChecked={config.scribble} onChange={handleScribbleChanged} />
</FormControl>
<FormControl>
<FormLabel m={0}>{t('controlnet.safe')}</FormLabel>
<Switch isChecked={config.safe} onChange={handleSafeChanged} />
</FormControl>
</ProcessorWrapper>
);
};
PidiProcessor.displayName = 'PidiProcessor';

View File

@@ -0,0 +1,15 @@
import { Flex } from '@invoke-ai/ui-library';
import type { PropsWithChildren } from 'react';
import { memo } from 'react';
type Props = PropsWithChildren;
const ProcessorWrapper = (props: Props) => {
return (
<Flex flexDir="column" gap={3}>
{props.children}
</Flex>
);
};
export default memo(ProcessorWrapper);

View File

@@ -0,0 +1,6 @@
import type { ProcessorConfig } from 'features/controlLayers/util/controlAdapters';
export type ProcessorComponentProps<T extends ProcessorConfig> = {
onChange: (config: T) => void;
config: T;
};

View File

@@ -0,0 +1,24 @@
import { Flex } from '@invoke-ai/ui-library';
import type { Meta, StoryObj } from '@storybook/react';
import { ControlLayersEditor } from 'features/controlLayers/components/ControlLayersEditor';
const meta: Meta<typeof ControlLayersEditor> = {
title: 'Feature/ControlLayers',
tags: ['autodocs'],
component: ControlLayersEditor,
};
export default meta;
type Story = StoryObj<typeof ControlLayersEditor>;
const Component = () => {
return (
<Flex w={1500} h={1500}>
<ControlLayersEditor />
</Flex>
);
};
export const Default: Story = {
render: Component,
};

View File

@@ -1,10 +1,10 @@
/* eslint-disable i18next/no-literal-string */
import { Flex } from '@invoke-ai/ui-library';
import { RegionalPromptsToolbar } from 'features/regionalPrompts/components/RegionalPromptsToolbar';
import { StageComponent } from 'features/regionalPrompts/components/StageComponent';
import { ControlLayersToolbar } from 'features/controlLayers/components/ControlLayersToolbar';
import { StageComponent } from 'features/controlLayers/components/StageComponent';
import { memo } from 'react';
export const RegionalPromptsEditor = memo(() => {
export const ControlLayersEditor = memo(() => {
return (
<Flex
position="relative"
@@ -15,10 +15,10 @@ export const RegionalPromptsEditor = memo(() => {
alignItems="center"
justifyContent="center"
>
<RegionalPromptsToolbar />
<ControlLayersToolbar />
<StageComponent />
</Flex>
);
});
RegionalPromptsEditor.displayName = 'RegionalPromptsEditor';
ControlLayersEditor.displayName = 'ControlLayersEditor';

View File

@@ -0,0 +1,69 @@
/* eslint-disable i18next/no-literal-string */
import { Flex } from '@invoke-ai/ui-library';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import { useAppSelector } from 'app/store/storeHooks';
import { IAINoContentFallback } from 'common/components/IAIImageFallback';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { AddLayerButton } from 'features/controlLayers/components/AddLayerButton';
import { CALayer } from 'features/controlLayers/components/CALayer/CALayer';
import { DeleteAllLayersButton } from 'features/controlLayers/components/DeleteAllLayersButton';
import { IILayer } from 'features/controlLayers/components/IILayer/IILayer';
import { IPALayer } from 'features/controlLayers/components/IPALayer/IPALayer';
import { RGLayer } from 'features/controlLayers/components/RGLayer/RGLayer';
import { isRenderableLayer, selectControlLayersSlice } from 'features/controlLayers/store/controlLayersSlice';
import type { Layer } from 'features/controlLayers/store/types';
import { partition } from 'lodash-es';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
const selectLayerIdTypePairs = createMemoizedSelector(selectControlLayersSlice, (controlLayers) => {
const [renderableLayers, ipAdapterLayers] = partition(controlLayers.present.layers, isRenderableLayer);
return [...ipAdapterLayers, ...renderableLayers].map((l) => ({ id: l.id, type: l.type })).reverse();
});
export const ControlLayersPanelContent = memo(() => {
const { t } = useTranslation();
const layerIdTypePairs = useAppSelector(selectLayerIdTypePairs);
return (
<Flex flexDir="column" gap={2} w="full" h="full">
<Flex justifyContent="space-around">
<AddLayerButton />
<DeleteAllLayersButton />
</Flex>
{layerIdTypePairs.length > 0 && (
<ScrollableContent>
<Flex flexDir="column" gap={2} data-testid="control-layers-layer-list">
{layerIdTypePairs.map(({ id, type }) => (
<LayerWrapper key={id} id={id} type={type} />
))}
</Flex>
</ScrollableContent>
)}
{layerIdTypePairs.length === 0 && <IAINoContentFallback icon={null} label={t('controlLayers.noLayersAdded')} />}
</Flex>
);
});
ControlLayersPanelContent.displayName = 'ControlLayersPanelContent';
type LayerWrapperProps = {
id: string;
type: Layer['type'];
};
const LayerWrapper = memo(({ id, type }: LayerWrapperProps) => {
if (type === 'regional_guidance_layer') {
return <RGLayer key={id} layerId={id} />;
}
if (type === 'control_adapter_layer') {
return <CALayer key={id} layerId={id} />;
}
if (type === 'ip_adapter_layer') {
return <IPALayer key={id} layerId={id} />;
}
if (type === 'initial_image_layer') {
return <IILayer key={id} layerId={id} />;
}
});
LayerWrapper.displayName = 'LayerWrapper';

Some files were not shown because too many files have changed in this diff Show More