mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 11:48:17 -05:00
Compare commits
186 Commits
v4.2.9.dev
...
v4.2.9rc2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
125b459e56 | ||
|
|
33edee1ba6 | ||
|
|
d20335dabc | ||
|
|
d10d258213 | ||
|
|
d57ba1ed8b | ||
|
|
2d0e34e57b | ||
|
|
a005d06255 | ||
|
|
a301ef5a5a | ||
|
|
9422df2737 | ||
|
|
6dabe4d3ca | ||
|
|
00e4652d30 | ||
|
|
b6434c5318 | ||
|
|
3f7f9f8d61 | ||
|
|
f3bb592544 | ||
|
|
69f080fb75 | ||
|
|
04272a7cc8 | ||
|
|
8d35af946e | ||
|
|
24065ec6b6 | ||
|
|
627b0bf644 | ||
|
|
b43da46b82 | ||
|
|
4255a01c64 | ||
|
|
23adbd4002 | ||
|
|
fb5a24fcc6 | ||
|
|
cfdd5a1900 | ||
|
|
2313f326df | ||
|
|
2e092a2313 | ||
|
|
763ef06c18 | ||
|
|
8292f6cd42 | ||
|
|
278bba499e | ||
|
|
dd99ed28e0 | ||
|
|
9a8aca69bf | ||
|
|
7ad62512eb | ||
|
|
bd466661ec | ||
|
|
7ebb509d05 | ||
|
|
0aa13c046c | ||
|
|
a7a33d73f5 | ||
|
|
ffa39857d3 | ||
|
|
e85c3bc465 | ||
|
|
8185ba7054 | ||
|
|
d501865bec | ||
|
|
d62310bb5f | ||
|
|
1835bff196 | ||
|
|
87261bdbc9 | ||
|
|
4e4b6c6dbc | ||
|
|
5e8cf9fb6a | ||
|
|
c738fe051f | ||
|
|
29fe1533f2 | ||
|
|
77090070bd | ||
|
|
6ba9b1b6b0 | ||
|
|
c578b8df1e | ||
|
|
cad9a41433 | ||
|
|
5fefb3b0f4 | ||
|
|
5284a870b0 | ||
|
|
e064377c05 | ||
|
|
3e569c8312 | ||
|
|
16825ee6e9 | ||
|
|
3f5340fa53 | ||
|
|
f2a1a39b33 | ||
|
|
326de55d3e | ||
|
|
b2df909570 | ||
|
|
026ac36b06 | ||
|
|
92125e5fd2 | ||
|
|
c0c139da88 | ||
|
|
404ad6a7fd | ||
|
|
fc39086fb4 | ||
|
|
cd215700fe | ||
|
|
e97fd85904 | ||
|
|
0a263fa5b1 | ||
|
|
fae3836a8d | ||
|
|
b3d2eb4178 | ||
|
|
576f1cbb75 | ||
|
|
50085b40bb | ||
|
|
cff382715a | ||
|
|
54d54d1bf2 | ||
|
|
e84ea68282 | ||
|
|
160dd36782 | ||
|
|
65bb46bcca | ||
|
|
2d185fb766 | ||
|
|
2ba9b02932 | ||
|
|
849da67cc7 | ||
|
|
3ea6c9666e | ||
|
|
cf633e4ef2 | ||
|
|
bbf934d980 | ||
|
|
620f733110 | ||
|
|
67928609a3 | ||
|
|
5f15afb7db | ||
|
|
635d2f480d | ||
|
|
70c278c810 | ||
|
|
56b9906e2e | ||
|
|
a808ce81fd | ||
|
|
83f82c5ddf | ||
|
|
101de8c25d | ||
|
|
3339a4baf0 | ||
|
|
dff4a88baa | ||
|
|
a21f6c4964 | ||
|
|
97562504b7 | ||
|
|
75d8ac378c | ||
|
|
b9dd354e2b | ||
|
|
33c2fbd201 | ||
|
|
5063be92bf | ||
|
|
1047584b3e | ||
|
|
6764dcfdaa | ||
|
|
012864ceb1 | ||
|
|
a0bf20bcee | ||
|
|
14ab339b33 | ||
|
|
25c91efbb6 | ||
|
|
1c1f2c6664 | ||
|
|
d7c22b3bf7 | ||
|
|
185f2a395f | ||
|
|
0c5649491e | ||
|
|
94aba5892a | ||
|
|
ef093dde29 | ||
|
|
34451e5f27 | ||
|
|
1f9bdd1a9a | ||
|
|
c27d59baf7 | ||
|
|
f130ddec7c | ||
|
|
a0a259eef1 | ||
|
|
b66f19d4d1 | ||
|
|
4105a78b83 | ||
|
|
19a68afb3a | ||
|
|
fd68a2475b | ||
|
|
28ff7ba830 | ||
|
|
5d0b248fdb | ||
|
|
01a4e0f6ef | ||
|
|
91e0731506 | ||
|
|
d1f904d41f | ||
|
|
269388c9f4 | ||
|
|
b8486379ce | ||
|
|
400eb94d3b | ||
|
|
e210c96485 | ||
|
|
5f567f41f4 | ||
|
|
5fed573a29 | ||
|
|
cfac7c8189 | ||
|
|
1787de6836 | ||
|
|
ac96f187bd | ||
|
|
72398350b4 | ||
|
|
df9445c351 | ||
|
|
87b7a2e39b | ||
|
|
f7e46622a1 | ||
|
|
71f18353a9 | ||
|
|
4228de707b | ||
|
|
b6a05629ef | ||
|
|
fbaa820643 | ||
|
|
db2a2d5e38 | ||
|
|
8ba6e6b1f8 | ||
|
|
57168d719b | ||
|
|
dee6d2c98e | ||
|
|
e49105ece5 | ||
|
|
0c5e11f521 | ||
|
|
a63f842a13 | ||
|
|
4bd7fda694 | ||
|
|
81f0886d6f | ||
|
|
2eb87f3306 | ||
|
|
723f3ab0a9 | ||
|
|
1bd90e0fd4 | ||
|
|
436f18ff55 | ||
|
|
cde9696214 | ||
|
|
2d9042fb93 | ||
|
|
9ed53af520 | ||
|
|
56fda669fd | ||
|
|
1d8545a76c | ||
|
|
5f59a828f9 | ||
|
|
1fa6bddc89 | ||
|
|
d3a5ca5247 | ||
|
|
f01f56a98e | ||
|
|
99b0f79784 | ||
|
|
e1eb104345 | ||
|
|
5c2f95ef50 | ||
|
|
b63df9bab9 | ||
|
|
a52c899c6d | ||
|
|
eeabb7ebe5 | ||
|
|
8b1cef978c | ||
|
|
152da482cd | ||
|
|
3cf0365a35 | ||
|
|
5870742bb9 | ||
|
|
01d8c62c57 | ||
|
|
55a242b2d6 | ||
|
|
45263b339f | ||
|
|
3319491861 | ||
|
|
e687afac90 | ||
|
|
b39031ea53 | ||
|
|
0b77511271 | ||
|
|
c99cd989c1 | ||
|
|
317fdadb21 | ||
|
|
4e294f9e3e | ||
|
|
526e0f30a0 |
37
.github/workflows/build-container.yml
vendored
37
.github/workflows/build-container.yml
vendored
@@ -13,6 +13,12 @@ on:
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
push-to-registry:
|
||||
description: Push the built image to the container registry
|
||||
required: false
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
@@ -50,16 +56,15 @@ jobs:
|
||||
df -h
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Docker meta
|
||||
id: meta
|
||||
uses: docker/metadata-action@v4
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
images: |
|
||||
ghcr.io/${{ github.repository }}
|
||||
${{ env.DOCKERHUB_REPOSITORY }}
|
||||
tags: |
|
||||
type=ref,event=branch
|
||||
type=ref,event=tag
|
||||
@@ -72,49 +77,33 @@ jobs:
|
||||
suffix=-${{ matrix.gpu-driver }},onlatest=false
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
|
||||
- name: Login to GitHub Container Registry
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.repository_owner }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
# - name: Login to Docker Hub
|
||||
# if: github.event_name != 'pull_request' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: docker/login-action@v2
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
timeout-minutes: 40
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
uses: docker/build-push-action@v6
|
||||
with:
|
||||
context: .
|
||||
file: docker/Dockerfile
|
||||
platforms: ${{ env.PLATFORMS }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' }}
|
||||
push: ${{ github.ref == 'refs/heads/main' || github.ref_type == 'tag' || github.event.inputs.push-to-registry }}
|
||||
tags: ${{ steps.meta.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels }}
|
||||
cache-from: |
|
||||
type=gha,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
type=gha,scope=main-${{ matrix.gpu-driver }}
|
||||
cache-to: type=gha,mode=max,scope=${{ github.ref_name }}-${{ matrix.gpu-driver }}
|
||||
|
||||
# - name: Docker Hub Description
|
||||
# if: github.ref == 'refs/heads/main' || github.ref == 'refs/tags/*' && vars.DOCKERHUB_REPOSITORY != ''
|
||||
# uses: peter-evans/dockerhub-description@v3
|
||||
# with:
|
||||
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
# repository: ${{ vars.DOCKERHUB_REPOSITORY }}
|
||||
# short-description: ${{ github.event.repository.description }}
|
||||
|
||||
2
.github/workflows/python-tests.yml
vendored
2
.github/workflows/python-tests.yml
vendored
@@ -60,7 +60,7 @@ jobs:
|
||||
extra-index-url: 'https://download.pytorch.org/whl/cpu'
|
||||
github-env: $GITHUB_ENV
|
||||
- platform: macos-default
|
||||
os: macOS-12
|
||||
os: macOS-14
|
||||
github-env: $GITHUB_ENV
|
||||
- platform: windows-cpu
|
||||
os: windows-2022
|
||||
|
||||
@@ -196,6 +196,22 @@ tips to reduce the problem:
|
||||
=== "12GB VRAM GPU"
|
||||
|
||||
This should be sufficient to generate larger images up to about 1280x1280.
|
||||
|
||||
## Checkpoint Models Load Slowly or Use Too Much RAM
|
||||
|
||||
The difference between diffusers models (a folder containing multiple
|
||||
subfolders) and checkpoint models (a file ending with .safetensors or
|
||||
.ckpt) is that InvokeAI is able to load diffusers models into memory
|
||||
incrementally, while checkpoint models must be loaded all at
|
||||
once. With very large models, or systems with limited RAM, you may
|
||||
experience slowdowns and other memory-related issues when loading
|
||||
checkpoint models.
|
||||
|
||||
To solve this, go to the Model Manager tab (the cube), select the
|
||||
checkpoint model that's giving you trouble, and press the "Convert"
|
||||
button in the upper right of your browser window. This will conver the
|
||||
checkpoint into a diffusers model, after which loading should be
|
||||
faster and less memory-intensive.
|
||||
|
||||
## Memory Leak (Linux)
|
||||
|
||||
|
||||
@@ -3,8 +3,10 @@
|
||||
|
||||
import io
|
||||
import pathlib
|
||||
import shutil
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import List, Optional, Type
|
||||
|
||||
@@ -17,6 +19,7 @@ from starlette.exceptions import HTTPException
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.api.dependencies import ApiDependencies
|
||||
from invokeai.app.services.config import get_config
|
||||
from invokeai.app.services.model_images.model_images_common import ModelImageFileNotFoundException
|
||||
from invokeai.app.services.model_install.model_install_common import ModelInstallJob
|
||||
from invokeai.app.services.model_records import (
|
||||
@@ -31,6 +34,7 @@ from invokeai.backend.model_manager.config import (
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats
|
||||
from invokeai.backend.model_manager.metadata.fetch.huggingface import HuggingFaceMetadataFetch
|
||||
from invokeai.backend.model_manager.metadata.metadata_base import ModelMetadataWithFiles, UnknownMetadataException
|
||||
from invokeai.backend.model_manager.search import ModelSearch
|
||||
@@ -50,6 +54,13 @@ class ModelsList(BaseModel):
|
||||
model_config = ConfigDict(use_enum_values=True)
|
||||
|
||||
|
||||
class CacheType(str, Enum):
|
||||
"""Cache type - one of vram or ram."""
|
||||
|
||||
RAM = "RAM"
|
||||
VRAM = "VRAM"
|
||||
|
||||
|
||||
def add_cover_image_to_model_config(config: AnyModelConfig, dependencies: Type[ApiDependencies]) -> AnyModelConfig:
|
||||
"""Add a cover image URL to a model configuration."""
|
||||
cover_image = dependencies.invoker.services.model_images.get_url(config.key)
|
||||
@@ -797,3 +808,83 @@ async def get_starter_models() -> list[StarterModel]:
|
||||
model.dependencies = missing_deps
|
||||
|
||||
return starter_models
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/model_cache",
|
||||
operation_id="get_cache_size",
|
||||
response_model=float,
|
||||
summary="Get maximum size of model manager RAM or VRAM cache.",
|
||||
)
|
||||
async def get_cache_size(cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM)) -> float:
|
||||
"""Return the current RAM or VRAM cache size setting (in GB)."""
|
||||
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
|
||||
value = 0.0
|
||||
if cache_type == CacheType.RAM:
|
||||
value = cache.max_cache_size
|
||||
elif cache_type == CacheType.VRAM:
|
||||
value = cache.max_vram_cache_size
|
||||
return value
|
||||
|
||||
|
||||
@model_manager_router.put(
|
||||
"/model_cache",
|
||||
operation_id="set_cache_size",
|
||||
response_model=float,
|
||||
summary="Set maximum size of model manager RAM or VRAM cache, optionally writing new value out to invokeai.yaml config file.",
|
||||
)
|
||||
async def set_cache_size(
|
||||
value: float = Query(description="The new value for the maximum cache size"),
|
||||
cache_type: CacheType = Query(description="The cache type", default=CacheType.RAM),
|
||||
persist: bool = Query(description="Write new value out to invokeai.yaml", default=False),
|
||||
) -> float:
|
||||
"""Set the current RAM or VRAM cache size setting (in GB). ."""
|
||||
cache = ApiDependencies.invoker.services.model_manager.load.ram_cache
|
||||
app_config = get_config()
|
||||
# Record initial state.
|
||||
vram_old = app_config.vram
|
||||
ram_old = app_config.ram
|
||||
|
||||
# Prepare target state.
|
||||
vram_new = vram_old
|
||||
ram_new = ram_old
|
||||
if cache_type == CacheType.RAM:
|
||||
ram_new = value
|
||||
elif cache_type == CacheType.VRAM:
|
||||
vram_new = value
|
||||
else:
|
||||
raise ValueError(f"Unexpected {cache_type=}.")
|
||||
|
||||
config_path = app_config.config_file_path
|
||||
new_config_path = config_path.with_suffix(".yaml.new")
|
||||
|
||||
try:
|
||||
# Try to apply the target state.
|
||||
cache.max_vram_cache_size = vram_new
|
||||
cache.max_cache_size = ram_new
|
||||
app_config.ram = ram_new
|
||||
app_config.vram = vram_new
|
||||
if persist:
|
||||
app_config.write_file(new_config_path)
|
||||
shutil.move(new_config_path, config_path)
|
||||
except Exception as e:
|
||||
# If there was a failure, restore the initial state.
|
||||
cache.max_cache_size = ram_old
|
||||
cache.max_vram_cache_size = vram_old
|
||||
app_config.ram = ram_old
|
||||
app_config.vram = vram_old
|
||||
|
||||
raise RuntimeError("Failed to update cache size") from e
|
||||
return value
|
||||
|
||||
|
||||
@model_manager_router.get(
|
||||
"/stats",
|
||||
operation_id="get_stats",
|
||||
response_model=Optional[CacheStats],
|
||||
summary="Get model manager RAM cache performance statistics.",
|
||||
)
|
||||
async def get_stats() -> Optional[CacheStats]:
|
||||
"""Return performance statistics on the model manager's RAM cache. Will return null if no models have been loaded."""
|
||||
|
||||
return ApiDependencies.invoker.services.model_manager.load.ram_cache.stats
|
||||
|
||||
@@ -185,7 +185,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.mask,
|
||||
description=FieldDescriptions.denoise_mask,
|
||||
input=Input.Connection,
|
||||
ui_order=8,
|
||||
)
|
||||
|
||||
@@ -40,14 +40,18 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
|
||||
# region Model Field Types
|
||||
MainModel = "MainModelField"
|
||||
FluxMainModel = "FluxMainModelField"
|
||||
SDXLMainModel = "SDXLMainModelField"
|
||||
SDXLRefinerModel = "SDXLRefinerModelField"
|
||||
ONNXModel = "ONNXModelField"
|
||||
VAEModel = "VAEModelField"
|
||||
FluxVAEModel = "FluxVAEModelField"
|
||||
LoRAModel = "LoRAModelField"
|
||||
ControlNetModel = "ControlNetModelField"
|
||||
IPAdapterModel = "IPAdapterModelField"
|
||||
T2IAdapterModel = "T2IAdapterModelField"
|
||||
T5EncoderModel = "T5EncoderModelField"
|
||||
CLIPEmbedModel = "CLIPEmbedModelField"
|
||||
SpandrelImageToImageModel = "SpandrelImageToImageModelField"
|
||||
# endregion
|
||||
|
||||
@@ -125,13 +129,17 @@ class FieldDescriptions:
|
||||
negative_cond = "Negative conditioning tensor"
|
||||
noise = "Noise tensor"
|
||||
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
|
||||
t5_encoder = "T5 tokenizer and text encoder"
|
||||
clip_embed_model = "CLIP Embed loader"
|
||||
unet = "UNet (scheduler, LoRAs)"
|
||||
transformer = "Transformer"
|
||||
vae = "VAE"
|
||||
cond = "Conditioning tensor"
|
||||
controlnet_model = "ControlNet model to load"
|
||||
vae_model = "VAE model to load"
|
||||
lora_model = "LoRA model to load"
|
||||
main_model = "Main model (UNet, VAE, CLIP) to load"
|
||||
flux_model = "Flux model (Transformer) to load"
|
||||
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
||||
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
||||
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
||||
@@ -173,7 +181,7 @@ class FieldDescriptions:
|
||||
)
|
||||
num_1 = "The first number"
|
||||
num_2 = "The second number"
|
||||
mask = "The mask to use for the operation"
|
||||
denoise_mask = "A mask of the region to apply the denoising process to."
|
||||
board = "The board to save the image to"
|
||||
image = "The image to process"
|
||||
tile_size = "Tile size"
|
||||
@@ -231,6 +239,12 @@ class ColorField(BaseModel):
|
||||
return (self.r, self.g, self.b, self.a)
|
||||
|
||||
|
||||
class FluxConditioningField(BaseModel):
|
||||
"""A conditioning tensor primitive value"""
|
||||
|
||||
conditioning_name: str = Field(description="The name of conditioning tensor")
|
||||
|
||||
|
||||
class ConditioningField(BaseModel):
|
||||
"""A conditioning tensor primitive value"""
|
||||
|
||||
|
||||
249
invokeai/app/invocations/flux_denoise.py
Normal file
249
invokeai/app/invocations/flux_denoise.py
Normal file
@@ -0,0 +1,249 @@
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as tv_transforms
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
FluxConditioningField,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import TransformerField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.denoise import denoise
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.sampling_utils import (
|
||||
clip_timestep_schedule,
|
||||
generate_img_ids,
|
||||
get_noise,
|
||||
get_schedule,
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_denoise",
|
||||
title="FLUX Denoise",
|
||||
tags=["image", "flux"],
|
||||
category="image",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Run denoising process with a FLUX transformer model."""
|
||||
|
||||
# If latents is provided, this means we are doing image-to-image.
|
||||
latents: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
# denoise_mask is used for image-to-image inpainting. Only the masked region is modified.
|
||||
denoise_mask: Optional[DenoiseMaskField] = InputField(
|
||||
default=None,
|
||||
description=FieldDescriptions.denoise_mask,
|
||||
input=Input.Connection,
|
||||
)
|
||||
denoising_start: float = InputField(
|
||||
default=0.0,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
transformer: TransformerField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
input=Input.Connection,
|
||||
title="Transformer",
|
||||
)
|
||||
positive_text_conditioning: FluxConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
|
||||
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
|
||||
num_steps: int = InputField(
|
||||
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
|
||||
)
|
||||
guidance: float = InputField(
|
||||
default=4.0,
|
||||
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
|
||||
)
|
||||
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = self._run_diffusion(context)
|
||||
latents = latents.detach().to("cpu")
|
||||
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
|
||||
def _run_diffusion(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
):
|
||||
inference_dtype = torch.bfloat16
|
||||
|
||||
# Load the conditioning data.
|
||||
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
|
||||
assert len(cond_data.conditionings) == 1
|
||||
flux_conditioning = cond_data.conditionings[0]
|
||||
assert isinstance(flux_conditioning, FLUXConditioningInfo)
|
||||
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
|
||||
t5_embeddings = flux_conditioning.t5_embeds
|
||||
clip_embeddings = flux_conditioning.clip_embeds
|
||||
|
||||
# Load the input latents, if provided.
|
||||
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
|
||||
if init_latents is not None:
|
||||
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
|
||||
|
||||
# Prepare input noise.
|
||||
noise = get_noise(
|
||||
num_samples=1,
|
||||
height=self.height,
|
||||
width=self.width,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
seed=self.seed,
|
||||
)
|
||||
|
||||
transformer_info = context.models.load(self.transformer.transformer)
|
||||
is_schnell = "schnell" in transformer_info.config.config_path
|
||||
|
||||
# Calculate the timestep schedule.
|
||||
image_seq_len = noise.shape[-1] * noise.shape[-2] // 4
|
||||
timesteps = get_schedule(
|
||||
num_steps=self.num_steps,
|
||||
image_seq_len=image_seq_len,
|
||||
shift=not is_schnell,
|
||||
)
|
||||
|
||||
# Clip the timesteps schedule based on denoising_start and denoising_end.
|
||||
timesteps = clip_timestep_schedule(timesteps, self.denoising_start, self.denoising_end)
|
||||
|
||||
# Prepare input latent image.
|
||||
if init_latents is not None:
|
||||
# If init_latents is provided, we are doing image-to-image.
|
||||
|
||||
if is_schnell:
|
||||
context.logger.warning(
|
||||
"Running image-to-image with a FLUX schnell model. This is not recommended. The results are likely "
|
||||
"to be poor. Consider using a FLUX dev model instead."
|
||||
)
|
||||
|
||||
# Noise the orig_latents by the appropriate amount for the first timestep.
|
||||
t_0 = timesteps[0]
|
||||
x = t_0 * noise + (1.0 - t_0) * init_latents
|
||||
else:
|
||||
# init_latents are not provided, so we are not doing image-to-image (i.e. we are starting from pure noise).
|
||||
if self.denoising_start > 1e-5:
|
||||
raise ValueError("denoising_start should be 0 when initial latents are not provided.")
|
||||
|
||||
x = noise
|
||||
|
||||
# If len(timesteps) == 1, then short-circuit. We are just noising the input latents, but not taking any
|
||||
# denoising steps.
|
||||
if len(timesteps) <= 1:
|
||||
return x
|
||||
|
||||
inpaint_mask = self._prep_inpaint_mask(context, x)
|
||||
|
||||
b, _c, h, w = x.shape
|
||||
img_ids = generate_img_ids(h=h, w=w, batch_size=b, device=x.device, dtype=x.dtype)
|
||||
|
||||
bs, t5_seq_len, _ = t5_embeddings.shape
|
||||
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
|
||||
|
||||
# Pack all latent tensors.
|
||||
init_latents = pack(init_latents) if init_latents is not None else None
|
||||
inpaint_mask = pack(inpaint_mask) if inpaint_mask is not None else None
|
||||
noise = pack(noise)
|
||||
x = pack(x)
|
||||
|
||||
# Now that we have 'packed' the latent tensors, verify that we calculated the image_seq_len correctly.
|
||||
assert image_seq_len == x.shape[1]
|
||||
|
||||
# Prepare inpaint extension.
|
||||
inpaint_extension: InpaintExtension | None = None
|
||||
if inpaint_mask is not None:
|
||||
assert init_latents is not None
|
||||
inpaint_extension = InpaintExtension(
|
||||
init_latents=init_latents,
|
||||
inpaint_mask=inpaint_mask,
|
||||
noise=noise,
|
||||
)
|
||||
|
||||
with transformer_info as transformer:
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
x = denoise(
|
||||
model=transformer,
|
||||
img=x,
|
||||
img_ids=img_ids,
|
||||
txt=t5_embeddings,
|
||||
txt_ids=txt_ids,
|
||||
vec=clip_embeddings,
|
||||
timesteps=timesteps,
|
||||
step_callback=self._build_step_callback(context),
|
||||
guidance=self.guidance,
|
||||
inpaint_extension=inpaint_extension,
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
return x
|
||||
|
||||
def _prep_inpaint_mask(self, context: InvocationContext, latents: torch.Tensor) -> torch.Tensor | None:
|
||||
"""Prepare the inpaint mask.
|
||||
|
||||
- Loads the mask
|
||||
- Resizes if necessary
|
||||
- Casts to same device/dtype as latents
|
||||
- Expands mask to the same shape as latents so that they line up after 'packing'
|
||||
|
||||
Args:
|
||||
context (InvocationContext): The invocation context, for loading the inpaint mask.
|
||||
latents (torch.Tensor): A latent image tensor. In 'unpacked' format. Used to determine the target shape,
|
||||
device, and dtype for the inpaint mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor | None: Inpaint mask.
|
||||
"""
|
||||
if self.denoise_mask is None:
|
||||
return None
|
||||
|
||||
mask = context.tensors.load(self.denoise_mask.mask_name)
|
||||
|
||||
_, _, latent_height, latent_width = latents.shape
|
||||
mask = tv_resize(
|
||||
img=mask,
|
||||
size=[latent_height, latent_width],
|
||||
interpolation=tv_transforms.InterpolationMode.BILINEAR,
|
||||
antialias=False,
|
||||
)
|
||||
|
||||
mask = mask.to(device=latents.device, dtype=latents.dtype)
|
||||
|
||||
# Expand the inpaint mask to the same shape as `latents` so that when we 'pack' `mask` it lines up with
|
||||
# `latents`.
|
||||
return mask.expand_as(latents)
|
||||
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
|
||||
context.util.flux_step_callback(state)
|
||||
|
||||
return step_callback
|
||||
92
invokeai/app/invocations/flux_text_encoder.py
Normal file
92
invokeai/app/invocations/flux_text_encoder.py
Normal file
@@ -0,0 +1,92 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
|
||||
from invokeai.app.invocations.model import CLIPField, T5EncoderField
|
||||
from invokeai.app.invocations.primitives import FluxConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.conditioner import HFEncoder
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_text_encoder",
|
||||
title="FLUX Text Encoding",
|
||||
tags=["prompt", "conditioning", "flux"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxTextEncoderInvocation(BaseInvocation):
|
||||
"""Encodes and preps a prompt for a flux image."""
|
||||
|
||||
clip: CLIPField = InputField(
|
||||
title="CLIP",
|
||||
description=FieldDescriptions.clip,
|
||||
input=Input.Connection,
|
||||
)
|
||||
t5_encoder: T5EncoderField = InputField(
|
||||
title="T5Encoder",
|
||||
description=FieldDescriptions.t5_encoder,
|
||||
input=Input.Connection,
|
||||
)
|
||||
t5_max_seq_len: Literal[256, 512] = InputField(
|
||||
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
|
||||
)
|
||||
prompt: str = InputField(description="Text prompt to encode.")
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
|
||||
# Note: The T5 and CLIP encoding are done in separate functions to ensure that all model references are locally
|
||||
# scoped. This ensures that the T5 model can be freed and gc'd before loading the CLIP model (if necessary).
|
||||
t5_embeddings = self._t5_encode(context)
|
||||
clip_embeddings = self._clip_encode(context)
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
|
||||
)
|
||||
|
||||
conditioning_name = context.conditioning.save(conditioning_data)
|
||||
return FluxConditioningOutput.build(conditioning_name)
|
||||
|
||||
def _t5_encode(self, context: InvocationContext) -> torch.Tensor:
|
||||
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
|
||||
t5_text_encoder_info = context.models.load(self.t5_encoder.text_encoder)
|
||||
|
||||
prompt = [self.prompt]
|
||||
|
||||
with (
|
||||
t5_text_encoder_info as t5_text_encoder,
|
||||
t5_tokenizer_info as t5_tokenizer,
|
||||
):
|
||||
assert isinstance(t5_text_encoder, T5EncoderModel)
|
||||
assert isinstance(t5_tokenizer, T5Tokenizer)
|
||||
|
||||
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
|
||||
|
||||
prompt_embeds = t5_encoder(prompt)
|
||||
|
||||
assert isinstance(prompt_embeds, torch.Tensor)
|
||||
return prompt_embeds
|
||||
|
||||
def _clip_encode(self, context: InvocationContext) -> torch.Tensor:
|
||||
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
|
||||
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
|
||||
|
||||
prompt = [self.prompt]
|
||||
|
||||
with (
|
||||
clip_text_encoder_info as clip_text_encoder,
|
||||
clip_tokenizer_info as clip_tokenizer,
|
||||
):
|
||||
assert isinstance(clip_text_encoder, CLIPTextModel)
|
||||
assert isinstance(clip_tokenizer, CLIPTokenizer)
|
||||
|
||||
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
|
||||
|
||||
pooled_prompt_embeds = clip_encoder(prompt)
|
||||
|
||||
assert isinstance(pooled_prompt_embeds, torch.Tensor)
|
||||
return pooled_prompt_embeds
|
||||
60
invokeai/app/invocations/flux_vae_decode.py
Normal file
60
invokeai/app/invocations/flux_vae_decode.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_vae_decode",
|
||||
title="FLUX Latents to Image",
|
||||
tags=["latents", "image", "vae", "l2i", "flux"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
latents: LatentsField = InputField(
|
||||
description=FieldDescriptions.latents,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
latents = latents.to(device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype())
|
||||
img = vae.decode(latents)
|
||||
|
||||
img = img.clamp(-1, 1)
|
||||
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
|
||||
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
|
||||
return img_pil
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
image = self._vae_decode(vae_info=vae_info, latents=latents)
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
image_dto = context.images.save(image=image)
|
||||
return ImageOutput.build(image_dto)
|
||||
67
invokeai/app/invocations/flux_vae_encode.py
Normal file
67
invokeai/app/invocations/flux_vae_encode.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import einops
|
||||
import torch
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
)
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_vae_encode",
|
||||
title="FLUX Image to Latents",
|
||||
tags=["latents", "image", "vae", "i2l", "flux"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxVaeEncodeInvocation(BaseInvocation):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
image: ImageField = InputField(
|
||||
description="The image to encode.",
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(ryand): Expose seed parameter at the invocation level.
|
||||
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
|
||||
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
|
||||
# should be used for VAE encode sampling.
|
||||
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
image_tensor = image_tensor.to(
|
||||
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
|
||||
)
|
||||
latents = vae.encode(image_tensor, sample=True, generator=generator)
|
||||
return latents
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
name = context.tensors.save(tensor=latents)
|
||||
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|
||||
@@ -126,7 +126,7 @@ class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
|
||||
title="Tensor Mask to Image",
|
||||
tags=["mask"],
|
||||
category="mask",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
)
|
||||
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
"""Convert a mask tensor to an image."""
|
||||
@@ -135,6 +135,11 @@ class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
mask = context.tensors.load(self.mask.tensor_name)
|
||||
|
||||
# Squeeze the channel dimension if it exists.
|
||||
if mask.dim() == 3:
|
||||
mask = mask.squeeze(0)
|
||||
|
||||
# Ensure that the mask is binary.
|
||||
if mask.dtype != torch.bool:
|
||||
mask = mask > 0.5
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import copy
|
||||
from typing import List, Optional
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -13,7 +13,14 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||
from invokeai.backend.flux.util import max_seq_lengths
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
CheckpointConfigBase,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
|
||||
|
||||
class ModelIdentifierField(BaseModel):
|
||||
@@ -60,6 +67,15 @@ class CLIPField(BaseModel):
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
|
||||
|
||||
class T5EncoderField(BaseModel):
|
||||
tokenizer: ModelIdentifierField = Field(description="Info to load tokenizer submodel")
|
||||
text_encoder: ModelIdentifierField = Field(description="Info to load text_encoder submodel")
|
||||
|
||||
|
||||
class VAEField(BaseModel):
|
||||
vae: ModelIdentifierField = Field(description="Info to load vae submodel")
|
||||
seamless_axes: List[str] = Field(default_factory=list, description='Axes("x" and "y") to which apply seamless')
|
||||
@@ -122,6 +138,78 @@ class ModelIdentifierInvocation(BaseInvocation):
|
||||
return ModelIdentifierOutput(model=self.model)
|
||||
|
||||
|
||||
@invocation_output("flux_model_loader_output")
|
||||
class FluxModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Flux base model loader output"""
|
||||
|
||||
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
|
||||
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
|
||||
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
max_seq_len: Literal[256, 512] = OutputField(
|
||||
description="The max sequence length to used for the T5 encoder. (256 for schnell transformer, 512 for dev transformer)",
|
||||
title="Max Seq Length",
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_model_loader",
|
||||
title="Flux Main Model",
|
||||
tags=["model", "flux"],
|
||||
category="model",
|
||||
version="1.0.4",
|
||||
classification=Classification.Prototype,
|
||||
)
|
||||
class FluxModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a flux base model, outputting its submodels."""
|
||||
|
||||
model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.flux_model,
|
||||
ui_type=UIType.FluxMainModel,
|
||||
input=Input.Direct,
|
||||
)
|
||||
|
||||
t5_encoder_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.t5_encoder, ui_type=UIType.T5EncoderModel, input=Input.Direct, title="T5 Encoder"
|
||||
)
|
||||
|
||||
clip_embed_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.clip_embed_model,
|
||||
ui_type=UIType.CLIPEmbedModel,
|
||||
input=Input.Direct,
|
||||
title="CLIP Embed",
|
||||
)
|
||||
|
||||
vae_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.vae_model, ui_type=UIType.FluxVAEModel, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxModelLoaderOutput:
|
||||
for key in [self.model.key, self.t5_encoder_model.key, self.clip_embed_model.key, self.vae_model.key]:
|
||||
if not context.models.exists(key):
|
||||
raise ValueError(f"Unknown model: {key}")
|
||||
|
||||
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
|
||||
vae = self.vae_model.model_copy(update={"submodel_type": SubModelType.VAE})
|
||||
|
||||
tokenizer = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
|
||||
clip_encoder = self.clip_embed_model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
|
||||
|
||||
tokenizer2 = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
|
||||
t5_encoder = self.t5_encoder_model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
|
||||
|
||||
transformer_config = context.models.get_config(transformer)
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
max_seq_len=max_seq_lengths[transformer_config.config_path],
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"main_model_loader",
|
||||
title="Main Model",
|
||||
|
||||
@@ -12,6 +12,7 @@ from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
DenoiseMaskField,
|
||||
FieldDescriptions,
|
||||
FluxConditioningField,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
@@ -414,6 +415,17 @@ class MaskOutput(BaseInvocationOutput):
|
||||
height: int = OutputField(description="The height of the mask in pixels.")
|
||||
|
||||
|
||||
@invocation_output("flux_conditioning_output")
|
||||
class FluxConditioningOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single conditioning tensor"""
|
||||
|
||||
conditioning: FluxConditioningField = OutputField(description=FieldDescriptions.cond)
|
||||
|
||||
@classmethod
|
||||
def build(cls, conditioning_name: str) -> "FluxConditioningOutput":
|
||||
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
|
||||
|
||||
|
||||
@invocation_output("conditioning_output")
|
||||
class ConditioningOutput(BaseInvocationOutput):
|
||||
"""Base class for nodes that output a single conditioning tensor"""
|
||||
|
||||
@@ -103,7 +103,7 @@ class HFModelSource(StringLikeSource):
|
||||
if self.variant:
|
||||
base += f":{self.variant or ''}"
|
||||
if self.subfolder:
|
||||
base += f":{self.subfolder}"
|
||||
base += f"::{self.subfolder.as_posix()}"
|
||||
return base
|
||||
|
||||
|
||||
|
||||
@@ -783,8 +783,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
# So what we do is to synthesize a folder named "sdxl-turbo_vae" here.
|
||||
if subfolder:
|
||||
top = Path(remote_files[0].path.parts[0]) # e.g. "sdxl-turbo/"
|
||||
path_to_remove = top / subfolder.parts[-1] # sdxl-turbo/vae/
|
||||
path_to_add = Path(f"{top}_{subfolder}")
|
||||
path_to_remove = top / subfolder # sdxl-turbo/vae/
|
||||
subfolder_rename = subfolder.name.replace("/", "_").replace("\\", "_")
|
||||
path_to_add = Path(f"{top}_{subfolder_rename}")
|
||||
else:
|
||||
path_to_remove = Path(".")
|
||||
path_to_add = Path(".")
|
||||
|
||||
@@ -77,6 +77,7 @@ class ModelRecordChanges(BaseModelExcludeNull):
|
||||
type: Optional[ModelType] = Field(description="Type of model", default=None)
|
||||
key: Optional[str] = Field(description="Database ID for this model", default=None)
|
||||
hash: Optional[str] = Field(description="hash of model file", default=None)
|
||||
format: Optional[str] = Field(description="format of model file", default=None)
|
||||
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
|
||||
default_settings: Optional[MainModelDefaultSettings | ControlAdapterDefaultSettings] = Field(
|
||||
description="Default settings for this model", default=None
|
||||
|
||||
@@ -14,7 +14,7 @@ from invokeai.app.services.image_records.image_records_common import ImageCatego
|
||||
from invokeai.app.services.images.images_common import ImageDTO
|
||||
from invokeai.app.services.invocation_services import InvocationServices
|
||||
from invokeai.app.services.model_records.model_records_base import UnknownModelException
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
from invokeai.app.util.step_callback import flux_step_callback, stable_diffusion_step_callback
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -557,6 +557,24 @@ class UtilInterface(InvocationContextInterface):
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
def flux_step_callback(self, intermediate_state: PipelineIntermediateState) -> None:
|
||||
"""
|
||||
The step callback emits a progress event with the current step, the total number of
|
||||
steps, a preview image, and some other internal metadata.
|
||||
|
||||
This should be called after each denoising step.
|
||||
|
||||
Args:
|
||||
intermediate_state: The intermediate state of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
flux_step_callback(
|
||||
context_data=self._data,
|
||||
intermediate_state=intermediate_state,
|
||||
events=self._services.events,
|
||||
is_canceled=self.is_canceled,
|
||||
)
|
||||
|
||||
|
||||
class InvocationContext:
|
||||
"""Provides access to various services and data for the current invocation.
|
||||
|
||||
@@ -0,0 +1,407 @@
|
||||
{
|
||||
"name": "FLUX Image to Image",
|
||||
"author": "InvokeAI",
|
||||
"description": "A simple image-to-image workflow using a FLUX dev model. ",
|
||||
"version": "1.0.4",
|
||||
"contact": "",
|
||||
"tags": "image2image, flux, image-to-image",
|
||||
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend using FLUX dev models for image-to-image workflows. The image-to-image performance with FLUX schnell models is poor.",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "t5_encoder_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "clip_embed_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "vae_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"fieldName": "denoising_start"
|
||||
},
|
||||
{
|
||||
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"fieldName": "prompt"
|
||||
},
|
||||
{
|
||||
"nodeId": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"fieldName": "num_steps"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"version": "3.0.0",
|
||||
"category": "default"
|
||||
},
|
||||
"nodes": [
|
||||
{
|
||||
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"type": "flux_vae_encode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"image": {
|
||||
"name": "image",
|
||||
"label": "",
|
||||
"value": {
|
||||
"image_name": "8a5c62aa-9335-45d2-9c71-89af9fc1f8d4.png"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 732.7680166609682,
|
||||
"y": -24.37398171806909
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"type": "flux_denoise",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"denoise_mask": {
|
||||
"name": "denoise_mask",
|
||||
"label": ""
|
||||
},
|
||||
"denoising_start": {
|
||||
"name": "denoising_start",
|
||||
"label": "",
|
||||
"value": 0.04
|
||||
},
|
||||
"denoising_end": {
|
||||
"name": "denoising_end",
|
||||
"label": "",
|
||||
"value": 1
|
||||
},
|
||||
"transformer": {
|
||||
"name": "transformer",
|
||||
"label": ""
|
||||
},
|
||||
"positive_text_conditioning": {
|
||||
"name": "positive_text_conditioning",
|
||||
"label": ""
|
||||
},
|
||||
"width": {
|
||||
"name": "width",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"height": {
|
||||
"name": "height",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"num_steps": {
|
||||
"name": "num_steps",
|
||||
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
|
||||
"value": 30
|
||||
},
|
||||
"guidance": {
|
||||
"name": "guidance",
|
||||
"label": "",
|
||||
"value": 4
|
||||
},
|
||||
"seed": {
|
||||
"name": "seed",
|
||||
"label": "",
|
||||
"value": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1182.8836633018684,
|
||||
"y": -251.38882958913183
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "flux_vae_decode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1575.5797431839133,
|
||||
"y": -209.00150975507415
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "flux_model_loader",
|
||||
"version": "1.0.4",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"model": {
|
||||
"name": "model",
|
||||
"label": "Model (dev variant recommended for Image-to-Image)"
|
||||
},
|
||||
"t5_encoder_model": {
|
||||
"name": "t5_encoder_model",
|
||||
"label": ""
|
||||
},
|
||||
"clip_embed_model": {
|
||||
"name": "clip_embed_model",
|
||||
"label": "",
|
||||
"value": {
|
||||
"key": "fa23a584-b623-415d-832a-21b5098ff1a1",
|
||||
"hash": "blake3:17c19f0ef941c3b7609a9c94a659ca5364de0be364a91d4179f0e39ba17c3b70",
|
||||
"name": "clip-vit-large-patch14",
|
||||
"base": "any",
|
||||
"type": "clip_embed"
|
||||
}
|
||||
},
|
||||
"vae_model": {
|
||||
"name": "vae_model",
|
||||
"label": "",
|
||||
"value": {
|
||||
"key": "74fc82ba-c0a8-479d-a890-2126f82da758",
|
||||
"hash": "blake3:ce21cb76364aa6e2421311cf4a4b5eb052a76c4f1cd207b50703d8978198a068",
|
||||
"name": "FLUX.1-schnell_ae",
|
||||
"base": "flux",
|
||||
"type": "vae"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 328.1809894659957,
|
||||
"y": -90.2241133566946
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "flux_text_encoder",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"clip": {
|
||||
"name": "clip",
|
||||
"label": ""
|
||||
},
|
||||
"t5_encoder": {
|
||||
"name": "t5_encoder",
|
||||
"label": ""
|
||||
},
|
||||
"t5_max_seq_len": {
|
||||
"name": "t5_max_seq_len",
|
||||
"label": "T5 Max Seq Len",
|
||||
"value": 256
|
||||
},
|
||||
"prompt": {
|
||||
"name": "prompt",
|
||||
"label": "",
|
||||
"value": "a cat wearing a birthday hat"
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 745.8823365057267,
|
||||
"y": -299.60249175851914
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "rand_int",
|
||||
"version": "1.0.1",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"low": {
|
||||
"name": "low",
|
||||
"label": "",
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"name": "high",
|
||||
"label": "",
|
||||
"value": 2147483647
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 725.834098928012,
|
||||
"y": 496.2710031089931
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bheight-ace0258f-67d7-4eee-a218-6fff27065214height",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "height",
|
||||
"targetHandle": "height"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912bwidth-ace0258f-67d7-4eee-a218-6fff27065214width",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "width",
|
||||
"targetHandle": "width"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-2981a67c-480f-4237-9384-26b68dbf912blatents-ace0258f-67d7-4eee-a218-6fff27065214latents",
|
||||
"type": "default",
|
||||
"source": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-2981a67c-480f-4237-9384-26b68dbf912bvae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "2981a67c-480f-4237-9384-26b68dbf912b",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-ace0258f-67d7-4eee-a218-6fff27065214latents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
|
||||
"type": "default",
|
||||
"source": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-ace0258f-67d7-4eee-a218-6fff27065214seed",
|
||||
"type": "default",
|
||||
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-ace0258f-67d7-4eee-a218-6fff27065214transformer",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "transformer",
|
||||
"targetHandle": "transformer"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-ace0258f-67d7-4eee-a218-6fff27065214positive_text_conditioning",
|
||||
"type": "default",
|
||||
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"target": "ace0258f-67d7-4eee-a218-6fff27065214",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_text_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "max_seq_len",
|
||||
"targetHandle": "t5_max_seq_len"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "t5_encoder",
|
||||
"targetHandle": "t5_encoder"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,326 @@
|
||||
{
|
||||
"name": "FLUX Text to Image",
|
||||
"author": "InvokeAI",
|
||||
"description": "A simple text-to-image workflow using FLUX dev or schnell models.",
|
||||
"version": "1.0.4",
|
||||
"contact": "",
|
||||
"tags": "text2image, flux",
|
||||
"notes": "Prerequisite model downloads: T5 Encoder, CLIP-L Encoder, and FLUX VAE. Quantized and un-quantized versions can be found in the starter models tab within your Model Manager. We recommend 4 steps for FLUX schnell models and 30 steps for FLUX dev models.",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "t5_encoder_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "clip_embed_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"fieldName": "vae_model"
|
||||
},
|
||||
{
|
||||
"nodeId": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"fieldName": "prompt"
|
||||
},
|
||||
{
|
||||
"nodeId": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"fieldName": "num_steps"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"version": "3.0.0",
|
||||
"category": "default"
|
||||
},
|
||||
"nodes": [
|
||||
{
|
||||
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"type": "flux_denoise",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"denoise_mask": {
|
||||
"name": "denoise_mask",
|
||||
"label": ""
|
||||
},
|
||||
"denoising_start": {
|
||||
"name": "denoising_start",
|
||||
"label": "",
|
||||
"value": 0
|
||||
},
|
||||
"denoising_end": {
|
||||
"name": "denoising_end",
|
||||
"label": "",
|
||||
"value": 1
|
||||
},
|
||||
"transformer": {
|
||||
"name": "transformer",
|
||||
"label": ""
|
||||
},
|
||||
"positive_text_conditioning": {
|
||||
"name": "positive_text_conditioning",
|
||||
"label": ""
|
||||
},
|
||||
"width": {
|
||||
"name": "width",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"height": {
|
||||
"name": "height",
|
||||
"label": "",
|
||||
"value": 1024
|
||||
},
|
||||
"num_steps": {
|
||||
"name": "num_steps",
|
||||
"label": "Steps (Recommend 30 for Dev, 4 for Schnell)",
|
||||
"value": 30
|
||||
},
|
||||
"guidance": {
|
||||
"name": "guidance",
|
||||
"label": "",
|
||||
"value": 4
|
||||
},
|
||||
"seed": {
|
||||
"name": "seed",
|
||||
"label": "",
|
||||
"value": 0
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1186.1868226120378,
|
||||
"y": -214.9459927686657
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"type": "flux_vae_decode",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"board": {
|
||||
"name": "board",
|
||||
"label": ""
|
||||
},
|
||||
"metadata": {
|
||||
"name": "metadata",
|
||||
"label": ""
|
||||
},
|
||||
"latents": {
|
||||
"name": "latents",
|
||||
"label": ""
|
||||
},
|
||||
"vae": {
|
||||
"name": "vae",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 1575.5797431839133,
|
||||
"y": -209.00150975507415
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"type": "flux_model_loader",
|
||||
"version": "1.0.4",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"model": {
|
||||
"name": "model",
|
||||
"label": ""
|
||||
},
|
||||
"t5_encoder_model": {
|
||||
"name": "t5_encoder_model",
|
||||
"label": ""
|
||||
},
|
||||
"clip_embed_model": {
|
||||
"name": "clip_embed_model",
|
||||
"label": ""
|
||||
},
|
||||
"vae_model": {
|
||||
"name": "vae_model",
|
||||
"label": ""
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 381.1882713063478,
|
||||
"y": -95.89663532854017
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"type": "flux_text_encoder",
|
||||
"version": "1.0.0",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"inputs": {
|
||||
"clip": {
|
||||
"name": "clip",
|
||||
"label": ""
|
||||
},
|
||||
"t5_encoder": {
|
||||
"name": "t5_encoder",
|
||||
"label": ""
|
||||
},
|
||||
"t5_max_seq_len": {
|
||||
"name": "t5_max_seq_len",
|
||||
"label": "T5 Max Seq Len",
|
||||
"value": 256
|
||||
},
|
||||
"prompt": {
|
||||
"name": "prompt",
|
||||
"label": "",
|
||||
"value": "a cat"
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 778.4899149328337,
|
||||
"y": -100.36469216659502
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"type": "rand_int",
|
||||
"version": "1.0.1",
|
||||
"label": "",
|
||||
"notes": "",
|
||||
"isOpen": true,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"inputs": {
|
||||
"low": {
|
||||
"name": "low",
|
||||
"label": "",
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"name": "high",
|
||||
"label": "",
|
||||
"value": 2147483647
|
||||
}
|
||||
}
|
||||
},
|
||||
"position": {
|
||||
"x": 800.9667463219505,
|
||||
"y": 285.8297267547506
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90transformer-4fe24f07-f906-4f55-ab2c-9beee56ef5bdtransformer",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "transformer",
|
||||
"targetHandle": "transformer"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cconditioning-4fe24f07-f906-4f55-ab2c-9beee56ef5bdpositive_text_conditioning",
|
||||
"type": "default",
|
||||
"source": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_text_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4754c534-a5f3-4ad0-9382-7887985e668cvalue-4fe24f07-f906-4f55-ab2c-9beee56ef5bdseed",
|
||||
"type": "default",
|
||||
"source": "4754c534-a5f3-4ad0-9382-7887985e668c",
|
||||
"target": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-4fe24f07-f906-4f55-ab2c-9beee56ef5bdlatents-7e5172eb-48c1-44db-a770-8fd83e1435d1latents",
|
||||
"type": "default",
|
||||
"source": "4fe24f07-f906-4f55-ab2c-9beee56ef5bd",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90vae-7e5172eb-48c1-44db-a770-8fd83e1435d1vae",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "7e5172eb-48c1-44db-a770-8fd83e1435d1",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90max_seq_len-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_max_seq_len",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "max_seq_len",
|
||||
"targetHandle": "t5_max_seq_len"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90t5_encoder-01f674f8-b3d1-4df1-acac-6cb8e0bfb63ct5_encoder",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "t5_encoder",
|
||||
"targetHandle": "t5_encoder"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90clip-01f674f8-b3d1-4df1-acac-6cb8e0bfb63cclip",
|
||||
"type": "default",
|
||||
"source": "f8d9d7c8-9ed7-4bd7-9e42-ab0e89bfac90",
|
||||
"target": "01f674f8-b3d1-4df1-acac-6cb8e0bfb63c",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -38,6 +38,25 @@ SD1_5_LATENT_RGB_FACTORS = [
|
||||
[-0.1307, -0.1874, -0.7445], # L4
|
||||
]
|
||||
|
||||
FLUX_LATENT_RGB_FACTORS = [
|
||||
[-0.0412, 0.0149, 0.0521],
|
||||
[0.0056, 0.0291, 0.0768],
|
||||
[0.0342, -0.0681, -0.0427],
|
||||
[-0.0258, 0.0092, 0.0463],
|
||||
[0.0863, 0.0784, 0.0547],
|
||||
[-0.0017, 0.0402, 0.0158],
|
||||
[0.0501, 0.1058, 0.1152],
|
||||
[-0.0209, -0.0218, -0.0329],
|
||||
[-0.0314, 0.0083, 0.0896],
|
||||
[0.0851, 0.0665, -0.0472],
|
||||
[-0.0534, 0.0238, -0.0024],
|
||||
[0.0452, -0.0026, 0.0048],
|
||||
[0.0892, 0.0831, 0.0881],
|
||||
[-0.1117, -0.0304, -0.0789],
|
||||
[0.0027, -0.0479, -0.0043],
|
||||
[-0.1146, -0.0827, -0.0598],
|
||||
]
|
||||
|
||||
|
||||
def sample_to_lowres_estimated_image(
|
||||
samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None
|
||||
@@ -94,3 +113,32 @@ def stable_diffusion_step_callback(
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
|
||||
def flux_step_callback(
|
||||
context_data: "InvocationContextData",
|
||||
intermediate_state: PipelineIntermediateState,
|
||||
events: "EventServiceBase",
|
||||
is_canceled: Callable[[], bool],
|
||||
) -> None:
|
||||
if is_canceled():
|
||||
raise CanceledException
|
||||
sample = intermediate_state.latents
|
||||
latent_rgb_factors = torch.tensor(FLUX_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device)
|
||||
latent_image_perm = sample.permute(1, 2, 0).to(dtype=sample.dtype, device=sample.device)
|
||||
latent_image = latent_image_perm @ latent_rgb_factors
|
||||
latents_ubyte = (
|
||||
((latent_image + 1) / 2).clamp(0, 1).mul(0xFF) # change scale from -1..1 to 0..1 # to 0..255
|
||||
).to(device="cpu", dtype=torch.uint8)
|
||||
image = Image.fromarray(latents_ubyte.cpu().numpy())
|
||||
(width, height) = image.size
|
||||
width *= 8
|
||||
height *= 8
|
||||
dataURL = image_to_dataURL(image, image_format="JPEG")
|
||||
|
||||
events.emit_invocation_denoise_progress(
|
||||
context_data.queue_item,
|
||||
context_data.invocation,
|
||||
intermediate_state,
|
||||
ProgressImage(dataURL=dataURL, width=width, height=height),
|
||||
)
|
||||
|
||||
56
invokeai/backend/flux/denoise.py
Normal file
56
invokeai/backend/flux/denoise.py
Normal file
@@ -0,0 +1,56 @@
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.backend.flux.inpaint_extension import InpaintExtension
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
|
||||
|
||||
def denoise(
|
||||
model: Flux,
|
||||
# model input
|
||||
img: torch.Tensor,
|
||||
img_ids: torch.Tensor,
|
||||
txt: torch.Tensor,
|
||||
txt_ids: torch.Tensor,
|
||||
vec: torch.Tensor,
|
||||
# sampling parameters
|
||||
timesteps: list[float],
|
||||
step_callback: Callable[[PipelineIntermediateState], None],
|
||||
guidance: float,
|
||||
inpaint_extension: InpaintExtension | None,
|
||||
):
|
||||
step = 0
|
||||
# guidance_vec is ignored for schnell.
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))):
|
||||
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
||||
pred = model(
|
||||
img=img,
|
||||
img_ids=img_ids,
|
||||
txt=txt,
|
||||
txt_ids=txt_ids,
|
||||
y=vec,
|
||||
timesteps=t_vec,
|
||||
guidance=guidance_vec,
|
||||
)
|
||||
preview_img = img - t_curr * pred
|
||||
img = img + (t_prev - t_curr) * pred
|
||||
|
||||
if inpaint_extension is not None:
|
||||
img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev)
|
||||
|
||||
step_callback(
|
||||
PipelineIntermediateState(
|
||||
step=step,
|
||||
order=1,
|
||||
total_steps=len(timesteps),
|
||||
timestep=int(t_curr),
|
||||
latents=preview_img,
|
||||
),
|
||||
)
|
||||
step += 1
|
||||
|
||||
return img
|
||||
35
invokeai/backend/flux/inpaint_extension.py
Normal file
35
invokeai/backend/flux/inpaint_extension.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
|
||||
|
||||
class InpaintExtension:
|
||||
"""A class for managing inpainting with FLUX."""
|
||||
|
||||
def __init__(self, init_latents: torch.Tensor, inpaint_mask: torch.Tensor, noise: torch.Tensor):
|
||||
"""Initialize InpaintExtension.
|
||||
|
||||
Args:
|
||||
init_latents (torch.Tensor): The initial latents (i.e. un-noised at timestep 0). In 'packed' format.
|
||||
inpaint_mask (torch.Tensor): A mask specifying which elements to inpaint. Range [0, 1]. Values of 1 will be
|
||||
re-generated. Values of 0 will remain unchanged. Values between 0 and 1 can be used to blend the
|
||||
inpainted region with the background. In 'packed' format.
|
||||
noise (torch.Tensor): The noise tensor used to noise the init_latents. In 'packed' format.
|
||||
"""
|
||||
assert init_latents.shape == inpaint_mask.shape == noise.shape
|
||||
self._init_latents = init_latents
|
||||
self._inpaint_mask = inpaint_mask
|
||||
self._noise = noise
|
||||
|
||||
def merge_intermediate_latents_with_init_latents(
|
||||
self, intermediate_latents: torch.Tensor, timestep: float
|
||||
) -> torch.Tensor:
|
||||
"""Merge the intermediate latents with the initial latents for the current timestep using the inpaint mask. I.e.
|
||||
update the intermediate latents to keep the regions that are not being inpainted on the correct noise
|
||||
trajectory.
|
||||
|
||||
This function should be called after each denoising step.
|
||||
"""
|
||||
# Noise the init latents for the current timestep.
|
||||
noised_init_latents = self._noise * timestep + (1.0 - timestep) * self._init_latents
|
||||
|
||||
# Merge the intermediate latents with the noised_init_latents using the inpaint_mask.
|
||||
return intermediate_latents * self._inpaint_mask + noised_init_latents * (1.0 - self._inpaint_mask)
|
||||
32
invokeai/backend/flux/math.py
Normal file
32
invokeai/backend/flux/math.py
Normal file
@@ -0,0 +1,32 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
||||
q, k = apply_rope(q, k, pe)
|
||||
|
||||
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
||||
x = rearrange(x, "B H L D -> B L (H D)")
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
assert dim % 2 == 0
|
||||
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
||||
omega = 1.0 / (theta**scale)
|
||||
out = torch.einsum("...n,d->...nd", pos, omega)
|
||||
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
||||
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
||||
return out.float()
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
117
invokeai/backend/flux/model.py
Normal file
117
invokeai/backend/flux/model.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from invokeai.backend.flux.modules.layers import (
|
||||
DoubleStreamBlock,
|
||||
EmbedND,
|
||||
LastLayer,
|
||||
MLPEmbedder,
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FluxParams:
|
||||
in_channels: int
|
||||
vec_in_dim: int
|
||||
context_in_dim: int
|
||||
hidden_size: int
|
||||
mlp_ratio: float
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list[int]
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
|
||||
|
||||
class Flux(nn.Module):
|
||||
"""
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, params: FluxParams):
|
||||
super().__init__()
|
||||
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels
|
||||
self.out_channels = self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
|
||||
pe_dim = params.hidden_size // params.num_heads
|
||||
if sum(params.axes_dim) != pe_dim:
|
||||
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
DoubleStreamBlock(
|
||||
self.hidden_size,
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor | None = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
for block in self.double_blocks:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
for block in self.single_blocks:
|
||||
img = block(img, vec=vec, pe=pe)
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
324
invokeai/backend/flux/modules/autoencoder.py
Normal file
324
invokeai/backend/flux/modules/autoencoder.py
Normal file
@@ -0,0 +1,324 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor, nn
|
||||
|
||||
|
||||
@dataclass
|
||||
class AutoEncoderParams:
|
||||
resolution: int
|
||||
in_channels: int
|
||||
ch: int
|
||||
out_ch: int
|
||||
ch_mult: list[int]
|
||||
num_res_blocks: int
|
||||
z_channels: int
|
||||
scale_factor: float
|
||||
shift_factor: float
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels: int):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
||||
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
||||
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
||||
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
||||
|
||||
def attention(self, h_: Tensor) -> Tensor:
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
b, c, h, w = q.shape
|
||||
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
||||
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
||||
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
||||
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return x + self.proj_out(self.attention(x))
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(self, in_channels: int, out_channels: int):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
||||
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
||||
if self.in_channels != self.out_channels:
|
||||
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = torch.nn.functional.silu(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
h = self.norm2(h)
|
||||
h = torch.nn.functional.silu(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels: int):
|
||||
super().__init__()
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
pad = (0, 1, 0, 1)
|
||||
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels: int):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
resolution: int,
|
||||
in_channels: int,
|
||||
ch: int,
|
||||
ch_mult: list[int],
|
||||
num_res_blocks: int,
|
||||
z_channels: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
# downsampling
|
||||
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
self.down = nn.ModuleList()
|
||||
block_in = self.ch
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for _ in range(self.num_res_blocks):
|
||||
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
||||
block_in = block_out
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
||||
|
||||
# end
|
||||
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
||||
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1])
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = torch.nn.functional.silu(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ch: int,
|
||||
out_ch: int,
|
||||
ch_mult: list[int],
|
||||
num_res_blocks: int,
|
||||
in_channels: int,
|
||||
resolution: int,
|
||||
z_channels: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.ch = ch
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.ffactor = 2 ** (self.num_resolutions - 1)
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
||||
self.mid.attn_1 = AttnBlock(block_in)
|
||||
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for _ in range(self.num_res_blocks + 1):
|
||||
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
||||
block_in = block_out
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
||||
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, z: Tensor) -> Tensor:
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = torch.nn.functional.silu(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class DiagonalGaussian(nn.Module):
|
||||
def __init__(self, chunk_dim: int = 1):
|
||||
super().__init__()
|
||||
self.chunk_dim = chunk_dim
|
||||
|
||||
def forward(self, z: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
|
||||
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
||||
if sample:
|
||||
std = torch.exp(0.5 * logvar)
|
||||
# Unfortunately, torch.randn_like(...) does not accept a generator argument at the time of writing, so we
|
||||
# have to use torch.randn(...) instead.
|
||||
return mean + std * torch.randn(size=mean.size(), generator=generator, dtype=mean.dtype, device=mean.device)
|
||||
else:
|
||||
return mean
|
||||
|
||||
|
||||
class AutoEncoder(nn.Module):
|
||||
def __init__(self, params: AutoEncoderParams):
|
||||
super().__init__()
|
||||
self.encoder = Encoder(
|
||||
resolution=params.resolution,
|
||||
in_channels=params.in_channels,
|
||||
ch=params.ch,
|
||||
ch_mult=params.ch_mult,
|
||||
num_res_blocks=params.num_res_blocks,
|
||||
z_channels=params.z_channels,
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
resolution=params.resolution,
|
||||
in_channels=params.in_channels,
|
||||
ch=params.ch,
|
||||
out_ch=params.out_ch,
|
||||
ch_mult=params.ch_mult,
|
||||
num_res_blocks=params.num_res_blocks,
|
||||
z_channels=params.z_channels,
|
||||
)
|
||||
self.reg = DiagonalGaussian()
|
||||
|
||||
self.scale_factor = params.scale_factor
|
||||
self.shift_factor = params.shift_factor
|
||||
|
||||
def encode(self, x: Tensor, sample: bool = True, generator: torch.Generator | None = None) -> Tensor:
|
||||
"""Run VAE encoding on input tensor x.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input image tensor. Shape: (batch_size, in_channels, height, width).
|
||||
sample (bool, optional): If True, sample from the encoded distribution, else, return the distribution mean.
|
||||
Defaults to True.
|
||||
generator (torch.Generator | None, optional): Optional random number generator for reproducibility.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
Tensor: Encoded latent tensor. Shape: (batch_size, z_channels, latent_height, latent_width).
|
||||
"""
|
||||
|
||||
z = self.reg(self.encoder(x), sample=sample, generator=generator)
|
||||
z = self.scale_factor * (z - self.shift_factor)
|
||||
return z
|
||||
|
||||
def decode(self, z: Tensor) -> Tensor:
|
||||
z = z / self.scale_factor + self.shift_factor
|
||||
return self.decoder(z)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.decode(self.encode(x))
|
||||
33
invokeai/backend/flux/modules/conditioner.py
Normal file
33
invokeai/backend/flux/modules/conditioner.py
Normal file
@@ -0,0 +1,33 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
from torch import Tensor, nn
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
|
||||
|
||||
class HFEncoder(nn.Module):
|
||||
def __init__(self, encoder: PreTrainedModel, tokenizer: PreTrainedTokenizer, is_clip: bool, max_length: int):
|
||||
super().__init__()
|
||||
self.max_length = max_length
|
||||
self.is_clip = is_clip
|
||||
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
||||
self.tokenizer = tokenizer
|
||||
self.hf_module = encoder
|
||||
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
||||
|
||||
def forward(self, text: list[str]) -> Tensor:
|
||||
batch_encoding = self.tokenizer(
|
||||
text,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_length=False,
|
||||
return_overflowing_tokens=False,
|
||||
padding="max_length",
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
outputs = self.hf_module(
|
||||
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
||||
attention_mask=None,
|
||||
output_hidden_states=False,
|
||||
)
|
||||
return outputs[self.output_key]
|
||||
253
invokeai/backend/flux/modules/layers.py
Normal file
253
invokeai/backend/flux/modules/layers.py
Normal file
@@ -0,0 +1,253 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor, nn
|
||||
|
||||
from invokeai.backend.flux.math import attention, rope
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: Tensor) -> Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
|
||||
return emb.unsqueeze(1)
|
||||
|
||||
|
||||
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
t = time_factor * t
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
|
||||
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
if torch.is_floating_point(t):
|
||||
embedding = embedding.to(t)
|
||||
return embedding
|
||||
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int):
|
||||
super().__init__()
|
||||
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
x_dtype = x.dtype
|
||||
x = x.float()
|
||||
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
||||
return (x * rrms).to(dtype=x_dtype) * self.scale
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim)
|
||||
self.key_norm = RMSNorm(dim)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
||||
q = self.query_norm(q)
|
||||
k = self.key_norm(k)
|
||||
return q.to(v), k.to(v)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.norm = QKNorm(head_dim)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
||||
qkv = self.qkv(x)
|
||||
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||
q, k = self.norm(q, k, v)
|
||||
x = attention(q, k, v, pe=pe)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModulationOut:
|
||||
shift: Tensor
|
||||
scale: Tensor
|
||||
gate: Tensor
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
ModulationOut(*out[3:]) if self.is_double else None,
|
||||
)
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True)
|
||||
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
||||
|
||||
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.img_mlp = nn.Sequential(
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
||||
nn.GELU(approximate="tanh"),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True)
|
||||
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
||||
|
||||
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
||||
nn.GELU(approximate="tanh"),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
||||
)
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
# run actual attention
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
|
||||
attn = attention(q, k, v, pe=pe)
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
return img, txt
|
||||
|
||||
|
||||
class SingleStreamBlock(nn.Module):
|
||||
"""
|
||||
A DiT block with parallel linear layers as described in
|
||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
self.num_heads = num_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
||||
# proj and mlp_out
|
||||
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
||||
|
||||
self.norm = QKNorm(head_dim)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
||||
q, k = self.norm(q, k, v)
|
||||
|
||||
# compute attention
|
||||
attn = attention(q, k, v, pe=pe)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
return x + mod.gate * output
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
||||
super().__init__()
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
x = self.linear(x)
|
||||
return x
|
||||
135
invokeai/backend/flux/sampling_utils.py
Normal file
135
invokeai/backend/flux/sampling_utils.py
Normal file
@@ -0,0 +1,135 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
import math
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
def get_noise(
|
||||
num_samples: int,
|
||||
height: int,
|
||||
width: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
):
|
||||
# We always generate noise on the same device and dtype then cast to ensure consistency across devices/dtypes.
|
||||
rand_device = "cpu"
|
||||
rand_dtype = torch.float16
|
||||
return torch.randn(
|
||||
num_samples,
|
||||
16,
|
||||
# allow for packing
|
||||
2 * math.ceil(height / 16),
|
||||
2 * math.ceil(width / 16),
|
||||
device=rand_device,
|
||||
dtype=rand_dtype,
|
||||
generator=torch.Generator(device=rand_device).manual_seed(seed),
|
||||
).to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
def time_shift(mu: float, sigma: float, t: torch.Tensor) -> torch.Tensor:
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
|
||||
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
|
||||
m = (y2 - y1) / (x2 - x1)
|
||||
b = y1 - m * x1
|
||||
return lambda x: m * x + b
|
||||
|
||||
|
||||
def get_schedule(
|
||||
num_steps: int,
|
||||
image_seq_len: int,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
shift: bool = True,
|
||||
) -> list[float]:
|
||||
# extra step for zero
|
||||
timesteps = torch.linspace(1, 0, num_steps + 1)
|
||||
|
||||
# shifting the schedule to favor high timesteps for higher signal images
|
||||
if shift:
|
||||
# estimate mu based on linear estimation between two points
|
||||
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
||||
timesteps = time_shift(mu, 1.0, timesteps)
|
||||
|
||||
return timesteps.tolist()
|
||||
|
||||
|
||||
def _find_last_index_ge_val(timesteps: list[float], val: float, eps: float = 1e-6) -> int:
|
||||
"""Find the last index in timesteps that is >= val.
|
||||
|
||||
We use epsilon-close equality to avoid potential floating point errors.
|
||||
"""
|
||||
idx = len(list(filter(lambda t: t >= (val - eps), timesteps))) - 1
|
||||
assert idx >= 0
|
||||
return idx
|
||||
|
||||
|
||||
def clip_timestep_schedule(timesteps: list[float], denoising_start: float, denoising_end: float) -> list[float]:
|
||||
"""Clip the timestep schedule to the denoising range.
|
||||
|
||||
Args:
|
||||
timesteps (list[float]): The original timestep schedule: [1.0, ..., 0.0].
|
||||
denoising_start (float): A value in [0, 1] specifying the start of the denoising process. E.g. a value of 0.2
|
||||
would mean that the denoising process start at the last timestep in the schedule >= 0.8.
|
||||
denoising_end (float): A value in [0, 1] specifying the end of the denoising process. E.g. a value of 0.8 would
|
||||
mean that the denoising process end at the last timestep in the schedule >= 0.2.
|
||||
|
||||
Returns:
|
||||
list[float]: The clipped timestep schedule.
|
||||
"""
|
||||
assert 0.0 <= denoising_start <= 1.0
|
||||
assert 0.0 <= denoising_end <= 1.0
|
||||
assert denoising_start <= denoising_end
|
||||
|
||||
t_start_val = 1.0 - denoising_start
|
||||
t_end_val = 1.0 - denoising_end
|
||||
|
||||
t_start_idx = _find_last_index_ge_val(timesteps, t_start_val)
|
||||
t_end_idx = _find_last_index_ge_val(timesteps, t_end_val)
|
||||
|
||||
clipped_timesteps = timesteps[t_start_idx : t_end_idx + 1]
|
||||
|
||||
return clipped_timesteps
|
||||
|
||||
|
||||
def unpack(x: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||||
"""Unpack flat array of patch embeddings to latent image."""
|
||||
return rearrange(
|
||||
x,
|
||||
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
||||
h=math.ceil(height / 16),
|
||||
w=math.ceil(width / 16),
|
||||
ph=2,
|
||||
pw=2,
|
||||
)
|
||||
|
||||
|
||||
def pack(x: torch.Tensor) -> torch.Tensor:
|
||||
"""Pack latent image to flattented array of patch embeddings."""
|
||||
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
|
||||
return rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
|
||||
|
||||
def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
|
||||
"""Generate tensor of image position ids.
|
||||
|
||||
Args:
|
||||
h (int): Height of image in latent space.
|
||||
w (int): Width of image in latent space.
|
||||
batch_size (int): Batch size.
|
||||
device (torch.device): Device.
|
||||
dtype (torch.dtype): dtype.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Image position ids.
|
||||
"""
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
return img_ids
|
||||
71
invokeai/backend/flux/util.py
Normal file
71
invokeai/backend/flux/util.py
Normal file
@@ -0,0 +1,71 @@
|
||||
# Initially pulled from https://github.com/black-forest-labs/flux
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Literal
|
||||
|
||||
from invokeai.backend.flux.model import FluxParams
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoderParams
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelSpec:
|
||||
params: FluxParams
|
||||
ae_params: AutoEncoderParams
|
||||
ckpt_path: str | None
|
||||
ae_path: str | None
|
||||
repo_id: str | None
|
||||
repo_flow: str | None
|
||||
repo_ae: str | None
|
||||
|
||||
|
||||
max_seq_lengths: Dict[str, Literal[256, 512]] = {
|
||||
"flux-dev": 512,
|
||||
"flux-schnell": 256,
|
||||
}
|
||||
|
||||
|
||||
ae_params = {
|
||||
"flux": AutoEncoderParams(
|
||||
resolution=256,
|
||||
in_channels=3,
|
||||
ch=128,
|
||||
out_ch=3,
|
||||
ch_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
z_channels=16,
|
||||
scale_factor=0.3611,
|
||||
shift_factor=0.1159,
|
||||
)
|
||||
}
|
||||
|
||||
|
||||
params = {
|
||||
"flux-dev": FluxParams(
|
||||
in_channels=64,
|
||||
vec_in_dim=768,
|
||||
context_in_dim=4096,
|
||||
hidden_size=3072,
|
||||
mlp_ratio=4.0,
|
||||
num_heads=24,
|
||||
depth=19,
|
||||
depth_single_blocks=38,
|
||||
axes_dim=[16, 56, 56],
|
||||
theta=10_000,
|
||||
qkv_bias=True,
|
||||
guidance_embed=True,
|
||||
),
|
||||
"flux-schnell": FluxParams(
|
||||
in_channels=64,
|
||||
vec_in_dim=768,
|
||||
context_in_dim=4096,
|
||||
hidden_size=3072,
|
||||
mlp_ratio=4.0,
|
||||
num_heads=24,
|
||||
depth=19,
|
||||
depth_single_blocks=38,
|
||||
axes_dim=[16, 56, 56],
|
||||
theta=10_000,
|
||||
qkv_bias=True,
|
||||
guidance_embed=False,
|
||||
),
|
||||
}
|
||||
@@ -52,6 +52,7 @@ class BaseModelType(str, Enum):
|
||||
StableDiffusion2 = "sd-2"
|
||||
StableDiffusionXL = "sdxl"
|
||||
StableDiffusionXLRefiner = "sdxl-refiner"
|
||||
Flux = "flux"
|
||||
# Kandinsky2_1 = "kandinsky-2.1"
|
||||
|
||||
|
||||
@@ -66,7 +67,9 @@ class ModelType(str, Enum):
|
||||
TextualInversion = "embedding"
|
||||
IPAdapter = "ip_adapter"
|
||||
CLIPVision = "clip_vision"
|
||||
CLIPEmbed = "clip_embed"
|
||||
T2IAdapter = "t2i_adapter"
|
||||
T5Encoder = "t5_encoder"
|
||||
SpandrelImageToImage = "spandrel_image_to_image"
|
||||
|
||||
|
||||
@@ -74,6 +77,7 @@ class SubModelType(str, Enum):
|
||||
"""Submodel type."""
|
||||
|
||||
UNet = "unet"
|
||||
Transformer = "transformer"
|
||||
TextEncoder = "text_encoder"
|
||||
TextEncoder2 = "text_encoder_2"
|
||||
Tokenizer = "tokenizer"
|
||||
@@ -104,6 +108,9 @@ class ModelFormat(str, Enum):
|
||||
EmbeddingFile = "embedding_file"
|
||||
EmbeddingFolder = "embedding_folder"
|
||||
InvokeAI = "invokeai"
|
||||
T5Encoder = "t5_encoder"
|
||||
BnbQuantizedLlmInt8b = "bnb_quantized_int8b"
|
||||
BnbQuantizednf4b = "bnb_quantized_nf4b"
|
||||
|
||||
|
||||
class SchedulerPredictionType(str, Enum):
|
||||
@@ -186,7 +193,9 @@ class ModelConfigBase(BaseModel):
|
||||
class CheckpointConfigBase(ModelConfigBase):
|
||||
"""Model config for checkpoint-style models."""
|
||||
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
format: Literal[ModelFormat.Checkpoint, ModelFormat.BnbQuantizednf4b] = Field(
|
||||
description="Format of the provided checkpoint model", default=ModelFormat.Checkpoint
|
||||
)
|
||||
config_path: str = Field(description="path to the checkpoint model config file")
|
||||
converted_at: Optional[float] = Field(
|
||||
description="When this model was last converted to diffusers", default_factory=time.time
|
||||
@@ -205,6 +214,26 @@ class LoRAConfigBase(ModelConfigBase):
|
||||
trigger_phrases: Optional[set[str]] = Field(description="Set of trigger phrases for this model", default=None)
|
||||
|
||||
|
||||
class T5EncoderConfigBase(ModelConfigBase):
|
||||
type: Literal[ModelType.T5Encoder] = ModelType.T5Encoder
|
||||
|
||||
|
||||
class T5EncoderConfig(T5EncoderConfigBase):
|
||||
format: Literal[ModelFormat.T5Encoder] = ModelFormat.T5Encoder
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.T5Encoder.value}")
|
||||
|
||||
|
||||
class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase):
|
||||
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.T5Encoder.value}.{ModelFormat.BnbQuantizedLlmInt8b.value}")
|
||||
|
||||
|
||||
class LoRALyCORISConfig(LoRAConfigBase):
|
||||
"""Model config for LoRA/Lycoris models."""
|
||||
|
||||
@@ -229,7 +258,6 @@ class VAECheckpointConfig(CheckpointConfigBase):
|
||||
"""Model config for standalone VAE models."""
|
||||
|
||||
type: Literal[ModelType.VAE] = ModelType.VAE
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
@@ -268,7 +296,6 @@ class ControlNetCheckpointConfig(CheckpointConfigBase, ControlAdapterConfigBase)
|
||||
"""Model config for ControlNet models (diffusers version)."""
|
||||
|
||||
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
|
||||
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
@@ -317,6 +344,21 @@ class MainCheckpointConfig(CheckpointConfigBase, MainConfigBase):
|
||||
return Tag(f"{ModelType.Main.value}.{ModelFormat.Checkpoint.value}")
|
||||
|
||||
|
||||
class MainBnbQuantized4bCheckpointConfig(CheckpointConfigBase, MainConfigBase):
|
||||
"""Model config for main checkpoint models."""
|
||||
|
||||
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
|
||||
upcast_attention: bool = False
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.format = ModelFormat.BnbQuantizednf4b
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.Main.value}.{ModelFormat.BnbQuantizednf4b.value}")
|
||||
|
||||
|
||||
class MainDiffusersConfig(DiffusersConfigBase, MainConfigBase):
|
||||
"""Model config for main diffusers models."""
|
||||
|
||||
@@ -350,6 +392,17 @@ class IPAdapterCheckpointConfig(IPAdapterBaseConfig):
|
||||
return Tag(f"{ModelType.IPAdapter.value}.{ModelFormat.Checkpoint.value}")
|
||||
|
||||
|
||||
class CLIPEmbedDiffusersConfig(DiffusersConfigBase):
|
||||
"""Model config for Clip Embeddings."""
|
||||
|
||||
type: Literal[ModelType.CLIPEmbed] = ModelType.CLIPEmbed
|
||||
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
|
||||
|
||||
@staticmethod
|
||||
def get_tag() -> Tag:
|
||||
return Tag(f"{ModelType.CLIPEmbed.value}.{ModelFormat.Diffusers.value}")
|
||||
|
||||
|
||||
class CLIPVisionDiffusersConfig(DiffusersConfigBase):
|
||||
"""Model config for CLIPVision."""
|
||||
|
||||
@@ -408,12 +461,15 @@ AnyModelConfig = Annotated[
|
||||
Union[
|
||||
Annotated[MainDiffusersConfig, MainDiffusersConfig.get_tag()],
|
||||
Annotated[MainCheckpointConfig, MainCheckpointConfig.get_tag()],
|
||||
Annotated[MainBnbQuantized4bCheckpointConfig, MainBnbQuantized4bCheckpointConfig.get_tag()],
|
||||
Annotated[VAEDiffusersConfig, VAEDiffusersConfig.get_tag()],
|
||||
Annotated[VAECheckpointConfig, VAECheckpointConfig.get_tag()],
|
||||
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
|
||||
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
|
||||
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
|
||||
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
|
||||
Annotated[T5EncoderConfig, T5EncoderConfig.get_tag()],
|
||||
Annotated[T5EncoderBnbQuantizedLlmInt8bConfig, T5EncoderBnbQuantizedLlmInt8bConfig.get_tag()],
|
||||
Annotated[TextualInversionFileConfig, TextualInversionFileConfig.get_tag()],
|
||||
Annotated[TextualInversionFolderConfig, TextualInversionFolderConfig.get_tag()],
|
||||
Annotated[IPAdapterInvokeAIConfig, IPAdapterInvokeAIConfig.get_tag()],
|
||||
@@ -421,6 +477,7 @@ AnyModelConfig = Annotated[
|
||||
Annotated[T2IAdapterConfig, T2IAdapterConfig.get_tag()],
|
||||
Annotated[SpandrelImageToImageConfig, SpandrelImageToImageConfig.get_tag()],
|
||||
Annotated[CLIPVisionDiffusersConfig, CLIPVisionDiffusersConfig.get_tag()],
|
||||
Annotated[CLIPEmbedDiffusersConfig, CLIPEmbedDiffusersConfig.get_tag()],
|
||||
],
|
||||
Discriminator(get_model_discriminator_value),
|
||||
]
|
||||
|
||||
@@ -66,12 +66,14 @@ class ModelLoader(ModelLoaderBase):
|
||||
return (model_base / config.path).resolve()
|
||||
|
||||
def _load_and_cache(self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> ModelLockerBase:
|
||||
stats_name = ":".join([config.base, config.type, config.name, (submodel_type or "")])
|
||||
try:
|
||||
return self._ram_cache.get(config.key, submodel_type)
|
||||
return self._ram_cache.get(config.key, submodel_type, stats_name=stats_name)
|
||||
except IndexError:
|
||||
pass
|
||||
|
||||
config.path = str(self._get_model_path(config))
|
||||
self._ram_cache.make_room(self.get_size_fs(config, Path(config.path), submodel_type))
|
||||
loaded_model = self._load_model(config, submodel_type)
|
||||
|
||||
self._ram_cache.put(
|
||||
@@ -83,7 +85,7 @@ class ModelLoader(ModelLoaderBase):
|
||||
return self._ram_cache.get(
|
||||
key=config.key,
|
||||
submodel_type=submodel_type,
|
||||
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
|
||||
stats_name=stats_name,
|
||||
)
|
||||
|
||||
def get_size_fs(
|
||||
|
||||
@@ -128,7 +128,24 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_cache_size(self) -> float:
|
||||
"""Return true if the cache is configured to lazily offload models in VRAM."""
|
||||
"""Return the maximum size the RAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@max_cache_size.setter
|
||||
@abstractmethod
|
||||
def max_cache_size(self, value: float) -> None:
|
||||
"""Set the cap on vram cache size."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def max_vram_cache_size(self) -> float:
|
||||
"""Return the maximum size the VRAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@max_vram_cache_size.setter
|
||||
@abstractmethod
|
||||
def max_vram_cache_size(self, value: float) -> float:
|
||||
"""Set the maximum size the VRAM cache can grow to."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
@@ -193,15 +210,6 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def exists(
|
||||
self,
|
||||
key: str,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> bool:
|
||||
"""Return true if the model identified by key and submodel_type is in the cache."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cache_size(self) -> int:
|
||||
"""Get the total size of the models currently cached."""
|
||||
|
||||
@@ -1,22 +1,6 @@
|
||||
# Copyright (c) 2024 Lincoln D. Stein and the InvokeAI Development team
|
||||
# TODO: Add Stalker's proper name to copyright
|
||||
"""
|
||||
Manage a RAM cache of diffusion/transformer models for fast switching.
|
||||
They are moved between GPU VRAM and CPU RAM as necessary. If the cache
|
||||
grows larger than a preset maximum, then the least recently used
|
||||
model will be cleared and (re)loaded from disk when next needed.
|
||||
|
||||
The cache returns context manager generators designed to load the
|
||||
model into the GPU within the context, and unload outside the
|
||||
context. Use like this:
|
||||
|
||||
cache = ModelCache(max_cache_size=7.5)
|
||||
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1,
|
||||
cache.get_model('stabilityai/stable-diffusion-2') as SD2:
|
||||
do_something_in_GPU(SD1,SD2)
|
||||
|
||||
|
||||
"""
|
||||
""" """
|
||||
|
||||
import gc
|
||||
import math
|
||||
@@ -40,53 +24,74 @@ from invokeai.backend.model_manager.load.model_util import calc_model_size_by_da
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
# Maximum size of the cache, in gigs
|
||||
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
|
||||
DEFAULT_MAX_CACHE_SIZE = 6.0
|
||||
|
||||
# amount of GPU memory to hold in reserve for use by generations (GB)
|
||||
DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
# Size of a GB in bytes.
|
||||
GB = 2**30
|
||||
|
||||
# Size of a MB in bytes.
|
||||
MB = 2**20
|
||||
|
||||
|
||||
class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Implementation of ModelCacheBase."""
|
||||
"""A cache for managing models in memory.
|
||||
|
||||
The cache is based on two levels of model storage:
|
||||
- execution_device: The device where most models are executed (typically "cuda", "mps", or "cpu").
|
||||
- storage_device: The device where models are offloaded when not in active use (typically "cpu").
|
||||
|
||||
The model cache is based on the following assumptions:
|
||||
- storage_device_mem_size > execution_device_mem_size
|
||||
- disk_to_storage_device_transfer_time >> storage_device_to_execution_device_transfer_time
|
||||
|
||||
A copy of all models in the cache is always kept on the storage_device. A subset of the models also have a copy on
|
||||
the execution_device.
|
||||
|
||||
Models are moved between the storage_device and the execution_device as necessary. Cache size limits are enforced
|
||||
on both the storage_device and the execution_device. The execution_device cache uses a smallest-first offload
|
||||
policy. The storage_device cache uses a least-recently-used (LRU) offload policy.
|
||||
|
||||
Note: Neither of these offload policies has really been compared against alternatives. It's likely that different
|
||||
policies would be better, although the optimal policies are likely heavily dependent on usage patterns and HW
|
||||
configuration.
|
||||
|
||||
The cache returns context manager generators designed to load the model into the execution device (often GPU) within
|
||||
the context, and unload outside the context.
|
||||
|
||||
Example usage:
|
||||
```
|
||||
cache = ModelCache(max_cache_size=7.5, max_vram_cache_size=6.0)
|
||||
with cache.get_model('runwayml/stable-diffusion-1-5') as SD1:
|
||||
do_something_on_gpu(SD1)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
|
||||
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
|
||||
max_cache_size: float,
|
||||
max_vram_cache_size: float,
|
||||
execution_device: torch.device = torch.device("cuda"),
|
||||
storage_device: torch.device = torch.device("cpu"),
|
||||
precision: torch.dtype = torch.float16,
|
||||
sequential_offload: bool = False,
|
||||
lazy_offloading: bool = True,
|
||||
sha_chunksize: int = 16777216,
|
||||
log_memory_usage: bool = False,
|
||||
logger: Optional[Logger] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the model RAM cache.
|
||||
|
||||
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
|
||||
:param max_cache_size: Maximum size of the storage_device cache in GBs.
|
||||
:param max_vram_cache_size: Maximum size of the execution_device cache in GBs.
|
||||
:param execution_device: Torch device to load active model into [torch.device('cuda')]
|
||||
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
|
||||
:param precision: Precision for loaded models [torch.float16]
|
||||
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
|
||||
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
|
||||
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
|
||||
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
|
||||
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
|
||||
behaviour.
|
||||
:param logger: InvokeAILogger to use (otherwise creates one)
|
||||
"""
|
||||
# allow lazy offloading only when vram cache enabled
|
||||
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
|
||||
self._precision: torch.dtype = precision
|
||||
self._max_cache_size: float = max_cache_size
|
||||
self._max_vram_cache_size: float = max_vram_cache_size
|
||||
self._execution_device: torch.device = execution_device
|
||||
@@ -128,6 +133,16 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Set the cap on cache size."""
|
||||
self._max_cache_size = value
|
||||
|
||||
@property
|
||||
def max_vram_cache_size(self) -> float:
|
||||
"""Return the cap on vram cache size."""
|
||||
return self._max_vram_cache_size
|
||||
|
||||
@max_vram_cache_size.setter
|
||||
def max_vram_cache_size(self, value: float) -> None:
|
||||
"""Set the cap on vram cache size."""
|
||||
self._max_vram_cache_size = value
|
||||
|
||||
@property
|
||||
def stats(self) -> Optional[CacheStats]:
|
||||
"""Return collected CacheStats object."""
|
||||
@@ -145,15 +160,6 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
total += cache_record.size
|
||||
return total
|
||||
|
||||
def exists(
|
||||
self,
|
||||
key: str,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> bool:
|
||||
"""Return true if the model identified by key and submodel_type is in the cache."""
|
||||
key = self._make_cache_key(key, submodel_type)
|
||||
return key in self._cached_models
|
||||
|
||||
def put(
|
||||
self,
|
||||
key: str,
|
||||
@@ -203,7 +209,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
# more stats
|
||||
if self.stats:
|
||||
stats_name = stats_name or key
|
||||
self.stats.cache_size = int(self._max_cache_size * GIG)
|
||||
self.stats.cache_size = int(self._max_cache_size * GB)
|
||||
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
|
||||
self.stats.in_cache = len(self._cached_models)
|
||||
self.stats.loaded_model_sizes[stats_name] = max(
|
||||
@@ -231,10 +237,13 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
return model_key
|
||||
|
||||
def offload_unlocked_models(self, size_required: int) -> None:
|
||||
"""Move any unused models from VRAM."""
|
||||
reserved = self._max_vram_cache_size * GIG
|
||||
"""Offload models from the execution_device to make room for size_required.
|
||||
|
||||
:param size_required: The amount of space to clear in the execution_device cache, in bytes.
|
||||
"""
|
||||
reserved = self._max_vram_cache_size * GB
|
||||
vram_in_use = torch.cuda.memory_allocated() + size_required
|
||||
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
|
||||
self.logger.debug(f"{(vram_in_use/GB):.2f}GB VRAM needed for models; max allowed={(reserved/GB):.2f}GB")
|
||||
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
|
||||
if vram_in_use <= reserved:
|
||||
break
|
||||
@@ -245,7 +254,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
cache_entry.loaded = False
|
||||
vram_in_use = torch.cuda.memory_allocated() + size_required
|
||||
self.logger.debug(
|
||||
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
|
||||
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GB):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GB):.2f}GB"
|
||||
)
|
||||
|
||||
TorchDevice.empty_cache()
|
||||
@@ -303,7 +312,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
self.logger.debug(
|
||||
f"Moved model '{cache_entry.key}' from {source_device} to"
|
||||
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
|
||||
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB."
|
||||
f"Estimated model size: {(cache_entry.size/GB):.3f} GB."
|
||||
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
||||
)
|
||||
|
||||
@@ -326,14 +335,14 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
f"Moving model '{cache_entry.key}' from {source_device} to"
|
||||
f" {target_device} caused an unexpected change in VRAM usage. The model's"
|
||||
" estimated size may be incorrect. Estimated model size:"
|
||||
f" {(cache_entry.size/GIG):.3f} GB.\n"
|
||||
f" {(cache_entry.size/GB):.3f} GB.\n"
|
||||
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
|
||||
)
|
||||
|
||||
def print_cuda_stats(self) -> None:
|
||||
"""Log CUDA diagnostics."""
|
||||
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
|
||||
ram = "%4.2fG" % (self.cache_size() / GIG)
|
||||
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GB)
|
||||
ram = "%4.2fG" % (self.cache_size() / GB)
|
||||
|
||||
in_ram_models = 0
|
||||
in_vram_models = 0
|
||||
@@ -353,17 +362,20 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
)
|
||||
|
||||
def make_room(self, size: int) -> None:
|
||||
"""Make enough room in the cache to accommodate a new model of indicated size."""
|
||||
# calculate how much memory this model will require
|
||||
# multiplier = 2 if self.precision==torch.float32 else 1
|
||||
"""Make enough room in the cache to accommodate a new model of indicated size.
|
||||
|
||||
Note: This function deletes all of the cache's internal references to a model in order to free it. If there are
|
||||
external references to the model, there's nothing that the cache can do about it, and those models will not be
|
||||
garbage-collected.
|
||||
"""
|
||||
bytes_needed = size
|
||||
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
||||
maximum_size = self.max_cache_size * GB # stored in GB, convert to bytes
|
||||
current_size = self.cache_size()
|
||||
|
||||
if current_size + bytes_needed > maximum_size:
|
||||
self.logger.debug(
|
||||
f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional"
|
||||
f" {(bytes_needed/GIG):.2f} GB"
|
||||
f"Max cache size exceeded: {(current_size/GB):.2f}/{self.max_cache_size:.2f} GB, need an additional"
|
||||
f" {(bytes_needed/GB):.2f} GB"
|
||||
)
|
||||
|
||||
self.logger.debug(f"Before making_room: cached_models={len(self._cached_models)}")
|
||||
@@ -380,7 +392,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
|
||||
if not cache_entry.locked:
|
||||
self.logger.debug(
|
||||
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
||||
f"Removing {model_key} from RAM cache to free at least {(size/GB):.2f} GB (-{(cache_entry.size/GB):.2f} GB)"
|
||||
)
|
||||
current_size -= cache_entry.size
|
||||
models_cleared += 1
|
||||
|
||||
239
invokeai/backend/model_manager/load/model_loaders/flux.py
Normal file
239
invokeai/backend/model_manager/load/model_loaders/flux.py
Normal file
@@ -0,0 +1,239 @@
|
||||
# Copyright (c) 2024, Brandon W. Rising and the InvokeAI Development Team
|
||||
"""Class for Flux model loading in InvokeAI."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.flux.util import ae_params, params
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.config import (
|
||||
CheckpointConfigBase,
|
||||
CLIPEmbedDiffusersConfig,
|
||||
MainBnbQuantized4bCheckpointConfig,
|
||||
MainCheckpointConfig,
|
||||
T5EncoderBnbQuantizedLlmInt8bConfig,
|
||||
T5EncoderConfig,
|
||||
VAECheckpointConfig,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.util.model_util import convert_bundle_to_flux_transformer_checkpoint
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
try:
|
||||
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
|
||||
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
||||
|
||||
bnb_available = True
|
||||
except ImportError:
|
||||
bnb_available = False
|
||||
|
||||
app_config = get_config()
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.VAE, format=ModelFormat.Checkpoint)
|
||||
class FluxVAELoader(ModelLoader):
|
||||
"""Class to load VAE models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, VAECheckpointConfig):
|
||||
raise ValueError("Only VAECheckpointConfig models are currently supported here.")
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
model = AutoEncoder(ae_params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
model.to(dtype=self._torch_dtype)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.CLIPEmbed, format=ModelFormat.Diffusers)
|
||||
class ClipCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, CLIPEmbedDiffusersConfig):
|
||||
raise ValueError("Only CLIPEmbedDiffusersConfig models are currently supported here.")
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Tokenizer:
|
||||
return CLIPTokenizer.from_pretrained(Path(config.path) / "tokenizer")
|
||||
case SubModelType.TextEncoder:
|
||||
return CLIPTextModel.from_pretrained(Path(config.path) / "text_encoder")
|
||||
|
||||
raise ValueError(
|
||||
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.BnbQuantizedLlmInt8b)
|
||||
class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, T5EncoderBnbQuantizedLlmInt8bConfig):
|
||||
raise ValueError("Only T5EncoderBnbQuantizedLlmInt8bConfig models are currently supported here.")
|
||||
if not bnb_available:
|
||||
raise ImportError(
|
||||
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
|
||||
)
|
||||
match submodel_type:
|
||||
case SubModelType.Tokenizer2:
|
||||
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
case SubModelType.TextEncoder2:
|
||||
te2_model_path = Path(config.path) / "text_encoder_2"
|
||||
model_config = AutoConfig.from_pretrained(te2_model_path)
|
||||
with accelerate.init_empty_weights():
|
||||
model = AutoModelForTextEncoding.from_config(model_config)
|
||||
model = quantize_model_llm_int8(model, modules_to_not_convert=set())
|
||||
|
||||
state_dict_path = te2_model_path / "bnb_llm_int8_model.safetensors"
|
||||
state_dict = load_file(state_dict_path)
|
||||
self._load_state_dict_into_t5(model, state_dict)
|
||||
|
||||
return model
|
||||
|
||||
raise ValueError(
|
||||
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _load_state_dict_into_t5(cls, model: T5EncoderModel, state_dict: dict[str, torch.Tensor]):
|
||||
# There is a shared reference to a single weight tensor in the model.
|
||||
# Both "encoder.embed_tokens.weight" and "shared.weight" refer to the same tensor, so only the latter should
|
||||
# be present in the state_dict.
|
||||
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False, assign=True)
|
||||
assert len(unexpected_keys) == 0
|
||||
assert set(missing_keys) == {"encoder.embed_tokens.weight"}
|
||||
# Assert that the layers we expect to be shared are actually shared.
|
||||
assert model.encoder.embed_tokens.weight is model.shared.weight
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.T5Encoder, format=ModelFormat.T5Encoder)
|
||||
class T5EncoderCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, T5EncoderConfig):
|
||||
raise ValueError("Only T5EncoderConfig models are currently supported here.")
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Tokenizer2:
|
||||
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
case SubModelType.TextEncoder2:
|
||||
return T5EncoderModel.from_pretrained(Path(config.path) / "text_encoder_2")
|
||||
|
||||
raise ValueError(
|
||||
f"Only Tokenizer and TextEncoder submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
class FluxCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, CheckpointConfigBase):
|
||||
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Transformer:
|
||||
return self._load_from_singlefile(config)
|
||||
|
||||
raise ValueError(
|
||||
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
def _load_from_singlefile(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
) -> AnyModel:
|
||||
assert isinstance(config, MainCheckpointConfig)
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
model = Flux(params[config.config_path])
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.Main, format=ModelFormat.BnbQuantizednf4b)
|
||||
class FluxBnbQuantizednf4bCheckpointModel(ModelLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if not isinstance(config, CheckpointConfigBase):
|
||||
raise ValueError("Only CheckpointConfigBase models are currently supported here.")
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Transformer:
|
||||
return self._load_from_singlefile(config)
|
||||
|
||||
raise ValueError(
|
||||
f"Only Transformer submodels are currently supported. Received: {submodel_type.value if submodel_type else 'None'}"
|
||||
)
|
||||
|
||||
def _load_from_singlefile(
|
||||
self,
|
||||
config: AnyModelConfig,
|
||||
) -> AnyModel:
|
||||
assert isinstance(config, MainBnbQuantized4bCheckpointConfig)
|
||||
if not bnb_available:
|
||||
raise ImportError(
|
||||
"The bnb modules are not available. Please install bitsandbytes if available on your platform."
|
||||
)
|
||||
model_path = Path(config.path)
|
||||
|
||||
with SilenceWarnings():
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(params[config.config_path])
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
|
||||
sd = load_file(model_path)
|
||||
if "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in sd:
|
||||
sd = convert_bundle_to_flux_transformer_checkpoint(sd)
|
||||
model.load_state_dict(sd, assign=True)
|
||||
return model
|
||||
@@ -78,7 +78,12 @@ class GenericDiffusersLoader(ModelLoader):
|
||||
|
||||
# TO DO: Add exception handling
|
||||
def _hf_definition_to_type(self, module: str, class_name: str) -> ModelMixin: # fix with correct type
|
||||
if module in ["diffusers", "transformers"]:
|
||||
if module in [
|
||||
"diffusers",
|
||||
"transformers",
|
||||
"invokeai.backend.quantization.fast_quantized_transformers_model",
|
||||
"invokeai.backend.quantization.fast_quantized_diffusion_model",
|
||||
]:
|
||||
res_type = sys.modules[module]
|
||||
else:
|
||||
res_type = sys.modules["diffusers"].pipelines
|
||||
|
||||
@@ -36,8 +36,18 @@ VARIANT_TO_IN_CHANNEL_MAP = {
|
||||
}
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Main, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(
|
||||
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Diffusers
|
||||
)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion1, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusion2, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.Main, format=ModelFormat.Checkpoint)
|
||||
@ModelLoaderRegistry.register(
|
||||
base=BaseModelType.StableDiffusionXLRefiner, type=ModelType.Main, format=ModelFormat.Checkpoint
|
||||
)
|
||||
class StableDiffusionDiffusersModel(GenericDiffusersLoader):
|
||||
"""Class to load main models."""
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ from typing import Optional
|
||||
import torch
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from transformers import CLIPTokenizer
|
||||
from transformers import CLIPTokenizer, T5Tokenizer, T5TokenizerFast
|
||||
|
||||
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
|
||||
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
||||
@@ -50,6 +50,17 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
|
||||
),
|
||||
):
|
||||
return model.calc_size()
|
||||
elif isinstance(
|
||||
model,
|
||||
(
|
||||
T5TokenizerFast,
|
||||
T5Tokenizer,
|
||||
),
|
||||
):
|
||||
# HACK(ryand): len(model) just returns the vocabulary size, so this is blatantly wrong. It should be small
|
||||
# relative to the text encoder that it's used with, so shouldn't matter too much, but we should fix this at some
|
||||
# point.
|
||||
return len(model)
|
||||
else:
|
||||
# TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the
|
||||
# supported model types.
|
||||
|
||||
@@ -95,6 +95,7 @@ class ModelProbe(object):
|
||||
}
|
||||
|
||||
CLASS2TYPE = {
|
||||
"FluxPipeline": ModelType.Main,
|
||||
"StableDiffusionPipeline": ModelType.Main,
|
||||
"StableDiffusionInpaintPipeline": ModelType.Main,
|
||||
"StableDiffusionXLPipeline": ModelType.Main,
|
||||
@@ -106,6 +107,9 @@ class ModelProbe(object):
|
||||
"ControlNetModel": ModelType.ControlNet,
|
||||
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
|
||||
"T2IAdapter": ModelType.T2IAdapter,
|
||||
"CLIPModel": ModelType.CLIPEmbed,
|
||||
"CLIPTextModel": ModelType.CLIPEmbed,
|
||||
"T5EncoderModel": ModelType.T5Encoder,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
@@ -161,7 +165,7 @@ class ModelProbe(object):
|
||||
fields["description"] = (
|
||||
fields.get("description") or f"{fields['base'].value} {model_type.value} model {fields['name']}"
|
||||
)
|
||||
fields["format"] = fields.get("format") or probe.get_format()
|
||||
fields["format"] = ModelFormat(fields.get("format")) if "format" in fields else probe.get_format()
|
||||
fields["hash"] = fields.get("hash") or ModelHash(algorithm=hash_algo).hash(model_path)
|
||||
|
||||
fields["default_settings"] = fields.get("default_settings")
|
||||
@@ -176,10 +180,10 @@ class ModelProbe(object):
|
||||
fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant()
|
||||
|
||||
# additional fields needed for main and controlnet models
|
||||
if (
|
||||
fields["type"] in [ModelType.Main, ModelType.ControlNet, ModelType.VAE]
|
||||
and fields["format"] is ModelFormat.Checkpoint
|
||||
):
|
||||
if fields["type"] in [ModelType.Main, ModelType.ControlNet, ModelType.VAE] and fields["format"] in [
|
||||
ModelFormat.Checkpoint,
|
||||
ModelFormat.BnbQuantizednf4b,
|
||||
]:
|
||||
ckpt_config_path = cls._get_checkpoint_config_path(
|
||||
model_path,
|
||||
model_type=fields["type"],
|
||||
@@ -222,7 +226,19 @@ class ModelProbe(object):
|
||||
ckpt = ckpt.get("state_dict", ckpt)
|
||||
|
||||
for key in [str(k) for k in ckpt.keys()]:
|
||||
if key.startswith(("cond_stage_model.", "first_stage_model.", "model.diffusion_model.")):
|
||||
if key.startswith(
|
||||
(
|
||||
"cond_stage_model.",
|
||||
"first_stage_model.",
|
||||
"model.diffusion_model.",
|
||||
# FLUX models in the official BFL format contain keys with the "double_blocks." prefix.
|
||||
"double_blocks.",
|
||||
# Some FLUX checkpoint files contain transformer keys prefixed with "model.diffusion_model".
|
||||
# This prefix is typically used to distinguish between multiple models bundled in a single file.
|
||||
"model.diffusion_model.double_blocks.",
|
||||
)
|
||||
):
|
||||
# Keys starting with double_blocks are associated with Flux models
|
||||
return ModelType.Main
|
||||
elif key.startswith(("encoder.conv_in", "decoder.conv_in")):
|
||||
return ModelType.VAE
|
||||
@@ -280,9 +296,16 @@ class ModelProbe(object):
|
||||
if (folder_path / "image_encoder.txt").exists():
|
||||
return ModelType.IPAdapter
|
||||
|
||||
i = folder_path / "model_index.json"
|
||||
c = folder_path / "config.json"
|
||||
config_path = i if i.exists() else c if c.exists() else None
|
||||
config_path = None
|
||||
for p in [
|
||||
folder_path / "model_index.json", # pipeline
|
||||
folder_path / "config.json", # most diffusers
|
||||
folder_path / "text_encoder_2" / "config.json", # T5 text encoder
|
||||
folder_path / "text_encoder" / "config.json", # T5 CLIP
|
||||
]:
|
||||
if p.exists():
|
||||
config_path = p
|
||||
break
|
||||
|
||||
if config_path:
|
||||
with open(config_path, "r") as file:
|
||||
@@ -321,10 +344,30 @@ class ModelProbe(object):
|
||||
return possible_conf.absolute()
|
||||
|
||||
if model_type is ModelType.Main:
|
||||
config_file = LEGACY_CONFIGS[base_type][variant_type]
|
||||
if isinstance(config_file, dict): # need another tier for sd-2.x models
|
||||
config_file = config_file[prediction_type]
|
||||
config_file = f"stable-diffusion/{config_file}"
|
||||
if base_type == BaseModelType.Flux:
|
||||
# TODO: Decide between dev/schnell
|
||||
checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
|
||||
state_dict = checkpoint.get("state_dict") or checkpoint
|
||||
if (
|
||||
"guidance_in.out_layer.weight" in state_dict
|
||||
or "model.diffusion_model.guidance_in.out_layer.weight" in state_dict
|
||||
):
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
config_file = "flux-dev"
|
||||
else:
|
||||
# For flux, this is a key in invokeai.backend.flux.util.params
|
||||
# Due to model type and format being the discriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
config_file = "flux-schnell"
|
||||
else:
|
||||
config_file = LEGACY_CONFIGS[base_type][variant_type]
|
||||
if isinstance(config_file, dict): # need another tier for sd-2.x models
|
||||
config_file = config_file[prediction_type]
|
||||
config_file = f"stable-diffusion/{config_file}"
|
||||
elif model_type is ModelType.ControlNet:
|
||||
config_file = (
|
||||
"controlnet/cldm_v15.yaml"
|
||||
@@ -333,7 +376,13 @@ class ModelProbe(object):
|
||||
)
|
||||
elif model_type is ModelType.VAE:
|
||||
config_file = (
|
||||
"stable-diffusion/v1-inference.yaml"
|
||||
# For flux, this is a key in invokeai.backend.flux.util.ae_params
|
||||
# Due to model type and format being the descriminator for model configs this
|
||||
# is used rather than attempting to support flux with separate model types and format
|
||||
# If changed in the future, please fix me
|
||||
"flux"
|
||||
if base_type is BaseModelType.Flux
|
||||
else "stable-diffusion/v1-inference.yaml"
|
||||
if base_type is BaseModelType.StableDiffusion1
|
||||
else "stable-diffusion/sd_xl_base.yaml"
|
||||
if base_type is BaseModelType.StableDiffusionXL
|
||||
@@ -416,11 +465,18 @@ class CheckpointProbeBase(ProbeBase):
|
||||
self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
|
||||
if (
|
||||
"double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.proj.weight.quant_state.bitsandbytes__nf4" in state_dict
|
||||
):
|
||||
return ModelFormat.BnbQuantizednf4b
|
||||
return ModelFormat("checkpoint")
|
||||
|
||||
def get_variant_type(self) -> ModelVariantType:
|
||||
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
|
||||
if model_type != ModelType.Main:
|
||||
base_type = self.get_base_type()
|
||||
if model_type != ModelType.Main or base_type == BaseModelType.Flux:
|
||||
return ModelVariantType.Normal
|
||||
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
|
||||
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||
@@ -440,6 +496,11 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
state_dict = self.checkpoint.get("state_dict") or checkpoint
|
||||
if (
|
||||
"double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
or "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale" in state_dict
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
@@ -482,6 +543,7 @@ class VaeCheckpointProbe(CheckpointProbeBase):
|
||||
(r"xl", BaseModelType.StableDiffusionXL),
|
||||
(r"sd2", BaseModelType.StableDiffusion2),
|
||||
(r"vae", BaseModelType.StableDiffusion1),
|
||||
(r"FLUX.1-schnell_ae", BaseModelType.Flux),
|
||||
]:
|
||||
if re.search(regexp, self.model_path.name, re.IGNORECASE):
|
||||
return basetype
|
||||
@@ -713,6 +775,30 @@ class TextualInversionFolderProbe(FolderProbeBase):
|
||||
return TextualInversionCheckpointProbe(path).get_base_type()
|
||||
|
||||
|
||||
class T5EncoderFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
return BaseModelType.Any
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
path = self.model_path / "text_encoder_2"
|
||||
if (path / "model.safetensors.index.json").exists():
|
||||
return ModelFormat.T5Encoder
|
||||
files = list(path.glob("*.safetensors"))
|
||||
if len(files) == 0:
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: no .safetensors files found")
|
||||
|
||||
# shortcut: look for the quantization in the name
|
||||
if any(x for x in files if "llm_int8" in x.as_posix()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
# more reliable path: probe contents for a 'SCB' key
|
||||
ckpt = read_checkpoint_meta(files[0], scan=True)
|
||||
if any("SCB" in x for x in ckpt.keys()):
|
||||
return ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
raise InvalidModelConfigException(f"{self.model_path.as_posix()}: unknown model format")
|
||||
|
||||
|
||||
class ONNXFolderProbe(PipelineFolderProbe):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
# Due to the way the installer is set up, the configuration file for safetensors
|
||||
@@ -805,6 +891,11 @@ class CLIPVisionFolderProbe(FolderProbeBase):
|
||||
return BaseModelType.Any
|
||||
|
||||
|
||||
class CLIPEmbedFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
return BaseModelType.Any
|
||||
|
||||
|
||||
class SpandrelImageToImageFolderProbe(FolderProbeBase):
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
raise NotImplementedError()
|
||||
@@ -835,8 +926,10 @@ ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.VAE, VaeFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.LoRA, LoRAFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.T5Encoder, T5EncoderFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.CLIPEmbed, CLIPEmbedFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
|
||||
ModelProbe.register_probe("diffusers", ModelType.SpandrelImageToImage, SpandrelImageToImageFolderProbe)
|
||||
|
||||
@@ -2,7 +2,7 @@ from typing import Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from invokeai.backend.model_manager.config import BaseModelType, ModelType
|
||||
from invokeai.backend.model_manager.config import BaseModelType, ModelFormat, ModelType
|
||||
|
||||
|
||||
class StarterModelWithoutDependencies(BaseModel):
|
||||
@@ -11,6 +11,7 @@ class StarterModelWithoutDependencies(BaseModel):
|
||||
name: str
|
||||
base: BaseModelType
|
||||
type: ModelType
|
||||
format: Optional[ModelFormat] = None
|
||||
is_installed: bool = False
|
||||
|
||||
|
||||
@@ -51,10 +52,76 @@ cyberrealistic_negative = StarterModel(
|
||||
type=ModelType.TextualInversion,
|
||||
)
|
||||
|
||||
t5_base_encoder = StarterModel(
|
||||
name="t5_base_encoder",
|
||||
base=BaseModelType.Any,
|
||||
source="InvokeAI/t5-v1_1-xxl::bfloat16",
|
||||
description="T5-XXL text encoder (used in FLUX pipelines). ~8GB",
|
||||
type=ModelType.T5Encoder,
|
||||
)
|
||||
|
||||
t5_8b_quantized_encoder = StarterModel(
|
||||
name="t5_bnb_int8_quantized_encoder",
|
||||
base=BaseModelType.Any,
|
||||
source="InvokeAI/t5-v1_1-xxl::bnb_llm_int8",
|
||||
description="T5-XXL text encoder with bitsandbytes LLM.int8() quantization (used in FLUX pipelines). ~5GB",
|
||||
type=ModelType.T5Encoder,
|
||||
format=ModelFormat.BnbQuantizedLlmInt8b,
|
||||
)
|
||||
|
||||
clip_l_encoder = StarterModel(
|
||||
name="clip-vit-large-patch14",
|
||||
base=BaseModelType.Any,
|
||||
source="InvokeAI/clip-vit-large-patch14-text-encoder::bfloat16",
|
||||
description="CLIP-L text encoder (used in FLUX pipelines). ~250MB",
|
||||
type=ModelType.CLIPEmbed,
|
||||
)
|
||||
|
||||
flux_vae = StarterModel(
|
||||
name="FLUX.1-schnell_ae",
|
||||
base=BaseModelType.Flux,
|
||||
source="black-forest-labs/FLUX.1-schnell::ae.safetensors",
|
||||
description="FLUX VAE compatible with both schnell and dev variants.",
|
||||
type=ModelType.VAE,
|
||||
)
|
||||
|
||||
|
||||
# List of starter models, displayed on the frontend.
|
||||
# The order/sort of this list is not changed by the frontend - set it how you want it here.
|
||||
STARTER_MODELS: list[StarterModel] = [
|
||||
# region: Main
|
||||
StarterModel(
|
||||
name="FLUX Schnell (Quantized)",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_schnell::transformer/bnb_nf4/flux1-schnell-bnb_nf4.safetensors",
|
||||
description="FLUX schnell transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
|
||||
),
|
||||
StarterModel(
|
||||
name="FLUX Dev (Quantized)",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_dev::transformer/bnb_nf4/flux1-dev-bnb_nf4.safetensors",
|
||||
description="FLUX dev transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
|
||||
),
|
||||
StarterModel(
|
||||
name="FLUX Schnell",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_schnell::transformer/base/flux1-schnell.safetensors",
|
||||
description="FLUX schnell transformer in bfloat16. Total size with dependencies: ~33GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
|
||||
),
|
||||
StarterModel(
|
||||
name="FLUX Dev",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_dev::transformer/base/flux1-dev.safetensors",
|
||||
description="FLUX dev transformer in bfloat16. Total size with dependencies: ~33GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
|
||||
),
|
||||
StarterModel(
|
||||
name="CyberRealistic v4.1",
|
||||
base=BaseModelType.StableDiffusion1,
|
||||
@@ -125,6 +192,7 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
# endregion
|
||||
# region VAE
|
||||
sdxl_fp16_vae_fix,
|
||||
flux_vae,
|
||||
# endregion
|
||||
# region LoRA
|
||||
StarterModel(
|
||||
@@ -450,6 +518,11 @@ STARTER_MODELS: list[StarterModel] = [
|
||||
type=ModelType.SpandrelImageToImage,
|
||||
),
|
||||
# endregion
|
||||
# region TextEncoders
|
||||
t5_base_encoder,
|
||||
t5_8b_quantized_encoder,
|
||||
clip_l_encoder,
|
||||
# endregion
|
||||
]
|
||||
|
||||
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"
|
||||
|
||||
@@ -133,3 +133,29 @@ def lora_token_vector_length(checkpoint: Dict[str, torch.Tensor]) -> Optional[in
|
||||
break
|
||||
|
||||
return lora_token_vector_length
|
||||
|
||||
|
||||
def convert_bundle_to_flux_transformer_checkpoint(
|
||||
transformer_state_dict: dict[str, torch.Tensor],
|
||||
) -> dict[str, torch.Tensor]:
|
||||
original_state_dict: dict[str, torch.Tensor] = {}
|
||||
keys_to_remove: list[str] = []
|
||||
|
||||
for k, v in transformer_state_dict.items():
|
||||
if not k.startswith("model.diffusion_model"):
|
||||
keys_to_remove.append(k) # This can be removed in the future if we only want to delete transformer keys
|
||||
continue
|
||||
if k.endswith("scale"):
|
||||
# Scale math must be done at bfloat16 due to our current flux model
|
||||
# support limitations at inference time
|
||||
v = v.to(dtype=torch.bfloat16)
|
||||
new_key = k.replace("model.diffusion_model.", "")
|
||||
original_state_dict[new_key] = v
|
||||
keys_to_remove.append(k)
|
||||
|
||||
# Remove processed keys from the original dictionary, leaving others in case
|
||||
# other model state dicts need to be pulled
|
||||
for k in keys_to_remove:
|
||||
del transformer_state_dict[k]
|
||||
|
||||
return original_state_dict
|
||||
|
||||
@@ -54,6 +54,7 @@ def filter_files(
|
||||
"lora_weights.safetensors",
|
||||
"weights.pb",
|
||||
"onnx_data",
|
||||
"spiece.model", # Added for `black-forest-labs/FLUX.1-schnell`.
|
||||
)
|
||||
):
|
||||
paths.append(file)
|
||||
@@ -62,13 +63,13 @@ def filter_files(
|
||||
# downloading random checkpoints that might also be in the repo. However there is no guarantee
|
||||
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
|
||||
# will adhere to this naming convention, so this is an area to be careful of.
|
||||
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
|
||||
elif re.search(r"model.*\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
|
||||
paths.append(file)
|
||||
|
||||
# limit search to subfolder if requested
|
||||
if subfolder:
|
||||
subfolder = root / subfolder
|
||||
paths = [x for x in paths if x.parent == Path(subfolder)]
|
||||
paths = [x for x in paths if Path(subfolder) in x.parents]
|
||||
|
||||
# _filter_by_variant uniquifies the paths and returns a set
|
||||
return sorted(_filter_by_variant(paths, variant))
|
||||
@@ -97,7 +98,9 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
|
||||
if variant == ModelRepoVariant.Flax:
|
||||
result.add(path)
|
||||
|
||||
elif path.suffix in [".json", ".txt"]:
|
||||
# Note: '.model' was added to support:
|
||||
# https://huggingface.co/black-forest-labs/FLUX.1-schnell/blob/768d12a373ed5cc9ef9a9dea7504dc09fcc14842/tokenizer_2/spiece.model
|
||||
elif path.suffix in [".json", ".txt", ".model"]:
|
||||
result.add(path)
|
||||
|
||||
elif variant in [
|
||||
@@ -140,6 +143,23 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
|
||||
continue
|
||||
|
||||
for candidate_list in subfolder_weights.values():
|
||||
# Check if at least one of the files has the explicit fp16 variant.
|
||||
at_least_one_fp16 = False
|
||||
for candidate in candidate_list:
|
||||
if len(candidate.path.suffixes) == 2 and candidate.path.suffixes[0] == ".fp16":
|
||||
at_least_one_fp16 = True
|
||||
break
|
||||
|
||||
if not at_least_one_fp16:
|
||||
# If none of the candidates in this candidate_list have the explicit fp16 variant label, then this
|
||||
# candidate_list probably doesn't adhere to the variant naming convention that we expected. In this case,
|
||||
# we'll simply keep all the candidates. An example of a model that hits this case is
|
||||
# `black-forest-labs/FLUX.1-schnell` (as of commit 012d2fd).
|
||||
for candidate in candidate_list:
|
||||
result.add(candidate.path)
|
||||
|
||||
# The candidate_list seems to have the expected variant naming convention. We'll select the highest scoring
|
||||
# candidate.
|
||||
highest_score_candidate = max(candidate_list, key=lambda candidate: candidate.score)
|
||||
if highest_score_candidate:
|
||||
result.add(highest_score_candidate.path)
|
||||
|
||||
0
invokeai/backend/quantization/__init__.py
Normal file
0
invokeai/backend/quantization/__init__.py
Normal file
135
invokeai/backend/quantization/bnb_llm_int8.py
Normal file
135
invokeai/backend/quantization/bnb_llm_int8.py
Normal file
@@ -0,0 +1,135 @@
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
|
||||
# This file contains utils for working with models that use bitsandbytes LLM.int8() quantization.
|
||||
# The utils in this file are partially inspired by:
|
||||
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
||||
|
||||
|
||||
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
|
||||
# cleaner by re-implementing bnb.nn.Linear8bitLt with proper use of buffers and less magic. But, for now, we try to
|
||||
# stick close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
|
||||
|
||||
|
||||
class InvokeInt8Params(bnb.nn.Int8Params):
|
||||
"""We override cuda() to avoid re-quantizing the weights in the following cases:
|
||||
- We loaded quantized weights from a state_dict on the cpu, and then moved the model to the gpu.
|
||||
- We are moving the model back-and-forth between the cpu and gpu.
|
||||
"""
|
||||
|
||||
def cuda(self, device):
|
||||
if self.has_fp16_weights:
|
||||
return super().cuda(device)
|
||||
elif self.CB is not None and self.SCB is not None:
|
||||
self.data = self.data.cuda()
|
||||
self.CB = self.data
|
||||
self.SCB = self.SCB.cuda()
|
||||
else:
|
||||
# we store the 8-bit rows-major weight
|
||||
# we convert this weight to the turning/ampere weight during the first inference pass
|
||||
B = self.data.contiguous().half().cuda(device)
|
||||
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
|
||||
del CBt
|
||||
del SCBt
|
||||
self.data = CB
|
||||
self.CB = CB
|
||||
self.SCB = SCB
|
||||
|
||||
return self
|
||||
|
||||
|
||||
class InvokeLinear8bitLt(bnb.nn.Linear8bitLt):
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
prefix: str,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
weight = state_dict.pop(prefix + "weight")
|
||||
bias = state_dict.pop(prefix + "bias", None)
|
||||
|
||||
# See `bnb.nn.Linear8bitLt._save_to_state_dict()` for the serialization logic of SCB and weight_format.
|
||||
scb = state_dict.pop(prefix + "SCB", None)
|
||||
|
||||
# Currently, we only support weight_format=0.
|
||||
weight_format = state_dict.pop(prefix + "weight_format", None)
|
||||
assert weight_format == 0
|
||||
|
||||
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
||||
# rather than raising an exception to correctly implement this API.
|
||||
assert len(state_dict) == 0
|
||||
|
||||
if scb is not None:
|
||||
# We are loading a pre-quantized state dict.
|
||||
self.weight = InvokeInt8Params(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
has_fp16_weights=False,
|
||||
# Note: After quantization, CB is the same as weight.
|
||||
CB=weight,
|
||||
SCB=scb,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
else:
|
||||
# We are loading a non-quantized state dict.
|
||||
|
||||
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
|
||||
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
|
||||
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
|
||||
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
|
||||
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
|
||||
self.weight = InvokeInt8Params(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
has_fp16_weights=False,
|
||||
CB=None,
|
||||
SCB=None,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
|
||||
# Reset the state. The persisted fields are based on the initialization behaviour in
|
||||
# `bnb.nn.Linear8bitLt.__init__()`.
|
||||
new_state = bnb.MatmulLtState()
|
||||
new_state.threshold = self.state.threshold
|
||||
new_state.has_fp16_weights = False
|
||||
new_state.use_pool = self.state.use_pool
|
||||
self.state = new_state
|
||||
|
||||
|
||||
def _convert_linear_layers_to_llm_8bit(
|
||||
module: torch.nn.Module, ignore_modules: set[str], outlier_threshold: float, prefix: str = ""
|
||||
) -> None:
|
||||
"""Convert all linear layers in the module to bnb.nn.Linear8bitLt layers."""
|
||||
for name, child in module.named_children():
|
||||
fullname = f"{prefix}.{name}" if prefix else name
|
||||
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
||||
has_bias = child.bias is not None
|
||||
replacement = InvokeLinear8bitLt(
|
||||
child.in_features,
|
||||
child.out_features,
|
||||
bias=has_bias,
|
||||
has_fp16_weights=False,
|
||||
threshold=outlier_threshold,
|
||||
)
|
||||
replacement.weight.data = child.weight.data
|
||||
if has_bias:
|
||||
replacement.bias.data = child.bias.data
|
||||
replacement.requires_grad_(False)
|
||||
module.__setattr__(name, replacement)
|
||||
else:
|
||||
_convert_linear_layers_to_llm_8bit(
|
||||
child, ignore_modules, outlier_threshold=outlier_threshold, prefix=fullname
|
||||
)
|
||||
|
||||
|
||||
def quantize_model_llm_int8(model: torch.nn.Module, modules_to_not_convert: set[str], outlier_threshold: float = 6.0):
|
||||
"""Apply bitsandbytes LLM.8bit() quantization to the model."""
|
||||
_convert_linear_layers_to_llm_8bit(
|
||||
module=model, ignore_modules=modules_to_not_convert, outlier_threshold=outlier_threshold
|
||||
)
|
||||
|
||||
return model
|
||||
156
invokeai/backend/quantization/bnb_nf4.py
Normal file
156
invokeai/backend/quantization/bnb_nf4.py
Normal file
@@ -0,0 +1,156 @@
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
|
||||
# This file contains utils for working with models that use bitsandbytes NF4 quantization.
|
||||
# The utils in this file are partially inspired by:
|
||||
# https://github.com/Lightning-AI/pytorch-lightning/blob/1551a16b94f5234a4a78801098f64d0732ef5cb5/src/lightning/fabric/plugins/precision/bitsandbytes.py
|
||||
|
||||
# NOTE(ryand): All of the custom state_dict manipulation logic in this file is pretty hacky. This could be made much
|
||||
# cleaner by re-implementing bnb.nn.LinearNF4 with proper use of buffers and less magic. But, for now, we try to stick
|
||||
# close to the bitsandbytes classes to make interoperability easier with other models that might use bitsandbytes.
|
||||
|
||||
|
||||
class InvokeLinearNF4(bnb.nn.LinearNF4):
|
||||
"""A class that extends `bnb.nn.LinearNF4` to add the following functionality:
|
||||
- Ability to load Linear NF4 layers from a pre-quantized state_dict.
|
||||
- Ability to load Linear NF4 layers from a state_dict when the model is on the "meta" device.
|
||||
"""
|
||||
|
||||
def _load_from_state_dict(
|
||||
self,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
prefix: str,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
"""This method is based on the logic in the bitsandbytes serialization unit tests for `Linear4bit`:
|
||||
https://github.com/bitsandbytes-foundation/bitsandbytes/blob/6d714a5cce3db5bd7f577bc447becc7a92d5ccc7/tests/test_linear4bit.py#L52-L71
|
||||
"""
|
||||
weight = state_dict.pop(prefix + "weight")
|
||||
bias = state_dict.pop(prefix + "bias", None)
|
||||
# We expect the remaining keys to be quant_state keys.
|
||||
quant_state_sd = state_dict
|
||||
|
||||
# During serialization, the quant_state is stored as subkeys of "weight." (See
|
||||
# `bnb.nn.LinearNF4._save_to_state_dict()`). We validate that they at least have the correct prefix.
|
||||
# TODO(ryand): Technically, we should be using `strict`, `missing_keys`, `unexpected_keys`, and `error_msgs`
|
||||
# rather than raising an exception to correctly implement this API.
|
||||
assert all(k.startswith(prefix + "weight.") for k in quant_state_sd.keys())
|
||||
|
||||
if len(quant_state_sd) > 0:
|
||||
# We are loading a pre-quantized state dict.
|
||||
self.weight = bnb.nn.Params4bit.from_prequantized(
|
||||
data=weight, quantized_stats=quant_state_sd, device=weight.device
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias, requires_grad=False)
|
||||
else:
|
||||
# We are loading a non-quantized state dict.
|
||||
|
||||
# We could simply call the `super()._load_from_state_dict()` method here, but then we wouldn't be able to
|
||||
# load from a state_dict into a model on the "meta" device. Attempting to load into a model on the "meta"
|
||||
# device requires setting `assign=True`, doing this with the default `super()._load_from_state_dict()`
|
||||
# implementation causes `Params4Bit` to be replaced by a `torch.nn.Parameter`. By initializing a new
|
||||
# `Params4bit` object, we work around this issue. It's a bit hacky, but it gets the job done.
|
||||
self.weight = bnb.nn.Params4bit(
|
||||
data=weight,
|
||||
requires_grad=self.weight.requires_grad,
|
||||
compress_statistics=self.weight.compress_statistics,
|
||||
quant_type=self.weight.quant_type,
|
||||
quant_storage=self.weight.quant_storage,
|
||||
module=self,
|
||||
)
|
||||
self.bias = bias if bias is None else torch.nn.Parameter(bias)
|
||||
|
||||
|
||||
def _replace_param(
|
||||
param: torch.nn.Parameter | bnb.nn.Params4bit,
|
||||
data: torch.Tensor,
|
||||
) -> torch.nn.Parameter:
|
||||
"""A helper function to replace the data of a model parameter with new data in a way that allows replacing params on
|
||||
the "meta" device.
|
||||
|
||||
Supports both `torch.nn.Parameter` and `bnb.nn.Params4bit` parameters.
|
||||
"""
|
||||
if param.device.type == "meta":
|
||||
# Doing `param.data = data` raises a RuntimeError if param.data was on the "meta" device, so we need to
|
||||
# re-create the param instead of overwriting the data.
|
||||
if isinstance(param, bnb.nn.Params4bit):
|
||||
return bnb.nn.Params4bit(
|
||||
data,
|
||||
requires_grad=data.requires_grad,
|
||||
quant_state=param.quant_state,
|
||||
compress_statistics=param.compress_statistics,
|
||||
quant_type=param.quant_type,
|
||||
)
|
||||
return torch.nn.Parameter(data, requires_grad=data.requires_grad)
|
||||
|
||||
param.data = data
|
||||
return param
|
||||
|
||||
|
||||
def _convert_linear_layers_to_nf4(
|
||||
module: torch.nn.Module,
|
||||
ignore_modules: set[str],
|
||||
compute_dtype: torch.dtype,
|
||||
compress_statistics: bool = False,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
"""Convert all linear layers in the model to NF4 quantized linear layers.
|
||||
|
||||
Args:
|
||||
module: All linear layers in this module will be converted.
|
||||
ignore_modules: A set of module prefixes to ignore when converting linear layers.
|
||||
compute_dtype: The dtype to use for computation in the quantized linear layers.
|
||||
compress_statistics: Whether to enable nested quantization (aka double quantization) where the quantization
|
||||
constants from the first quantization are quantized again.
|
||||
prefix: The prefix of the current module in the model. Used to call this function recursively.
|
||||
"""
|
||||
for name, child in module.named_children():
|
||||
fullname = f"{prefix}.{name}" if prefix else name
|
||||
if isinstance(child, torch.nn.Linear) and not any(fullname.startswith(s) for s in ignore_modules):
|
||||
has_bias = child.bias is not None
|
||||
replacement = InvokeLinearNF4(
|
||||
child.in_features,
|
||||
child.out_features,
|
||||
bias=has_bias,
|
||||
compute_dtype=compute_dtype,
|
||||
compress_statistics=compress_statistics,
|
||||
)
|
||||
if has_bias:
|
||||
replacement.bias = _replace_param(replacement.bias, child.bias.data)
|
||||
replacement.weight = _replace_param(replacement.weight, child.weight.data)
|
||||
replacement.requires_grad_(False)
|
||||
module.__setattr__(name, replacement)
|
||||
else:
|
||||
_convert_linear_layers_to_nf4(child, ignore_modules, compute_dtype=compute_dtype, prefix=fullname)
|
||||
|
||||
|
||||
def quantize_model_nf4(model: torch.nn.Module, modules_to_not_convert: set[str], compute_dtype: torch.dtype):
|
||||
"""Apply bitsandbytes nf4 quantization to the model.
|
||||
|
||||
You likely want to call this function inside a `accelerate.init_empty_weights()` context.
|
||||
|
||||
Example usage:
|
||||
```
|
||||
# Initialize the model from a config on the meta device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = ModelClass.from_config(...)
|
||||
|
||||
# Add NF4 quantization linear layers to the model - still on the meta device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.float16)
|
||||
|
||||
# Load a state_dict into the model. (Could be either a prequantized or non-quantized state_dict.)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
# Move the model to the "cuda" device. If the model was non-quantized, this is where the weight quantization takes
|
||||
# place.
|
||||
model.to("cuda")
|
||||
```
|
||||
"""
|
||||
_convert_linear_layers_to_nf4(module=model, ignore_modules=modules_to_not_convert, compute_dtype=compute_dtype)
|
||||
|
||||
return model
|
||||
@@ -0,0 +1,79 @@
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.util import params
|
||||
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
|
||||
from invokeai.backend.quantization.scripts.load_flux_model_bnb_nf4 import log_time
|
||||
|
||||
|
||||
def main():
|
||||
"""A script for quantizing a FLUX transformer model using the bitsandbytes LLM.int8() quantization method.
|
||||
|
||||
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
|
||||
etc.) are hardcoded and would need to be modified for other use cases.
|
||||
"""
|
||||
# Load the FLUX transformer model onto the meta device.
|
||||
model_path = Path(
|
||||
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
|
||||
)
|
||||
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
p = params["flux-schnell"]
|
||||
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(p)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_int8_path = model_path.parent / "bnb_llm_int8.safetensors"
|
||||
if model_int8_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
|
||||
|
||||
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
sd = load_file(model_int8_path)
|
||||
model.load_state_dict(sd, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
|
||||
print(f"Successfully loaded pre-quantized model from '{model_int8_path}'.")
|
||||
|
||||
else:
|
||||
# The quantized model does not exist, quantize the model and save it.
|
||||
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
|
||||
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
state_dict = load_file(model_path)
|
||||
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_int8_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_file(model.state_dict(), model_int8_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{model_int8_path}'.")
|
||||
|
||||
assert isinstance(model, Flux)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,96 @@
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.util import params
|
||||
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
||||
|
||||
|
||||
@contextmanager
|
||||
def log_time(name: str):
|
||||
"""Helper context manager to log the time taken by a block of code."""
|
||||
start = time.time()
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
end = time.time()
|
||||
print(f"'{name}' took {end - start:.4f} secs")
|
||||
|
||||
|
||||
def main():
|
||||
"""A script for quantizing a FLUX transformer model using the bitsandbytes NF4 quantization method.
|
||||
|
||||
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
|
||||
etc.) are hardcoded and would need to be modified for other use cases.
|
||||
"""
|
||||
model_path = Path(
|
||||
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
|
||||
)
|
||||
|
||||
# inference_dtype = torch.bfloat16
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
p = params["flux-schnell"]
|
||||
|
||||
# Initialize the model on the "meta" device.
|
||||
with accelerate.init_empty_weights():
|
||||
model = Flux(p)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_nf4_path = model_path.parent / "bnb_nf4.safetensors"
|
||||
if model_nf4_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_nf4_path}'. Attempting to load it...")
|
||||
|
||||
# Replace the linear layers with NF4 quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
state_dict = load_file(model_nf4_path)
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
|
||||
print(f"Successfully loaded pre-quantized model from '{model_nf4_path}'.")
|
||||
|
||||
else:
|
||||
# The quantized model does not exist, quantize the model and save it.
|
||||
print(f"No pre-quantized model found at '{model_nf4_path}'. Quantizing the model...")
|
||||
|
||||
with log_time("Replace linear layers with NF4 layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_nf4(
|
||||
model, modules_to_not_convert=modules_to_not_convert, compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
state_dict = load_file(model_path)
|
||||
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
||||
model.load_state_dict(state_dict, strict=True, assign=True)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_nf4_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_file(model.state_dict(), model_nf4_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{model_nf4_path}'.")
|
||||
|
||||
assert isinstance(model, Flux)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,92 @@
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
from safetensors.torch import load_file, save_file
|
||||
from transformers import AutoConfig, AutoModelForTextEncoding, T5EncoderModel
|
||||
|
||||
from invokeai.backend.quantization.bnb_llm_int8 import quantize_model_llm_int8
|
||||
from invokeai.backend.quantization.scripts.load_flux_model_bnb_nf4 import log_time
|
||||
|
||||
|
||||
def load_state_dict_into_t5(model: T5EncoderModel, state_dict: dict):
|
||||
# There is a shared reference to a single weight tensor in the model.
|
||||
# Both "encoder.embed_tokens.weight" and "shared.weight" refer to the same tensor, so only the latter should
|
||||
# be present in the state_dict.
|
||||
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False, assign=True)
|
||||
assert len(unexpected_keys) == 0
|
||||
assert set(missing_keys) == {"encoder.embed_tokens.weight"}
|
||||
# Assert that the layers we expect to be shared are actually shared.
|
||||
assert model.encoder.embed_tokens.weight is model.shared.weight
|
||||
|
||||
|
||||
def main():
|
||||
"""A script for quantizing a T5 text encoder model using the bitsandbytes LLM.int8() quantization method.
|
||||
|
||||
This script is primarily intended for reference. The script params (e.g. the model_path, modules_to_not_convert,
|
||||
etc.) are hardcoded and would need to be modified for other use cases.
|
||||
"""
|
||||
model_path = Path("/data/misc/text_encoder_2")
|
||||
|
||||
with log_time("Intialize T5 on meta device"):
|
||||
model_config = AutoConfig.from_pretrained(model_path)
|
||||
with accelerate.init_empty_weights():
|
||||
model = AutoModelForTextEncoding.from_config(model_config)
|
||||
|
||||
# TODO(ryand): We may want to add some modules to not quantize here (e.g. the proj_out layer). See the accelerate
|
||||
# `get_keys_to_not_convert(...)` function for a heuristic to determine which modules to not quantize.
|
||||
modules_to_not_convert: set[str] = set()
|
||||
|
||||
model_int8_path = model_path / "bnb_llm_int8.safetensors"
|
||||
if model_int8_path.exists():
|
||||
# The quantized model already exists, load it and return it.
|
||||
print(f"A pre-quantized model already exists at '{model_int8_path}'. Attempting to load it...")
|
||||
|
||||
# Replace the linear layers with LLM.int8() quantized linear layers (still on the meta device).
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
sd = load_file(model_int8_path)
|
||||
load_state_dict_into_t5(model, sd)
|
||||
|
||||
with log_time("Move model to cuda"):
|
||||
model = model.to("cuda")
|
||||
|
||||
print(f"Successfully loaded pre-quantized model from '{model_int8_path}'.")
|
||||
|
||||
else:
|
||||
# The quantized model does not exist, quantize the model and save it.
|
||||
print(f"No pre-quantized model found at '{model_int8_path}'. Quantizing the model...")
|
||||
|
||||
with log_time("Replace linear layers with LLM.int8() layers"), accelerate.init_empty_weights():
|
||||
model = quantize_model_llm_int8(model, modules_to_not_convert=modules_to_not_convert)
|
||||
|
||||
with log_time("Load state dict into model"):
|
||||
# Load sharded state dict.
|
||||
files = list(model_path.glob("*.safetensors"))
|
||||
state_dict = {}
|
||||
for file in files:
|
||||
sd = load_file(file)
|
||||
state_dict.update(sd)
|
||||
load_state_dict_into_t5(model, state_dict)
|
||||
|
||||
with log_time("Move model to cuda and quantize"):
|
||||
model = model.to("cuda")
|
||||
|
||||
with log_time("Save quantized model"):
|
||||
model_int8_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
state_dict = model.state_dict()
|
||||
state_dict.pop("encoder.embed_tokens.weight")
|
||||
save_file(state_dict, model_int8_path)
|
||||
# This handling of shared weights could also be achieved with save_model(...), but then we'd lose control
|
||||
# over which keys are kept. And, the corresponding load_model(...) function does not support assign=True.
|
||||
# save_model(model, model_int8_path)
|
||||
|
||||
print(f"Successfully quantized and saved model to '{model_int8_path}'.")
|
||||
|
||||
assert isinstance(model, T5EncoderModel)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -25,11 +25,6 @@ class BasicConditioningInfo:
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
conditionings: List[BasicConditioningInfo]
|
||||
|
||||
|
||||
@dataclass
|
||||
class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
"""SDXL text conditioning information produced by Compel."""
|
||||
@@ -43,6 +38,22 @@ class SDXLConditioningInfo(BasicConditioningInfo):
|
||||
return super().to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FLUXConditioningInfo:
|
||||
clip_embeds: torch.Tensor
|
||||
t5_embeds: torch.Tensor
|
||||
|
||||
def to(self, device: torch.device | None = None, dtype: torch.dtype | None = None):
|
||||
self.clip_embeds = self.clip_embeds.to(device=device, dtype=dtype)
|
||||
self.t5_embeds = self.t5_embeds.to(device=device, dtype=dtype)
|
||||
return self
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningFieldData:
|
||||
conditionings: List[BasicConditioningInfo] | List[SDXLConditioningInfo] | List[FLUXConditioningInfo]
|
||||
|
||||
|
||||
@dataclass
|
||||
class IPAdapterConditioningInfo:
|
||||
cond_image_prompt_embeds: torch.Tensor
|
||||
|
||||
@@ -3,10 +3,9 @@ Initialization file for invokeai.backend.util
|
||||
"""
|
||||
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import GIG, Chdir, directory_size
|
||||
from invokeai.backend.util.util import Chdir, directory_size
|
||||
|
||||
__all__ = [
|
||||
"GIG",
|
||||
"directory_size",
|
||||
"Chdir",
|
||||
"InvokeAILogger",
|
||||
|
||||
@@ -7,9 +7,6 @@ from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
|
||||
|
||||
def slugify(value: str, allow_unicode: bool = False) -> str:
|
||||
"""
|
||||
|
||||
@@ -696,6 +696,8 @@
|
||||
"availableModels": "Available Models",
|
||||
"baseModel": "Base Model",
|
||||
"cancel": "Cancel",
|
||||
"clipEmbed": "CLIP Embed",
|
||||
"clipVision": "CLIP Vision",
|
||||
"config": "Config",
|
||||
"convert": "Convert",
|
||||
"convertingModelBegin": "Converting Model. Please wait.",
|
||||
@@ -783,13 +785,16 @@
|
||||
"settings": "Settings",
|
||||
"simpleModelPlaceholder": "URL or path to a local file or diffusers folder",
|
||||
"source": "Source",
|
||||
"spandrelImageToImage": "Image to Image (Spandrel)",
|
||||
"starterModels": "Starter Models",
|
||||
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
|
||||
"syncModels": "Sync Models",
|
||||
"textualInversions": "Textual Inversions",
|
||||
"triggerPhrases": "Trigger Phrases",
|
||||
"loraTriggerPhrases": "LoRA Trigger Phrases",
|
||||
"mainModelTriggerPhrases": "Main Model Trigger Phrases",
|
||||
"typePhraseHere": "Type phrase here",
|
||||
"t5Encoder": "T5 Encoder",
|
||||
"upcastAttention": "Upcast Attention",
|
||||
"uploadImage": "Upload Image",
|
||||
"urlOrLocalPath": "URL or Local Path",
|
||||
|
||||
@@ -14,6 +14,7 @@ import DeleteImageModal from 'features/deleteImageModal/components/DeleteImageMo
|
||||
import { DynamicPromptsModal } from 'features/dynamicPrompts/components/DynamicPromptsPreviewModal';
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { StylePresetModal } from 'features/stylePresets/components/StylePresetForm/StylePresetModal';
|
||||
import { activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { languageSelector } from 'features/system/store/systemSelectors';
|
||||
import InvokeTabs from 'features/ui/components/InvokeTabs';
|
||||
@@ -39,10 +40,17 @@ interface Props {
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: InvokeTabName | undefined;
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, destination }: Props) => {
|
||||
const App = ({
|
||||
config = DEFAULT_CONFIG,
|
||||
selectedImage,
|
||||
selectedWorkflowId,
|
||||
selectedStylePresetId,
|
||||
destination,
|
||||
}: Props) => {
|
||||
const language = useAppSelector(languageSelector);
|
||||
const logger = useLogger('system');
|
||||
const dispatch = useAppDispatch();
|
||||
@@ -81,6 +89,12 @@ const App = ({ config = DEFAULT_CONFIG, selectedImage, selectedWorkflowId, desti
|
||||
}
|
||||
}, [selectedWorkflowId, getAndLoadWorkflow]);
|
||||
|
||||
useEffect(() => {
|
||||
if (selectedStylePresetId) {
|
||||
dispatch(activeStylePresetIdChanged(selectedStylePresetId));
|
||||
}
|
||||
}, [dispatch, selectedStylePresetId]);
|
||||
|
||||
useEffect(() => {
|
||||
if (destination) {
|
||||
dispatch(setActiveTab(destination));
|
||||
|
||||
@@ -45,6 +45,7 @@ interface Props extends PropsWithChildren {
|
||||
action: 'sendToImg2Img' | 'sendToCanvas' | 'useAllParameters';
|
||||
};
|
||||
selectedWorkflowId?: string;
|
||||
selectedStylePresetId?: string;
|
||||
destination?: InvokeTabName;
|
||||
customStarUi?: CustomStarUi;
|
||||
socketOptions?: Partial<ManagerOptions & SocketOptions>;
|
||||
@@ -66,6 +67,7 @@ const InvokeAIUI = ({
|
||||
queueId,
|
||||
selectedImage,
|
||||
selectedWorkflowId,
|
||||
selectedStylePresetId,
|
||||
destination,
|
||||
customStarUi,
|
||||
socketOptions,
|
||||
@@ -227,6 +229,7 @@ const InvokeAIUI = ({
|
||||
config={config}
|
||||
selectedImage={selectedImage}
|
||||
selectedWorkflowId={selectedWorkflowId}
|
||||
selectedStylePresetId={selectedStylePresetId}
|
||||
destination={destination}
|
||||
/>
|
||||
</AppDndContext>
|
||||
|
||||
@@ -5,17 +5,33 @@ import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
import type { GetStarterModelsResponse } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
|
||||
type Props = {
|
||||
result: GetStarterModelsResponse[number];
|
||||
modelList: AnyModelConfig[];
|
||||
};
|
||||
export const StarterModelsResultItem = memo(({ result }: Props) => {
|
||||
export const StarterModelsResultItem = memo(({ result, modelList }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const allSources = useMemo(() => {
|
||||
const _allSources = [{ source: result.source, config: { name: result.name, description: result.description } }];
|
||||
const _allSources = [
|
||||
{
|
||||
source: result.source,
|
||||
config: {
|
||||
name: result.name,
|
||||
description: result.description,
|
||||
type: result.type,
|
||||
base: result.base,
|
||||
format: result.format,
|
||||
},
|
||||
},
|
||||
];
|
||||
if (result.dependencies) {
|
||||
for (const d of result.dependencies) {
|
||||
_allSources.push({ source: d.source, config: { name: d.name, description: d.description } });
|
||||
_allSources.push({
|
||||
source: d.source,
|
||||
config: { name: d.name, description: d.description, type: d.type, base: d.base, format: d.format },
|
||||
});
|
||||
}
|
||||
}
|
||||
return _allSources;
|
||||
@@ -24,9 +40,12 @@ export const StarterModelsResultItem = memo(({ result }: Props) => {
|
||||
|
||||
const onClick = useCallback(() => {
|
||||
for (const { config, source } of allSources) {
|
||||
if (modelList.some((mc) => config.base === mc.base && config.name === mc.name && config.type === mc.type)) {
|
||||
continue;
|
||||
}
|
||||
installModel({ config, source });
|
||||
}
|
||||
}, [allSources, installModel]);
|
||||
}, [modelList, allSources, installModel]);
|
||||
|
||||
return (
|
||||
<Flex alignItems="center" justifyContent="space-between" w="100%" gap={3}>
|
||||
|
||||
@@ -1,17 +1,31 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { EMPTY_ARRAY } from 'app/store/constants';
|
||||
import { FetchingModelsLoader } from 'features/modelManagerV2/subpanels/ModelManagerPanel/FetchingModelsLoader';
|
||||
import { memo } from 'react';
|
||||
import { useGetStarterModelsQuery } from 'services/api/endpoints/models';
|
||||
import { memo, useMemo } from 'react';
|
||||
import {
|
||||
modelConfigsAdapterSelectors,
|
||||
useGetModelConfigsQuery,
|
||||
useGetStarterModelsQuery,
|
||||
} from 'services/api/endpoints/models';
|
||||
|
||||
import { StarterModelsResults } from './StarterModelsResults';
|
||||
|
||||
export const StarterModelsForm = memo(() => {
|
||||
const { isLoading, data } = useGetStarterModelsQuery();
|
||||
const { data: modelListRes } = useGetModelConfigsQuery();
|
||||
|
||||
const modelList = useMemo(() => {
|
||||
if (!modelListRes) {
|
||||
return EMPTY_ARRAY;
|
||||
}
|
||||
|
||||
return modelConfigsAdapterSelectors.selectAll(modelListRes);
|
||||
}, [modelListRes]);
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" height="100%" gap={3}>
|
||||
{isLoading && <FetchingModelsLoader loadingMessage="Loading Embeddings..." />}
|
||||
{data && <StarterModelsResults results={data} />}
|
||||
{data && <StarterModelsResults results={data} modelList={modelList} />}
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
@@ -5,14 +5,16 @@ import { memo, useCallback, useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiXBold } from 'react-icons/pi';
|
||||
import type { GetStarterModelsResponse } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
|
||||
import { StarterModelsResultItem } from './StartModelsResultItem';
|
||||
|
||||
type StarterModelsResultsProps = {
|
||||
results: NonNullable<GetStarterModelsResponse>;
|
||||
modelList: AnyModelConfig[];
|
||||
};
|
||||
|
||||
export const StarterModelsResults = memo(({ results }: StarterModelsResultsProps) => {
|
||||
export const StarterModelsResults = memo(({ results, modelList }: StarterModelsResultsProps) => {
|
||||
const { t } = useTranslation();
|
||||
const [searchTerm, setSearchTerm] = useState('');
|
||||
|
||||
@@ -72,7 +74,7 @@ export const StarterModelsResults = memo(({ results }: StarterModelsResultsProps
|
||||
<ScrollableContent>
|
||||
<Flex flexDir="column" gap={3}>
|
||||
{filteredResults.map((result) => (
|
||||
<StarterModelsResultItem key={result.source} result={result} />
|
||||
<StarterModelsResultItem key={result.source} result={result} modelList={modelList} />
|
||||
))}
|
||||
</Flex>
|
||||
</ScrollableContent>
|
||||
|
||||
@@ -13,6 +13,7 @@ const BASE_COLOR_MAP: Record<BaseModelType, string> = {
|
||||
'sd-2': 'teal',
|
||||
sdxl: 'invokeBlue',
|
||||
'sdxl-refiner': 'invokeBlue',
|
||||
flux: 'gold',
|
||||
};
|
||||
|
||||
const ModelBaseBadge = ({ base }: Props) => {
|
||||
|
||||
@@ -13,6 +13,9 @@ const FORMAT_NAME_MAP: Record<AnyModelConfig['format'], string> = {
|
||||
invokeai: 'internal',
|
||||
embedding_file: 'embedding',
|
||||
embedding_folder: 'embedding',
|
||||
t5_encoder: 't5_encoder',
|
||||
bnb_quantized_int8b: 'bnb_quantized_int8b',
|
||||
bnb_quantized_nf4b: 'quantized',
|
||||
};
|
||||
|
||||
const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
|
||||
@@ -22,6 +25,9 @@ const FORMAT_COLOR_MAP: Record<AnyModelConfig['format'], string> = {
|
||||
invokeai: 'base',
|
||||
embedding_file: 'base',
|
||||
embedding_folder: 'base',
|
||||
t5_encoder: 'base',
|
||||
bnb_quantized_int8b: 'base',
|
||||
bnb_quantized_nf4b: 'base',
|
||||
};
|
||||
|
||||
const ModelFormatBadge = ({ format }: Props) => {
|
||||
|
||||
@@ -5,6 +5,7 @@ import type { FilterableModelType } from 'features/modelManagerV2/store/modelMan
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import {
|
||||
useClipEmbedModels,
|
||||
useControlNetModels,
|
||||
useEmbeddingModels,
|
||||
useIPAdapterModels,
|
||||
@@ -13,6 +14,7 @@ import {
|
||||
useRefinerModels,
|
||||
useSpandrelImageToImageModels,
|
||||
useT2IAdapterModels,
|
||||
useT5EncoderModels,
|
||||
useVAEModels,
|
||||
} from 'services/api/hooks/modelsByType';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
@@ -73,6 +75,18 @@ const ModelList = () => {
|
||||
[vaeModels, searchTerm, filteredModelType]
|
||||
);
|
||||
|
||||
const [t5EncoderModels, { isLoading: isLoadingT5EncoderModels }] = useT5EncoderModels();
|
||||
const filteredT5EncoderModels = useMemo(
|
||||
() => modelsFilter(t5EncoderModels, searchTerm, filteredModelType),
|
||||
[t5EncoderModels, searchTerm, filteredModelType]
|
||||
);
|
||||
|
||||
const [clipEmbedModels, { isLoading: isLoadingClipEmbedModels }] = useClipEmbedModels();
|
||||
const filteredClipEmbedModels = useMemo(
|
||||
() => modelsFilter(clipEmbedModels, searchTerm, filteredModelType),
|
||||
[clipEmbedModels, searchTerm, filteredModelType]
|
||||
);
|
||||
|
||||
const [spandrelImageToImageModels, { isLoading: isLoadingSpandrelImageToImageModels }] =
|
||||
useSpandrelImageToImageModels();
|
||||
const filteredSpandrelImageToImageModels = useMemo(
|
||||
@@ -90,7 +104,9 @@ const ModelList = () => {
|
||||
filteredT2IAdapterModels.length +
|
||||
filteredIPAdapterModels.length +
|
||||
filteredVAEModels.length +
|
||||
filteredSpandrelImageToImageModels.length
|
||||
filteredSpandrelImageToImageModels.length +
|
||||
t5EncoderModels.length +
|
||||
clipEmbedModels.length
|
||||
);
|
||||
}, [
|
||||
filteredControlNetModels.length,
|
||||
@@ -102,6 +118,8 @@ const ModelList = () => {
|
||||
filteredT2IAdapterModels.length,
|
||||
filteredVAEModels.length,
|
||||
filteredSpandrelImageToImageModels.length,
|
||||
t5EncoderModels.length,
|
||||
clipEmbedModels.length,
|
||||
]);
|
||||
|
||||
return (
|
||||
@@ -154,13 +172,23 @@ const ModelList = () => {
|
||||
{!isLoadingT2IAdapterModels && filteredT2IAdapterModels.length > 0 && (
|
||||
<ModelListWrapper title={t('common.t2iAdapter')} modelList={filteredT2IAdapterModels} key="t2i-adapters" />
|
||||
)}
|
||||
{/* T5 Encoders List */}
|
||||
{isLoadingT5EncoderModels && <FetchingModelsLoader loadingMessage="Loading T5 Encoder Models..." />}
|
||||
{!isLoadingT5EncoderModels && filteredT5EncoderModels.length > 0 && (
|
||||
<ModelListWrapper title={t('modelManager.t5Encoder')} modelList={filteredT5EncoderModels} key="t5-encoder" />
|
||||
)}
|
||||
{/* Clip Embed List */}
|
||||
{isLoadingClipEmbedModels && <FetchingModelsLoader loadingMessage="Loading Clip Embed Models..." />}
|
||||
{!isLoadingClipEmbedModels && filteredClipEmbedModels.length > 0 && (
|
||||
<ModelListWrapper title={t('modelManager.clipEmbed')} modelList={filteredClipEmbedModels} key="clip-embed" />
|
||||
)}
|
||||
{/* Spandrel Image to Image List */}
|
||||
{isLoadingSpandrelImageToImageModels && (
|
||||
<FetchingModelsLoader loadingMessage="Loading Image-to-Image Models..." />
|
||||
)}
|
||||
{!isLoadingSpandrelImageToImageModels && filteredSpandrelImageToImageModels.length > 0 && (
|
||||
<ModelListWrapper
|
||||
title="Image-to-Image"
|
||||
title={t('modelManager.spandrelImageToImage')}
|
||||
modelList={filteredSpandrelImageToImageModels}
|
||||
key="spandrel-image-to-image"
|
||||
/>
|
||||
|
||||
@@ -19,9 +19,10 @@ export const ModelTypeFilter = memo(() => {
|
||||
controlnet: 'ControlNet',
|
||||
vae: 'VAE',
|
||||
t2i_adapter: t('common.t2iAdapter'),
|
||||
t5_encoder: t('modelManager.t5Encoder'),
|
||||
clip_embed: t('modelManager.clipEmbed'),
|
||||
ip_adapter: t('common.ipAdapter'),
|
||||
clip_vision: 'Clip Vision',
|
||||
spandrel_image_to_image: 'Image-to-Image',
|
||||
spandrel_image_to_image: t('modelManager.spandrelImageToImage'),
|
||||
}),
|
||||
[t]
|
||||
);
|
||||
|
||||
@@ -6,6 +6,8 @@ import {
|
||||
isBoardFieldInputTemplate,
|
||||
isBooleanFieldInputInstance,
|
||||
isBooleanFieldInputTemplate,
|
||||
isCLIPEmbedModelFieldInputInstance,
|
||||
isCLIPEmbedModelFieldInputTemplate,
|
||||
isColorFieldInputInstance,
|
||||
isColorFieldInputTemplate,
|
||||
isControlNetModelFieldInputInstance,
|
||||
@@ -14,6 +16,10 @@ import {
|
||||
isEnumFieldInputTemplate,
|
||||
isFloatFieldInputInstance,
|
||||
isFloatFieldInputTemplate,
|
||||
isFluxMainModelFieldInputInstance,
|
||||
isFluxMainModelFieldInputTemplate,
|
||||
isFluxVAEModelFieldInputInstance,
|
||||
isFluxVAEModelFieldInputTemplate,
|
||||
isImageFieldInputInstance,
|
||||
isImageFieldInputTemplate,
|
||||
isIntegerFieldInputInstance,
|
||||
@@ -38,6 +44,8 @@ import {
|
||||
isStringFieldInputTemplate,
|
||||
isT2IAdapterModelFieldInputInstance,
|
||||
isT2IAdapterModelFieldInputTemplate,
|
||||
isT5EncoderModelFieldInputInstance,
|
||||
isT5EncoderModelFieldInputTemplate,
|
||||
isVAEModelFieldInputInstance,
|
||||
isVAEModelFieldInputTemplate,
|
||||
} from 'features/nodes/types/field';
|
||||
@@ -45,9 +53,12 @@ import { memo } from 'react';
|
||||
|
||||
import BoardFieldInputComponent from './inputs/BoardFieldInputComponent';
|
||||
import BooleanFieldInputComponent from './inputs/BooleanFieldInputComponent';
|
||||
import CLIPEmbedModelFieldInputComponent from './inputs/CLIPEmbedModelFieldInputComponent';
|
||||
import ColorFieldInputComponent from './inputs/ColorFieldInputComponent';
|
||||
import ControlNetModelFieldInputComponent from './inputs/ControlNetModelFieldInputComponent';
|
||||
import EnumFieldInputComponent from './inputs/EnumFieldInputComponent';
|
||||
import FluxMainModelFieldInputComponent from './inputs/FluxMainModelFieldInputComponent';
|
||||
import FluxVAEModelFieldInputComponent from './inputs/FluxVAEModelFieldInputComponent';
|
||||
import ImageFieldInputComponent from './inputs/ImageFieldInputComponent';
|
||||
import IPAdapterModelFieldInputComponent from './inputs/IPAdapterModelFieldInputComponent';
|
||||
import LoRAModelFieldInputComponent from './inputs/LoRAModelFieldInputComponent';
|
||||
@@ -59,6 +70,7 @@ import SDXLMainModelFieldInputComponent from './inputs/SDXLMainModelFieldInputCo
|
||||
import SpandrelImageToImageModelFieldInputComponent from './inputs/SpandrelImageToImageModelFieldInputComponent';
|
||||
import StringFieldInputComponent from './inputs/StringFieldInputComponent';
|
||||
import T2IAdapterModelFieldInputComponent from './inputs/T2IAdapterModelFieldInputComponent';
|
||||
import T5EncoderModelFieldInputComponent from './inputs/T5EncoderModelFieldInputComponent';
|
||||
import VAEModelFieldInputComponent from './inputs/VAEModelFieldInputComponent';
|
||||
|
||||
type InputFieldProps = {
|
||||
@@ -113,6 +125,17 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
return <VAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isT5EncoderModelFieldInputInstance(fieldInstance) && isT5EncoderModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <T5EncoderModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
if (isCLIPEmbedModelFieldInputInstance(fieldInstance) && isCLIPEmbedModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <CLIPEmbedModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isFluxVAEModelFieldInputInstance(fieldInstance) && isFluxVAEModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <FluxVAEModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isLoRAModelFieldInputInstance(fieldInstance) && isLoRAModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <LoRAModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
@@ -145,6 +168,9 @@ const InputFieldRenderer = ({ nodeId, fieldName }: InputFieldProps) => {
|
||||
if (isColorFieldInputInstance(fieldInstance) && isColorFieldInputTemplate(fieldTemplate)) {
|
||||
return <ColorFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
if (isFluxMainModelFieldInputInstance(fieldInstance) && isFluxMainModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <FluxMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
}
|
||||
|
||||
if (isSDXLMainModelFieldInputInstance(fieldInstance) && isSDXLMainModelFieldInputTemplate(fieldTemplate)) {
|
||||
return <SDXLMainModelFieldInputComponent nodeId={nodeId} field={fieldInstance} fieldTemplate={fieldTemplate} />;
|
||||
|
||||
@@ -0,0 +1,60 @@
|
||||
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { fieldCLIPEmbedValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type { CLIPEmbedModelFieldInputInstance, CLIPEmbedModelFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useClipEmbedModels } from 'services/api/hooks/modelsByType';
|
||||
import type { ClipEmbedModelConfig } from 'services/api/types';
|
||||
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
type Props = FieldComponentProps<CLIPEmbedModelFieldInputInstance, CLIPEmbedModelFieldInputTemplate>;
|
||||
|
||||
const CLIPEmbedModelFieldInputComponent = (props: Props) => {
|
||||
const { nodeId, field } = props;
|
||||
const { t } = useTranslation();
|
||||
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
|
||||
const dispatch = useAppDispatch();
|
||||
const [modelConfigs, { isLoading }] = useClipEmbedModels();
|
||||
const _onChange = useCallback(
|
||||
(value: ClipEmbedModelConfig | null) => {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
fieldCLIPEmbedValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
onChange: _onChange,
|
||||
isLoading,
|
||||
selectedModel: field.value,
|
||||
});
|
||||
|
||||
return (
|
||||
<Flex w="full" alignItems="center" gap={2}>
|
||||
<Tooltip label={!disabledTabs.includes('models') && t('modelManager.starterModelsInModelManager')}>
|
||||
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
|
||||
<Combobox
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
options={options}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(CLIPEmbedModelFieldInputComponent);
|
||||
@@ -0,0 +1,55 @@
|
||||
import { Combobox, Flex, FormControl } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { fieldMainModelValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type { FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useFluxModels } from 'services/api/hooks/modelsByType';
|
||||
import type { MainModelConfig } from 'services/api/types';
|
||||
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
type Props = FieldComponentProps<FluxMainModelFieldInputInstance, FluxMainModelFieldInputTemplate>;
|
||||
|
||||
const FluxMainModelFieldInputComponent = (props: Props) => {
|
||||
const { nodeId, field } = props;
|
||||
const dispatch = useAppDispatch();
|
||||
const [modelConfigs, { isLoading }] = useFluxModels();
|
||||
const _onChange = useCallback(
|
||||
(value: MainModelConfig | null) => {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
fieldMainModelValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
onChange: _onChange,
|
||||
isLoading,
|
||||
selectedModel: field.value,
|
||||
});
|
||||
|
||||
return (
|
||||
<Flex w="full" alignItems="center" gap={2}>
|
||||
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
|
||||
<Combobox
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
options={options}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(FluxMainModelFieldInputComponent);
|
||||
@@ -0,0 +1,60 @@
|
||||
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { fieldFluxVAEModelValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type { FluxVAEModelFieldInputInstance, FluxVAEModelFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useFluxVAEModels } from 'services/api/hooks/modelsByType';
|
||||
import type { VAEModelConfig } from 'services/api/types';
|
||||
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
type Props = FieldComponentProps<FluxVAEModelFieldInputInstance, FluxVAEModelFieldInputTemplate>;
|
||||
|
||||
const FluxVAEModelFieldInputComponent = (props: Props) => {
|
||||
const { nodeId, field } = props;
|
||||
const { t } = useTranslation();
|
||||
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
|
||||
const dispatch = useAppDispatch();
|
||||
const [modelConfigs, { isLoading }] = useFluxVAEModels();
|
||||
const _onChange = useCallback(
|
||||
(value: VAEModelConfig | null) => {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
fieldFluxVAEModelValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
onChange: _onChange,
|
||||
isLoading,
|
||||
selectedModel: field.value,
|
||||
});
|
||||
|
||||
return (
|
||||
<Flex w="full" alignItems="center" gap={2}>
|
||||
<Tooltip label={!disabledTabs.includes('models') && t('modelManager.starterModelsInModelManager')}>
|
||||
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
|
||||
<Combobox
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
options={options}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(FluxVAEModelFieldInputComponent);
|
||||
@@ -0,0 +1,60 @@
|
||||
import { Combobox, Flex, FormControl, Tooltip } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useGroupedModelCombobox } from 'common/hooks/useGroupedModelCombobox';
|
||||
import { fieldT5EncoderValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import type { T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useT5EncoderModels } from 'services/api/hooks/modelsByType';
|
||||
import type { T5EncoderBnbQuantizedLlmInt8bModelConfig, T5EncoderModelConfig } from 'services/api/types';
|
||||
|
||||
import type { FieldComponentProps } from './types';
|
||||
|
||||
type Props = FieldComponentProps<T5EncoderModelFieldInputInstance, T5EncoderModelFieldInputTemplate>;
|
||||
|
||||
const T5EncoderModelFieldInputComponent = (props: Props) => {
|
||||
const { nodeId, field } = props;
|
||||
const { t } = useTranslation();
|
||||
const disabledTabs = useAppSelector((s) => s.config.disabledTabs);
|
||||
const dispatch = useAppDispatch();
|
||||
const [modelConfigs, { isLoading }] = useT5EncoderModels();
|
||||
const _onChange = useCallback(
|
||||
(value: T5EncoderBnbQuantizedLlmInt8bModelConfig | T5EncoderModelConfig | null) => {
|
||||
if (!value) {
|
||||
return;
|
||||
}
|
||||
dispatch(
|
||||
fieldT5EncoderValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
const { options, value, onChange, placeholder, noOptionsMessage } = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
onChange: _onChange,
|
||||
isLoading,
|
||||
selectedModel: field.value,
|
||||
});
|
||||
|
||||
return (
|
||||
<Flex w="full" alignItems="center" gap={2}>
|
||||
<Tooltip label={!disabledTabs.includes('models') && t('modelManager.starterModelsInModelManager')}>
|
||||
<FormControl className="nowheel nodrag" isDisabled={!options.length} isInvalid={!value}>
|
||||
<Combobox
|
||||
value={value}
|
||||
placeholder={placeholder}
|
||||
options={options}
|
||||
onChange={onChange}
|
||||
noOptionsMessage={noOptionsMessage}
|
||||
/>
|
||||
</FormControl>
|
||||
</Tooltip>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(T5EncoderModelFieldInputComponent);
|
||||
@@ -6,11 +6,13 @@ import { SHARED_NODE_PROPERTIES } from 'features/nodes/types/constants';
|
||||
import type {
|
||||
BoardFieldValue,
|
||||
BooleanFieldValue,
|
||||
CLIPEmbedModelFieldValue,
|
||||
ColorFieldValue,
|
||||
ControlNetModelFieldValue,
|
||||
EnumFieldValue,
|
||||
FieldValue,
|
||||
FloatFieldValue,
|
||||
FluxVAEModelFieldValue,
|
||||
ImageFieldValue,
|
||||
IntegerFieldValue,
|
||||
IPAdapterModelFieldValue,
|
||||
@@ -23,15 +25,18 @@ import type {
|
||||
StatefulFieldValue,
|
||||
StringFieldValue,
|
||||
T2IAdapterModelFieldValue,
|
||||
T5EncoderModelFieldValue,
|
||||
VAEModelFieldValue,
|
||||
} from 'features/nodes/types/field';
|
||||
import {
|
||||
zBoardFieldValue,
|
||||
zBooleanFieldValue,
|
||||
zCLIPEmbedModelFieldValue,
|
||||
zColorFieldValue,
|
||||
zControlNetModelFieldValue,
|
||||
zEnumFieldValue,
|
||||
zFloatFieldValue,
|
||||
zFluxVAEModelFieldValue,
|
||||
zImageFieldValue,
|
||||
zIntegerFieldValue,
|
||||
zIPAdapterModelFieldValue,
|
||||
@@ -44,6 +49,7 @@ import {
|
||||
zStatefulFieldValue,
|
||||
zStringFieldValue,
|
||||
zT2IAdapterModelFieldValue,
|
||||
zT5EncoderModelFieldValue,
|
||||
zVAEModelFieldValue,
|
||||
} from 'features/nodes/types/field';
|
||||
import type { AnyNode, InvocationNodeEdge } from 'features/nodes/types/invocation';
|
||||
@@ -341,6 +347,15 @@ export const nodesSlice = createSlice({
|
||||
) => {
|
||||
fieldValueReducer(state, action, zSpandrelImageToImageModelFieldValue);
|
||||
},
|
||||
fieldT5EncoderValueChanged: (state, action: FieldValueAction<T5EncoderModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zT5EncoderModelFieldValue);
|
||||
},
|
||||
fieldCLIPEmbedValueChanged: (state, action: FieldValueAction<CLIPEmbedModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zCLIPEmbedModelFieldValue);
|
||||
},
|
||||
fieldFluxVAEModelValueChanged: (state, action: FieldValueAction<FluxVAEModelFieldValue>) => {
|
||||
fieldValueReducer(state, action, zFluxVAEModelFieldValue);
|
||||
},
|
||||
fieldEnumModelValueChanged: (state, action: FieldValueAction<EnumFieldValue>) => {
|
||||
fieldValueReducer(state, action, zEnumFieldValue);
|
||||
},
|
||||
@@ -402,6 +417,9 @@ export const {
|
||||
fieldSchedulerValueChanged,
|
||||
fieldStringValueChanged,
|
||||
fieldVaeModelValueChanged,
|
||||
fieldT5EncoderValueChanged,
|
||||
fieldCLIPEmbedValueChanged,
|
||||
fieldFluxVAEModelValueChanged,
|
||||
nodeEditorReset,
|
||||
nodeIsIntermediateChanged,
|
||||
nodeIsOpenChanged,
|
||||
@@ -514,6 +532,9 @@ export const isAnyNodeOrEdgeMutation = isAnyOf(
|
||||
fieldSchedulerValueChanged,
|
||||
fieldStringValueChanged,
|
||||
fieldVaeModelValueChanged,
|
||||
fieldT5EncoderValueChanged,
|
||||
fieldCLIPEmbedValueChanged,
|
||||
fieldFluxVAEModelValueChanged,
|
||||
nodesChanged,
|
||||
nodeIsIntermediateChanged,
|
||||
nodeIsOpenChanged,
|
||||
|
||||
@@ -61,7 +61,7 @@ export type SchedulerField = z.infer<typeof zSchedulerField>;
|
||||
// #endregion
|
||||
|
||||
// #region Model-related schemas
|
||||
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
|
||||
const zBaseModel = z.enum(['any', 'sd-1', 'sd-2', 'sdxl', 'sdxl-refiner', 'flux']);
|
||||
const zModelType = z.enum([
|
||||
'main',
|
||||
'vae',
|
||||
@@ -73,9 +73,12 @@ const zModelType = z.enum([
|
||||
'onnx',
|
||||
'clip_vision',
|
||||
'spandrel_image_to_image',
|
||||
't5_encoder',
|
||||
'clip_embed',
|
||||
]);
|
||||
const zSubModelType = z.enum([
|
||||
'unet',
|
||||
'transformer',
|
||||
'text_encoder',
|
||||
'text_encoder_2',
|
||||
'tokenizer',
|
||||
|
||||
@@ -31,6 +31,7 @@ export const MODEL_TYPES = [
|
||||
'ControlNetModelField',
|
||||
'LoRAModelField',
|
||||
'MainModelField',
|
||||
'FluxMainModelField',
|
||||
'SDXLMainModelField',
|
||||
'SDXLRefinerModelField',
|
||||
'VaeModelField',
|
||||
@@ -38,6 +39,7 @@ export const MODEL_TYPES = [
|
||||
'VAEField',
|
||||
'CLIPField',
|
||||
'T2IAdapterModelField',
|
||||
'T5EncoderField',
|
||||
'SpandrelImageToImageModelField',
|
||||
];
|
||||
|
||||
@@ -50,6 +52,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
|
||||
CLIPField: 'green.500',
|
||||
ColorField: 'pink.300',
|
||||
ConditioningField: 'cyan.500',
|
||||
FluxConditioningField: 'cyan.500',
|
||||
ControlField: 'teal.500',
|
||||
ControlNetModelField: 'teal.500',
|
||||
EnumField: 'blue.500',
|
||||
@@ -61,6 +64,7 @@ export const FIELD_COLORS: { [key: string]: string } = {
|
||||
LatentsField: 'pink.500',
|
||||
LoRAModelField: 'teal.500',
|
||||
MainModelField: 'teal.500',
|
||||
FluxMainModelField: 'teal.500',
|
||||
SDXLMainModelField: 'teal.500',
|
||||
SDXLRefinerModelField: 'teal.500',
|
||||
SpandrelImageToImageModelField: 'teal.500',
|
||||
@@ -68,6 +72,8 @@ export const FIELD_COLORS: { [key: string]: string } = {
|
||||
T2IAdapterField: 'teal.500',
|
||||
T2IAdapterModelField: 'teal.500',
|
||||
UNetField: 'red.500',
|
||||
T5EncoderField: 'green.500',
|
||||
TransformerField: 'red.500',
|
||||
VAEField: 'blue.500',
|
||||
VAEModelField: 'teal.500',
|
||||
};
|
||||
|
||||
@@ -115,6 +115,10 @@ const zSDXLMainModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('SDXLMainModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zFluxMainModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('FluxMainModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zSDXLRefinerModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('SDXLRefinerModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
@@ -143,6 +147,18 @@ const zSpandrelImageToImageModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('SpandrelImageToImageModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zT5EncoderModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('T5EncoderModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zCLIPEmbedModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('CLIPEmbedModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zFluxVAEModelFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('FluxVAEModelField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
});
|
||||
const zSchedulerFieldType = zFieldTypeBase.extend({
|
||||
name: z.literal('SchedulerField'),
|
||||
originalType: zStatelessFieldType.optional(),
|
||||
@@ -158,6 +174,7 @@ const zStatefulFieldType = z.union([
|
||||
zModelIdentifierFieldType,
|
||||
zMainModelFieldType,
|
||||
zSDXLMainModelFieldType,
|
||||
zFluxMainModelFieldType,
|
||||
zSDXLRefinerModelFieldType,
|
||||
zVAEModelFieldType,
|
||||
zLoRAModelFieldType,
|
||||
@@ -165,6 +182,9 @@ const zStatefulFieldType = z.union([
|
||||
zIPAdapterModelFieldType,
|
||||
zT2IAdapterModelFieldType,
|
||||
zSpandrelImageToImageModelFieldType,
|
||||
zT5EncoderModelFieldType,
|
||||
zCLIPEmbedModelFieldType,
|
||||
zFluxVAEModelFieldType,
|
||||
zColorFieldType,
|
||||
zSchedulerFieldType,
|
||||
]);
|
||||
@@ -447,6 +467,29 @@ export const isSDXLMainModelFieldInputTemplate = (val: unknown): val is SDXLMain
|
||||
zSDXLMainModelFieldInputTemplate.safeParse(val).success;
|
||||
// #endregion
|
||||
|
||||
// #region FluxMainModelField
|
||||
|
||||
const zFluxMainModelFieldValue = zMainModelFieldValue; // TODO: Narrow to SDXL models only.
|
||||
const zFluxMainModelFieldInputInstance = zFieldInputInstanceBase.extend({
|
||||
value: zFluxMainModelFieldValue,
|
||||
});
|
||||
const zFluxMainModelFieldInputTemplate = zFieldInputTemplateBase.extend({
|
||||
type: zFluxMainModelFieldType,
|
||||
originalType: zFieldType.optional(),
|
||||
default: zFluxMainModelFieldValue,
|
||||
});
|
||||
const zFluxMainModelFieldOutputTemplate = zFieldOutputTemplateBase.extend({
|
||||
type: zFluxMainModelFieldType,
|
||||
});
|
||||
export type FluxMainModelFieldInputInstance = z.infer<typeof zFluxMainModelFieldInputInstance>;
|
||||
export type FluxMainModelFieldInputTemplate = z.infer<typeof zFluxMainModelFieldInputTemplate>;
|
||||
export const isFluxMainModelFieldInputInstance = (val: unknown): val is FluxMainModelFieldInputInstance =>
|
||||
zFluxMainModelFieldInputInstance.safeParse(val).success;
|
||||
export const isFluxMainModelFieldInputTemplate = (val: unknown): val is FluxMainModelFieldInputTemplate =>
|
||||
zFluxMainModelFieldInputTemplate.safeParse(val).success;
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region SDXLRefinerModelField
|
||||
|
||||
/** @alias */ // tells knip to ignore this duplicate export
|
||||
@@ -613,6 +656,75 @@ export const isSpandrelImageToImageModelFieldInputTemplate = (
|
||||
zSpandrelImageToImageModelFieldInputTemplate.safeParse(val).success;
|
||||
// #endregion
|
||||
|
||||
// #region T5EncoderModelField
|
||||
|
||||
export const zT5EncoderModelFieldValue = zModelIdentifierField.optional();
|
||||
const zT5EncoderModelFieldInputInstance = zFieldInputInstanceBase.extend({
|
||||
value: zT5EncoderModelFieldValue,
|
||||
});
|
||||
const zT5EncoderModelFieldInputTemplate = zFieldInputTemplateBase.extend({
|
||||
type: zT5EncoderModelFieldType,
|
||||
originalType: zFieldType.optional(),
|
||||
default: zT5EncoderModelFieldValue,
|
||||
});
|
||||
|
||||
export type T5EncoderModelFieldValue = z.infer<typeof zT5EncoderModelFieldValue>;
|
||||
|
||||
export type T5EncoderModelFieldInputInstance = z.infer<typeof zT5EncoderModelFieldInputInstance>;
|
||||
export type T5EncoderModelFieldInputTemplate = z.infer<typeof zT5EncoderModelFieldInputTemplate>;
|
||||
export const isT5EncoderModelFieldInputInstance = (val: unknown): val is T5EncoderModelFieldInputInstance =>
|
||||
zT5EncoderModelFieldInputInstance.safeParse(val).success;
|
||||
export const isT5EncoderModelFieldInputTemplate = (val: unknown): val is T5EncoderModelFieldInputTemplate =>
|
||||
zT5EncoderModelFieldInputTemplate.safeParse(val).success;
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region FluxVAEModelField
|
||||
|
||||
export const zFluxVAEModelFieldValue = zModelIdentifierField.optional();
|
||||
const zFluxVAEModelFieldInputInstance = zFieldInputInstanceBase.extend({
|
||||
value: zFluxVAEModelFieldValue,
|
||||
});
|
||||
const zFluxVAEModelFieldInputTemplate = zFieldInputTemplateBase.extend({
|
||||
type: zFluxVAEModelFieldType,
|
||||
originalType: zFieldType.optional(),
|
||||
default: zFluxVAEModelFieldValue,
|
||||
});
|
||||
|
||||
export type FluxVAEModelFieldValue = z.infer<typeof zFluxVAEModelFieldValue>;
|
||||
|
||||
export type FluxVAEModelFieldInputInstance = z.infer<typeof zFluxVAEModelFieldInputInstance>;
|
||||
export type FluxVAEModelFieldInputTemplate = z.infer<typeof zFluxVAEModelFieldInputTemplate>;
|
||||
export const isFluxVAEModelFieldInputInstance = (val: unknown): val is FluxVAEModelFieldInputInstance =>
|
||||
zFluxVAEModelFieldInputInstance.safeParse(val).success;
|
||||
export const isFluxVAEModelFieldInputTemplate = (val: unknown): val is FluxVAEModelFieldInputTemplate =>
|
||||
zFluxVAEModelFieldInputTemplate.safeParse(val).success;
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region CLIPEmbedModelField
|
||||
|
||||
export const zCLIPEmbedModelFieldValue = zModelIdentifierField.optional();
|
||||
const zCLIPEmbedModelFieldInputInstance = zFieldInputInstanceBase.extend({
|
||||
value: zCLIPEmbedModelFieldValue,
|
||||
});
|
||||
const zCLIPEmbedModelFieldInputTemplate = zFieldInputTemplateBase.extend({
|
||||
type: zCLIPEmbedModelFieldType,
|
||||
originalType: zFieldType.optional(),
|
||||
default: zCLIPEmbedModelFieldValue,
|
||||
});
|
||||
|
||||
export type CLIPEmbedModelFieldValue = z.infer<typeof zCLIPEmbedModelFieldValue>;
|
||||
|
||||
export type CLIPEmbedModelFieldInputInstance = z.infer<typeof zCLIPEmbedModelFieldInputInstance>;
|
||||
export type CLIPEmbedModelFieldInputTemplate = z.infer<typeof zCLIPEmbedModelFieldInputTemplate>;
|
||||
export const isCLIPEmbedModelFieldInputInstance = (val: unknown): val is CLIPEmbedModelFieldInputInstance =>
|
||||
zCLIPEmbedModelFieldInputInstance.safeParse(val).success;
|
||||
export const isCLIPEmbedModelFieldInputTemplate = (val: unknown): val is CLIPEmbedModelFieldInputTemplate =>
|
||||
zCLIPEmbedModelFieldInputTemplate.safeParse(val).success;
|
||||
|
||||
// #endregion
|
||||
|
||||
// #region SchedulerField
|
||||
|
||||
export const zSchedulerFieldValue = zSchedulerField.optional();
|
||||
@@ -693,6 +805,7 @@ export const zStatefulFieldValue = z.union([
|
||||
zModelIdentifierFieldValue,
|
||||
zMainModelFieldValue,
|
||||
zSDXLMainModelFieldValue,
|
||||
zFluxMainModelFieldValue,
|
||||
zSDXLRefinerModelFieldValue,
|
||||
zVAEModelFieldValue,
|
||||
zLoRAModelFieldValue,
|
||||
@@ -700,6 +813,9 @@ export const zStatefulFieldValue = z.union([
|
||||
zIPAdapterModelFieldValue,
|
||||
zT2IAdapterModelFieldValue,
|
||||
zSpandrelImageToImageModelFieldValue,
|
||||
zT5EncoderModelFieldValue,
|
||||
zFluxVAEModelFieldValue,
|
||||
zCLIPEmbedModelFieldValue,
|
||||
zColorFieldValue,
|
||||
zSchedulerFieldValue,
|
||||
]);
|
||||
@@ -720,6 +836,7 @@ const zStatefulFieldInputInstance = z.union([
|
||||
zBoardFieldInputInstance,
|
||||
zModelIdentifierFieldInputInstance,
|
||||
zMainModelFieldInputInstance,
|
||||
zFluxMainModelFieldInputInstance,
|
||||
zSDXLMainModelFieldInputInstance,
|
||||
zSDXLRefinerModelFieldInputInstance,
|
||||
zVAEModelFieldInputInstance,
|
||||
@@ -728,6 +845,9 @@ const zStatefulFieldInputInstance = z.union([
|
||||
zIPAdapterModelFieldInputInstance,
|
||||
zT2IAdapterModelFieldInputInstance,
|
||||
zSpandrelImageToImageModelFieldInputInstance,
|
||||
zT5EncoderModelFieldInputInstance,
|
||||
zFluxVAEModelFieldInputInstance,
|
||||
zCLIPEmbedModelFieldInputInstance,
|
||||
zColorFieldInputInstance,
|
||||
zSchedulerFieldInputInstance,
|
||||
]);
|
||||
@@ -749,6 +869,7 @@ const zStatefulFieldInputTemplate = z.union([
|
||||
zBoardFieldInputTemplate,
|
||||
zModelIdentifierFieldInputTemplate,
|
||||
zMainModelFieldInputTemplate,
|
||||
zFluxMainModelFieldInputTemplate,
|
||||
zSDXLMainModelFieldInputTemplate,
|
||||
zSDXLRefinerModelFieldInputTemplate,
|
||||
zVAEModelFieldInputTemplate,
|
||||
@@ -757,6 +878,9 @@ const zStatefulFieldInputTemplate = z.union([
|
||||
zIPAdapterModelFieldInputTemplate,
|
||||
zT2IAdapterModelFieldInputTemplate,
|
||||
zSpandrelImageToImageModelFieldInputTemplate,
|
||||
zT5EncoderModelFieldInputTemplate,
|
||||
zFluxVAEModelFieldInputTemplate,
|
||||
zCLIPEmbedModelFieldInputTemplate,
|
||||
zColorFieldInputTemplate,
|
||||
zSchedulerFieldInputTemplate,
|
||||
zStatelessFieldInputTemplate,
|
||||
@@ -779,6 +903,7 @@ const zStatefulFieldOutputTemplate = z.union([
|
||||
zBoardFieldOutputTemplate,
|
||||
zModelIdentifierFieldOutputTemplate,
|
||||
zMainModelFieldOutputTemplate,
|
||||
zFluxMainModelFieldOutputTemplate,
|
||||
zSDXLMainModelFieldOutputTemplate,
|
||||
zSDXLRefinerModelFieldOutputTemplate,
|
||||
zVAEModelFieldOutputTemplate,
|
||||
|
||||
@@ -15,12 +15,16 @@ const FIELD_VALUE_FALLBACK_MAP: Record<StatefulFieldType['name'], FieldValue> =
|
||||
MainModelField: undefined,
|
||||
SchedulerField: 'euler',
|
||||
SDXLMainModelField: undefined,
|
||||
FluxMainModelField: undefined,
|
||||
SDXLRefinerModelField: undefined,
|
||||
StringField: '',
|
||||
T2IAdapterModelField: undefined,
|
||||
SpandrelImageToImageModelField: undefined,
|
||||
VAEModelField: undefined,
|
||||
ControlNetModelField: undefined,
|
||||
T5EncoderModelField: undefined,
|
||||
FluxVAEModelField: undefined,
|
||||
CLIPEmbedModelField: undefined,
|
||||
};
|
||||
|
||||
export const buildFieldInputInstance = (id: string, template: FieldInputTemplate): FieldInputInstance => {
|
||||
|
||||
@@ -2,12 +2,15 @@ import { FieldParseError } from 'features/nodes/types/error';
|
||||
import type {
|
||||
BoardFieldInputTemplate,
|
||||
BooleanFieldInputTemplate,
|
||||
CLIPEmbedModelFieldInputTemplate,
|
||||
ColorFieldInputTemplate,
|
||||
ControlNetModelFieldInputTemplate,
|
||||
EnumFieldInputTemplate,
|
||||
FieldInputTemplate,
|
||||
FieldType,
|
||||
FloatFieldInputTemplate,
|
||||
FluxMainModelFieldInputTemplate,
|
||||
FluxVAEModelFieldInputTemplate,
|
||||
ImageFieldInputTemplate,
|
||||
IntegerFieldInputTemplate,
|
||||
IPAdapterModelFieldInputTemplate,
|
||||
@@ -22,6 +25,7 @@ import type {
|
||||
StatelessFieldInputTemplate,
|
||||
StringFieldInputTemplate,
|
||||
T2IAdapterModelFieldInputTemplate,
|
||||
T5EncoderModelFieldInputTemplate,
|
||||
VAEModelFieldInputTemplate,
|
||||
} from 'features/nodes/types/field';
|
||||
import { isStatefulFieldType } from 'features/nodes/types/field';
|
||||
@@ -180,6 +184,20 @@ const buildSDXLMainModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLMainMo
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildFluxMainModelFieldInputTemplate: FieldInputTemplateBuilder<FluxMainModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
fieldType,
|
||||
}) => {
|
||||
const template: FluxMainModelFieldInputTemplate = {
|
||||
...baseField,
|
||||
type: fieldType,
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildRefinerModelFieldInputTemplate: FieldInputTemplateBuilder<SDXLRefinerModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
@@ -208,6 +226,48 @@ const buildVAEModelFieldInputTemplate: FieldInputTemplateBuilder<VAEModelFieldIn
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildT5EncoderModelFieldInputTemplate: FieldInputTemplateBuilder<T5EncoderModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
fieldType,
|
||||
}) => {
|
||||
const template: T5EncoderModelFieldInputTemplate = {
|
||||
...baseField,
|
||||
type: fieldType,
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildCLIPEmbedModelFieldInputTemplate: FieldInputTemplateBuilder<CLIPEmbedModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
fieldType,
|
||||
}) => {
|
||||
const template: CLIPEmbedModelFieldInputTemplate = {
|
||||
...baseField,
|
||||
type: fieldType,
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildFluxVAEModelFieldInputTemplate: FieldInputTemplateBuilder<FluxVAEModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
fieldType,
|
||||
}) => {
|
||||
const template: FluxVAEModelFieldInputTemplate = {
|
||||
...baseField,
|
||||
type: fieldType,
|
||||
default: schemaObject.default ?? undefined,
|
||||
};
|
||||
|
||||
return template;
|
||||
};
|
||||
|
||||
const buildLoRAModelFieldInputTemplate: FieldInputTemplateBuilder<LoRAModelFieldInputTemplate> = ({
|
||||
schemaObject,
|
||||
baseField,
|
||||
@@ -386,11 +446,15 @@ export const TEMPLATE_BUILDER_MAP: Record<StatefulFieldType['name'], FieldInputT
|
||||
MainModelField: buildMainModelFieldInputTemplate,
|
||||
SchedulerField: buildSchedulerFieldInputTemplate,
|
||||
SDXLMainModelField: buildSDXLMainModelFieldInputTemplate,
|
||||
FluxMainModelField: buildFluxMainModelFieldInputTemplate,
|
||||
SDXLRefinerModelField: buildRefinerModelFieldInputTemplate,
|
||||
StringField: buildStringFieldInputTemplate,
|
||||
T2IAdapterModelField: buildT2IAdapterModelFieldInputTemplate,
|
||||
SpandrelImageToImageModelField: buildSpandrelImageToImageModelFieldInputTemplate,
|
||||
VAEModelField: buildVAEModelFieldInputTemplate,
|
||||
T5EncoderModelField: buildT5EncoderModelFieldInputTemplate,
|
||||
CLIPEmbedModelField: buildCLIPEmbedModelFieldInputTemplate,
|
||||
FluxVAEModelField: buildFluxVAEModelFieldInputTemplate,
|
||||
} as const;
|
||||
|
||||
export const buildFieldInputTemplate = (
|
||||
|
||||
@@ -29,6 +29,7 @@ const MODEL_FIELD_TYPES = [
|
||||
'ModelIdentifier',
|
||||
'MainModelField',
|
||||
'SDXLMainModelField',
|
||||
'FluxMainModelField',
|
||||
'SDXLRefinerModelField',
|
||||
'VAEModelField',
|
||||
'LoRAModelField',
|
||||
|
||||
@@ -8,7 +8,7 @@ import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { selectGenerationSlice } from 'features/parameters/store/generationSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useMainModels } from 'services/api/hooks/modelsByType';
|
||||
import { useSDMainModels } from 'services/api/hooks/modelsByType';
|
||||
import type { MainModelConfig } from 'services/api/types';
|
||||
|
||||
const selectModel = createMemoizedSelector(selectGenerationSlice, (generation) => generation.model);
|
||||
@@ -17,7 +17,7 @@ const ParamMainModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const selectedModel = useAppSelector(selectModel);
|
||||
const [modelConfigs, { isLoading }] = useMainModels();
|
||||
const [modelConfigs, { isLoading }] = useSDMainModels();
|
||||
const tooltipLabel = useMemo(() => {
|
||||
if (!modelConfigs.length || !selectedModel) {
|
||||
return;
|
||||
|
||||
@@ -9,6 +9,7 @@ export const MODEL_TYPE_MAP = {
|
||||
'sd-2': 'Stable Diffusion 2.x',
|
||||
sdxl: 'Stable Diffusion XL',
|
||||
'sdxl-refiner': 'Stable Diffusion XL Refiner',
|
||||
flux: 'Flux',
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -20,6 +21,7 @@ export const MODEL_TYPE_SHORT_MAP = {
|
||||
'sd-2': 'SD2.X',
|
||||
sdxl: 'SDXL',
|
||||
'sdxl-refiner': 'SDXLR',
|
||||
flux: 'FLUX',
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -46,6 +48,10 @@ export const CLIP_SKIP_MAP = {
|
||||
maxClip: 24,
|
||||
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
|
||||
},
|
||||
flux: {
|
||||
maxClip: 0,
|
||||
markers: [],
|
||||
},
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -16,9 +16,9 @@ export const StylePresetExportButton = () => {
|
||||
const { t } = useTranslation();
|
||||
const { presetCount } = useListStylePresetsQuery(undefined, {
|
||||
selectFromResult: ({ data }) => {
|
||||
const userPresets = data?.filter((preset) => preset.type === 'user') ?? EMPTY_ARRAY;
|
||||
const presetsToExport = data?.filter((preset) => preset.type !== 'default') ?? EMPTY_ARRAY;
|
||||
return {
|
||||
presetCount: userPresets.length,
|
||||
presetCount: presetsToExport.length,
|
||||
};
|
||||
},
|
||||
});
|
||||
|
||||
@@ -3,16 +3,21 @@ import { useMemo } from 'react';
|
||||
import { modelConfigsAdapterSelectors, useGetModelConfigsQuery } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
import {
|
||||
isClipEmbedModelConfig,
|
||||
isControlNetModelConfig,
|
||||
isControlNetOrT2IAdapterModelConfig,
|
||||
isFluxMainModelModelConfig,
|
||||
isFluxVAEModelConfig,
|
||||
isIPAdapterModelConfig,
|
||||
isLoRAModelConfig,
|
||||
isNonRefinerMainModelConfig,
|
||||
isNonRefinerNonFluxMainModelConfig,
|
||||
isNonSDXLMainModelConfig,
|
||||
isRefinerMainModelModelConfig,
|
||||
isSDXLMainModelModelConfig,
|
||||
isSpandrelImageToImageModelConfig,
|
||||
isT2IAdapterModelConfig,
|
||||
isT5EncoderModelConfig,
|
||||
isTIModelConfig,
|
||||
isVAEModelConfig,
|
||||
} from 'services/api/types';
|
||||
@@ -32,15 +37,20 @@ const buildModelsHook =
|
||||
return [modelConfigs, result] as const;
|
||||
};
|
||||
|
||||
export const useSDMainModels = buildModelsHook(isNonRefinerNonFluxMainModelConfig);
|
||||
export const useMainModels = buildModelsHook(isNonRefinerMainModelConfig);
|
||||
export const useNonSDXLMainModels = buildModelsHook(isNonSDXLMainModelConfig);
|
||||
export const useRefinerModels = buildModelsHook(isRefinerMainModelModelConfig);
|
||||
export const useFluxModels = buildModelsHook(isFluxMainModelModelConfig);
|
||||
export const useSDXLModels = buildModelsHook(isSDXLMainModelModelConfig);
|
||||
export const useLoRAModels = buildModelsHook(isLoRAModelConfig);
|
||||
export const useControlNetAndT2IAdapterModels = buildModelsHook(isControlNetOrT2IAdapterModelConfig);
|
||||
export const useControlNetModels = buildModelsHook(isControlNetModelConfig);
|
||||
export const useT2IAdapterModels = buildModelsHook(isT2IAdapterModelConfig);
|
||||
export const useT5EncoderModels = buildModelsHook(isT5EncoderModelConfig);
|
||||
export const useClipEmbedModels = buildModelsHook(isClipEmbedModelConfig);
|
||||
export const useSpandrelImageToImageModels = buildModelsHook(isSpandrelImageToImageModelConfig);
|
||||
export const useIPAdapterModels = buildModelsHook(isIPAdapterModelConfig);
|
||||
export const useEmbeddingModels = buildModelsHook(isTIModelConfig);
|
||||
export const useVAEModels = buildModelsHook(isVAEModelConfig);
|
||||
export const useFluxVAEModels = buildModelsHook(isFluxVAEModelConfig);
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -51,6 +51,9 @@ export type VAEModelConfig = S['VAECheckpointConfig'] | S['VAEDiffusersConfig'];
|
||||
export type ControlNetModelConfig = S['ControlNetDiffusersConfig'] | S['ControlNetCheckpointConfig'];
|
||||
export type IPAdapterModelConfig = S['IPAdapterInvokeAIConfig'] | S['IPAdapterCheckpointConfig'];
|
||||
export type T2IAdapterModelConfig = S['T2IAdapterConfig'];
|
||||
export type ClipEmbedModelConfig = S['CLIPEmbedDiffusersConfig'];
|
||||
export type T5EncoderModelConfig = S['T5EncoderConfig'];
|
||||
export type T5EncoderBnbQuantizedLlmInt8bModelConfig = S['T5EncoderBnbQuantizedLlmInt8bConfig'];
|
||||
export type SpandrelImageToImageModelConfig = S['SpandrelImageToImageConfig'];
|
||||
type TextualInversionModelConfig = S['TextualInversionFileConfig'] | S['TextualInversionFolderConfig'];
|
||||
type DiffusersModelConfig = S['MainDiffusersConfig'];
|
||||
@@ -62,6 +65,9 @@ export type AnyModelConfig =
|
||||
| VAEModelConfig
|
||||
| ControlNetModelConfig
|
||||
| IPAdapterModelConfig
|
||||
| T5EncoderModelConfig
|
||||
| T5EncoderBnbQuantizedLlmInt8bModelConfig
|
||||
| ClipEmbedModelConfig
|
||||
| T2IAdapterModelConfig
|
||||
| SpandrelImageToImageModelConfig
|
||||
| TextualInversionModelConfig
|
||||
@@ -76,6 +82,10 @@ export const isVAEModelConfig = (config: AnyModelConfig): config is VAEModelConf
|
||||
return config.type === 'vae';
|
||||
};
|
||||
|
||||
export const isFluxVAEModelConfig = (config: AnyModelConfig): config is VAEModelConfig => {
|
||||
return config.type === 'vae' && config.base === 'flux';
|
||||
};
|
||||
|
||||
export const isControlNetModelConfig = (config: AnyModelConfig): config is ControlNetModelConfig => {
|
||||
return config.type === 'controlnet';
|
||||
};
|
||||
@@ -88,6 +98,16 @@ export const isT2IAdapterModelConfig = (config: AnyModelConfig): config is T2IAd
|
||||
return config.type === 't2i_adapter';
|
||||
};
|
||||
|
||||
export const isT5EncoderModelConfig = (
|
||||
config: AnyModelConfig
|
||||
): config is T5EncoderModelConfig | T5EncoderBnbQuantizedLlmInt8bModelConfig => {
|
||||
return config.type === 't5_encoder';
|
||||
};
|
||||
|
||||
export const isClipEmbedModelConfig = (config: AnyModelConfig): config is ClipEmbedModelConfig => {
|
||||
return config.type === 'clip_embed';
|
||||
};
|
||||
|
||||
export const isSpandrelImageToImageModelConfig = (
|
||||
config: AnyModelConfig
|
||||
): config is SpandrelImageToImageModelConfig => {
|
||||
@@ -110,6 +130,10 @@ export const isNonRefinerMainModelConfig = (config: AnyModelConfig): config is M
|
||||
return config.type === 'main' && config.base !== 'sdxl-refiner';
|
||||
};
|
||||
|
||||
export const isNonRefinerNonFluxMainModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
|
||||
return config.type === 'main' && config.base !== 'sdxl-refiner' && config.base !== 'flux';
|
||||
};
|
||||
|
||||
export const isRefinerMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
|
||||
return config.type === 'main' && config.base === 'sdxl-refiner';
|
||||
};
|
||||
@@ -118,6 +142,10 @@ export const isSDXLMainModelModelConfig = (config: AnyModelConfig): config is Ma
|
||||
return config.type === 'main' && config.base === 'sdxl';
|
||||
};
|
||||
|
||||
export const isFluxMainModelModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
|
||||
return config.type === 'main' && config.base === 'flux';
|
||||
};
|
||||
|
||||
export const isNonSDXLMainModelConfig = (config: AnyModelConfig): config is MainModelConfig => {
|
||||
return config.type === 'main' && (config.base === 'sd-1' || config.base === 'sd-2');
|
||||
};
|
||||
|
||||
@@ -13,6 +13,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
BoardField,
|
||||
BoundingBoxField,
|
||||
ColorField,
|
||||
ConditioningField,
|
||||
DenoiseMaskField,
|
||||
@@ -46,6 +47,7 @@ from invokeai.app.invocations.model import (
|
||||
from invokeai.app.invocations.primitives import (
|
||||
BooleanCollectionOutput,
|
||||
BooleanOutput,
|
||||
BoundingBoxOutput,
|
||||
ColorCollectionOutput,
|
||||
ColorOutput,
|
||||
ConditioningCollectionOutput,
|
||||
@@ -92,6 +94,7 @@ __all__ = [
|
||||
"InvocationContext",
|
||||
# invokeai.app.invocations.fields
|
||||
"BoardField",
|
||||
"BoundingBoxField",
|
||||
"ColorField",
|
||||
"ConditioningField",
|
||||
"DenoiseMaskField",
|
||||
@@ -128,6 +131,7 @@ __all__ = [
|
||||
# invokeai.app.invocations.primitives
|
||||
"BooleanCollectionOutput",
|
||||
"BooleanOutput",
|
||||
"BoundingBoxOutput",
|
||||
"ColorCollectionOutput",
|
||||
"ColorOutput",
|
||||
"ConditioningCollectionOutput",
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "4.2.8post1"
|
||||
__version__ = "4.2.9rc2"
|
||||
|
||||
@@ -34,6 +34,7 @@ classifiers = [
|
||||
dependencies = [
|
||||
# Core generation dependencies, pinned for reproducible builds.
|
||||
"accelerate==0.30.1",
|
||||
"bitsandbytes==0.43.3; sys_platform!='darwin'",
|
||||
"clip_anytorch==2.6.0", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||
"compel==2.0.2",
|
||||
"controlnet-aux==0.0.7",
|
||||
@@ -46,6 +47,8 @@ dependencies = [
|
||||
"opencv-python==4.9.0.80",
|
||||
"pytorch-lightning==2.1.3",
|
||||
"safetensors==0.4.3",
|
||||
# sentencepiece is required to load T5TokenizerFast (used by FLUX).
|
||||
"sentencepiece==0.2.0",
|
||||
"spandrel==0.3.4",
|
||||
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
||||
"torch==2.2.2",
|
||||
@@ -127,8 +130,6 @@ dependencies = [
|
||||
|
||||
[project.scripts]
|
||||
"invokeai-web" = "invokeai.app.run_app:run_app"
|
||||
"invokeai-import-images" = "invokeai.frontend.install.import_images:main"
|
||||
"invokeai-db-maintenance" = "invokeai.backend.util.db_maintenance:main"
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://invoke-ai.github.io/InvokeAI/"
|
||||
|
||||
63
scripts/allocate_vram.py
Normal file
63
scripts/allocate_vram.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def display_vram_usage():
|
||||
"""Displays the total, allocated, and free VRAM on the current CUDA device."""
|
||||
|
||||
assert torch.cuda.is_available(), "CUDA is not available"
|
||||
device = torch.device("cuda")
|
||||
|
||||
total_vram = torch.cuda.get_device_properties(device).total_memory
|
||||
allocated_vram = torch.cuda.memory_allocated(device)
|
||||
free_vram = total_vram - allocated_vram
|
||||
|
||||
print(f"Total VRAM: {total_vram / (1024 * 1024 * 1024):.2f} GB")
|
||||
print(f"Allocated VRAM: {allocated_vram / (1024 * 1024 * 1024):.2f} GB")
|
||||
print(f"Free VRAM: {free_vram / (1024 * 1024 * 1024):.2f} GB")
|
||||
|
||||
|
||||
def allocate_vram(target_gb: float, target_free: bool = False):
|
||||
"""Allocates VRAM on the current CUDA device. After allocation, the script will pause until the user presses Enter
|
||||
or ends the script, at which point the VRAM will be released.
|
||||
|
||||
Args:
|
||||
target_gb (float): Amount of VRAM to allocate in GB.
|
||||
target_free (bool, optional): Instead of allocating <target_gb> VRAM, enough VRAM will be allocated so the system has <target_gb> of VRAM free. For example, if <target_gb> is 2 GB, the script will allocate VRAM until the free VRAM is 2 GB.
|
||||
"""
|
||||
assert torch.cuda.is_available(), "CUDA is not available"
|
||||
device = torch.device("cuda")
|
||||
|
||||
if target_free:
|
||||
total_vram = torch.cuda.get_device_properties(device).total_memory
|
||||
free_vram = total_vram - torch.cuda.memory_allocated(device)
|
||||
target_free_bytes = target_gb * 1024 * 1024 * 1024
|
||||
bytes_to_allocate = free_vram - target_free_bytes
|
||||
|
||||
if bytes_to_allocate <= 0:
|
||||
print(f"Already at or below the target free VRAM of {target_gb} GB")
|
||||
return
|
||||
else:
|
||||
bytes_to_allocate = target_gb * 1024 * 1024 * 1024
|
||||
|
||||
# FloatTensor (4 bytes per element)
|
||||
_tensor = torch.empty(int(bytes_to_allocate / 4), dtype=torch.float, device="cuda")
|
||||
|
||||
display_vram_usage()
|
||||
|
||||
input("Press Enter to release VRAM allocation and exit...")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Allocate VRAM for testing purposes. Only works on CUDA devices.")
|
||||
parser.add_argument("target_gb", type=float, help="Amount of VRAM to allocate in GB.")
|
||||
parser.add_argument(
|
||||
"--target-free",
|
||||
action="store_true",
|
||||
help="Instead of allocating <target_gb> VRAM, enough VRAM will be allocated so the system has <target_gb> of VRAM free. For example, if <target_gb> is 2 GB, the script will allocate VRAM until the free VRAM is 2 GB.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
allocate_vram(target_gb=args.target_gb, target_free=args.target_free)
|
||||
42
tests/backend/flux/test_sampling_utils.py
Normal file
42
tests/backend/flux/test_sampling_utils.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.flux.sampling_utils import clip_timestep_schedule
|
||||
|
||||
|
||||
def float_lists_almost_equal(list1: list[float], list2: list[float], tol: float = 1e-6) -> bool:
|
||||
return all(abs(a - b) < tol for a, b in zip(list1, list2, strict=True))
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["denoising_start", "denoising_end", "expected_timesteps", "raises"],
|
||||
[
|
||||
(0.0, 1.0, [1.0, 0.75, 0.5, 0.25, 0.0], False), # Default case.
|
||||
(-0.1, 1.0, [], True), # Negative denoising_start should raise.
|
||||
(0.0, 1.1, [], True), # denoising_end > 1 should raise.
|
||||
(0.5, 0.0, [], True), # denoising_start > denoising_end should raise.
|
||||
(0.0, 0.0, [1.0], False), # denoising_end == 0.
|
||||
(1.0, 1.0, [0.0], False), # denoising_start == 1.
|
||||
(0.2, 0.8, [1.0, 0.75, 0.5, 0.25], False), # Middle of the schedule.
|
||||
# If we denoise from 0.0 to x, then from x to 1.0, it is important that denoise_end = x and denoise_start = x
|
||||
# map to the same timestep. We test this first when x is equal to a timestep, then when it falls between two
|
||||
# timesteps.
|
||||
# x = 0.5
|
||||
(0.0, 0.5, [1.0, 0.75, 0.5], False),
|
||||
(0.5, 1.0, [0.5, 0.25, 0.0], False),
|
||||
# x = 0.3
|
||||
(0.0, 0.3, [1.0, 0.75], False),
|
||||
(0.3, 1.0, [0.75, 0.5, 0.25, 0.0], False),
|
||||
],
|
||||
)
|
||||
def test_clip_timestep_schedule(
|
||||
denoising_start: float, denoising_end: float, expected_timesteps: list[float], raises: bool
|
||||
):
|
||||
timesteps = torch.linspace(1, 0, 5).tolist()
|
||||
if raises:
|
||||
with pytest.raises(AssertionError):
|
||||
clip_timestep_schedule(timesteps, denoising_start, denoising_end)
|
||||
else:
|
||||
assert float_lists_almost_equal(
|
||||
clip_timestep_schedule(timesteps, denoising_start, denoising_end), expected_timesteps
|
||||
)
|
||||
@@ -326,3 +326,80 @@ def test_select_multiple_weights(
|
||||
) -> None:
|
||||
filtered_files = filter_files(sd15_test_files, variant)
|
||||
assert set(filtered_files) == {Path(f) for f in expected_files}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def flux_schnell_test_files() -> list[Path]:
|
||||
return [
|
||||
Path(f)
|
||||
for f in [
|
||||
"FLUX.1-schnell/.gitattributes",
|
||||
"FLUX.1-schnell/README.md",
|
||||
"FLUX.1-schnell/ae.safetensors",
|
||||
"FLUX.1-schnell/flux1-schnell.safetensors",
|
||||
"FLUX.1-schnell/model_index.json",
|
||||
"FLUX.1-schnell/scheduler/scheduler_config.json",
|
||||
"FLUX.1-schnell/schnell_grid.jpeg",
|
||||
"FLUX.1-schnell/text_encoder/config.json",
|
||||
"FLUX.1-schnell/text_encoder/model.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/config.json",
|
||||
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
|
||||
"FLUX.1-schnell/tokenizer/merges.txt",
|
||||
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
|
||||
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
|
||||
"FLUX.1-schnell/tokenizer/vocab.json",
|
||||
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
|
||||
"FLUX.1-schnell/tokenizer_2/spiece.model",
|
||||
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
|
||||
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
|
||||
"FLUX.1-schnell/transformer/config.json",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
|
||||
"FLUX.1-schnell/vae/config.json",
|
||||
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
["variant", "expected_files"],
|
||||
[
|
||||
(
|
||||
ModelRepoVariant.Default,
|
||||
[
|
||||
"FLUX.1-schnell/model_index.json",
|
||||
"FLUX.1-schnell/scheduler/scheduler_config.json",
|
||||
"FLUX.1-schnell/text_encoder/config.json",
|
||||
"FLUX.1-schnell/text_encoder/model.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/config.json",
|
||||
"FLUX.1-schnell/text_encoder_2/model-00001-of-00002.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/model-00002-of-00002.safetensors",
|
||||
"FLUX.1-schnell/text_encoder_2/model.safetensors.index.json",
|
||||
"FLUX.1-schnell/tokenizer/merges.txt",
|
||||
"FLUX.1-schnell/tokenizer/special_tokens_map.json",
|
||||
"FLUX.1-schnell/tokenizer/tokenizer_config.json",
|
||||
"FLUX.1-schnell/tokenizer/vocab.json",
|
||||
"FLUX.1-schnell/tokenizer_2/special_tokens_map.json",
|
||||
"FLUX.1-schnell/tokenizer_2/spiece.model",
|
||||
"FLUX.1-schnell/tokenizer_2/tokenizer.json",
|
||||
"FLUX.1-schnell/tokenizer_2/tokenizer_config.json",
|
||||
"FLUX.1-schnell/transformer/config.json",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00001-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00002-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model-00003-of-00003.safetensors",
|
||||
"FLUX.1-schnell/transformer/diffusion_pytorch_model.safetensors.index.json",
|
||||
"FLUX.1-schnell/vae/config.json",
|
||||
"FLUX.1-schnell/vae/diffusion_pytorch_model.safetensors",
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_select_flux_schnell_files(
|
||||
flux_schnell_test_files: list[Path], variant: ModelRepoVariant, expected_files: list[str]
|
||||
) -> None:
|
||||
filtered_files = filter_files(flux_schnell_test_files, variant)
|
||||
assert set(filtered_files) == {Path(f) for f in expected_files}
|
||||
|
||||
Reference in New Issue
Block a user