Compare commits

..

2 Commits

Author SHA1 Message Date
psychedelicious
0d78e0e370 chore: bump version to v4.2.7post1 2024-08-05 08:41:27 +10:00
psychedelicious
13875f35f0 build: exclude matplotlib 3.9.1
There was a problem w/ this release on windows and the builds were pulled from pypi. When installing invoke on windows, pip attempts to build from source, but most (all?) systems won't have the prerequisites for this and installs fail.

This also affects GH actions.

The simple fix is to exclude version 3.9.1 from our deps.

For more information, see https://github.com/matplotlib/matplotlib/issues/28551
2024-08-05 08:41:27 +10:00
176 changed files with 21079 additions and 25952 deletions

View File

@@ -62,7 +62,7 @@ jobs:
- name: install ruff
if: ${{ steps.changed-files.outputs.python_any_changed == 'true' || inputs.always_run == true }}
run: pip install ruff==0.6.0
run: pip install ruff
shell: bash
- name: ruff check

View File

@@ -17,7 +17,7 @@
set -eu
# Ensure we're in the correct folder in case user's CWD is somewhere else
scriptdir=$(dirname $(readlink -f "$0"))
scriptdir=$(dirname "$0")
cd "$scriptdir"
. .venv/bin/activate

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
from logging import Logger
import torch
@@ -32,8 +31,6 @@ from invokeai.app.services.session_processor.session_processor_default import (
)
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.app.services.style_preset_images.style_preset_images_disk import StylePresetImageFileStorageDisk
from invokeai.app.services.style_preset_records.style_preset_records_sqlite import SqliteStylePresetRecordsStorage
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
@@ -66,12 +63,7 @@ class ApiDependencies:
invoker: Invoker
@staticmethod
def initialize(
config: InvokeAIAppConfig,
event_handler_id: int,
loop: asyncio.AbstractEventLoop,
logger: Logger = logger,
) -> None:
def initialize(config: InvokeAIAppConfig, event_handler_id: int, logger: Logger = logger) -> None:
logger.info(f"InvokeAI version {__version__}")
logger.info(f"Root directory = {str(config.root_path)}")
@@ -82,7 +74,6 @@ class ApiDependencies:
image_files = DiskImageFileStorage(f"{output_folder}/images")
model_images_folder = config.models_path
style_presets_folder = config.style_presets_path
db = init_db(config=config, logger=logger, image_files=image_files)
@@ -93,7 +84,7 @@ class ApiDependencies:
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id, loop=loop)
events = FastAPIEventService(event_handler_id)
bulk_download = BulkDownloadService()
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
@@ -118,8 +109,6 @@ class ApiDependencies:
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService()
workflow_records = SqliteWorkflowRecordsStorage(db=db)
style_preset_records = SqliteStylePresetRecordsStorage(db=db)
style_preset_image_files = StylePresetImageFileStorageDisk(style_presets_folder / "images")
services = InvocationServices(
board_image_records=board_image_records,
@@ -145,8 +134,6 @@ class ApiDependencies:
workflow_records=workflow_records,
tensors=tensors,
conditioning=conditioning,
style_preset_records=style_preset_records,
style_preset_image_files=style_preset_image_files,
)
ApiDependencies.invoker = Invoker(services)

View File

@@ -218,8 +218,9 @@ async def get_image_workflow(
raise HTTPException(status_code=404)
@images_router.get(
@images_router.api_route(
"/i/{image_name}/full",
methods=["GET", "HEAD"],
operation_id="get_image_full",
response_class=Response,
responses={
@@ -230,18 +231,6 @@ async def get_image_workflow(
404: {"description": "Image not found"},
},
)
@images_router.head(
"/i/{image_name}/full",
operation_id="get_image_full_head",
response_class=Response,
responses={
200: {
"description": "Return the full-resolution image",
"content": {"image/png": {}},
},
404: {"description": "Image not found"},
},
)
async def get_image_full(
image_name: str = Path(description="The name of full-resolution image file to get"),
) -> Response:
@@ -253,7 +242,6 @@ async def get_image_full(
content = f.read()
response = Response(content, media_type="image/png")
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
response.headers["Content-Disposition"] = f'inline; filename="{image_name}"'
return response
except Exception:
raise HTTPException(status_code=404)

View File

@@ -1,274 +0,0 @@
import csv
import io
import json
import traceback
from typing import Optional
import pydantic
from fastapi import APIRouter, File, Form, HTTPException, Path, Response, UploadFile
from fastapi.responses import FileResponse
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.api.routers.model_manager import IMAGE_MAX_AGE
from invokeai.app.services.style_preset_images.style_preset_images_common import StylePresetImageFileNotFoundException
from invokeai.app.services.style_preset_records.style_preset_records_common import (
InvalidPresetImportDataError,
PresetData,
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordWithImage,
StylePresetWithoutId,
UnsupportedFileTypeError,
parse_presets_from_file,
)
class StylePresetFormData(BaseModel):
name: str = Field(description="Preset name")
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
type: PresetType = Field(description="Preset type")
style_presets_router = APIRouter(prefix="/v1/style_presets", tags=["style_presets"])
@style_presets_router.get(
"/i/{style_preset_id}",
operation_id="get_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def get_style_preset(
style_preset_id: str = Path(description="The style preset to get"),
) -> StylePresetRecordWithImage:
"""Gets a style preset"""
try:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.get(style_preset_id)
return StylePresetRecordWithImage(image=image, **style_preset.model_dump())
except StylePresetNotFoundError:
raise HTTPException(status_code=404, detail="Style preset not found")
@style_presets_router.patch(
"/i/{style_preset_id}",
operation_id="update_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def update_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
style_preset_id: str = Path(description="The id of the style preset to update"),
data: str = Form(description="The data of the style preset to update"),
) -> StylePresetRecordWithImage:
"""Updates a style preset"""
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(style_preset_id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
else:
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
changes = StylePresetChanges(name=name, preset_data=preset_data, type=type)
style_preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(style_preset_id)
style_preset = ApiDependencies.invoker.services.style_preset_records.update(
style_preset_id=style_preset_id, changes=changes
)
return StylePresetRecordWithImage(image=style_preset_image, **style_preset.model_dump())
@style_presets_router.delete(
"/i/{style_preset_id}",
operation_id="delete_style_preset",
)
async def delete_style_preset(
style_preset_id: str = Path(description="The style preset to delete"),
) -> None:
"""Deletes a style preset"""
try:
ApiDependencies.invoker.services.style_preset_image_files.delete(style_preset_id)
except StylePresetImageFileNotFoundException:
pass
ApiDependencies.invoker.services.style_preset_records.delete(style_preset_id)
@style_presets_router.post(
"/",
operation_id="create_style_preset",
responses={
200: {"model": StylePresetRecordWithImage},
},
)
async def create_style_preset(
image: Optional[UploadFile] = File(description="The image file to upload", default=None),
data: str = Form(description="The data of the style preset to create"),
) -> StylePresetRecordWithImage:
"""Creates a style preset"""
try:
parsed_data = json.loads(data)
validated_data = StylePresetFormData(**parsed_data)
name = validated_data.name
type = validated_data.type
positive_prompt = validated_data.positive_prompt
negative_prompt = validated_data.negative_prompt
except pydantic.ValidationError:
raise HTTPException(status_code=400, detail="Invalid preset data")
preset_data = PresetData(positive_prompt=positive_prompt, negative_prompt=negative_prompt)
style_preset = StylePresetWithoutId(name=name, preset_data=preset_data, type=type)
new_style_preset = ApiDependencies.invoker.services.style_preset_records.create(style_preset=style_preset)
if image is not None:
if not image.content_type or not image.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image")
contents = await image.read()
try:
pil_image = Image.open(io.BytesIO(contents))
except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail="Failed to read image")
try:
ApiDependencies.invoker.services.style_preset_image_files.save(new_style_preset.id, pil_image)
except ValueError as e:
raise HTTPException(status_code=409, detail=str(e))
preset_image = ApiDependencies.invoker.services.style_preset_image_files.get_url(new_style_preset.id)
return StylePresetRecordWithImage(image=preset_image, **new_style_preset.model_dump())
@style_presets_router.get(
"/",
operation_id="list_style_presets",
responses={
200: {"model": list[StylePresetRecordWithImage]},
},
)
async def list_style_presets() -> list[StylePresetRecordWithImage]:
"""Gets a page of style presets"""
style_presets_with_image: list[StylePresetRecordWithImage] = []
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many()
for preset in style_presets:
image = ApiDependencies.invoker.services.style_preset_image_files.get_url(preset.id)
style_preset_with_image = StylePresetRecordWithImage(image=image, **preset.model_dump())
style_presets_with_image.append(style_preset_with_image)
return style_presets_with_image
@style_presets_router.get(
"/i/{style_preset_id}/image",
operation_id="get_style_preset_image",
responses={
200: {
"description": "The style preset image was fetched successfully",
},
400: {"description": "Bad request"},
404: {"description": "The style preset image could not be found"},
},
status_code=200,
)
async def get_style_preset_image(
style_preset_id: str = Path(description="The id of the style preset image to get"),
) -> FileResponse:
"""Gets an image file that previews the model"""
try:
path = ApiDependencies.invoker.services.style_preset_image_files.get_path(style_preset_id)
response = FileResponse(
path,
media_type="image/png",
filename=style_preset_id + ".png",
content_disposition_type="inline",
)
response.headers["Cache-Control"] = f"max-age={IMAGE_MAX_AGE}"
return response
except Exception:
raise HTTPException(status_code=404)
@style_presets_router.get(
"/export",
operation_id="export_style_presets",
responses={200: {"content": {"text/csv": {}}, "description": "A CSV file with the requested data."}},
status_code=200,
)
async def export_style_presets():
# Create an in-memory stream to store the CSV data
output = io.StringIO()
writer = csv.writer(output)
# Write the header
writer.writerow(["name", "prompt", "negative_prompt"])
style_presets = ApiDependencies.invoker.services.style_preset_records.get_many(type=PresetType.User)
for preset in style_presets:
writer.writerow([preset.name, preset.preset_data.positive_prompt, preset.preset_data.negative_prompt])
csv_data = output.getvalue()
output.close()
return Response(
content=csv_data,
media_type="text/csv",
headers={"Content-Disposition": "attachment; filename=prompt_templates.csv"},
)
@style_presets_router.post(
"/import",
operation_id="import_style_presets",
)
async def import_style_presets(file: UploadFile = File(description="The file to import")):
try:
style_presets = await parse_presets_from_file(file)
ApiDependencies.invoker.services.style_preset_records.create_many(style_presets)
except InvalidPresetImportDataError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=400, detail=str(e))
except UnsupportedFileTypeError as e:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=415, detail=str(e))

View File

@@ -30,7 +30,6 @@ from invokeai.app.api.routers import (
images,
model_manager,
session_queue,
style_presets,
utilities,
workflows,
)
@@ -56,13 +55,11 @@ mimetypes.add_type("text/css", ".css")
torch_device_name = TorchDevice.get_torch_device_name()
logger.info(f"Using torch device: {torch_device_name}")
loop = asyncio.new_event_loop()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Add startup event to load dependencies
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, loop=loop, logger=logger)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
yield
# Shut down threads
ApiDependencies.shutdown()
@@ -109,7 +106,6 @@ app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
app.include_router(style_presets.style_presets_router, prefix="/api")
app.openapi = get_openapi_func(app)
@@ -188,6 +184,8 @@ def invoke_api() -> None:
check_cudnn(logger)
# Start our own event loop for eventing usage
loop = asyncio.new_event_loop()
config = uvicorn.Config(
app=app,
host=app_config.host,

View File

@@ -80,12 +80,12 @@ class CompelInvocation(BaseInvocation):
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
text_encoder_info.model_on_device() as (model_state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
cached_weights=cached_weights,
model_state_dict=model_state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, self.clip.skipped_layers),
@@ -175,13 +175,13 @@ class SDXLPromptInvocationBase:
with (
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
text_encoder_info.model_on_device() as (state_dict, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(
text_encoder,
loras=_lora_loader(),
prefix=lora_prefix,
cached_weights=cached_weights,
model_state_dict=state_dict,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
ModelPatcher.apply_clip_skip(text_encoder, clip_field.skipped_layers),

View File

@@ -21,8 +21,6 @@ from controlnet_aux import (
from controlnet_aux.util import HWC3, ade_palette
from PIL import Image
from pydantic import BaseModel, Field, field_validator, model_validator
from transformers import pipeline
from transformers.pipelines import DepthEstimationPipeline
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
@@ -46,12 +44,13 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
from invokeai.backend.image_util.canny import get_canny_edges
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
from invokeai.backend.image_util.hed import HEDProcessor
from invokeai.backend.image_util.lineart import LineartProcessor
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
from invokeai.backend.util.devices import TorchDevice
class ControlField(BaseModel):
@@ -593,14 +592,7 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
return color_map
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small", "small_v2"]
# DepthAnything V2 Small model is licensed under Apache 2.0 but not the base and large models.
DEPTH_ANYTHING_MODELS = {
"large": "LiheYoung/depth-anything-large-hf",
"base": "LiheYoung/depth-anything-base-hf",
"small": "LiheYoung/depth-anything-small-hf",
"small_v2": "depth-anything/Depth-Anything-V2-Small-hf",
}
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
@invocation(
@@ -608,33 +600,28 @@ DEPTH_ANYTHING_MODELS = {
title="Depth Anything Processor",
tags=["controlnet", "depth", "depth anything"],
category="controlnet",
version="1.1.3",
version="1.1.2",
)
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
"""Generates a depth map based on the Depth Anything algorithm"""
model_size: DEPTH_ANYTHING_MODEL_SIZES = InputField(
default="small_v2", description="The size of the depth model to use"
default="small", description="The size of the depth model to use"
)
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
def run_processor(self, image: Image.Image) -> Image.Image:
def load_depth_anything(model_path: Path):
depth_anything_pipeline = pipeline(model=str(model_path), task="depth-estimation", local_files_only=True)
assert isinstance(depth_anything_pipeline, DepthEstimationPipeline)
return DepthAnythingPipeline(depth_anything_pipeline)
def loader(model_path: Path):
return DepthAnythingDetector.load_model(
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
)
with self._context.models.load_remote_model(
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=load_depth_anything
) as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
# Resizing to user target specified size
new_height = int(image.size[1] * (self.resolution / image.size[0]))
depth_map = depth_map.resize((self.resolution, new_height))
return depth_map
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
) as model:
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
return processed_image
@invocation(

View File

@@ -39,7 +39,7 @@ class GradientMaskOutput(BaseInvocationOutput):
title="Create Gradient Mask",
tags=["mask", "denoise"],
category="latents",
version="1.2.0",
version="1.1.0",
)
class CreateGradientMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run."""
@@ -93,7 +93,6 @@ class CreateGradientMaskInvocation(BaseInvocation):
# redistribute blur so that the original edges are 0 and blur outwards to 1
blur_tensor = (blur_tensor - 0.5) * 2
blur_tensor[blur_tensor < 0] = 0.0
threshold = 1 - self.minimum_denoise

View File

@@ -37,9 +37,9 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData,
@@ -60,13 +60,8 @@ from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionB
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.extensions.t2i_adapter import T2IAdapterExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
@@ -503,33 +498,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
)
@staticmethod
def parse_t2i_adapter_field(
exit_stack: ExitStack,
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
) -> None:
if t2i_adapters is None:
return
# Handle the possibility that t2i_adapters could be a list or a single T2IAdapterField.
if isinstance(t2i_adapters, T2IAdapterField):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
model_id=t2i_adapter_field.t2i_adapter_model,
image=context.images.get_pil(t2i_adapter_field.image.image_name),
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
resize_mode=t2i_adapter_field.resize_mode,
)
)
def prep_ip_adapter_image_prompts(
self,
context: InvocationContext,
@@ -739,7 +707,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
else:
masked_latents = torch.where(mask < 0.5, 0.0, latents)
return mask, masked_latents, self.denoise_mask.gradient
return 1 - mask, masked_latents, self.denoise_mask.gradient
@staticmethod
def prepare_noise_and_latents(
@@ -797,6 +765,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype = TorchDevice.choose_torch_dtype()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
_, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data(
@@ -829,6 +801,21 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end,
)
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
attention_processor_cls=CustomAttnProcessor2_0,
),
unet=None,
scheduler=scheduler,
)
# get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key)
@@ -846,50 +833,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
if self.unet.freeu_config:
ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
### lora
if self.unet.loras:
for lora_field in self.unet.loras:
ext_manager.add_extension(
LoRAExt(
node_context=context,
model_id=lora_field.lora,
weight=lora_field.weight,
)
)
### seamless
if self.unet.seamless_axes:
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
### inpaint
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
# prevalent, we will have to revisit how we initialize the inpainting extensions.
if unet_config.variant == ModelVariantType.Inpaint:
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
elif mask is not None:
ext_manager.add_extension(InpaintExt(mask, is_gradient_mask))
# Initialize context for modular denoise
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
attention_processor_cls=CustomAttnProcessor2_0,
),
unet=None,
scheduler=scheduler,
)
# context for loading additional models
with ExitStack() as exit_stack:
# later should be smth like:
@@ -897,7 +840,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
@@ -929,10 +871,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint).
# We invert the mask here for compatibility with the old backend implementation.
if mask is not None:
mask = 1 - mask
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate.
@@ -975,14 +913,14 @@ class DenoiseLatentsInvocation(BaseInvocation):
assert isinstance(unet_info.model, UNet2DConditionModel)
with (
ExitStack() as exit_stack,
unet_info.model_on_device() as (cached_weights, unet),
unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
set_seamless(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
cached_weights=cached_weights,
model_state_dict=model_state_dict,
),
):
assert isinstance(unet, UNet2DConditionModel)

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any, Callable, Optional, Tuple
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, model_validator
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter
from pydantic.fields import _Unset
from pydantic_core import PydanticUndefined
@@ -242,31 +242,6 @@ class ConditioningField(BaseModel):
)
class BoundingBoxField(BaseModel):
"""A bounding box primitive value."""
x_min: int = Field(ge=0, description="The minimum x-coordinate of the bounding box (inclusive).")
x_max: int = Field(ge=0, description="The maximum x-coordinate of the bounding box (exclusive).")
y_min: int = Field(ge=0, description="The minimum y-coordinate of the bounding box (inclusive).")
y_max: int = Field(ge=0, description="The maximum y-coordinate of the bounding box (exclusive).")
score: Optional[float] = Field(
default=None,
ge=0.0,
le=1.0,
description="The score associated with the bounding box. In the range [0, 1]. This value is typically set "
"when the bounding box was produced by a detector and has an associated confidence score.",
)
@model_validator(mode="after")
def check_coords(self):
if self.x_min > self.x_max:
raise ValueError(f"x_min ({self.x_min}) is greater than x_max ({self.x_max}).")
if self.y_min > self.y_max:
raise ValueError(f"y_min ({self.y_min}) is greater than y_max ({self.y_max}).")
return self
class MetadataField(RootModel[dict[str, Any]]):
"""
Pydantic model for metadata with custom root of type dict[str, Any].

View File

@@ -1,100 +0,0 @@
from pathlib import Path
from typing import Literal
import torch
from PIL import Image
from transformers import pipeline
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField
from invokeai.app.invocations.primitives import BoundingBoxCollectionOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
GroundingDinoModelKey = Literal["grounding-dino-tiny", "grounding-dino-base"]
GROUNDING_DINO_MODEL_IDS: dict[GroundingDinoModelKey, str] = {
"grounding-dino-tiny": "IDEA-Research/grounding-dino-tiny",
"grounding-dino-base": "IDEA-Research/grounding-dino-base",
}
@invocation(
"grounding_dino",
title="Grounding DINO (Text Prompt Object Detection)",
tags=["prompt", "object detection"],
category="image",
version="1.0.0",
)
class GroundingDinoInvocation(BaseInvocation):
"""Runs a Grounding DINO model. Performs zero-shot bounding-box object detection from a text prompt."""
# Reference:
# - https://arxiv.org/pdf/2303.05499
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: GroundingDinoModelKey = InputField(description="The Grounding DINO model to use.")
prompt: str = InputField(description="The prompt describing the object to segment.")
image: ImageField = InputField(description="The image to segment.")
detection_threshold: float = InputField(
description="The detection threshold for the Grounding DINO model. All detected bounding boxes with scores above this threshold will be returned.",
ge=0.0,
le=1.0,
default=0.3,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BoundingBoxCollectionOutput:
# The model expects a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
detections = self._detect(
context=context, image=image_pil, labels=[self.prompt], threshold=self.detection_threshold
)
# Convert detections to BoundingBoxCollectionOutput.
bounding_boxes: list[BoundingBoxField] = []
for detection in detections:
bounding_boxes.append(
BoundingBoxField(
x_min=detection.box.xmin,
x_max=detection.box.xmax,
y_min=detection.box.ymin,
y_max=detection.box.ymax,
score=detection.score,
)
)
return BoundingBoxCollectionOutput(collection=bounding_boxes)
@staticmethod
def _load_grounding_dino(model_path: Path):
grounding_dino_pipeline = pipeline(
model=str(model_path),
task="zero-shot-object-detection",
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(grounding_dino_pipeline, ZeroShotObjectDetectionPipeline)
return GroundingDinoPipeline(grounding_dino_pipeline)
def _detect(
self,
context: InvocationContext,
image: Image.Image,
labels: list[str],
threshold: float = 0.3,
) -> list[DetectionResult]:
"""Use Grounding DINO to detect bounding boxes for a set of labels in an image."""
# TODO(ryand): I copied this "."-handling logic from the transformers example code. Test it and see if it
# actually makes a difference.
labels = [label if label.endswith(".") else label + "." for label in labels]
with context.models.load_remote_model(
source=GROUNDING_DINO_MODEL_IDS[self.model], loader=GroundingDinoInvocation._load_grounding_dino
) as detector:
assert isinstance(detector, GroundingDinoPipeline)
return detector.detect(image=image, candidate_labels=labels, threshold=threshold)

View File

@@ -24,7 +24,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion import set_seamless
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@@ -59,7 +59,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:

View File

@@ -1,10 +1,9 @@
import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, InvocationContext, invocation
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput, MaskOutput
from invokeai.app.invocations.fields import ImageField, InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
@invocation(
@@ -119,27 +118,3 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"tensor_mask_to_image",
title="Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.0.0",
)
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Convert a mask tensor to an image."""
mask: TensorField = InputField(description="The mask tensor to convert.")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy()
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)
return ImageOutput.build(image_dto)

View File

@@ -7,7 +7,6 @@ import torch
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ConditioningField,
DenoiseMaskField,
@@ -470,42 +469,3 @@ class ConditioningCollectionInvocation(BaseInvocation):
# endregion
# region BoundingBox
@invocation_output("bounding_box_output")
class BoundingBoxOutput(BaseInvocationOutput):
"""Base class for nodes that output a single bounding box"""
bounding_box: BoundingBoxField = OutputField(description="The output bounding box.")
@invocation_output("bounding_box_collection_output")
class BoundingBoxCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of bounding boxes"""
collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes")
@invocation(
"bounding_box",
title="Bounding Box",
tags=["primitives", "segmentation", "collection", "bounding box"],
category="primitives",
version="1.0.0",
)
class BoundingBoxInvocation(BaseInvocation):
"""Create a bounding box manually by supplying box coordinates"""
x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex")
y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex")
x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex")
y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max)
return BoundingBoxOutput(bounding_box=bounding_box)
# endregion

View File

@@ -1,161 +0,0 @@
from pathlib import Path
from typing import Literal
import numpy as np
import torch
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import BoundingBoxField, ImageField, InputField, TensorField
from invokeai.app.invocations.primitives import MaskOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.segment_anything.mask_refinement import mask_to_polygon, polygon_to_mask
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
SegmentAnythingModelKey = Literal["segment-anything-base", "segment-anything-large", "segment-anything-huge"]
SEGMENT_ANYTHING_MODEL_IDS: dict[SegmentAnythingModelKey, str] = {
"segment-anything-base": "facebook/sam-vit-base",
"segment-anything-large": "facebook/sam-vit-large",
"segment-anything-huge": "facebook/sam-vit-huge",
}
@invocation(
"segment_anything",
title="Segment Anything",
tags=["prompt", "segmentation"],
category="segmentation",
version="1.0.0",
)
class SegmentAnythingInvocation(BaseInvocation):
"""Runs a Segment Anything Model."""
# Reference:
# - https://arxiv.org/pdf/2304.02643
# - https://huggingface.co/docs/transformers/v4.43.3/en/model_doc/grounding-dino#grounded-sam
# - https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
model: SegmentAnythingModelKey = InputField(description="The Segment Anything model to use.")
image: ImageField = InputField(description="The image to segment.")
bounding_boxes: list[BoundingBoxField] = InputField(description="The bounding boxes to prompt the SAM model with.")
apply_polygon_refinement: bool = InputField(
description="Whether to apply polygon refinement to the masks. This will smooth the edges of the masks slightly and ensure that each mask consists of a single closed polygon (before merging).",
default=True,
)
mask_filter: Literal["all", "largest", "highest_box_score"] = InputField(
description="The filtering to apply to the detected masks before merging them into a final output.",
default="all",
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> MaskOutput:
# The models expect a 3-channel RGB image.
image_pil = context.images.get_pil(self.image.image_name, mode="RGB")
if len(self.bounding_boxes) == 0:
combined_mask = torch.zeros(image_pil.size[::-1], dtype=torch.bool)
else:
masks = self._segment(context=context, image=image_pil)
masks = self._filter_masks(masks=masks, bounding_boxes=self.bounding_boxes)
# masks contains bool values, so we merge them via max-reduce.
combined_mask, _ = torch.stack(masks).max(dim=0)
mask_tensor_name = context.tensors.save(combined_mask)
height, width = combined_mask.shape
return MaskOutput(mask=TensorField(tensor_name=mask_tensor_name), width=width, height=height)
@staticmethod
def _load_sam_model(model_path: Path):
sam_model = AutoModelForMaskGeneration.from_pretrained(
model_path,
local_files_only=True,
# TODO(ryand): Setting the torch_dtype here doesn't work. Investigate whether fp16 is supported by the
# model, and figure out how to make it work in the pipeline.
# torch_dtype=TorchDevice.choose_torch_dtype(),
)
assert isinstance(sam_model, SamModel)
sam_processor = AutoProcessor.from_pretrained(model_path, local_files_only=True)
assert isinstance(sam_processor, SamProcessor)
return SegmentAnythingPipeline(sam_model=sam_model, sam_processor=sam_processor)
def _segment(
self,
context: InvocationContext,
image: Image.Image,
) -> list[torch.Tensor]:
"""Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes."""
# Convert the bounding boxes to the SAM input format.
sam_bounding_boxes = [[bb.x_min, bb.y_min, bb.x_max, bb.y_max] for bb in self.bounding_boxes]
with (
context.models.load_remote_model(
source=SEGMENT_ANYTHING_MODEL_IDS[self.model], loader=SegmentAnythingInvocation._load_sam_model
) as sam_pipeline,
):
assert isinstance(sam_pipeline, SegmentAnythingPipeline)
masks = sam_pipeline.segment(image=image, bounding_boxes=sam_bounding_boxes)
masks = self._process_masks(masks)
if self.apply_polygon_refinement:
masks = self._apply_polygon_refinement(masks)
return masks
def _process_masks(self, masks: torch.Tensor) -> list[torch.Tensor]:
"""Convert the tensor output from the Segment Anything model from a tensor of shape
[num_masks, channels, height, width] to a list of tensors of shape [height, width].
"""
assert masks.dtype == torch.bool
# [num_masks, channels, height, width] -> [num_masks, height, width]
masks, _ = masks.max(dim=1)
# Split the first dimension into a list of masks.
return list(masks.cpu().unbind(dim=0))
def _apply_polygon_refinement(self, masks: list[torch.Tensor]) -> list[torch.Tensor]:
"""Apply polygon refinement to the masks.
Convert each mask to a polygon, then back to a mask. This has the following effect:
- Smooth the edges of the mask slightly.
- Ensure that each mask consists of a single closed polygon
- Removes small mask pieces.
- Removes holes from the mask.
"""
# Convert tensor masks to np masks.
np_masks = [mask.cpu().numpy().astype(np.uint8) for mask in masks]
# Apply polygon refinement.
for idx, mask in enumerate(np_masks):
shape = mask.shape
assert len(shape) == 2 # Assert length to satisfy type checker.
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
np_masks[idx] = mask
# Convert np masks back to tensor masks.
masks = [torch.tensor(mask, dtype=torch.bool) for mask in np_masks]
return masks
def _filter_masks(self, masks: list[torch.Tensor], bounding_boxes: list[BoundingBoxField]) -> list[torch.Tensor]:
"""Filter the detected masks based on the specified mask filter."""
assert len(masks) == len(bounding_boxes)
if self.mask_filter == "all":
return masks
elif self.mask_filter == "largest":
# Find the largest mask.
return [max(masks, key=lambda x: float(x.sum()))]
elif self.mask_filter == "highest_box_score":
# Find the index of the bounding box with the highest score.
# Note that we fallback to -1.0 if the score is None. This is mainly to satisfy the type checker. In most
# cases the scores should all be non-None when using this filtering mode. That being said, -1.0 is a
# reasonable fallback since the expected score range is [0.0, 1.0].
max_score_idx = max(range(len(bounding_boxes)), key=lambda i: bounding_boxes[i].score or -1.0)
return [masks[max_score_idx]]
else:
raise ValueError(f"Invalid mask filter: {self.mask_filter}")

View File

@@ -91,7 +91,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path to InvokeAI databases directory.
outputs_dir: Path to directory for outputs.
custom_nodes_dir: Path to directory for custom nodes.
style_presets_dir: Path to directory for style presets.
log_handlers: Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".
log_format: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.<br>Valid values: `plain`, `color`, `syslog`, `legacy`
log_level: Emit logging messages at this level or higher.<br>Valid values: `debug`, `info`, `warning`, `error`, `critical`
@@ -154,7 +153,6 @@ class InvokeAIAppConfig(BaseSettings):
db_dir: Path = Field(default=Path("databases"), description="Path to InvokeAI databases directory.")
outputs_dir: Path = Field(default=Path("outputs"), description="Path to directory for outputs.")
custom_nodes_dir: Path = Field(default=Path("nodes"), description="Path to directory for custom nodes.")
style_presets_dir: Path = Field(default=Path("style_presets"), description="Path to directory for style presets.")
# LOGGING
log_handlers: list[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>".')
@@ -302,11 +300,6 @@ class InvokeAIAppConfig(BaseSettings):
"""Path to the models directory, resolved to an absolute path.."""
return self._resolve(self.models_dir)
@property
def style_presets_path(self) -> Path:
"""Path to the style presets directory, resolved to an absolute path.."""
return self._resolve(self.style_presets_dir)
@property
def convert_cache_path(self) -> Path:
"""Path to the converted cache models directory, resolved to an absolute path.."""

View File

@@ -1,44 +1,46 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import asyncio
import threading
from queue import Empty, Queue
from fastapi_events.dispatcher import dispatch
from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.events.events_common import (
EventBase,
)
class FastAPIEventService(EventServiceBase):
def __init__(self, event_handler_id: int, loop: asyncio.AbstractEventLoop) -> None:
def __init__(self, event_handler_id: int) -> None:
self.event_handler_id = event_handler_id
self._queue = asyncio.Queue[EventBase | None]()
self._queue = Queue[EventBase | None]()
self._stop_event = threading.Event()
self._loop = loop
# We need to store a reference to the task so it doesn't get GC'd
# See: https://docs.python.org/3/library/asyncio-task.html#creating-tasks
self._background_tasks: set[asyncio.Task[None]] = set()
task = self._loop.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
self._background_tasks.add(task)
task.add_done_callback(self._background_tasks.remove)
asyncio.create_task(self._dispatch_from_queue(stop_event=self._stop_event))
super().__init__()
def stop(self, *args, **kwargs):
self._stop_event.set()
self._loop.call_soon_threadsafe(self._queue.put_nowait, None)
self._queue.put(None)
def dispatch(self, event: EventBase) -> None:
self._loop.call_soon_threadsafe(self._queue.put_nowait, event)
self._queue.put(event)
async def _dispatch_from_queue(self, stop_event: threading.Event):
"""Get events on from the queue and dispatch them, from the correct thread"""
while not stop_event.is_set():
try:
event = await self._queue.get()
event = self._queue.get(block=False)
if not event: # Probably stopping
continue
# Leave the payloads as live pydantic models
dispatch(event, middleware_id=self.event_handler_id, payload_schema_dump=False)
except Empty:
await asyncio.sleep(0.1)
pass
except asyncio.CancelledError as e:
raise e # Raise a proper error

View File

@@ -1,10 +1,11 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from pathlib import Path
from queue import Queue
from typing import Optional, Union
from typing import Dict, Optional, Union
from PIL import Image, PngImagePlugin
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.image_files.image_files_base import ImageFileStorageBase
from invokeai.app.services.image_files.image_files_common import (
@@ -19,12 +20,18 @@ from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
class DiskImageFileStorage(ImageFileStorageBase):
"""Stores images on disk"""
__output_folder: Path
__cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[Path, PILImageType]
__max_cache_size: int
__invoker: Invoker
def __init__(self, output_folder: Union[str, Path]):
self.__cache: dict[Path, PILImageType] = {}
self.__cache_ids = Queue[Path]()
self.__cache = {}
self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config
self.__output_folder = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__output_folder: Path = output_folder if isinstance(output_folder, Path) else Path(output_folder)
self.__thumbnails_folder = self.__output_folder / "thumbnails"
# Validate required output folders at launch
self.__validate_storage_folders()
@@ -96,7 +103,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
image_path = self.get_path(image_name)
if image_path.exists():
image_path.unlink()
send2trash(image_path)
if image_path in self.__cache:
del self.__cache[image_path]
@@ -104,7 +111,7 @@ class DiskImageFileStorage(ImageFileStorageBase):
thumbnail_path = self.get_path(thumbnail_name, True)
if thumbnail_path.exists():
thumbnail_path.unlink()
send2trash(thumbnail_path)
if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path]
except Exception as e:

View File

@@ -4,8 +4,6 @@ from __future__ import annotations
from typing import TYPE_CHECKING
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
if TYPE_CHECKING:
from logging import Logger
@@ -63,8 +61,6 @@ class InvocationServices:
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
conditioning: "ObjectSerializerBase[ConditioningFieldData]",
style_preset_records: "StylePresetRecordsStorageBase",
style_preset_image_files: "StylePresetImageFileStorageBase",
):
self.board_images = board_images
self.board_image_records = board_image_records
@@ -89,5 +85,3 @@ class InvocationServices:
self.workflow_records = workflow_records
self.tensors = tensors
self.conditioning = conditioning
self.style_preset_records = style_preset_records
self.style_preset_image_files = style_preset_image_files

View File

@@ -2,6 +2,7 @@ from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from send2trash import send2trash
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_images.model_images_base import ModelImageFileStorageBase
@@ -69,7 +70,7 @@ class ModelImageFileStorageDisk(ModelImageFileStorageBase):
if not self._validate_path(path):
raise ModelImageFileNotFoundException
path.unlink()
send2trash(path)
except Exception as e:
raise ModelImageFileDeleteException from e

View File

@@ -16,7 +16,6 @@ from invokeai.app.services.shared.sqlite_migrator.migrations.migration_10 import
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_11 import build_migration_11
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_12 import build_migration_12
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_13 import build_migration_13
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_14 import build_migration_14
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
@@ -50,7 +49,6 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
migrator.register_migration(build_migration_11(app_config=config, logger=logger))
migrator.register_migration(build_migration_12(app_config=config))
migrator.register_migration(build_migration_13())
migrator.register_migration(build_migration_14())
migrator.run_migrations()
return db

View File

@@ -1,61 +0,0 @@
import sqlite3
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
class Migration14Callback:
def __call__(self, cursor: sqlite3.Cursor) -> None:
self._create_style_presets(cursor)
def _create_style_presets(self, cursor: sqlite3.Cursor) -> None:
"""Create the table used to store style presets."""
tables = [
"""--sql
CREATE TABLE IF NOT EXISTS style_presets (
id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
preset_data TEXT NOT NULL,
type TEXT NOT NULL DEFAULT "user",
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
-- Updated via trigger
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW'))
);
"""
]
# Add trigger for `updated_at`.
triggers = [
"""--sql
CREATE TRIGGER IF NOT EXISTS style_presets
AFTER UPDATE
ON style_presets FOR EACH ROW
BEGIN
UPDATE style_presets SET updated_at = STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')
WHERE id = old.id;
END;
"""
]
# Add indexes for searchable fields
indices = [
"CREATE INDEX IF NOT EXISTS idx_style_presets_name ON style_presets(name);",
]
for stmt in tables + indices + triggers:
cursor.execute(stmt)
def build_migration_14() -> Migration:
"""
Build the migration from database version 13 to 14..
This migration does the following:
- Create the table used to store style presets.
"""
migration_14 = Migration(
from_version=13,
to_version=14,
callback=Migration14Callback(),
)
return migration_14

Binary file not shown.

Before

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

View File

@@ -1,33 +0,0 @@
from abc import ABC, abstractmethod
from pathlib import Path
from PIL.Image import Image as PILImageType
class StylePresetImageFileStorageBase(ABC):
"""Low-level service responsible for storing and retrieving image files."""
@abstractmethod
def get(self, style_preset_id: str) -> PILImageType:
"""Retrieves a style preset image as PIL Image."""
pass
@abstractmethod
def get_path(self, style_preset_id: str) -> Path:
"""Gets the internal path to a style preset image."""
pass
@abstractmethod
def get_url(self, style_preset_id: str) -> str | None:
"""Gets the URL to fetch a style preset image."""
pass
@abstractmethod
def save(self, style_preset_id: str, image: PILImageType) -> None:
"""Saves a style preset image."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset image."""
pass

View File

@@ -1,19 +0,0 @@
class StylePresetImageFileNotFoundException(Exception):
"""Raised when an image file is not found in storage."""
def __init__(self, message: str = "Style preset image file not found"):
super().__init__(message)
class StylePresetImageFileSaveException(Exception):
"""Raised when an image cannot be saved."""
def __init__(self, message: str = "Style preset image file not saved"):
super().__init__(message)
class StylePresetImageFileDeleteException(Exception):
"""Raised when an image cannot be deleted."""
def __init__(self, message: str = "Style preset image file not deleted"):
super().__init__(message)

View File

@@ -1,88 +0,0 @@
from pathlib import Path
from PIL import Image
from PIL.Image import Image as PILImageType
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.style_preset_images.style_preset_images_base import StylePresetImageFileStorageBase
from invokeai.app.services.style_preset_images.style_preset_images_common import (
StylePresetImageFileDeleteException,
StylePresetImageFileNotFoundException,
StylePresetImageFileSaveException,
)
from invokeai.app.services.style_preset_records.style_preset_records_common import PresetType
from invokeai.app.util.misc import uuid_string
from invokeai.app.util.thumbnails import make_thumbnail
class StylePresetImageFileStorageDisk(StylePresetImageFileStorageBase):
"""Stores images on disk"""
def __init__(self, style_preset_images_folder: Path):
self._style_preset_images_folder = style_preset_images_folder
self._validate_storage_folders()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
def get(self, style_preset_id: str) -> PILImageType:
try:
path = self.get_path(style_preset_id)
return Image.open(path)
except FileNotFoundError as e:
raise StylePresetImageFileNotFoundException from e
def save(self, style_preset_id: str, image: PILImageType) -> None:
try:
self._validate_storage_folders()
image_path = self._style_preset_images_folder / (style_preset_id + ".webp")
thumbnail = make_thumbnail(image, 256)
thumbnail.save(image_path, format="webp")
except Exception as e:
raise StylePresetImageFileSaveException from e
def get_path(self, style_preset_id: str) -> Path:
style_preset = self._invoker.services.style_preset_records.get(style_preset_id)
if style_preset.type is PresetType.Default:
default_images_dir = Path(__file__).parent / Path("default_style_preset_images")
path = default_images_dir / (style_preset.name + ".png")
else:
path = self._style_preset_images_folder / (style_preset_id + ".webp")
return path
def get_url(self, style_preset_id: str) -> str | None:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
return
url = self._invoker.services.urls.get_style_preset_image_url(style_preset_id)
# The image URL never changes, so we must add random query string to it to prevent caching
url += f"?{uuid_string()}"
return url
def delete(self, style_preset_id: str) -> None:
try:
path = self.get_path(style_preset_id)
if not self._validate_path(path):
raise StylePresetImageFileNotFoundException
path.unlink()
except StylePresetImageFileNotFoundException as e:
raise StylePresetImageFileNotFoundException from e
except Exception as e:
raise StylePresetImageFileDeleteException from e
def _validate_path(self, path: Path) -> bool:
"""Validates the path given for an image."""
return path.exists()
def _validate_storage_folders(self) -> None:
"""Checks if the required folders exist and create them if they don't"""
self._style_preset_images_folder.mkdir(parents=True, exist_ok=True)

View File

@@ -1,146 +0,0 @@
[
{
"name": "Photography (General)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. f/2.8 macro photo, bokeh, photorealism",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Studio Lighting)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, photography. f/8 photo. centered subject, studio lighting.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Landscape)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}, landscape photograph, f/12, lifelike, highly detailed.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Portrait)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. photography. portraiture. catch light in eyes. one flash. rembrandt lighting. Soft box. dark shadows. High contrast. 80mm lens. F2.8.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Photography (Black and White)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} photography. natural light. 80mm lens. F1.4. strong contrast, hard light. dark contrast. blurred background. black and white",
"negative_prompt": "painting, digital art. sketch, colour+"
}
},
{
"name": "Architectural Visualization",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt}. architectural photography, f/12, luxury, aesthetically pleasing form and function.",
"negative_prompt": "painting, digital art. sketch, blurry"
}
},
{
"name": "Concept Art (Fantasy)",
"type": "default",
"preset_data": {
"positive_prompt": "concept artwork of a {prompt}. (digital painterly art style)++, mythological, (textured 2d dry media brushpack)++, glazed brushstrokes, otherworldly. painting+, illustration+",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Sci-Fi)",
"type": "default",
"preset_data": {
"positive_prompt": "(concept art)++, {prompt}, (sleek futurism)++, (textured 2d dry media)++, metallic highlights, digital painting style",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Character)",
"type": "default",
"preset_data": {
"positive_prompt": "(character concept art)++, stylized painterly digital painting of {prompt}, (painterly, impasto. Dry brush.)++",
"negative_prompt": "photo. distorted, blurry, out of focus. sketch. (cgi, 3d.)++"
}
},
{
"name": "Concept Art (Painterly)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} oil painting. high contrast. impasto. sfumato. chiaroscuro. Palette knife.",
"negative_prompt": "photo. smooth. border. frame"
}
},
{
"name": "Environment Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} environment artwork, hyper-realistic digital painting style with cinematic composition, atmospheric, depth and detail, voluminous. textured dry brush 2d media",
"negative_prompt": "photo, distorted, blurry, out of focus. sketch."
}
},
{
"name": "Interior Design (Visualization)",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} interior design photo, gentle shadows, light mid-tones, dimension, mix of smooth and textured surfaces, focus on negative space and clean lines, focus",
"negative_prompt": "photo, distorted. sketch."
}
},
{
"name": "Product Rendering",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} high quality product photography, 3d rendering with key lighting, shallow depth of field, simple plain background, studio lighting.",
"negative_prompt": "blurry, sketch, messy, dirty. unfinished."
}
},
{
"name": "Sketch",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} black and white pencil drawing, off-center composition, cross-hatching for shadows, bold strokes, textured paper. sketch+++",
"negative_prompt": "blurry, photo, painting, color. messy, dirty. unfinished. frame, borders."
}
},
{
"name": "Line Art",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} Line art. bold outline. simplistic. white background. 2d",
"negative_prompt": "photo. digital art. greyscale. solid black. painting"
}
},
{
"name": "Anime",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} anime++, bold outline, cel-shaded coloring, shounen, seinen",
"negative_prompt": "(photo)+++. greyscale. solid black. painting"
}
},
{
"name": "Illustration",
"type": "default",
"preset_data": {
"positive_prompt": "{prompt} illustration, bold linework, illustrative details, vector art style, flat coloring",
"negative_prompt": "(photo)+++. greyscale. painting, black and white."
}
},
{
"name": "Vehicles",
"type": "default",
"preset_data": {
"positive_prompt": "A weird futuristic normal auto, {prompt} elegant design, nice color, nice wheels",
"negative_prompt": "sketch. digital art. greyscale. painting"
}
}
]

View File

@@ -1,42 +0,0 @@
from abc import ABC, abstractmethod
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetRecordDTO,
StylePresetWithoutId,
)
class StylePresetRecordsStorageBase(ABC):
"""Base class for style preset storage services."""
@abstractmethod
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Get style preset by id."""
pass
@abstractmethod
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
"""Creates a style preset."""
pass
@abstractmethod
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
"""Creates many style presets."""
pass
@abstractmethod
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
"""Updates a style preset."""
pass
@abstractmethod
def delete(self, style_preset_id: str) -> None:
"""Deletes a style preset."""
pass
@abstractmethod
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
"""Gets many workflows."""
pass

View File

@@ -1,139 +0,0 @@
import codecs
import csv
import json
from enum import Enum
from typing import Any, Optional
import pydantic
from fastapi import UploadFile
from pydantic import AliasChoices, BaseModel, ConfigDict, Field, TypeAdapter
from invokeai.app.util.metaenum import MetaEnum
class StylePresetNotFoundError(Exception):
"""Raised when a style preset is not found"""
class PresetData(BaseModel, extra="forbid"):
positive_prompt: str = Field(description="Positive prompt")
negative_prompt: str = Field(description="Negative prompt")
PresetDataValidator = TypeAdapter(PresetData)
class PresetType(str, Enum, metaclass=MetaEnum):
User = "user"
Default = "default"
Project = "project"
class StylePresetChanges(BaseModel, extra="forbid"):
name: Optional[str] = Field(default=None, description="The style preset's new name.")
preset_data: Optional[PresetData] = Field(default=None, description="The updated data for style preset.")
type: Optional[PresetType] = Field(description="The updated type of the style preset")
class StylePresetWithoutId(BaseModel):
name: str = Field(description="The name of the style preset.")
preset_data: PresetData = Field(description="The preset data")
type: PresetType = Field(description="The type of style preset")
class StylePresetRecordDTO(StylePresetWithoutId):
id: str = Field(description="The style preset ID.")
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "StylePresetRecordDTO":
data["preset_data"] = PresetDataValidator.validate_json(data.get("preset_data", ""))
return StylePresetRecordDTOValidator.validate_python(data)
StylePresetRecordDTOValidator = TypeAdapter(StylePresetRecordDTO)
class StylePresetRecordWithImage(StylePresetRecordDTO):
image: Optional[str] = Field(description="The path for image")
class StylePresetImportRow(BaseModel):
name: str = Field(min_length=1, description="The name of the preset.")
positive_prompt: str = Field(
default="",
description="The positive prompt for the preset.",
validation_alias=AliasChoices("positive_prompt", "prompt"),
)
negative_prompt: str = Field(default="", description="The negative prompt for the preset.")
model_config = ConfigDict(str_strip_whitespace=True, extra="forbid")
StylePresetImportList = list[StylePresetImportRow]
StylePresetImportListTypeAdapter = TypeAdapter(StylePresetImportList)
class UnsupportedFileTypeError(ValueError):
"""Raised when an unsupported file type is encountered"""
pass
class InvalidPresetImportDataError(ValueError):
"""Raised when invalid preset import data is encountered"""
pass
async def parse_presets_from_file(file: UploadFile) -> list[StylePresetWithoutId]:
"""Parses style presets from a file. The file must be a CSV or JSON file.
If CSV, the file must have the following columns:
- name
- prompt (or positive_prompt)
- negative_prompt
If JSON, the file must be a list of objects with the following keys:
- name
- prompt (or positive_prompt)
- negative_prompt
Args:
file (UploadFile): The file to parse.
Returns:
list[StylePresetWithoutId]: The parsed style presets.
Raises:
UnsupportedFileTypeError: If the file type is not supported.
InvalidPresetImportDataError: If the data in the file is invalid.
"""
if file.content_type not in ["text/csv", "application/json"]:
raise UnsupportedFileTypeError()
if file.content_type == "text/csv":
csv_reader = csv.DictReader(codecs.iterdecode(file.file, "utf-8"))
data = list(csv_reader)
else: # file.content_type == "application/json":
json_data = await file.read()
data = json.loads(json_data)
try:
imported_presets = StylePresetImportListTypeAdapter.validate_python(data)
style_presets: list[StylePresetWithoutId] = []
for imported in imported_presets:
preset_data = PresetData(positive_prompt=imported.positive_prompt, negative_prompt=imported.negative_prompt)
style_preset = StylePresetWithoutId(name=imported.name, preset_data=preset_data, type=PresetType.User)
style_presets.append(style_preset)
except pydantic.ValidationError as e:
if file.content_type == "text/csv":
msg = "Invalid CSV format: must include columns 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
else: # file.content_type == "application/json":
msg = "Invalid JSON format: must be a list of objects with keys 'name', 'prompt', and 'negative_prompt' and name cannot be blank"
raise InvalidPresetImportDataError(msg) from e
finally:
file.file.close()
return style_presets

View File

@@ -1,215 +0,0 @@
import json
from pathlib import Path
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.app.services.style_preset_records.style_preset_records_base import StylePresetRecordsStorageBase
from invokeai.app.services.style_preset_records.style_preset_records_common import (
PresetType,
StylePresetChanges,
StylePresetNotFoundError,
StylePresetRecordDTO,
StylePresetWithoutId,
)
from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._lock = db.lock
self._conn = db.conn
self._cursor = self._conn.cursor()
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
self._sync_default_style_presets()
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = self._cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
self._lock.acquire()
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
self._cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
id,
name,
preset_data,
type
)
VALUES (?, ?, ?, ?);
""",
(
style_preset_id,
style_preset.name,
style_preset.preset_data.model_dump_json(),
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
self._lock.acquire()
# Change the name of a style preset
if changes.name is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET name = ?
WHERE id = ?;
""",
(changes.name, style_preset_id),
)
# Change the preset data for a style preset
if changes.preset_data is not None:
self._cursor.execute(
"""--sql
UPDATE style_presets
SET preset_data = ?
WHERE id = ?;
""",
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE from style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
try:
self._lock.acquire()
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
if type is not None:
self._cursor.execute(main_query, (type,))
else:
self._cursor.execute(main_query)
rows = self._cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
self._lock.acquire()
self._cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
finally:
self._lock.release()
# Next, parse and create the default style presets
with self._lock, open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)
for preset in presets:
style_preset = StylePresetWithoutId.model_validate(preset)
self.create(style_preset)

View File

@@ -13,8 +13,3 @@ class UrlServiceBase(ABC):
def get_model_image_url(self, model_key: str) -> str:
"""Gets the URL for a model image"""
pass
@abstractmethod
def get_style_preset_image_url(self, style_preset_id: str) -> str:
"""Gets the URL for a style preset image"""
pass

View File

@@ -19,6 +19,3 @@ class LocalUrlService(UrlServiceBase):
def get_model_image_url(self, model_key: str) -> str:
return f"{self._base_url_v2}/models/i/{model_key}/image"
def get_style_preset_image_url(self, style_preset_id: str) -> str:
return f"{self._base_url}/style_presets/i/{style_preset_id}/image"

View File

@@ -81,7 +81,7 @@ def get_openapi_func(
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": dict(sorted(invocation_output_map_properties.items())),
"properties": invocation_output_map_properties,
"required": invocation_output_map_required,
}

View File

@@ -0,0 +1,90 @@
from pathlib import Path
from typing import Literal
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"small": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self, model: DPT_DINOv2, device: torch.device) -> None:
self.model = model
self.device = device
@staticmethod
def load_model(
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small"] = "small"
) -> DPT_DINOv2:
match model_size:
case "small":
model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
model.eval()
model.to(device)
return model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map

View File

@@ -1,31 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import DepthEstimationPipeline
from invokeai.backend.raw_model import RawModel
class DepthAnythingPipeline(RawModel):
"""Custom wrapper for the Depth Estimation pipeline from transformers adding compatibility
for Invoke's Model Management System"""
def __init__(self, pipeline: DepthEstimationPipeline) -> None:
self._pipeline = pipeline
def generate_depth(self, image: Image.Image) -> Image.Image:
depth_map = self._pipeline(image)["depth"]
assert isinstance(depth_map, Image.Image)
return depth_map
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -0,0 +1,145 @@
import torch.nn as nn
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
if len(in_shape) >= 4:
out_shape4 = out_shape
if expand:
out_shape1 = out_shape
out_shape2 = out_shape * 2
out_shape3 = out_shape * 4
if len(in_shape) >= 4:
out_shape4 = out_shape * 8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
if len(in_shape) >= 4:
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
class ResidualConvUnit(nn.Module):
"""Residual convolution module."""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups = 1
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
if self.bn:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
class FeatureFusionBlock(nn.Module):
"""Feature fusion block."""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups = 1
self.expand = expand
out_features = features
if self.expand:
out_features = features // 2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
self.size = size
def forward(self, *xs, size=None):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
output = self.resConfUnit2(output)
if (size is None) and (self.size is None):
modifier = {"scale_factor": 2}
elif size is None:
modifier = {"size": self.size}
else:
modifier = {"size": size}
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
output = self.out_conv(output)
return output

View File

@@ -0,0 +1,183 @@
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from invokeai.backend.image_util.depth_anything.model.blocks import FeatureFusionBlock, _make_scratch
torchhub_path = Path(__file__).parent.parent / "torchhub"
def _make_fusion_block(features, use_bn, size=None):
return FeatureFusionBlock(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
size=size,
)
class DPTHead(nn.Module):
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
super(DPTHead, self).__init__()
self.nclass = nclass
self.use_clstoken = use_clstoken
self.projects = nn.ModuleList(
[
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
stride=1,
padding=0,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if use_clstoken:
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
self.scratch = _make_scratch(
out_channels,
features,
groups=1,
expand=False,
)
self.scratch.stem_transpose = None
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
head_features_1 = features
head_features_2 = 32
if nclass > 1:
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
)
else:
self.scratch.output_conv1 = nn.Conv2d(
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
)
self.scratch.output_conv2 = nn.Sequential(
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True),
nn.Identity(),
)
def forward(self, out_features, patch_h, patch_w):
out = []
for i, x in enumerate(out_features):
if self.use_clstoken:
x, cls_token = x[0], x[1]
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
else:
x = x[0]
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
layer_1, layer_2, layer_3, layer_4 = out
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv1(path_1)
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
out = self.scratch.output_conv2(out)
return out
class DPT_DINOv2(nn.Module):
def __init__(
self,
features,
out_channels,
encoder="vitl",
use_bn=False,
use_clstoken=False,
):
super(DPT_DINOv2, self).__init__()
assert encoder in ["vits", "vitb", "vitl"]
# # in case the Internet connection is not stable, please load the DINOv2 locally
# if use_local:
# self.pretrained = torch.hub.load(
# torchhub_path / "facebookresearch_dinov2_main",
# "dinov2_{:}14".format(encoder),
# source="local",
# pretrained=False,
# )
# else:
# self.pretrained = torch.hub.load(
# "facebookresearch/dinov2",
# "dinov2_{:}14".format(encoder),
# )
self.pretrained = torch.hub.load(
"facebookresearch/dinov2",
"dinov2_{:}14".format(encoder),
)
dim = self.pretrained.blocks[0].attn.qkv.in_features
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
def forward(self, x):
h, w = x.shape[-2:]
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
patch_h, patch_w = h // 14, w // 14
depth = self.depth_head(features, patch_h, patch_w)
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
depth = F.relu(depth)
return depth.squeeze(1)

View File

@@ -0,0 +1,227 @@
import math
import cv2
import numpy as np
import torch
import torch.nn.functional as F
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method)
sample["disparity"] = cv2.resize(sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller
than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
if "semseg_mask" in sample:
# sample["semseg_mask"] = cv2.resize(
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
# )
sample["semseg_mask"] = F.interpolate(
torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode="nearest"
).numpy()[0, 0]
if "mask" in sample:
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
# sample["mask"] = sample["mask"].astype(bool)
# print(sample['image'].shape, sample['depth'].shape)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std."""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input."""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
if "semseg_mask" in sample:
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
return sample

View File

@@ -1,22 +0,0 @@
from pydantic import BaseModel, ConfigDict
class BoundingBox(BaseModel):
"""Bounding box helper class."""
xmin: int
ymin: int
xmax: int
ymax: int
class DetectionResult(BaseModel):
"""Detection result from Grounding DINO."""
score: float
label: str
box: BoundingBox
model_config = ConfigDict(
# Allow arbitrary types for mask, since it will be a numpy array.
arbitrary_types_allowed=True
)

View File

@@ -1,37 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from transformers.pipelines import ZeroShotObjectDetectionPipeline
from invokeai.backend.image_util.grounding_dino.detection_result import DetectionResult
from invokeai.backend.raw_model import RawModel
class GroundingDinoPipeline(RawModel):
"""A wrapper class for a ZeroShotObjectDetectionPipeline that makes it compatible with the model manager's memory
management system.
"""
def __init__(self, pipeline: ZeroShotObjectDetectionPipeline):
self._pipeline = pipeline
def detect(self, image: Image.Image, candidate_labels: list[str], threshold: float = 0.1) -> list[DetectionResult]:
results = self._pipeline(image=image, candidate_labels=candidate_labels, threshold=threshold)
assert results is not None
results = [DetectionResult.model_validate(result) for result in results]
return results
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK(ryand): The GroundingDinoPipeline does not work on MPS devices. We only allow it to be moved to CPU or
# CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._pipeline.model.to(device=device, dtype=dtype)
self._pipeline.device = self._pipeline.model.device
def calc_size(self) -> int:
# HACK(ryand): Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._pipeline.model)

View File

@@ -1,50 +0,0 @@
# This file contains utilities for Grounded-SAM mask refinement based on:
# https://github.com/NielsRogge/Transformers-Tutorials/blob/a39f33ac1557b02ebfb191ea7753e332b5ca933f/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
import cv2
import numpy as np
import numpy.typing as npt
def mask_to_polygon(mask: npt.NDArray[np.uint8]) -> list[tuple[int, int]]:
"""Convert a binary mask to a polygon.
Returns:
list[list[int]]: List of (x, y) coordinates representing the vertices of the polygon.
"""
# Find contours in the binary mask.
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area.
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour.
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(
polygon: list[tuple[int, int]], image_shape: tuple[int, int], fill_value: int = 1
) -> npt.NDArray[np.uint8]:
"""Convert a polygon to a segmentation mask.
Args:
polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
image_shape (tuple): Shape of the image (height, width) for the mask.
fill_value (int): Value to fill the polygon with.
Returns:
np.ndarray: Segmentation mask with the polygon filled (with value 255).
"""
# Create an empty mask.
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points.
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255).
cv2.fillPoly(mask, [pts], color=(fill_value,))
return mask

View File

@@ -1,53 +0,0 @@
from typing import Optional
import torch
from PIL import Image
from transformers.models.sam import SamModel
from transformers.models.sam.processing_sam import SamProcessor
from invokeai.backend.raw_model import RawModel
class SegmentAnythingPipeline(RawModel):
"""A wrapper class for the transformers SAM model and processor that makes it compatible with the model manager."""
def __init__(self, sam_model: SamModel, sam_processor: SamProcessor):
self._sam_model = sam_model
self._sam_processor = sam_processor
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
# HACK(ryand): The SAM pipeline does not work on MPS devices. We only allow it to be moved to CPU or CUDA.
if device is not None and device.type not in {"cpu", "cuda"}:
device = None
self._sam_model.to(device=device, dtype=dtype)
def calc_size(self) -> int:
# HACK(ryand): Fix the circular import issue.
from invokeai.backend.model_manager.load.model_util import calc_module_size
return calc_module_size(self._sam_model)
def segment(self, image: Image.Image, bounding_boxes: list[list[int]]) -> torch.Tensor:
"""Run the SAM model.
Args:
image (Image.Image): The image to segment.
bounding_boxes (list[list[int]]): The bounding box prompts. Each bounding box is in the format
[xmin, ymin, xmax, ymax].
Returns:
torch.Tensor: The segmentation masks. dtype: torch.bool. shape: [num_masks, channels, height, width].
"""
# Add batch dimension of 1 to the bounding boxes.
boxes = [bounding_boxes]
inputs = self._sam_processor(images=image, input_boxes=boxes, return_tensors="pt").to(self._sam_model.device)
outputs = self._sam_model(**inputs)
masks = self._sam_processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes,
)
# There should be only one batch.
assert len(masks) == 1
return masks[0]

View File

@@ -3,13 +3,12 @@
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Set, Tuple, Union
from typing import Dict, List, Optional, Tuple, Union
import torch
from safetensors.torch import load_file
from typing_extensions import Self
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
@@ -47,19 +46,9 @@ class LoRALayerBase:
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError()
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
return self.bias
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
params = {"weight": self.get_weight(orig_module.weight)}
bias = self.get_bias(orig_module.bias)
if bias is not None:
params["bias"] = bias
return params
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
@@ -71,17 +60,6 @@ class LoRALayerBase:
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
"""Log a warning if values contains unhandled keys."""
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
unknown_keys = set(values.keys()) - all_known_keys
if unknown_keys:
logger.warning(
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
@@ -98,19 +76,14 @@ class LoRALayer(LoRALayerBase):
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
self.mid = values.get("lora_mid.weight", None)
if "lora_mid.weight" in values:
self.mid: Optional[torch.Tensor] = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
self.check_keys(
values,
{
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
@@ -152,23 +125,20 @@ class LoHALayer(LoRALayerBase):
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
self.t1 = values.get("hada_t1", None)
self.t2 = values.get("hada_t2", None)
if "hada_t1" in values:
self.t1: Optional[torch.Tensor] = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2: Optional[torch.Tensor] = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
self.check_keys(
values,
{
"hada_w1_a",
"hada_w1_b",
"hada_w2_a",
"hada_w2_b",
"hada_t1",
"hada_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
if self.t1 is None:
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
@@ -216,45 +186,37 @@ class LoKRLayer(LoRALayerBase):
):
super().__init__(layer_key, values)
self.w1 = values.get("lokr_w1", None)
if self.w1 is None:
if "lokr_w1" in values:
self.w1: Optional[torch.Tensor] = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
else:
self.w1_b = None
self.w1_a = None
self.w2 = values.get("lokr_w2", None)
if self.w2 is None:
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
else:
if "lokr_w2" in values:
self.w2: Optional[torch.Tensor] = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
self.t2 = values.get("lokr_t2", None)
if "lokr_t2" in values:
self.t2: Optional[torch.Tensor] = values["lokr_t2"]
else:
self.t2 = None
if self.w1_b is not None:
self.rank = self.w1_b.shape[0]
elif self.w2_b is not None:
self.rank = self.w2_b.shape[0]
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
self.check_keys(
values,
{
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t2",
},
)
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
w1: Optional[torch.Tensor] = self.w1
if w1 is None:
assert self.w1_a is not None
@@ -310,9 +272,7 @@ class LoKRLayer(LoRALayerBase):
class FullLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
@@ -322,12 +282,15 @@ class FullLayer(LoRALayerBase):
super().__init__(layer_key, values)
self.weight = values["diff"]
self.bias = values.get("diff_b", None)
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
self.check_keys(values, {"diff", "diff_b"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
@@ -356,9 +319,8 @@ class IA3Layer(LoRALayerBase):
self.on_input = values["on_input"]
self.rank = None # unscaled
self.check_keys(values, {"weight", "on_input"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
@@ -378,39 +340,7 @@ class IA3Layer(LoRALayerBase):
self.on_input = self.on_input.to(device=device, dtype=dtype)
class NormLayer(LoRALayerBase):
# bias handled in LoRALayerBase(calc_size, to)
# weight: torch.Tensor
# bias: Optional[torch.Tensor]
def __init__(
self,
layer_key: str,
values: Dict[str, torch.Tensor],
):
super().__init__(layer_key, values)
self.weight = values["w_norm"]
self.bias = values.get("b_norm", None)
self.rank = None # unscaled
self.check_keys(values, {"w_norm", "b_norm"})
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
class LoRAModelRaw(RawModel): # (torch.nn.Module):
@@ -528,19 +458,16 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_up.weight" in values:
if "lora_down.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_a" in values:
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1" in values or "lokr_w1_a" in values:
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
# diff
@@ -548,13 +475,9 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
layer = FullLayer(layer_key, values)
# ia3
elif "on_input" in values:
elif "weight" in values and "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")

View File

@@ -11,9 +11,6 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager.config import AnyModel
@@ -37,18 +34,7 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
elif isinstance(model, CLIPTokenizer):
# TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now.
return 0
elif isinstance(
model,
(
TextualInversionModelRaw,
IPAdapter,
LoRAModelRaw,
SpandrelImageToImageModel,
GroundingDinoPipeline,
SegmentAnythingPipeline,
DepthAnythingPipeline,
),
):
elif isinstance(model, (TextualInversionModelRaw, IPAdapter, LoRAModelRaw, SpandrelImageToImageModel)):
return model.calc_size()
else:
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the

View File

@@ -17,9 +17,8 @@ from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
from invokeai.backend.util.devices import TorchDevice
"""
loras = [
@@ -86,13 +85,13 @@ class ModelPatcher:
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(
unet,
loras=loras,
prefix="lora_unet_",
cached_weights=cached_weights,
model_state_dict=model_state_dict,
):
yield
@@ -102,9 +101,9 @@ class ModelPatcher:
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", cached_weights=cached_weights):
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict):
yield
@classmethod
@@ -114,7 +113,7 @@ class ModelPatcher:
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
model_state_dict: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
Apply one or more LoRAs to a model.
@@ -122,26 +121,66 @@ class ModelPatcher:
:param model: The model to patch.
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:cached_weights: Read-only copy of the model's state dict in CPU, for unpatching purposes.
:model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes.
"""
original_weights = OriginalWeightsStorage(cached_weights)
original_weights = {}
try:
for lora_model, lora_weight in loras:
LoRAExt.patch_model(
model=model,
prefix=prefix,
lora=lora_model,
lora_weight=lora_weight,
original_weights=original_weights,
)
del lora_model
with torch.no_grad():
for lora, lora_weight in loras:
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
yield
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
if module_key not in original_weights:
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
original_weights[module_key] = model_state_dict[module_key + ".weight"]
else:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
layer.to(device=TorchDevice.CPU_DEVICE)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris
assert hasattr(layer_weight, "reshape")
layer_weight = layer_weight.reshape(module.weight.shape)
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
module.weight += layer_weight.to(dtype=dtype)
yield # wait for context manager exit
finally:
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
with torch.no_grad():
for param_key, weight in original_weights.get_changed_weights():
model.get_parameter(param_key).copy_(weight)
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
@classmethod
@contextmanager

View File

@@ -7,9 +7,11 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import ( # noqa: F401
StableDiffusionGeneratorPipeline,
)
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
from invokeai.backend.stable_diffusion.seamless import set_seamless # noqa: F401
__all__ = [
"PipelineIntermediateState",
"StableDiffusionGeneratorPipeline",
"InvokeAIDiffuserComponent",
"set_seamless",
]

View File

@@ -2,14 +2,14 @@ from __future__ import annotations
from contextlib import contextmanager
from dataclasses import dataclass
from typing import TYPE_CHECKING, Callable, Dict, List
from typing import TYPE_CHECKING, Callable, Dict, List, Optional
import torch
from diffusers import UNet2DConditionModel
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
@dataclass
@@ -56,17 +56,5 @@ class ExtensionBase:
yield None
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
"""A context manager for applying patches to the UNet model. The context manager's lifetime spans the entire
diffusion process. Weight unpatching is handled upstream, and is achieved by saving unchanged weights by
`original_weights.save` function. Note that this enables some performance optimization by avoiding redundant
operations. All other patches (e.g. changes to tensor shapes, function monkey-patches, etc.) should be unpatched
by this context manager.
Args:
unet (UNet2DConditionModel): The UNet model on execution device to patch.
original_weights (OriginalWeightsStorage): A storage with copy of the model's original weights in CPU, for
unpatching purposes. Extension should save tensor which being modified in this storage, also extensions
can access original weights values.
"""
yield
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
yield None

View File

@@ -1,15 +1,15 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Dict, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
if TYPE_CHECKING:
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class FreeUExt(ExtensionBase):
@@ -21,7 +21,7 @@ class FreeUExt(ExtensionBase):
self._freeu_config = freeu_config
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
unet.enable_freeu(
b1=self._freeu_config.b1,
b2=self._freeu_config.b2,

View File

@@ -1,120 +0,0 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import einops
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintExt(ExtensionBase):
"""An extension for inpainting with non-inpainting models. See `InpaintModelExt` for inpainting with inpainting
models.
"""
def __init__(
self,
mask: torch.Tensor,
is_gradient_mask: bool,
):
"""Initialize InpaintExt.
Args:
mask (torch.Tensor): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
self._mask = mask
self._is_gradient_mask = is_gradient_mask
# Noise, which used to noisify unmasked part of image
# if noise provided to context, then it will be used
# if no noise provided, then noise will be generated based on seed
self._noise: Optional[torch.Tensor] = None
@staticmethod
def _is_normal_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 4
def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0:
# some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency?
t = einops.repeat(t, "-> batch", batch=batch_size)
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that.
mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self._is_gradient_mask:
threshold = (t.item()) / ctx.scheduler.config.num_train_timesteps
mask_bool = mask < 1 - threshold
masked_input = torch.where(mask_bool, latents, mask_latents)
else:
masked_input = torch.lerp(latents, mask_latents.to(dtype=latents.dtype), mask.to(dtype=latents.dtype))
return masked_input
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_normal_model(ctx.unet):
raise ValueError(
"InpaintExt should be used only on normal (non-inpainting) models. This could be caused by an "
"inpainting model that was incorrectly marked as a non-inpainting model. In some cases, this can be "
"fixed by removing and re-adding the model (so that it gets re-probed)."
)
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
self._noise = ctx.inputs.noise
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if self._noise is None:
self._noise = torch.randn(
ctx.latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(ctx.seed),
).to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.PRE_STEP, order=-100)
def apply_mask_to_initial_latents(self, ctx: DenoiseContext):
ctx.latents = self._apply_mask(ctx, ctx.latents, ctx.timestep)
# TODO: redo this with preview events rewrite
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.POST_STEP, order=-100)
def apply_mask_to_step_output(self, ctx: DenoiseContext):
timestep = ctx.scheduler.timesteps[-1]
if hasattr(ctx.step_output, "denoised"):
ctx.step_output.denoised = self._apply_mask(ctx, ctx.step_output.denoised, timestep)
elif hasattr(ctx.step_output, "pred_original_sample"):
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.pred_original_sample, timestep)
else:
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.prev_sample, timestep)
# Restore unmasked part after the last step is completed
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask < 1, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.latents, ctx.inputs.orig_latents, self._mask)

View File

@@ -1,88 +0,0 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintModelExt(ExtensionBase):
"""An extension for inpainting with inpainting models. See `InpaintExt` for inpainting with non-inpainting
models.
"""
def __init__(
self,
mask: Optional[torch.Tensor],
masked_latents: Optional[torch.Tensor],
is_gradient_mask: bool,
):
"""Initialize InpaintModelExt.
Args:
mask (Optional[torch.Tensor]): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
masked_latents (Optional[torch.Tensor]): Latents of initial image, with masked out by black color inpainted area.
If mask provided, then too should be provided. Shape: (1, 1, latent_height, latent_width)
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
if mask is not None and masked_latents is None:
raise ValueError("Source image required for inpaint mask when inpaint model used!")
# Inverse mask, because inpaint models treat mask as: 0 - remain same, 1 - inpaint
self._mask = None
if mask is not None:
self._mask = 1 - mask
self._masked_latents = masked_latents
self._is_gradient_mask = is_gradient_mask
@staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 9
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_inpaint_model(ctx.unet):
raise ValueError("InpaintModelExt should be used only on inpaint models!")
if self._mask is None:
self._mask = torch.ones_like(ctx.latents[:1, :1])
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self._masked_latents is None:
self._masked_latents = torch.zeros_like(ctx.latents[:1])
self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self._mask] * batch_size)
b_masked_latents = torch.cat([self._masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1,
)
# Restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)

View File

@@ -1,137 +0,0 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING, Tuple
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class LoRAExt(ExtensionBase):
def __init__(
self,
node_context: InvocationContext,
model_id: ModelIdentifierField,
weight: float,
):
super().__init__()
self._node_context = node_context
self._model_id = model_id
self._weight = weight
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
lora_model = self._node_context.models.load(self._model_id).model
self.patch_model(
model=unet,
prefix="lora_unet_",
lora=lora_model,
lora_weight=self._weight,
original_weights=original_weights,
)
del lora_model
yield
@classmethod
@torch.no_grad()
def patch_model(
cls,
model: torch.nn.Module,
prefix: str,
lora: LoRAModelRaw,
lora_weight: float,
original_weights: OriginalWeightsStorage,
):
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param lora: LoRA model to patch in.
:param lora_weight: LoRA patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
"""
if lora_weight == 0:
return
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, lora_param_weight in layer.get_parameters(module).items():
param_key = module_key + "." + param_name
module_param = module.get_parameter(param_name)
# save original weight
original_weights.save(param_key, module_param)
if module_param.shape != lora_param_weight.shape:
# TODO: debug on lycoris
lora_param_weight = lora_param_weight.reshape(module_param.shape)
lora_param_weight *= lora_weight * layer_scale
module_param += lora_param_weight.to(dtype=dtype)
layer.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)

View File

@@ -1,71 +0,0 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from diffusers.models.lora import LoRACompatibleConv
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
class SeamlessExt(ExtensionBase):
def __init__(
self,
seamless_axes: List[str],
):
super().__init__()
self._seamless_axes = seamless_axes
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
with self.static_patch_model(
model=unet,
seamless_axes=self._seamless_axes,
):
yield
@staticmethod
@contextmanager
def static_patch_model(
model: torch.nn.Module,
seamless_axes: List[str],
):
if not seamless_axes:
yield
return
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(
self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
for layer in model.modules():
if not isinstance(layer, torch.nn.Conv2d):
continue
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@@ -1,120 +0,0 @@
from __future__ import annotations
import math
from typing import TYPE_CHECKING, List, Optional, Union
import torch
from diffusers import T2IAdapter
from PIL.Image import Image
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class T2IAdapterExt(ExtensionBase):
def __init__(
self,
node_context: InvocationContext,
model_id: ModelIdentifierField,
image: Image,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
super().__init__()
self._node_context = node_context
self._model_id = model_id
self._image = image
self._weight = weight
self._resize_mode = resize_mode
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
self._adapter_state: Optional[List[torch.Tensor]] = None
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
model_config = self._node_context.models.get_config(self._model_id.key)
if model_config.base == BaseModelType.StableDiffusion1:
self._max_unet_downscale = 8
elif model_config.base == BaseModelType.StableDiffusionXL:
self._max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{model_config.base}'.")
@callback(ExtensionCallbackType.SETUP)
def setup(self, ctx: DenoiseContext):
t2i_model: T2IAdapter
with self._node_context.models.load(self._model_id) as t2i_model:
_, _, latents_height, latents_width = ctx.inputs.orig_latents.shape
self._adapter_state = self._run_model(
model=t2i_model,
image=self._image,
latents_height=latents_height,
latents_width=latents_width,
)
def _run_model(
self,
model: T2IAdapter,
image: Image,
latents_height: int,
latents_width: int,
):
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
input_height = latents_height // self._max_unet_downscale * model.total_downscale_factor
input_width = latents_width // self._max_unet_downscale * model.total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=input_width,
height=input_height,
num_channels=model.config["in_channels"],
device=model.device,
dtype=model.dtype,
resize_mode=self._resize_mode,
)
return model(t2i_image)
@callback(ExtensionCallbackType.PRE_UNET)
def pre_unet_step(self, ctx: DenoiseContext):
# skip if model not active in current step
total_steps = len(ctx.inputs.timesteps)
first_step = math.floor(self._begin_step_percent * total_steps)
last_step = math.ceil(self._end_step_percent * total_steps)
if ctx.step_index < first_step or ctx.step_index > last_step:
return
weight = self._weight
if isinstance(weight, list):
weight = weight[ctx.step_index]
adapter_state = self._adapter_state
if ctx.conditioning_mode == ConditioningMode.Both:
adapter_state = [torch.cat([v] * 2) for v in adapter_state]
if ctx.unet_kwargs.down_intrablock_additional_residuals is None:
ctx.unet_kwargs.down_intrablock_additional_residuals = [v * weight for v in adapter_state]
else:
for i, value in enumerate(adapter_state):
ctx.unet_kwargs.down_intrablock_additional_residuals[i] += value * weight

View File

@@ -7,7 +7,6 @@ import torch
from diffusers import UNet2DConditionModel
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
@@ -68,15 +67,9 @@ class ExtensionsManager:
if self._is_canceled and self._is_canceled():
raise CanceledException
original_weights = OriginalWeightsStorage(cached_weights)
try:
with ExitStack() as exit_stack:
for ext in self._extensions:
exit_stack.enter_context(ext.patch_unet(unet, original_weights))
# TODO: create weight patch logic in PR with extension which uses it
with ExitStack() as exit_stack:
for ext in self._extensions:
exit_stack.enter_context(ext.patch_unet(unet, cached_weights))
yield None
finally:
with torch.no_grad():
for param_key, weight in original_weights.get_changed_weights():
unet.get_parameter(param_key).copy_(weight)
yield None

View File

@@ -20,14 +20,10 @@ from diffusers import (
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
# TODO: add dpmpp_3s/dpmpp_3s_k when fix released
# https://github.com/huggingface/diffusers/issues/9007
SCHEDULER_NAME_VALUES = Literal[
"ddim",
"ddpm",
"deis",
"deis_k",
"lms",
"lms_k",
"pndm",
@@ -37,21 +33,16 @@ SCHEDULER_NAME_VALUES = Literal[
"euler_k",
"euler_a",
"kdpm_2",
"kdpm_2_k",
"kdpm_2_a",
"kdpm_2_a_k",
"dpmpp_2s",
"dpmpp_2s_k",
"dpmpp_2m",
"dpmpp_2m_k",
"dpmpp_2m_sde",
"dpmpp_2m_sde_k",
"dpmpp_3m",
"dpmpp_3m_k",
"dpmpp_sde",
"dpmpp_sde_k",
"unipc",
"unipc_k",
"lcm",
"tcd",
]
@@ -59,8 +50,7 @@ SCHEDULER_NAME_VALUES = Literal[
SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str, Any]]] = {
"ddim": (DDIMScheduler, {}),
"ddpm": (DDPMScheduler, {}),
"deis": (DEISMultistepScheduler, {"use_karras_sigmas": False}),
"deis_k": (DEISMultistepScheduler, {"use_karras_sigmas": True}),
"deis": (DEISMultistepScheduler, {}),
"lms": (LMSDiscreteScheduler, {"use_karras_sigmas": False}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"pndm": (PNDMScheduler, {}),
@@ -69,28 +59,17 @@ SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str,
"euler": (EulerDiscreteScheduler, {"use_karras_sigmas": False}),
"euler_k": (EulerDiscreteScheduler, {"use_karras_sigmas": True}),
"euler_a": (EulerAncestralDiscreteScheduler, {}),
"kdpm_2": (KDPM2DiscreteScheduler, {"use_karras_sigmas": False}),
"kdpm_2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": False}),
"kdpm_2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m_sde": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": False, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_2m_sde_k": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": True, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_3m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 3}),
"dpmpp_3m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 3}),
"kdpm_2": (KDPM2DiscreteScheduler, {}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}),
"dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}),
"dpmpp_sde": (DPMSolverSDEScheduler, {"use_karras_sigmas": False, "noise_sampler_seed": 0}),
"dpmpp_sde_k": (DPMSolverSDEScheduler, {"use_karras_sigmas": True, "noise_sampler_seed": 0}),
"unipc": (UniPCMultistepScheduler, {"use_karras_sigmas": False, "cpu_only": True}),
"unipc_k": (UniPCMultistepScheduler, {"use_karras_sigmas": True, "cpu_only": True}),
"unipc": (UniPCMultistepScheduler, {"cpu_only": True}),
"lcm": (LCMScheduler, {}),
"tcd": (TCDScheduler, {}),
}

View File

@@ -0,0 +1,51 @@
from contextlib import contextmanager
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
conv_layers: List[torch.nn.Conv2d] = []
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@@ -1,39 +0,0 @@
from __future__ import annotations
from typing import Dict, Iterator, Optional, Tuple
import torch
from invokeai.backend.util.devices import TorchDevice
class OriginalWeightsStorage:
"""A class for tracking the original weights of a model for patch/unpatch operations."""
def __init__(self, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
# The original weights of the model.
self._weights: dict[str, torch.Tensor] = {}
# The keys of the weights that have been changed (via `save()`) during the lifetime of this instance.
self._changed_weights: set[str] = set()
if cached_weights:
self._weights.update(cached_weights)
def save(self, key: str, weight: torch.Tensor, copy: bool = True):
self._changed_weights.add(key)
if key in self._weights:
return
self._weights[key] = weight.detach().to(device=TorchDevice.CPU_DEVICE, copy=copy)
def get(self, key: str, copy: bool = False) -> Optional[torch.Tensor]:
weight = self._weights.get(key, None)
if weight is not None and copy:
weight = weight.clone()
return weight
def contains(self, key: str) -> bool:
return key in self._weights
def get_changed_weights(self) -> Iterator[Tuple[str, torch.Tensor]]:
for key in self._changed_weights:
yield key, self._weights[key]

View File

@@ -53,63 +53,64 @@
},
"dependencies": {
"@chakra-ui/react-use-size": "^2.1.0",
"@dagrejs/dagre": "^1.1.3",
"@dagrejs/graphlib": "^2.2.3",
"@dagrejs/dagre": "^1.1.2",
"@dagrejs/graphlib": "^2.2.2",
"@dnd-kit/core": "^6.1.0",
"@dnd-kit/sortable": "^8.0.0",
"@dnd-kit/utilities": "^3.2.2",
"@fontsource-variable/inter": "^5.0.20",
"@invoke-ai/ui-library": "^0.0.29",
"@nanostores/react": "^0.7.3",
"@fontsource-variable/inter": "^5.0.18",
"@invoke-ai/ui-library": "^0.0.25",
"@nanostores/react": "^0.7.2",
"@reduxjs/toolkit": "2.2.3",
"@roarr/browser-log-writer": "^1.3.0",
"chakra-react-select": "^4.9.1",
"compare-versions": "^6.1.1",
"chakra-react-select": "^4.7.6",
"compare-versions": "^6.1.0",
"dateformat": "^5.0.3",
"fracturedjsonjs": "^4.0.2",
"framer-motion": "^11.3.24",
"i18next": "^23.12.2",
"i18next-http-backend": "^2.5.2",
"fracturedjsonjs": "^4.0.1",
"framer-motion": "^11.1.8",
"i18next": "^23.11.3",
"i18next-http-backend": "^2.5.1",
"idb-keyval": "^6.2.1",
"jsondiffpatch": "^0.6.0",
"konva": "^9.3.14",
"konva": "^9.3.6",
"lodash-es": "^4.17.21",
"nanostores": "^0.11.2",
"nanostores": "^0.10.3",
"new-github-issue-url": "^1.0.0",
"overlayscrollbars": "^2.10.0",
"overlayscrollbars": "^2.7.3",
"overlayscrollbars-react": "^0.5.6",
"query-string": "^9.1.0",
"query-string": "^9.0.0",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.2.3",
"react-error-boundary": "^4.0.13",
"react-hook-form": "^7.52.2",
"react-hook-form": "^7.51.4",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^14.1.3",
"react-icons": "^5.2.1",
"react-i18next": "^14.1.1",
"react-icons": "^5.2.0",
"react-konva": "^18.2.10",
"react-redux": "9.1.2",
"react-resizable-panels": "^2.0.23",
"react-resizable-panels": "^2.0.19",
"react-select": "5.8.0",
"react-use": "^17.5.1",
"react-virtuoso": "^4.9.0",
"reactflow": "^11.11.4",
"react-use": "^17.5.0",
"react-virtuoso": "^4.7.10",
"reactflow": "^11.11.3",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.1.0",
"redux-undo": "^1.1.0",
"rfdc": "^1.4.1",
"rfdc": "^1.3.1",
"roarr": "^7.21.1",
"serialize-error": "^11.0.3",
"socket.io-client": "^4.7.5",
"use-debounce": "^10.0.2",
"use-debounce": "^10.0.0",
"use-device-pixel-ratio": "^1.1.2",
"use-image": "^1.1.1",
"uuid": "^10.0.0",
"zod": "^3.23.8",
"zod-validation-error": "^3.3.1"
"uuid": "^9.0.1",
"zod": "^3.23.6",
"zod-validation-error": "^3.2.0"
},
"peerDependencies": {
"@chakra-ui/react": "^2.8.2",
"react": "^18.2.0",
"react-dom": "^18.2.0",
"ts-toolbelt": "^9.6.0"
@@ -117,38 +118,38 @@
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.2.8",
"@storybook/addon-interactions": "^8.2.8",
"@storybook/addon-links": "^8.2.8",
"@storybook/addon-storysource": "^8.2.8",
"@storybook/manager-api": "^8.2.8",
"@storybook/react": "^8.2.8",
"@storybook/react-vite": "^8.2.8",
"@storybook/theming": "^8.2.8",
"@storybook/addon-essentials": "^8.0.10",
"@storybook/addon-interactions": "^8.0.10",
"@storybook/addon-links": "^8.0.10",
"@storybook/addon-storysource": "^8.0.10",
"@storybook/manager-api": "^8.0.10",
"@storybook/react": "^8.0.10",
"@storybook/react-vite": "^8.0.10",
"@storybook/theming": "^8.0.10",
"@types/dateformat": "^5.0.2",
"@types/lodash-es": "^4.17.12",
"@types/node": "^20.14.15",
"@types/react": "^18.3.3",
"@types/node": "^20.12.10",
"@types/react": "^18.3.1",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^10.0.0",
"@vitejs/plugin-react-swc": "^3.7.0",
"@types/uuid": "^9.0.8",
"@vitejs/plugin-react-swc": "^3.6.0",
"@vitest/coverage-v8": "^1.5.0",
"@vitest/ui": "^1.5.0",
"concurrently": "^8.2.2",
"dpdm": "^3.14.0",
"eslint": "^8.57.0",
"eslint-plugin-i18next": "^6.0.9",
"eslint-plugin-i18next": "^6.0.3",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.27.2",
"knip": "^5.12.3",
"openapi-types": "^12.1.3",
"openapi-typescript": "^7.3.0",
"prettier": "^3.3.3",
"openapi-typescript": "^6.7.5",
"prettier": "^3.2.5",
"rollup-plugin-visualizer": "^5.12.0",
"storybook": "^8.2.8",
"storybook": "^8.0.10",
"ts-toolbelt": "^9.6.0",
"tsafe": "^1.7.2",
"typescript": "^5.5.4",
"vite": "^5.4.0",
"tsafe": "^1.6.6",
"typescript": "^5.4.5",
"vite": "^5.2.11",
"vite-plugin-css-injected-by-js": "^3.5.1",
"vite-plugin-dts": "^3.9.1",
"vite-plugin-eslint": "^1.8.1",

File diff suppressed because it is too large Load Diff

View File

@@ -91,8 +91,7 @@
"viewingDesc": "Bilder in großer Galerie ansehen",
"tab": "Tabulator",
"enabled": "Aktiviert",
"disabled": "Ausgeschaltet",
"dontShowMeThese": "Zeig mir diese nicht"
"disabled": "Ausgeschaltet"
},
"gallery": {
"galleryImageSize": "Bildgröße",
@@ -107,6 +106,7 @@
"download": "Runterladen",
"setCurrentImage": "Setze aktuelle Bild",
"featuresWillReset": "Wenn Sie dieses Bild löschen, werden diese Funktionen sofort zurückgesetzt.",
"deleteImageBin": "Gelöschte Bilder werden an den Papierkorb Ihres Betriebssystems gesendet.",
"unableToLoad": "Galerie kann nicht geladen werden",
"downloadSelection": "Auswahl herunterladen",
"currentlyInUse": "Dieses Bild wird derzeit in den folgenden Funktionen verwendet:",
@@ -628,10 +628,7 @@
"private": "Private Ordner",
"shared": "Geteilte Ordner",
"archiveBoard": "Ordner archivieren",
"archived": "Archiviert",
"noBoards": "Kein {boardType}} Ordner",
"hideBoards": "Ordner verstecken",
"viewBoards": "Ordner ansehen"
"archived": "Archiviert"
},
"controlnet": {
"showAdvanced": "Zeige Erweitert",
@@ -946,21 +943,6 @@
"paragraphs": [
"Reduziert das Ausgangsbild auf die Breite und Höhe des Ausgangsbildes. Empfohlen zu aktivieren."
]
},
"structure": {
"paragraphs": [
"Die Struktur steuert, wie genau sich das Ausgabebild an das Layout des Originals hält. Eine niedrige Struktur erlaubt größere Änderungen, während eine hohe Struktur die ursprüngliche Komposition und das Layout strikter beibehält."
]
},
"creativity": {
"paragraphs": [
"Die Kreativität bestimmt den Grad der Freiheit, die dem Modell beim Hinzufügen von Details gewährt wird. Eine niedrige Kreativität hält sich eng an das Originalbild, während eine hohe Kreativität mehr Veränderungen zulässt. Bei der Verwendung eines Prompts erhöht eine hohe Kreativität den Einfluss des Prompts."
]
},
"scale": {
"paragraphs": [
"Die Skalierung steuert die Größe des Ausgabebildes und basiert auf einem Vielfachen der Auflösung des Originalbildes. So würde z. B. eine 2-fache Hochskalierung eines 1024x1024px Bildes eine 2048x2048px große Ausgabe erzeugen."
]
}
},
"invocationCache": {

View File

@@ -31,8 +31,7 @@
"deleteBoard": "Delete Board",
"deleteBoardAndImages": "Delete Board and Images",
"deleteBoardOnly": "Delete Board Only",
"deletedBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to an uncategorized state.",
"deletedPrivateBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to a private uncategorized state for the image's creator.",
"deletedBoardsCannotbeRestored": "Deleted boards cannot be restored",
"hideBoards": "Hide Boards",
"loading": "Loading...",
"menuItemAutoAdd": "Auto-add to this Board",
@@ -200,7 +199,6 @@
"delete": "Delete",
"depthAnything": "Depth Anything",
"depthAnythingDescription": "Depth map generation using the Depth Anything technique",
"depthAnythingSmallV2": "Small V2",
"depthMidas": "Depth (Midas)",
"depthMidasDescription": "Depth map generation using Midas",
"depthZoe": "Depth (Zoe)",
@@ -374,6 +372,7 @@
"dropToUpload": "$t(gallery.drop) to Upload",
"deleteImage_one": "Delete Image",
"deleteImage_other": "Delete {{count}} Images",
"deleteImageBin": "Deleted images will be sent to your operating system's Bin.",
"deleteImagePermanent": "Deleted images cannot be restored.",
"displayBoardSearch": "Display Board Search",
"displaySearch": "Display Search",
@@ -1053,7 +1052,11 @@
"remixImage": "Remix Image",
"usePrompt": "Use Prompt",
"useSeed": "Use Seed",
"width": "Width"
"width": "Width",
"isAllowedToUpscale": {
"useX2Model": "Image is too large to upscale with x4 model, use x2 model",
"tooLarge": "Image is too large to upscale, select smaller image"
}
},
"dynamicPrompts": {
"showDynamicPrompts": "Show Dynamic Prompts",
@@ -1141,8 +1144,6 @@
"imageSavingFailed": "Image Saving Failed",
"imageUploaded": "Image Uploaded",
"imageUploadFailed": "Image Upload Failed",
"importFailed": "Import Failed",
"importSuccessful": "Import Successful",
"invalidUpload": "Invalid Upload",
"loadedWithWarnings": "Workflow Loaded with Warnings",
"maskSavedAssets": "Mask Saved to Assets",
@@ -1675,10 +1676,7 @@
"layers_other": "Layers"
},
"upscaling": {
"upscale": "Upscale",
"creativity": "Creativity",
"exceedsMaxSize": "Upscale settings exceed max size limit",
"exceedsMaxSizeDetails": "Max upscale limit is {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixels. Please try a smaller image or decrease your scale selection.",
"structure": "Structure",
"upscaleModel": "Upscale Model",
"postProcessingModel": "Post-Processing Model",
@@ -1692,53 +1690,6 @@
"missingUpscaleModel": "Missing upscale model",
"missingTileControlNetModel": "No valid tile ControlNet models installed"
},
"stylePresets": {
"active": "Active",
"choosePromptTemplate": "Choose Prompt Template",
"clearTemplateSelection": "Clear Template Selection",
"copyTemplate": "Copy Template",
"createPromptTemplate": "Create Prompt Template",
"defaultTemplates": "Default Templates",
"deleteImage": "Delete Image",
"deleteTemplate": "Delete Template",
"deleteTemplate2": "Are you sure you want to delete this template? This cannot be undone.",
"exportPromptTemplates": "Export My Prompt Templates (CSV)",
"editTemplate": "Edit Template",
"exportDownloaded": "Export Downloaded",
"exportFailed": "Unable to generate and download CSV",
"flatten": "Flatten selected template into current prompt",
"importTemplates": "Import Prompt Templates (CSV/JSON)",
"acceptedColumnsKeys": "Accepted columns/keys:",
"nameColumn": "'name'",
"positivePromptColumn": "'prompt' or 'positive_prompt'",
"negativePromptColumn": "'negative_prompt'",
"insertPlaceholder": "Insert placeholder",
"myTemplates": "My Templates",
"name": "Name",
"negativePrompt": "Negative Prompt",
"noTemplates": "No templates",
"noMatchingTemplates": "No matching templates",
"promptTemplatesDesc1": "Prompt templates add text to the prompts you write in the prompt box.",
"promptTemplatesDesc2": "Use the placeholder string <Pre>{{placeholder}}</Pre> to specify where your prompt should be included in the template.",
"promptTemplatesDesc3": "If you omit the placeholder, the template will be appended to the end of your prompt.",
"positivePrompt": "Positive Prompt",
"preview": "Preview",
"private": "Private",
"promptTemplateCleared": "Prompt Template Cleared",
"searchByName": "Search by name",
"shared": "Shared",
"sharedTemplates": "Shared Templates",
"templateActions": "Template Actions",
"templateDeleted": "Prompt template deleted",
"toggleViewMode": "Toggle View Mode",
"type": "Type",
"unableToDeleteTemplate": "Unable to delete prompt template",
"updatePromptTemplate": "Update Prompt Template",
"uploadImage": "Upload Image",
"useForTemplate": "Use For Prompt Template",
"viewList": "View Template List",
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box."
},
"upsell": {
"inviteTeammates": "Invite Teammates",
"professional": "Professional",

View File

@@ -88,6 +88,7 @@
"deleteImage_one": "Eliminar Imagen",
"deleteImage_many": "",
"deleteImage_other": "",
"deleteImageBin": "Las imágenes eliminadas se enviarán a la papelera de tu sistema operativo.",
"deleteImagePermanent": "Las imágenes eliminadas no se pueden restaurar.",
"assets": "Activos",
"autoAssignBoardOnClick": "Asignación automática de tableros al hacer clic"

View File

@@ -89,8 +89,7 @@
"enabled": "Abilitato",
"disabled": "Disabilitato",
"comparingDesc": "Confronta due immagini",
"comparing": "Confronta",
"dontShowMeThese": "Non mostrare più"
"comparing": "Confronta"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -102,6 +101,7 @@
"deleteImage_many": "Elimina {{count}} immagini",
"deleteImage_other": "Elimina {{count}} immagini",
"deleteImagePermanent": "Le immagini eliminate non possono essere ripristinate.",
"deleteImageBin": "Le immagini eliminate verranno spostate nel cestino del tuo sistema operativo.",
"assets": "Risorse",
"autoAssignBoardOnClick": "Assegna automaticamente la bacheca al clic",
"featuresWillReset": "Se elimini questa immagine, quelle funzionalità verranno immediatamente ripristinate.",
@@ -154,9 +154,7 @@
"selectAllOnPage": "Seleziona tutto nella pagina",
"selectAllOnBoard": "Seleziona tutto nella bacheca",
"exitBoardSearch": "Esci da Ricerca bacheca",
"exitSearch": "Esci dalla ricerca",
"go": "Vai",
"jump": "Salta"
"exitSearch": "Esci dalla ricerca"
},
"hotkeys": {
"keyboardShortcuts": "Tasti di scelta rapida",
@@ -573,6 +571,10 @@
},
"useCpuNoise": "Usa la CPU per generare rumore",
"iterations": "Iterazioni",
"isAllowedToUpscale": {
"useX2Model": "L'immagine è troppo grande per l'ampliamento con il modello x4, utilizza il modello x2",
"tooLarge": "L'immagine è troppo grande per l'ampliamento, seleziona un'immagine più piccola"
},
"imageActions": "Azioni Immagine",
"cfgRescaleMultiplier": "Moltiplicatore riscala CFG",
"useSize": "Usa Dimensioni",
@@ -628,9 +630,7 @@
"enableNSFWChecker": "Abilita controllo NSFW",
"enableInvisibleWatermark": "Abilita filigrana invisibile",
"enableInformationalPopovers": "Abilita testo informativo a comparsa",
"reloadingIn": "Ricaricando in",
"informationalPopoversDisabled": "Testo informativo a comparsa disabilitato",
"informationalPopoversDisabledDesc": "I testi informativi a comparsa sono disabilitati. Attivali nelle impostazioni."
"reloadingIn": "Ricaricando in"
},
"toast": {
"uploadFailed": "Caricamento fallito",
@@ -701,9 +701,7 @@
"baseModelChanged": "Modello base modificato",
"sessionRef": "Sessione: {{sessionId}}",
"somethingWentWrong": "Qualcosa è andato storto",
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova.",
"importFailed": "Importazione non riuscita",
"importSuccessful": "Importazione riuscita"
"outOfMemoryErrorDesc": "Le impostazioni della generazione attuale superano la capacità del sistema. Modifica le impostazioni e riprova."
},
"tooltip": {
"feature": {
@@ -929,7 +927,7 @@
"missingInvocationTemplate": "Modello di invocazione mancante",
"missingFieldTemplate": "Modello di campo mancante",
"singleFieldType": "{{name}} (Singola)",
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino ai valori predefiniti",
"imageAccessError": "Impossibile trovare l'immagine {{image_name}}, ripristino delle impostazioni predefinite",
"boardAccessError": "Impossibile trovare la bacheca {{board_id}}, ripristino ai valori predefiniti",
"modelAccessError": "Impossibile trovare il modello {{key}}, ripristino ai valori predefiniti"
},
@@ -953,7 +951,7 @@
"deleteBoardOnly": "solo la Bacheca",
"deleteBoard": "Elimina Bacheca",
"deleteBoardAndImages": "Bacheca e Immagini",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate. Selezionando \"Elimina solo bacheca\" le immagini verranno spostate nella bacheca \"Non categorizzato\".",
"deletedBoardsCannotbeRestored": "Le bacheche eliminate non possono essere ripristinate",
"movingImagesToBoard_one": "Spostare {{count}} immagine nella bacheca:",
"movingImagesToBoard_many": "Spostare {{count}} immagini nella bacheca:",
"movingImagesToBoard_other": "Spostare {{count}} immagini nella bacheca:",
@@ -974,8 +972,7 @@
"addPrivateBoard": "Aggiungi una Bacheca Privata",
"noBoards": "Nessuna bacheca {{boardType}}",
"hideBoards": "Nascondi bacheche",
"viewBoards": "Visualizza bacheche",
"deletedPrivateBoardsCannotbeRestored": "Le bacheche cancellate non possono essere ripristinate. Selezionando 'Cancella solo bacheca', le immagini verranno spostate nella bacheca \"Non categorizzato\" privata dell'autore dell'immagine."
"viewBoards": "Visualizza bacheche"
},
"controlnet": {
"contentShuffleDescription": "Rimescola il contenuto di un'immagine",
@@ -1519,30 +1516,6 @@
"paragraphs": [
"Metodo con cui applicare l'adattatore IP corrente."
]
},
"scale": {
"heading": "Scala",
"paragraphs": [
"La scala controlla la dimensione dell'immagine di uscita e si basa su un multiplo della risoluzione dell'immagine di ingresso. Ad esempio, un ampliamento 2x su un'immagine 1024x1024 produrrebbe in uscita a 2048x2048."
]
},
"upscaleModel": {
"paragraphs": [
"Il modello di ampliamento (Upscale), scala l'immagine alle dimensioni di uscita prima di aggiungere i dettagli. È possibile utilizzare qualsiasi modello di ampliamento supportato, ma alcuni sono specializzati per diversi tipi di immagini, come foto o disegni al tratto."
],
"heading": "Modello di ampliamento"
},
"creativity": {
"heading": "Creatività",
"paragraphs": [
"La creatività controlla quanta libertà è concessa al modello quando si aggiungono dettagli. Una creatività bassa rimane vicina all'immagine originale, mentre una creatività alta consente più cambiamenti. Quando si usa un prompt, una creatività alta aumenta l'influenza del prompt."
]
},
"structure": {
"heading": "Struttura",
"paragraphs": [
"La struttura determina quanto l'immagine finale rispecchierà il layout dell'originale. Una struttura bassa permette cambiamenti significativi, mentre una struttura alta conserva la composizione e il layout originali."
]
}
},
"sdxl": {
@@ -1737,58 +1710,12 @@
"missingUpscaleModel": "Modello per lampliamento mancante",
"missingTileControlNetModel": "Nessun modello ControlNet Tile valido installato",
"postProcessingModel": "Modello di post-elaborazione",
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine).",
"exceedsMaxSize": "Le impostazioni di ampliamento superano il limite massimo delle dimensioni",
"exceedsMaxSizeDetails": "Il limite massimo di ampliamento è {{maxUpscaleDimension}}x{{maxUpscaleDimension}} pixel. Prova un'immagine più piccola o diminuisci la scala selezionata."
"postProcessingMissingModelWarning": "Visita <LinkComponent>Gestione modelli</LinkComponent> per installare un modello di post-elaborazione (da immagine a immagine)."
},
"upsell": {
"inviteTeammates": "Invita collaboratori",
"shareAccess": "Condividi l'accesso",
"professional": "Professionale",
"professionalUpsell": "Disponibile nell'edizione Professional di Invoke. Fai clic qui o visita invoke.com/pricing per ulteriori dettagli."
},
"stylePresets": {
"active": "Attivo",
"choosePromptTemplate": "Scegli un modello di prompt",
"clearTemplateSelection": "Cancella selezione modello",
"copyTemplate": "Copia modello",
"createPromptTemplate": "Crea modello di prompt",
"defaultTemplates": "Modelli predefiniti",
"deleteImage": "Elimina immagine",
"deleteTemplate": "Elimina modello",
"editTemplate": "Modifica modello",
"flatten": "Unisci il modello selezionato al prompt corrente",
"insertPlaceholder": "Inserisci segnaposto",
"myTemplates": "I miei modelli",
"name": "Nome",
"negativePrompt": "Prompt Negativo",
"noMatchingTemplates": "Nessun modello corrispondente",
"promptTemplatesDesc1": "I modelli di prompt aggiungono testo ai prompt che scrivi nelle caselle dei prompt.",
"promptTemplatesDesc3": "Se si omette il segnaposto, il modello verrà aggiunto alla fine del prompt.",
"positivePrompt": "Prompt Positivo",
"preview": "Anteprima",
"private": "Privato",
"searchByName": "Cerca per nome",
"shared": "Condiviso",
"sharedTemplates": "Modelli condivisi",
"templateDeleted": "Modello di prompt eliminato",
"toggleViewMode": "Attiva/disattiva visualizzazione",
"uploadImage": "Carica immagine",
"useForTemplate": "Usa per modello di prompt",
"viewList": "Visualizza l'elenco dei modelli",
"viewModeTooltip": "Ecco come apparirà il tuo prompt con il modello attualmente selezionato. Per modificare il tuo prompt, clicca in un punto qualsiasi della casella di testo.",
"deleteTemplate2": "Vuoi davvero eliminare questo modello? Questa operazione non può essere annullata.",
"unableToDeleteTemplate": "Impossibile eliminare il modello di prompt",
"updatePromptTemplate": "Aggiorna il modello di prompt",
"type": "Tipo",
"promptTemplatesDesc2": "Utilizza la stringa segnaposto <Pre>{{placeholder}}</Pre> per specificare dove inserire il tuo prompt nel modello.",
"importTemplates": "Importa modelli di prompt (CSV/JSON)",
"exportDownloaded": "Esportazione completata",
"exportFailed": "Impossibile generare e scaricare il file CSV",
"exportPromptTemplates": "Esporta i miei modelli di prompt (CSV)",
"positivePromptColumn": "'prompt' o 'positive_prompt'",
"noTemplates": "Nessun modello",
"acceptedColumnsKeys": "Colonne/chiavi accettate:",
"templateActions": "Azioni modello"
}
}

View File

@@ -109,6 +109,7 @@
"drop": "ドロップ",
"dropOrUpload": "$t(gallery.drop) またはアップロード",
"deleteImage_other": "画像を削除",
"deleteImageBin": "削除された画像はOSのゴミ箱に送られます。",
"deleteImagePermanent": "削除された画像は復元できません。",
"download": "ダウンロード",
"unableToLoad": "ギャラリーをロードできません",

View File

@@ -70,6 +70,7 @@
"gallerySettings": "갤러리 설정",
"deleteSelection": "선택 항목 삭제",
"featuresWillReset": "이 이미지를 삭제하면 해당 기능이 즉시 재설정됩니다.",
"deleteImageBin": "삭제된 이미지는 운영 체제의 Bin으로 전송됩니다.",
"assets": "자산",
"problemDeletingImagesDesc": "하나 이상의 이미지를 삭제할 수 없습니다",
"noImagesInGallery": "보여줄 이미지가 없음",

View File

@@ -97,6 +97,7 @@
"noImagesInGallery": "Geen afbeeldingen om te tonen",
"deleteImage_one": "Verwijder afbeelding",
"deleteImage_other": "",
"deleteImageBin": "Verwijderde afbeeldingen worden naar de prullenbak van je besturingssysteem gestuurd.",
"deleteImagePermanent": "Verwijderde afbeeldingen kunnen niet worden hersteld.",
"assets": "Eigen onderdelen",
"autoAssignBoardOnClick": "Ken automatisch bord toe bij klikken",
@@ -466,6 +467,10 @@
},
"imageNotProcessedForControlAdapter": "De afbeelding van controle-adapter #{{number}} is niet verwerkt"
},
"isAllowedToUpscale": {
"useX2Model": "Afbeelding is te groot om te vergroten met het x4-model. Gebruik hiervoor het x2-model",
"tooLarge": "Afbeelding is te groot om te vergoten. Kies een kleinere afbeelding"
},
"patchmatchDownScaleSize": "Verklein",
"useCpuNoise": "Gebruik CPU-ruis",
"imageActions": "Afbeeldingshandeling",

View File

@@ -91,8 +91,7 @@
"enabled": "Включено",
"disabled": "Отключено",
"comparingDesc": "Сравнение двух изображений",
"comparing": "Сравнение",
"dontShowMeThese": "Не показывай мне это"
"comparing": "Сравнение"
},
"gallery": {
"galleryImageSize": "Размер изображений",
@@ -101,6 +100,7 @@
"loadMore": "Показать больше",
"noImagesInGallery": "Изображений нет",
"deleteImagePermanent": "Удаленные изображения невозможно восстановить.",
"deleteImageBin": "Удаленные изображения будут отправлены в корзину вашей операционной системы.",
"deleteImage_one": "Удалить изображение",
"deleteImage_few": "Удалить {{count}} изображения",
"deleteImage_many": "Удалить {{count}} изображений",
@@ -154,11 +154,7 @@
"showArchivedBoards": "Показать архивированные доски",
"searchImages": "Поиск по метаданным",
"displayBoardSearch": "Отобразить поиск досок",
"displaySearch": "Отобразить поиск",
"exitBoardSearch": "Выйти из поиска досок",
"go": "Перейти",
"exitSearch": "Выйти из поиска",
"jump": "Пыгнуть"
"displaySearch": "Отобразить поиск"
},
"hotkeys": {
"keyboardShortcuts": "Горячие клавиши",
@@ -381,10 +377,6 @@
"toggleViewer": {
"title": "Переключить просмотр изображений",
"desc": "Переключение между средством просмотра изображений и рабочей областью для текущей вкладки."
},
"postProcess": {
"desc": "Обработайте текущее изображение с помощью выбранной модели постобработки",
"title": "Обработать изображение"
}
},
"modelManager": {
@@ -575,6 +567,10 @@
"ipAdapterNoImageSelected": "изображение IP-адаптера не выбрано"
}
},
"isAllowedToUpscale": {
"useX2Model": "Изображение слишком велико для увеличения с помощью модели x4. Используйте модель x2",
"tooLarge": "Изображение слишком велико для увеличения. Выберите изображение меньшего размера"
},
"cfgRescaleMultiplier": "Множитель масштабирования CFG",
"patchmatchDownScaleSize": "уменьшить",
"useCpuNoise": "Использовать шум CPU",
@@ -598,10 +594,7 @@
"infillColorValue": "Цвет заливки",
"globalSettings": "Глобальные настройки",
"globalNegativePromptPlaceholder": "Глобальный негативный запрос",
"globalPositivePromptPlaceholder": "Глобальный запрос",
"postProcessing": "Постобработка (Shift + U)",
"processImage": "Обработка изображения",
"sendToUpscale": "Отправить на увеличение"
"globalPositivePromptPlaceholder": "Глобальный запрос"
},
"settings": {
"models": "Модели",
@@ -635,9 +628,7 @@
"intermediatesCleared_many": "Очищено {{count}} промежуточных",
"clearIntermediatesDesc1": "Очистка промежуточных элементов приведет к сбросу состояния Canvas и ControlNet.",
"intermediatesClearedFailed": "Проблема очистки промежуточных",
"reloadingIn": "Перезагрузка через",
"informationalPopoversDisabled": "Информационные всплывающие окна отключены",
"informationalPopoversDisabledDesc": "Информационные всплывающие окна были отключены. Включите их в Настройках."
"reloadingIn": "Перезагрузка через"
},
"toast": {
"uploadFailed": "Загрузка не удалась",
@@ -708,9 +699,7 @@
"sessionRef": "Сессия: {{sessionId}}",
"outOfMemoryError": "Ошибка нехватки памяти",
"outOfMemoryErrorDesc": "Ваши текущие настройки генерации превышают возможности системы. Пожалуйста, измените настройки и повторите попытку.",
"somethingWentWrong": "Что-то пошло не так",
"importFailed": "Импорт неудачен",
"importSuccessful": "Импорт успешен"
"somethingWentWrong": "Что-то пошло не так"
},
"tooltip": {
"feature": {
@@ -1033,8 +1022,7 @@
"composition": "Только композиция",
"hed": "HED",
"beginEndStepPercentShort": "Начало/конец %",
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)",
"depthAnythingSmallV2": "Small V2"
"setControlImageDimensionsForce": "Скопируйте размер в Ш/В (игнорируйте модель)"
},
"boards": {
"autoAddBoard": "Авто добавление Доски",
@@ -1059,7 +1047,7 @@
"downloadBoard": "Скачать доску",
"deleteBoard": "Удалить доску",
"deleteBoardAndImages": "Удалить доску и изображения",
"deletedBoardsCannotbeRestored": "Удаленные доски не могут быть восстановлены. Выбор «Удалить только доску» переведет изображения в состояние без категории.",
"deletedBoardsCannotbeRestored": "Удаленные доски не подлежат восстановлению",
"assetsWithCount_one": "{{count}} ассет",
"assetsWithCount_few": "{{count}} ассета",
"assetsWithCount_many": "{{count}} ассетов",
@@ -1074,11 +1062,7 @@
"boards": "Доски",
"addPrivateBoard": "Добавить личную доску",
"private": "Личные доски",
"shared": "Общие доски",
"hideBoards": "Скрыть доски",
"viewBoards": "Просмотреть доски",
"noBoards": "Нет досок {{boardType}}",
"deletedPrivateBoardsCannotbeRestored": "Удаленные доски не могут быть восстановлены. Выбор «Удалить только доску» переведет изображения в приватное состояние без категории для создателя изображения."
"shared": "Общие доски"
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1438,30 +1422,6 @@
"paragraphs": [
"Метод, с помощью которого применяется текущий IP-адаптер."
]
},
"structure": {
"paragraphs": [
"Структура контролирует, насколько точно выходное изображение будет соответствовать макету оригинала. Низкая структура допускает значительные изменения, в то время как высокая структура строго сохраняет исходную композицию и макет."
],
"heading": "Структура"
},
"scale": {
"paragraphs": [
"Масштаб управляет размером выходного изображения и основывается на кратном разрешении входного изображения. Например, при увеличении в 2 раза изображения 1024x1024 на выходе получится 2048 x 2048."
],
"heading": "Масштаб"
},
"creativity": {
"paragraphs": [
"Креативность контролирует степень свободы, предоставляемой модели при добавлении деталей. При низкой креативности модель остается близкой к оригинальному изображению, в то время как высокая креативность позволяет вносить больше изменений. При использовании подсказки высокая креативность увеличивает влияние подсказки."
],
"heading": "Креативность"
},
"upscaleModel": {
"heading": "Модель увеличения",
"paragraphs": [
"Модель увеличения масштаба масштабирует изображение до выходного размера перед добавлением деталей. Можно использовать любую поддерживаемую модель масштабирования, но некоторые из них специализированы для различных видов изображений, например фотографий или линейных рисунков."
]
}
},
"metadata": {
@@ -1738,78 +1698,7 @@
"canvasTab": "$t(ui.tabs.canvas) $t(common.tab)",
"queueTab": "$t(ui.tabs.queue) $t(common.tab)",
"modelsTab": "$t(ui.tabs.models) $t(common.tab)",
"queue": "Очередь",
"upscaling": "Увеличение",
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)"
"queue": "Очередь"
}
},
"upscaling": {
"exceedsMaxSize": "Параметры масштабирования превышают максимальный размер",
"exceedsMaxSizeDetails": "Максимальный предел масштабирования составляет {{maxUpscaleDimension}}x{{maxUpscaleDimension}} пикселей. Пожалуйста, попробуйте использовать меньшее изображение или уменьшите масштаб.",
"structure": "Структура",
"missingTileControlNetModel": "Не установлены подходящие модели ControlNet",
"missingUpscaleInitialImage": "Отсутствует увеличиваемое изображение",
"missingUpscaleModel": "Отсутствует увеличивающая модель",
"creativity": "Креативность",
"upscaleModel": "Модель увеличения",
"scale": "Масштаб",
"mainModelDesc": "Основная модель (архитектура SD1.5 или SDXL)",
"upscaleModelDesc": "Модель увеличения (img2img)",
"postProcessingModel": "Модель постобработки",
"tileControlNetModelDesc": "Модель ControlNet для выбранной архитектуры основной модели",
"missingModelsWarning": "Зайдите в <LinkComponent>Менеджер моделей</LinkComponent> чтоб установить необходимые модели:",
"postProcessingMissingModelWarning": "Посетите <LinkComponent>Менеджер моделей</LinkComponent>, чтобы установить модель постобработки (img2img)."
},
"stylePresets": {
"noMatchingTemplates": "Нет подходящих шаблонов",
"promptTemplatesDesc1": "Шаблоны подсказок добавляют текст к подсказкам, которые вы пишете в окне подсказок.",
"sharedTemplates": "Общие шаблоны",
"templateDeleted": "Шаблон запроса удален",
"toggleViewMode": "Переключить режим просмотра",
"type": "Тип",
"unableToDeleteTemplate": "Не получилось удалить шаблон запроса",
"viewModeTooltip": "Вот как будет выглядеть ваш запрос с выбранным шаблоном. Чтобы его отредактировать, щелкните в любом месте текстового поля.",
"viewList": "Просмотреть список шаблонов",
"active": "Активно",
"choosePromptTemplate": "Выберите шаблон запроса",
"defaultTemplates": "Стандартные шаблоны",
"deleteImage": "Удалить изображение",
"deleteTemplate": "Удалить шаблон",
"deleteTemplate2": "Вы уверены, что хотите удалить этот шаблон? Это нельзя отменить.",
"editTemplate": "Редактировать шаблон",
"exportPromptTemplates": "Экспорт моих шаблонов запроса (CSV)",
"exportDownloaded": "Экспорт скачан",
"exportFailed": "Невозможно сгенерировать и загрузить CSV",
"flatten": "Объединить выбранный шаблон с текущим запросом",
"acceptedColumnsKeys": "Принимаемые столбцы/ключи:",
"positivePromptColumn": "'prompt' или 'positive_prompt'",
"insertPlaceholder": "Вставить заполнитель",
"name": "Имя",
"negativePrompt": "Негативный запрос",
"promptTemplatesDesc3": "Если вы не используете заполнитель, шаблон будет добавлен в конец запроса.",
"positivePrompt": "Позитивный запрос",
"preview": "Предпросмотр",
"private": "Приватный",
"templateActions": "Действия с шаблоном",
"updatePromptTemplate": "Обновить шаблон запроса",
"uploadImage": "Загрузить изображение",
"useForTemplate": "Использовать для шаблона запроса",
"clearTemplateSelection": "Очистить выбор шаблона",
"copyTemplate": "Копировать шаблон",
"createPromptTemplate": "Создать шаблон запроса",
"importTemplates": "Импортировать шаблоны запроса (CSV/JSON)",
"nameColumn": "'name'",
"negativePromptColumn": "'negative_prompt'",
"myTemplates": "Мои шаблоны",
"noTemplates": "Нет шаблонов",
"promptTemplatesDesc2": "Используйте строку-заполнитель <Pre>{{placeholder}}</Pre>, чтобы указать место, куда должен быть включен ваш запрос в шаблоне.",
"searchByName": "Поиск по имени",
"shared": "Общий"
},
"upsell": {
"inviteTeammates": "Пригласите членов команды",
"professional": "Профессионал",
"professionalUpsell": "Доступно в профессиональной версии Invoke. Нажмите здесь или посетите invoke.com/pricing для получения более подробной информации.",
"shareAccess": "Поделиться доступом"
}
}

View File

@@ -278,6 +278,7 @@
"enable": "Aç"
},
"gallery": {
"deleteImageBin": "Silinen görseller işletim sisteminin çöp kutusuna gönderilir.",
"deleteImagePermanent": "Silinen görseller geri getirilemez.",
"assets": "Özkaynaklar",
"autoAssignBoardOnClick": "Tıklanan Panoya Otomatik Atama",
@@ -621,6 +622,10 @@
"controlNetControlMode": "Yönetim Kipi",
"general": "Genel",
"seamlessYAxis": "Dikişsiz Döşeme Y Ekseni",
"isAllowedToUpscale": {
"tooLarge": "Görsel, büyütme işlemi için çok büyük, daha küçük bir boyut seçin",
"useX2Model": "Görsel 4 kat büyütme işlemi için çok geniş, 2 kat büyütmeyi kullanın"
},
"maskBlur": "Bulandırma",
"images": "Görseller",
"info": "Bilgi",

View File

@@ -6,7 +6,7 @@
"settingsLabel": "设置",
"img2img": "图生图",
"unifiedCanvas": "统一画布",
"nodes": "工作流",
"nodes": "工作流编辑器",
"upload": "上传",
"load": "加载",
"statusDisconnected": "未连接",
@@ -86,12 +86,7 @@
"editing": "编辑中",
"green": "绿",
"blue": "蓝",
"editingDesc": "在控制图层画布上编辑",
"goTo": "前往",
"dontShowMeThese": "请勿显示这些内容",
"beta": "测试版",
"toResolve": "解决",
"tab": "标签页"
"editingDesc": "在控制图层画布上编辑"
},
"gallery": {
"galleryImageSize": "预览大小",
@@ -99,7 +94,8 @@
"autoSwitchNewImages": "自动切换到新图像",
"loadMore": "加载更多",
"noImagesInGallery": "无图像可用于显示",
"deleteImage_other": "删除{{count}}张图片",
"deleteImage_other": "删除图片",
"deleteImageBin": "被删除的图片会发送到你操作系统的回收站。",
"deleteImagePermanent": "删除的图片无法被恢复。",
"assets": "素材",
"autoAssignBoardOnClick": "点击后自动分配面板",
@@ -137,24 +133,7 @@
"hover": "悬停",
"selectAllOnPage": "选择本页全部",
"swapImages": "交换图像",
"compareOptions": "比较选项",
"exitBoardSearch": "退出面板搜索",
"exitSearch": "退出搜索",
"oldestFirst": "最旧在前",
"sortDirection": "排序方向",
"showStarredImagesFirst": "优先显示收藏的图片",
"compareHelp3": "按 <Kbd>C</Kbd> 键对调正在比较的图片。",
"showArchivedBoards": "显示已归档的面板",
"newestFirst": "最新在前",
"compareHelp4": "按 <Kbd>Z</Kbd>或 <Kbd>Esc</Kbd> 键退出。",
"searchImages": "按元数据搜索",
"jump": "跳过",
"compareHelp2": "按 <Kbd>M</Kbd> 键切换不同的比较模式。",
"displayBoardSearch": "显示面板搜索",
"displaySearch": "显示搜索",
"stretchToFit": "拉伸以适应",
"exitCompare": "退出对比",
"compareHelp1": "在点击图库中的图片或使用箭头键切换比较图片时,请按住<Kbd>Alt</Kbd> 键。"
"compareOptions": "比较选项"
},
"hotkeys": {
"keyboardShortcuts": "快捷键",
@@ -369,19 +348,7 @@
"desc": "打开和关闭选项和图库面板",
"title": "开关选项和图库"
},
"clearSearch": "清除检索项",
"toggleViewer": {
"desc": "在当前标签页的图片查看模式和编辑工作区之间切换.",
"title": "切换图片查看器"
},
"postProcess": {
"desc": "使用选定的后期处理模型对当前图像进行处理",
"title": "处理图像"
},
"remixImage": {
"title": "重新混合图像",
"desc": "使用当前图像的所有参数,但不包括随机种子"
}
"clearSearch": "清除检索项"
},
"modelManager": {
"modelManager": "模型管理器",
@@ -429,72 +396,14 @@
"modelConversionFailed": "模型转换失败",
"baseModel": "基底模型",
"convertingModelBegin": "模型转换中. 请稍候.",
"predictionType": "预测类型",
"predictionType": "预测类型(适用于 Stable Diffusion 2.x 模型和部分 Stable Diffusion 1.x 模型)",
"advanced": "高级",
"modelType": "模型类别",
"variant": "变体",
"vae": "VAE",
"alpha": "Alpha",
"vaePrecision": "VAE 精度",
"noModelSelected": "无选中的模型",
"modelImageUpdateFailed": "模型图像更新失败",
"scanFolder": "扫描文件夹",
"path": "路径",
"pathToConfig": "配置路径",
"cancel": "取消",
"hfTokenUnableToVerify": "无法验证HuggingFace token",
"install": "安装",
"simpleModelPlaceholder": "本地文件或diffusers文件夹的URL或路径",
"hfTokenInvalidErrorMessage": "无效或缺失的HuggingFace token.",
"noModelsInstalledDesc1": "安装模型时使用",
"inplaceInstallDesc": "安装模型时不复制文件直接从原位置加载。如果关闭此选项模型文件将在安装过程中被复制到Invoke管理的模型文件夹中.",
"installAll": "安装全部",
"noModelsInstalled": "无已安装的模型",
"urlOrLocalPathHelper": "链接应该指向单个文件.本地路径可以指向单个文件,或者对于单个扩散模型(diffusers model),可以指向一个文件夹.",
"modelSettings": "模型设置",
"useDefaultSettings": "使用默认设置",
"scanPlaceholder": "本地文件夹路径",
"installRepo": "安装仓库",
"modelImageDeleted": "模型图像已删除",
"modelImageDeleteFailed": "模型图像删除失败",
"scanFolderHelper": "此文件夹将进行递归扫描以寻找模型.对于大型文件夹,这可能需要一些时间.",
"scanResults": "扫描结果",
"noMatchingModels": "无匹配的模型",
"pruneTooltip": "清理队列中已完成的导入任务",
"urlOrLocalPath": "链接或本地路径",
"localOnly": "仅本地",
"hfTokenHelperText": "需要HuggingFace token才能使用Checkpoint模型。点击此处创建或获取您的token.",
"huggingFaceHelper": "如果在此代码库中检测到多个模型,系统将提示您选择其中一个进行安装.",
"hfTokenUnableToVerifyErrorMessage": "无法验证HuggingFace token.可能是网络问题所致.请稍后再试.",
"hfTokenSaved": "HuggingFace token已保存",
"imageEncoderModelId": "图像编码器模型ID",
"modelImageUpdated": "模型图像已更新",
"modelName": "模型名称",
"prune": "清理",
"repoVariant": "代码库版本",
"defaultSettings": "默认设置",
"inplaceInstall": "就地安装",
"main": "主界面",
"starterModels": "初始模型",
"installQueue": "安装队列",
"hfTokenInvalidErrorMessage2": "更新于其中 ",
"hfTokenInvalid": "无效或缺失的HuggingFace token",
"mainModelTriggerPhrases": "主模型触发词",
"typePhraseHere": "在此输入触发词",
"triggerPhrases": "触发词",
"metadata": "元数据",
"deleteModelImage": "删除模型图片",
"edit": "编辑",
"source": "来源",
"uploadImage": "上传图像",
"addModels": "添加模型",
"textualInversions": "文本逆向生成",
"upcastAttention": "是否为高精度权重",
"defaultSettingsSaved": "默认设置已保存",
"huggingFacePlaceholder": "所有者或模型名称",
"huggingFaceRepoID": "HuggingFace仓库ID",
"loraTriggerPhrases": "LoRA 触发词",
"ipAdapters": "IP适配器"
"noModelSelected": "无选中的模型"
},
"parameters": {
"images": "图像",
@@ -537,7 +446,7 @@
"scheduler": "调度器",
"general": "通用",
"controlNetControlMode": "控制模式",
"maskBlur": "遮罩模糊",
"maskBlur": "模糊",
"invoke": {
"noNodesInGraph": "节点图中无节点",
"noModelSelected": "无已选中的模型",
@@ -551,21 +460,7 @@
"noPrompts": "没有已生成的提示词",
"noControlImageForControlAdapter": "有 #{{number}} 个 Control Adapter 缺失控制图像",
"noModelForControlAdapter": "有 #{{number}} 个 Control Adapter 没有选择模型。",
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。",
"layer": {
"initialImageNoImageSelected": "未选择初始图像",
"controlAdapterImageNotProcessed": "Control Adapter图像尚未处理",
"ipAdapterNoModelSelected": "未选择IP adapter",
"controlAdapterNoModelSelected": "未选择Control Adapter模型",
"controlAdapterNoImageSelected": "未选择Control Adapter图像",
"rgNoPromptsOrIPAdapters": "无文本提示或IP Adapters",
"controlAdapterIncompatibleBaseModel": "Control Adapter的基础模型不兼容",
"ipAdapterIncompatibleBaseModel": "IP Adapter的基础模型不兼容",
"t2iAdapterIncompatibleDimensions": "T2I Adapter需要图像尺寸为{{multiple}}的倍数",
"ipAdapterNoImageSelected": "未选择IP Adapter图像",
"rgNoRegion": "未选择区域"
},
"imageNotProcessedForControlAdapter": "Control Adapter #{{number}} 的图像未处理"
"incompatibleBaseModelForControlAdapter": "有 #{{number}} 个 Control Adapter 模型与主模型不兼容。"
},
"patchmatchDownScaleSize": "缩小",
"clipSkip": "CLIP 跳过层",
@@ -573,6 +468,10 @@
"coherenceMode": "模式",
"imageActions": "图像操作",
"iterations": "迭代数",
"isAllowedToUpscale": {
"useX2Model": "图像太大,无法使用 x4 模型,使用 x2 模型作为替代",
"tooLarge": "图像太大无法进行放大,请选择更小的图像"
},
"cfgRescaleMultiplier": "CFG 重缩放倍数",
"useSize": "使用尺寸",
"setToOptimalSize": "优化模型大小",
@@ -580,21 +479,7 @@
"lockAspectRatio": "锁定纵横比",
"swapDimensions": "交换尺寸",
"aspect": "纵横",
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)",
"globalNegativePromptPlaceholder": "全局反向提示词",
"remixImage": "重新混合图像",
"coherenceEdgeSize": "边缘尺寸",
"postProcessing": "后处理Shift + U",
"infillMosaicTileWidth": "瓦片宽度",
"sendToUpscale": "发送到放大",
"processImage": "处理图像",
"globalPositivePromptPlaceholder": "全局正向提示词",
"globalSettings": "全局设置",
"infillMosaicTileHeight": "瓦片高度",
"infillMosaicMinColor": "最小颜色",
"infillMosaicMaxColor": "最大颜色",
"infillColorValue": "填充颜色",
"coherenceMinDenoise": "最小去噪"
"setToOptimalSizeTooLarge": "$t(parameters.setToOptimalSize) (可能过大)"
},
"settings": {
"models": "模型",
@@ -624,9 +509,7 @@
"enableNSFWChecker": "启用成人内容检测器",
"enableInvisibleWatermark": "启用不可见水印",
"enableInformationalPopovers": "启用信息弹窗",
"reloadingIn": "重新加载中",
"informationalPopoversDisabled": "信息提示框已禁用",
"informationalPopoversDisabledDesc": "信息提示框已被禁用.请在设置中重新启用."
"reloadingIn": "重新加载中"
},
"toast": {
"uploadFailed": "上传失败",
@@ -635,16 +518,16 @@
"canvasMerged": "画布已合并",
"sentToImageToImage": "已发送到图生图",
"sentToUnifiedCanvas": "已发送到统一画布",
"parametersNotSet": "参数未恢复",
"parametersNotSet": "参数未设定",
"metadataLoadFailed": "加载元数据失败",
"uploadFailedInvalidUploadDesc": "必须是单张的 PNG 或 JPEG 图片",
"connected": "服务器连接",
"parameterSet": "参数已恢复",
"parameterNotSet": "参数未恢复",
"parameterSet": "参数已设定",
"parameterNotSet": "参数未设定",
"serverError": "服务器错误",
"canceled": "处理取消",
"problemCopyingImage": "无法复制图像",
"modelAddedSimple": "模型已加入队列",
"modelAddedSimple": "已添加模型",
"imageSavingFailed": "图像保存失败",
"canvasSentControlnetAssets": "画布已发送到 ControlNet & 素材",
"problemCopyingCanvasDesc": "无法导出基础层",
@@ -674,28 +557,12 @@
"canvasSavedGallery": "画布已保存到图库",
"imageUploadFailed": "图像上传失败",
"problemImportingMask": "导入遮罩时出现问题",
"baseModelChangedCleared_other": "已清除或禁用{{count}}个不兼容的子模型",
"baseModelChangedCleared_other": "基础模型已更改, 已清除或禁用 {{count}} 个不兼容的子模型",
"setAsCanvasInitialImage": "设为画布初始图像",
"invalidUpload": "无效的上传",
"problemDeletingWorkflow": "删除工作流时出现问题",
"workflowDeleted": "已删除工作流",
"problemRetrievingWorkflow": "检索工作流时发生问题",
"baseModelChanged": "基础模型已更改",
"problemDownloadingImage": "无法下载图像",
"outOfMemoryError": "内存不足错误",
"parameters": "参数",
"resetInitialImage": "重置初始图像",
"parameterNotSetDescWithMessage": "无法恢复 {{parameter}}: {{message}}",
"parameterSetDesc": "已恢复 {{parameter}}",
"parameterNotSetDesc": "无法恢复{{parameter}}",
"sessionRef": "会话: {{sessionId}}",
"somethingWentWrong": "出现错误",
"prunedQueue": "已清理队列",
"uploadInitialImage": "上传初始图像",
"outOfMemoryErrorDesc": "您当前的生成设置已超出系统处理能力.请调整设置后再次尝试.",
"parametersSet": "参数已恢复",
"errorCopied": "错误信息已复制",
"modelImportCanceled": "模型导入已取消"
"problemRetrievingWorkflow": "检索工作流时发生问题"
},
"unifiedCanvas": {
"layer": "图层",
@@ -749,15 +616,7 @@
"antialiasing": "抗锯齿",
"showResultsOn": "显示结果 (开)",
"showResultsOff": "显示结果 (关)",
"saveMask": "保存 $t(unifiedCanvas.mask)",
"coherenceModeBoxBlur": "盒子模糊",
"showBoundingBox": "显示边界框",
"coherenceModeGaussianBlur": "高斯模糊",
"coherenceModeStaged": "分阶段",
"hideBoundingBox": "隐藏边界框",
"initialFitImageSize": "在拖放时调整图像大小以适配",
"invertBrushSizeScrollDirection": "反转滚动操作以调整画笔大小",
"discardCurrent": "放弃当前设置"
"saveMask": "保存 $t(unifiedCanvas.mask)"
},
"accessibility": {
"invokeProgressBar": "Invoke 进度条",
@@ -887,11 +746,11 @@
"unableToExtractSchemaNameFromRef": "无法从参考中提取架构名",
"unknownOutput": "未知输出:{{name}}",
"unknownErrorValidatingWorkflow": "验证工作流时出现未知错误",
"collectionFieldType": "{{name}}(合集)",
"collectionFieldType": "{{name}} 合集",
"unknownNodeType": "未知节点类型",
"targetNodeDoesNotExist": "无效的边缘:{{node}} 的目标/输入节点不存在",
"unknownFieldType": "$t(nodes.unknownField) 类型:{{type}}",
"collectionOrScalarFieldType": "{{name}} (单一项目或项目集合)",
"collectionOrScalarFieldType": "{{name}} 合集 | 标量",
"nodeVersion": "节点版本",
"deletedInvalidEdge": "已删除无效的边缘 {{source}} -> {{target}}",
"unknownInput": "未知输入:{{name}}",
@@ -900,27 +759,7 @@
"newWorkflow": "新建工作流",
"newWorkflowDesc": "是否创建一个新的工作流?",
"newWorkflowDesc2": "当前工作流有未保存的更改。",
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})",
"resetToDefaultValue": "重置为默认值",
"clearWorkflowDesc2": "您当前的工作流有未保存的更改.",
"missingNode": "缺少调用节点",
"missingInvocationTemplate": "缺少调用模版",
"noFieldsViewMode": "此工作流程未选择任何要显示的字段.请查看完整工作流程以进行配置.",
"reorderLinearView": "调整线性视图顺序",
"viewMode": "在线性视图中使用",
"showEdgeLabelsHelp": "在边缘上显示标签,指示连接的节点",
"cannotMixAndMatchCollectionItemTypes": "集合项目类型不能混用",
"missingFieldTemplate": "缺少字段模板",
"editMode": "在工作流编辑器中编辑",
"showEdgeLabels": "显示边缘标签",
"clearWorkflowDesc": "是否清除当前工作流并创建新的?",
"graph": "图表",
"noGraph": "无图表",
"edit": "编辑",
"clearWorkflow": "清除工作流",
"imageAccessError": "无法找到图像 {{image_name}},正在恢复默认设置",
"boardAccessError": "无法找到面板 {{board_id}},正在恢复默认设置",
"modelAccessError": "无法找到模型 {{key}},正在恢复默认设置"
"unsupportedAnyOfLength": "联合union数据类型数目过多 ({{count}})"
},
"controlnet": {
"resize": "直接缩放",
@@ -960,7 +799,7 @@
"mediapipeFaceDescription": "使用 Mediapipe 检测面部",
"depthZoeDescription": "使用 Zoe 生成深度图",
"hedDescription": "整体嵌套边缘检测",
"setControlImageDimensions": "复制尺寸到宽度/高度(为模型优化)",
"setControlImageDimensions": "设定控制图像尺寸宽/高为",
"amult": "角度倍率 (a_mult)",
"bgth": "背景移除阈值 (bg_th)",
"lineartAnimeDescription": "动漫风格线稿处理",
@@ -971,7 +810,7 @@
"addControlNet": "添加 $t(common.controlNet)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"safe": "保守模式",
"scribble": "草绘",
"scribble": "草绘 (scribble)",
"maxFaces": "最大面部数",
"pidi": "PIDI",
"normalBae": "Normal BAE",
@@ -1086,8 +925,7 @@
"steps": "步数",
"posStylePrompt": "正向样式提示词",
"refiner": "Refiner",
"freePromptStyle": "手动输入样式提示词",
"refinerSteps": "精炼步数"
"freePromptStyle": "手动输入样式提示词"
},
"metadata": {
"positivePrompt": "正向提示词",
@@ -1114,12 +952,7 @@
"recallParameters": "召回参数",
"noRecallParameters": "未找到要召回的参数",
"vae": "VAE",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"allPrompts": "所有提示",
"parsingFailed": "解析失败",
"recallParameter": "调用{{label}}",
"imageDimensions": "图像尺寸",
"parameterSet": "已设置参数{{parameter}}"
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)"
},
"models": {
"noMatchingModels": "无相匹配的模型",
@@ -1132,8 +965,7 @@
"esrganModel": "ESRGAN 模型",
"addLora": "添加 LoRA",
"lora": "LoRA",
"defaultVAE": "默认 VAE",
"concepts": "概念"
"defaultVAE": "默认 VAE"
},
"boards": {
"autoAddBoard": "自动添加面板",
@@ -1155,23 +987,8 @@
"deleteBoardOnly": "仅删除面板",
"deleteBoard": "删除面板",
"deleteBoardAndImages": "删除面板和图像",
"deletedBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”选项后,相关图片将会被移至未分类区域。",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:",
"selectedForAutoAdd": "已选中自动添加",
"hideBoards": "隐藏面板",
"noBoards": "没有{{boardType}}类型的面板",
"unarchiveBoard": "恢复面板",
"viewBoards": "查看面板",
"addPrivateBoard": "创建私密面板",
"addSharedBoard": "创建共享面板",
"boards": "面板",
"imagesWithCount_other": "{{count}}张图片",
"deletedPrivateBoardsCannotbeRestored": "删除的面板无法恢复。选择“仅删除面板”后,相关图片将会被移至图片创建者的私密未分类区域。",
"private": "私密面板",
"shared": "共享面板",
"archiveBoard": "归档面板",
"archived": "已归档",
"assetsWithCount_other": "{{count}}项资源"
"deletedBoardsCannotbeRestored": "删除的面板无法恢复",
"movingImagesToBoard_other": "移动 {{count}} 张图像到面板:"
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -1213,33 +1030,32 @@
"paramVAEPrecision": {
"heading": "VAE 精度",
"paragraphs": [
"VAE编码和解码过程使用的精度.",
"Fp16/半精度更高效,但可能会造成图像的一些微小差异."
"VAE 编解码过程使用的精度。FP16/半精度以微小的图像变化为代价提高效率。"
]
},
"compositingCoherenceMode": {
"heading": "模式",
"paragraphs": [
"用于将新生成的遮罩区域与原图像融合的方法."
"一致性层模式。"
]
},
"controlNetResizeMode": {
"heading": "缩放模式",
"paragraphs": [
"调整Control Adapter输入图像大小以适应输出图像尺寸的方法."
"ControlNet 输入图像适应输出图像大小的方法"
]
},
"clipSkip": {
"paragraphs": [
"跳过CLIP模型的层数.",
"某些模型更适合结合CLIP Skip功能使用."
"选择要跳过 CLIP 模型多少层。",
"部分模型跳过特定数值的层时效果会更好。"
],
"heading": "CLIP 跳过层"
},
"paramModel": {
"heading": "模型",
"paragraphs": [
"用于图像生成的模型.不同的模型经过训练,专门用于产生不同的美学效果和内容."
"用于去噪过程的模型。"
]
},
"paramIterations": {
@@ -1271,21 +1087,19 @@
"paramScheduler": {
"heading": "调度器",
"paragraphs": [
"生成过程中所使用的调度器.",
"每个调度器决定了在生成过程中如何逐步向图像添加噪声,或者如何根据模型的输出更新样本."
"调度器 (采样器) 定义如何在图像迭代过程中添加噪声,或者定义如何根据一个模型的输出来更新采样。"
]
},
"controlNetWeight": {
"heading": "权重",
"paragraphs": [
"Control Adapter的权重.权重越高,对最终图像的影响越大."
"ControlNet 对生成图像的影响强度。"
]
},
"paramCFGScale": {
"heading": "CFG 等级",
"paragraphs": [
"控制提示对生成过程的影响程度.",
"较高的CFG比例值可能会导致生成结果过度饱和和扭曲. "
"控制提示对生成过程的影响程度。"
]
},
"paramSteps": {
@@ -1303,29 +1117,28 @@
]
},
"lora": {
"heading": "LoRA",
"heading": "LoRA 权重",
"paragraphs": [
"与基础模型结合使用的轻量级模型."
"更高的 LoRA 权重会对最终图像产生更大的影响。"
]
},
"infillMethod": {
"heading": "填充方法",
"paragraphs": [
"在重绘过程中使用的填充方法."
"填充选定区域的方式。"
]
},
"controlNetBeginEnd": {
"heading": "开始 / 结束步数百分比",
"paragraphs": [
"去噪过程中应用Control Adapter 的部分.",
"通常,在去噪过程初期应用Control Adapters用于指导整体构图而在后期应用Control Adapters则用于调整细节。"
"去噪过程中在哪部分步数应用 ControlNet。",
"在组合处理开始阶段应用 ControlNet且在引导细节生成的结束阶段应用 ControlNet。"
]
},
"scaleBeforeProcessing": {
"heading": "处理前缩放",
"paragraphs": [
"\"自动\"选项会在图像生成之前将所选区域调整到最适合模型的大小.",
"\"手动\"选项允许您在图像生成之前自行选择所选区域的宽度和高度."
"生成图像前将所选区域缩放为最适合模型的大小。"
]
},
"paramDenoisingStrength": {
@@ -1339,13 +1152,13 @@
"heading": "种子",
"paragraphs": [
"控制用于生成的起始噪声。",
"禁用\"随机\"选项,以使用相同的生成设置产生一致的结果."
"禁用 “随机种子” 来以相同设置生成相同的结果"
]
},
"controlNetControlMode": {
"heading": "控制模式",
"paragraphs": [
"提示词ControlNet之间分配更多的权重."
"提示词ControlNet 增加更大的权重"
]
},
"dynamicPrompts": {
@@ -1386,171 +1199,7 @@
"paramCFGRescaleMultiplier": {
"heading": "CFG 重缩放倍数",
"paragraphs": [
"CFG导的重缩放乘数,适用于使用零终端信噪比(ztsnr训练的模型.",
"对于这些模型,建议的数值为0.7."
]
},
"imageFit": {
"paragraphs": [
"将初始图像调整到与输出图像相同的宽度和高度.建议启用此功能."
],
"heading": "将初始图像适配到输出大小"
},
"paramAspect": {
"paragraphs": [
"生成图像的宽高比.调整宽高比会相应地更新图像的宽度和高度.",
"选择\"优化\"将把图像的宽度和高度设置为所选模型的最优尺寸."
],
"heading": "宽高比"
},
"refinerSteps": {
"paragraphs": [
"在图像生成过程中的细化阶段将执行的步骤数.",
"与生成步骤相似."
],
"heading": "步数"
},
"compositingMaskBlur": {
"heading": "遮罩模糊",
"paragraphs": [
"遮罩的模糊范围."
]
},
"compositingCoherenceMinDenoise": {
"paragraphs": [
"连贯模式下的最小去噪力度",
"在图像修复或重绘过程中,连贯区域的最小去噪力度"
],
"heading": "最小去噪"
},
"loraWeight": {
"paragraphs": [
"LoRA的权重,权重越高对最终图像的影响越大."
],
"heading": "权重"
},
"paramHrf": {
"heading": "启用高分辨率修复",
"paragraphs": [
"以高于模型最优分辨率的大分辨率生成高质量图像.这通常用于防止生成图像中出现重复内容."
]
},
"compositingCoherenceEdgeSize": {
"paragraphs": [
"连贯处理的边缘尺寸."
],
"heading": "边缘尺寸"
},
"paramWidth": {
"paragraphs": [
"生成图像的宽度.必须是8的倍数."
],
"heading": "宽度"
},
"refinerScheduler": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的调度程序.",
"与生成调度程序相似."
],
"heading": "调度器"
},
"seamlessTilingXAxis": {
"paragraphs": [
"沿水平轴将图像进行无缝平铺."
],
"heading": "无缝平铺X轴"
},
"paramUpscaleMethod": {
"heading": "放大方法",
"paragraphs": [
"用于高分辨率修复的图像放大方法."
]
},
"refinerModel": {
"paragraphs": [
"在图像生成过程中的细化阶段所使用的模型.",
"与生成模型相似."
],
"heading": "精炼模型"
},
"paramHeight": {
"paragraphs": [
"生成图像的高度.必须是8的倍数."
],
"heading": "高"
},
"patchmatchDownScaleSize": {
"heading": "缩小",
"paragraphs": [
"在填充之前图像缩小的程度.",
"较高的缩小比例会提升处理速度,但可能会降低图像质量."
]
},
"seamlessTilingYAxis": {
"heading": "Y轴上的无缝平铺",
"paragraphs": [
"沿垂直轴将图像进行无缝平铺."
]
},
"ipAdapterMethod": {
"paragraphs": [
"当前IP Adapter的应用方法."
],
"heading": "方法"
},
"controlNetProcessor": {
"paragraphs": [
"处理输入图像以引导生成过程的方法.不同的处理器会在生成图像中产生不同的效果或风格."
],
"heading": "处理器"
},
"refinerPositiveAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有高美学评分的图像."
],
"heading": "正面美学评分"
},
"refinerStart": {
"paragraphs": [
"在图像生成过程中精炼阶段开始被使用的时刻.",
"0表示精炼器将全程参与图像生成,0.8表示细化器仅在生成过程的最后20%阶段被使用."
],
"heading": "精炼开始"
},
"refinerCfgScale": {
"paragraphs": [
"控制提示对生成过程的影响程度.",
"与生成CFG Scale相似."
]
},
"structure": {
"heading": "结构",
"paragraphs": [
"结构决定了输出图像在多大程度上保持原始图像的布局.较低的结构设置允许进行较大的变化,而较高的结构设置则会严格保持原始图像的构图和布局."
]
},
"creativity": {
"paragraphs": [
"创造力决定了模型在添加细节时的自由度.较低的创造力会使生成结果更接近原始图像,而较高的创造力则允许更多的变化.在使用提示时,较高的创造力会增加提示对生成结果的影响."
],
"heading": "创造力"
},
"refinerNegativeAestheticScore": {
"paragraphs": [
"根据训练数据,对生成结果进行加权,使其更接近于具有低美学评分的图像."
],
"heading": "负面美学评分"
},
"upscaleModel": {
"heading": "放大模型",
"paragraphs": [
"上采样模型在添加细节之前将图像放大到输出尺寸.虽然可以使用任何支持的上采样模型,但有些模型更适合处理特定类型的图像,例如照片或线条画."
]
},
"scale": {
"heading": "缩放",
"paragraphs": [
"比例控制决定了输出图像的大小,它是基于输入图像分辨率的倍数来计算的.例如对一张1024x1024的图像进行2倍上采样将会得到一张2048x2048的输出图像."
"CFG导的重缩放倍率,用于通过 zero-terminal SNR (ztsnr) 训练的模型。推荐设为 0.7。"
]
}
},
@@ -1610,16 +1259,7 @@
"updated": "已更新",
"userWorkflows": "我的工作流",
"projectWorkflows": "项目工作流",
"opened": "已打开",
"noRecentWorkflows": "没有最近的工作流",
"workflowCleared": "工作流已清除",
"saveWorkflowToProject": "保存工作流到项目",
"noWorkflows": "无工作流",
"convertGraph": "转换图表",
"loadWorkflow": "$t(common.load) 工作流",
"noUserWorkflows": "没有用户工作流",
"loadFromGraph": "从图表加载工作流",
"autoLayout": "自动布局"
"opened": "已打开"
},
"app": {
"storeNotInitialized": "商店尚未初始化"
@@ -1647,70 +1287,5 @@
"prompt": {
"addPromptTrigger": "添加提示词触发器",
"noMatchingTriggers": "没有匹配的触发器"
},
"controlLayers": {
"autoNegative": "自动反向",
"opacityFilter": "透明度滤镜",
"deleteAll": "删除所有",
"moveForward": "向前移动",
"layers_other": "层",
"globalControlAdapterLayer": "全局 $t(controlnet.controlAdapter_one) $t(unifiedCanvas.layer)",
"moveBackward": "向后移动",
"regionalGuidance": "区域导向",
"controlLayers": "控制层",
"moveToBack": "移动到后面",
"brushSize": "笔刷尺寸",
"moveToFront": "移动到前面",
"addLayer": "添加层",
"deletePrompt": "删除提示词",
"resetRegion": "重置区域",
"debugLayers": "调试图层",
"maskPreviewColor": "遮罩预览颜色",
"addPositivePrompt": "添加 $t(common.positivePrompt)",
"addNegativePrompt": "添加 $t(common.negativePrompt)",
"addIPAdapter": "添加 $t(common.ipAdapter)",
"globalIPAdapterLayer": "全局 $t(common.ipAdapter) $t(unifiedCanvas.layer)",
"globalInitialImage": "全局初始图像",
"noLayersAdded": "没有层被添加",
"globalIPAdapter": "全局 $t(common.ipAdapter)",
"resetProcessor": "重置处理器至默认值",
"globalMaskOpacity": "全局遮罩透明度",
"rectangle": "矩形",
"opacity": "透明度",
"clearProcessor": "清除处理器",
"globalControlAdapter": "全局 $t(controlnet.controlAdapter_one)"
},
"ui": {
"tabs": {
"generation": "生成",
"queue": "队列",
"canvas": "画布",
"upscaling": "放大中",
"workflows": "工作流",
"models": "模型"
}
},
"upscaling": {
"structure": "结构",
"upscaleModel": "放大模型",
"missingUpscaleModel": "缺少放大模型",
"missingTileControlNetModel": "没有安装有效的tile ControlNet 模型",
"missingUpscaleInitialImage": "缺少用于放大的原始图像",
"creativity": "创造力",
"postProcessingModel": "后处理模型",
"scale": "缩放",
"tileControlNetModelDesc": "根据所选的主模型架构选择相应的Tile ControlNet模型",
"upscaleModelDesc": "图像放大(图像到图像转换)模型",
"postProcessingMissingModelWarning": "请访问 <LinkComponent>模型管理器</LinkComponent>来安装一个后处理(图像到图像转换)模型.",
"missingModelsWarning": "请访问<LinkComponent>模型管理器</LinkComponent> 安装所需的模型:",
"mainModelDesc": "主模型SD1.5或SDXL架构",
"exceedsMaxSize": "放大设置超出了最大尺寸限制",
"exceedsMaxSizeDetails": "最大放大限制是 {{maxUpscaleDimension}}x{{maxUpscaleDimension}} 像素.请尝试一个较小的图像或减少您的缩放选择."
},
"upsell": {
"inviteTeammates": "邀请团队成员",
"professional": "专业",
"professionalUpsell": "可在 Invoke 的专业版中使用.点击此处或访问 invoke.com/pricing 了解更多详情.",
"shareAccess": "共享访问权限"
}
}

View File

@@ -1,40 +1,26 @@
/* eslint-disable no-console */
import fs from 'node:fs';
import openapiTS, { astToString } from 'openapi-typescript';
import ts from 'typescript';
import openapiTS from 'openapi-typescript';
const OPENAPI_URL = 'http://127.0.0.1:9090/openapi.json';
const OUTPUT_FILE = 'src/services/api/schema.ts';
async function generateTypes(schema) {
process.stdout.write(`Generating types ${OUTPUT_FILE}...`);
// Use https://ts-ast-viewer.com to figure out how to create these AST nodes - define a type and use the bottom-left pane's output
// `Blob` type
const BLOB = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Blob'));
// `null` type
const NULL = ts.factory.createLiteralTypeNode(ts.factory.createNull());
// `Record<string, unknown>` type
const RECORD_STRING_UNKNOWN = ts.factory.createTypeReferenceNode(ts.factory.createIdentifier('Record'), [
ts.factory.createKeywordTypeNode(ts.SyntaxKind.StringKeyword),
ts.factory.createKeywordTypeNode(ts.SyntaxKind.UnknownKeyword),
]);
const types = await openapiTS(schema, {
exportType: true,
transform: (schemaObject) => {
if ('format' in schemaObject && schemaObject.format === 'binary') {
return schemaObject.nullable ? ts.factory.createUnionTypeNode([BLOB, NULL]) : BLOB;
return schemaObject.nullable ? 'Blob | null' : 'Blob';
}
if (schemaObject.title === 'MetadataField') {
// This is `Record<string, never>` by default, but it actually accepts any a dict of any valid JSON value.
return RECORD_STRING_UNKNOWN;
return 'Record<string, unknown>';
}
},
defaultNonNullable: false,
});
fs.writeFileSync(OUTPUT_FILE, astToString(types));
fs.writeFileSync(OUTPUT_FILE, types);
process.stdout.write(`\nOK!\r\n`);
}

View File

@@ -13,13 +13,9 @@ import ChangeBoardModal from 'features/changeBoardModal/components/ChangeBoardMo
import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageModal';
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
import { configChanged } from 'features/system/store/configSlice';
import { languageSelector } from 'features/system/store/systemSelectors';
import InvokeTabs from 'features/ui/components/InvokeTabs';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import { setActiveTab } from 'features/ui/store/uiSlice';
import { useGetAndLoadLibraryWorkflow } from 'features/workflowLibrary/hooks/useGetAndLoadLibraryWorkflow';
import { AnimatePresence } from 'framer-motion';
import i18n from 'i18n';
import { size } from 'lodash-es';
@@ -38,11 +34,9 @@ interface Props {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: InvokeTabName | undefined;
}
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
const App = ({ config = DEFAULT_CONFIG, selectedImage }: Props) => {
const language = useAppSelector(languageSelector);
const logger = useLogger('system');
const dispatch = useAppDispatch();
@@ -73,20 +67,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
}
}, [dispatch, config, logger]);
const { getAndLoadWorkflow } = useGetAndLoadLibraryWorkflow();
useEffect(() => {
if (selectedWorkflowId) {
getAndLoadWorkflow(selectedWorkflowId);
}
}, [selectedWorkflowId, getAndLoadWorkflow]);
useEffect(() => {
if (destination) {
dispatch(setActiveTab(destination));
}
}, [dispatch, destination]);
useEffect(() => {
dispatch(appStarted());
}, [dispatch]);
@@ -115,7 +95,6 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
<DeleteImageModal />
<ChangeBoardModal />
<DynamicPromptsModal />
<StylePresetModal />
<PreselectedImage selectedImage={selectedImage} />
</ErrorBoundary>
);

View File

@@ -19,7 +19,6 @@ import type { PartialAppConfig } from 'app/types/invokeai';
import Loading from 'common/components/Loading/Loading';
import AppDndContext from 'features/dnd/components/AppDndContext';
import type { WorkflowCategory } from 'features/nodes/types/workflow';
import type { InvokeTabName } from 'features/ui/store/tabMap';
import type { PropsWithChildren, ReactNode } from 'react';
import React, { lazy, memo, useEffect, useMemo } from 'react';
import { Provider } from 'react-redux';
@@ -44,8 +43,6 @@ interface Props extends PropsWithChildren {
imageName: string;
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
};
selectedWorkflowId?: string;
destination?: InvokeTabName;
customStarUi?: CustomStarUi;
socketOptions?: Partial<ManagerOptions & SocketOptions>;
isDebugging?: boolean;
@@ -65,8 +62,6 @@ const InvokeAIUI = ({
projectUrl,
queueId,
selectedImage,
selectedWorkflowId,
destination,
customStarUi,
socketOptions,
isDebugging = false,
@@ -223,12 +218,7 @@ const InvokeAIUI = ({
<React.Suspense fallback={<Loading />}>
<ThemeLocaleProvider>
<AppDndContext>
<App
config={config}
selectedImage={selectedImage}
selectedWorkflowId={selectedWorkflowId}
destination={destination}
/>
<App config={config} selectedImage={selectedImage} />
</AppDndContext>
</ThemeLocaleProvider>
</React.Suspense>

View File

@@ -10,32 +10,32 @@ import {
import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images';
// Type inference doesn't work for this if you inline it in the listener for some reason
const matchAnyBoardDeleted = isAnyOf(
imagesApi.endpoints.deleteBoard.matchFulfilled,
imagesApi.endpoints.deleteBoardAndImages.matchFulfilled
);
export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartListening) => {
/**
* The auto-add board shouldn't be set to an archived board or deleted board. When we archive a board, delete
* a board, or change a the archived board visibility flag, we may need to reset the auto-add board.
*/
startAppListening({
matcher: matchAnyBoardDeleted,
matcher: isAnyOf(
// If a board is deleted, we'll need to reset the auto-add board
imagesApi.endpoints.deleteBoard.matchFulfilled,
imagesApi.endpoints.deleteBoardAndImages.matchFulfilled
),
effect: async (action, { dispatch, getState }) => {
const state = getState();
const deletedBoardId = action.meta.arg.originalArgs;
const queryArgs = selectListBoardsQueryArgs(state);
const queryResult = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
const { autoAddBoardId, selectedBoardId } = state.gallery;
// If the deleted board was currently selected, we should reset the selected board to uncategorized
if (deletedBoardId === selectedBoardId) {
if (!queryResult.data) {
return;
}
if (!queryResult.data.find((board) => board.board_id === selectedBoardId)) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// If the deleted board was selected for auto-add, we should reset the auto-add board to uncategorized
if (deletedBoardId === autoAddBoardId) {
if (!queryResult.data.find((board) => board.board_id === autoAddBoardId)) {
dispatch(autoAddBoardIdChanged('none'));
}
},
@@ -46,8 +46,14 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
effect: async (action, { dispatch, getState }) => {
const state = getState();
const queryArgs = selectListBoardsQueryArgs(state);
const queryResult = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
const { shouldShowArchivedBoards } = state.gallery;
if (!queryResult.data) {
return;
}
const wasArchived = action.meta.arg.originalArgs.changes.archived === true;
if (wasArchived && !shouldShowArchivedBoards) {
@@ -65,7 +71,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const shouldShowArchivedBoards = action.payload;
// We only need to take action if we have just hidden archived boards.
if (shouldShowArchivedBoards) {
if (!shouldShowArchivedBoards) {
return;
}
@@ -80,16 +86,14 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where selected board is archived
const selectedBoard = queryResult.data.find((b) => b.board_id === selectedBoardId);
if (!selectedBoard || selectedBoard.archived) {
// If we can't find the selected board or it's archived, we should reset the selected board to uncategorized
if (selectedBoard && selectedBoard.archived) {
dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images'));
}
// Handle the case where auto-add board is archived
const autoAddBoard = queryResult.data.find((b) => b.board_id === autoAddBoardId);
if (!autoAddBoard || autoAddBoard.archived) {
// If we can't find the auto-add board or it's archived, we should reset the selected board to uncategorized
if (autoAddBoard && autoAddBoard.archived) {
dispatch(autoAddBoardIdChanged('none'));
}
},

View File

@@ -11,9 +11,6 @@ import {
promptsChanged,
} from 'features/dynamicPrompts/store/dynamicPromptsSlice';
import { getShouldProcessPrompt } from 'features/dynamicPrompts/util/getShouldProcessPrompt';
import { getPresetModifiedPrompts } from 'features/nodes/util/graph/graphBuilderUtils';
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
import { stylePresetsApi } from 'services/api/endpoints/stylePresets';
import { utilitiesApi } from 'services/api/endpoints/utilities';
import { socketConnected } from 'services/events/actions';
@@ -22,11 +19,7 @@ const matcher = isAnyOf(
combinatorialToggled,
maxPromptsChanged,
maxPromptsReset,
socketConnected,
activeStylePresetIdChanged,
stylePresetsApi.endpoints.deleteStylePreset.matchFulfilled,
stylePresetsApi.endpoints.updateStylePreset.matchFulfilled,
stylePresetsApi.endpoints.listStylePresets.matchFulfilled
socketConnected
);
export const addDynamicPromptsListener = (startAppListening: AppStartListening) => {
@@ -35,7 +28,7 @@ export const addDynamicPromptsListener = (startAppListening: AppStartListening)
effect: async (action, { dispatch, getState, cancelActiveListeners, delay }) => {
cancelActiveListeners();
const state = getState();
const { positivePrompt } = getPresetModifiedPrompts(state);
const { positivePrompt } = state.controlLayers.present;
const { maxPrompts } = state.dynamicPrompts;
if (state.config.disabledFeatures.includes('dynamicPrompting')) {

View File

@@ -28,7 +28,6 @@ import { generationPersistConfig, generationSlice } from 'features/parameters/st
import { upscalePersistConfig, upscaleSlice } from 'features/parameters/store/upscaleSlice';
import { queueSlice } from 'features/queue/store/queueSlice';
import { sdxlPersistConfig, sdxlSlice } from 'features/sdxl/store/sdxlSlice';
import { stylePresetPersistConfig, stylePresetSlice } from 'features/stylePresets/store/stylePresetSlice';
import { configSlice } from 'features/system/store/configSlice';
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
import { uiPersistConfig, uiSlice } from 'features/ui/store/uiSlice';
@@ -70,7 +69,6 @@ const allReducers = {
[workflowSettingsSlice.name]: workflowSettingsSlice.reducer,
[api.reducerPath]: api.reducer,
[upscaleSlice.name]: upscaleSlice.reducer,
[stylePresetSlice.name]: stylePresetSlice.reducer,
};
const rootReducer = combineReducers(allReducers);
@@ -116,7 +114,6 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
[controlLayersPersistConfig.name]: controlLayersPersistConfig,
[workflowSettingsPersistConfig.name]: workflowSettingsPersistConfig,
[upscalePersistConfig.name]: upscalePersistConfig,
[stylePresetPersistConfig.name]: stylePresetPersistConfig,
};
const unserialize: UnserializeFunction = (data, key) => {
@@ -167,8 +164,8 @@ export const createStore = (uniqueStoreKey?: string, persist = true) =>
reducer: rememberedRootReducer,
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware({
serializableCheck: import.meta.env.MODE === 'development',
immutableCheck: import.meta.env.MODE === 'development',
serializableCheck: false,
immutableCheck: false,
})
.concat(api.middleware)
.concat(dynamicMiddlewares)

View File

@@ -65,16 +65,11 @@ export type AppConfig = {
*/
shouldUpdateImagesOnConnect: boolean;
shouldFetchMetadataFromApi: boolean;
/**
* Sets a size limit for outputs on the upscaling tab. This is a maximum dimension, so the actual max number of pixels
* will be the square of this value.
*/
maxUpscaleDimension?: number;
allowPrivateBoards: boolean;
allowPrivateStylePresets: boolean;
disabledTabs: InvokeTabName[];
disabledFeatures: AppFeature[];
disabledSDFeatures: SDFeature[];
canRestoreDeletedImagesFromBin: boolean;
nodesAllowlist: string[] | undefined;
nodesDenylist: string[] | undefined;
metadataFetchDebounce?: number;

View File

@@ -47,7 +47,6 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
userSelect: 'none',
opacity: 0.7,
color: 'base.500',
fontSize: 'md',
...sx,
}),
[sx]
@@ -56,7 +55,11 @@ export const IAINoContentFallback = memo((props: IAINoImageFallbackProps) => {
return (
<Flex sx={styles} {...rest}>
{icon && <Icon as={icon} boxSize={boxSize} opacity={0.7} />}
{props.label && <Text textAlign="center">{props.label}</Text>}
{props.label && (
<Text textAlign="center" fontSize="md">
{props.label}
</Text>
)}
</Flex>
);
});

View File

@@ -1,4 +1,4 @@
import { convertImageUrlToBlob } from 'common/util/convertImageUrlToBlob';
import { useImageUrlToBlob } from 'common/hooks/useImageUrlToBlob';
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
import { toast } from 'features/toast/toast';
import { useCallback, useMemo } from 'react';
@@ -6,6 +6,7 @@ import { useTranslation } from 'react-i18next';
export const useCopyImageToClipboard = () => {
const { t } = useTranslation();
const imageUrlToBlob = useImageUrlToBlob();
const isClipboardAPIAvailable = useMemo(() => {
return Boolean(navigator.clipboard) && Boolean(window.ClipboardItem);
@@ -22,7 +23,7 @@ export const useCopyImageToClipboard = () => {
});
}
try {
const blob = await convertImageUrlToBlob(image_url);
const blob = await imageUrlToBlob(image_url);
if (!blob) {
throw new Error('Unable to create Blob');
@@ -44,7 +45,7 @@ export const useCopyImageToClipboard = () => {
});
}
},
[isClipboardAPIAvailable, t]
[imageUrlToBlob, isClipboardAPIAvailable, t]
);
return { isClipboardAPIAvailable, copyImageToClipboard };

Some files were not shown because too many files have changed in this diff Show More