mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-15 09:18:00 -05:00
Compare commits
31 Commits
v5.1.0
...
ryan/flux-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e0c2b13558 | ||
|
|
475e92e305 | ||
|
|
99a12fb604 | ||
|
|
1a12c48f6e | ||
|
|
f1c8fd16b5 | ||
|
|
f44a6a7fb2 | ||
|
|
da780c2243 | ||
|
|
742f6781d5 | ||
|
|
d2ffabf276 | ||
|
|
39e28d5e24 | ||
|
|
3f7c233f4d | ||
|
|
af75a8ea99 | ||
|
|
ddfe57e648 | ||
|
|
7e8dd9e8ed | ||
|
|
50f8d6db1b | ||
|
|
961fbe1ba4 | ||
|
|
7342d18734 | ||
|
|
554a4dc592 | ||
|
|
90e486c976 | ||
|
|
ceb5d50568 | ||
|
|
e4cca62a90 | ||
|
|
008f672e47 | ||
|
|
53ae86068c | ||
|
|
7de3c1943f | ||
|
|
a0f36dea31 | ||
|
|
69a2f8d53d | ||
|
|
3f2a61e0a6 | ||
|
|
f45b925bbf | ||
|
|
d2870a512d | ||
|
|
e1e5f970e6 | ||
|
|
0712684dc9 |
@@ -19,7 +19,8 @@ from invokeai.app.invocations.model import CLIPField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
@@ -82,9 +83,10 @@ class CompelInvocation(BaseInvocation):
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora_text_encoder(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
LoraPatcher.apply_lora_patches(
|
||||
model=text_encoder,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_te_",
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
@@ -177,9 +179,9 @@ class SDXLPromptInvocationBase:
|
||||
# apply all patches while the model is on the target device
|
||||
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
|
||||
tokenizer_info as tokenizer,
|
||||
ModelPatcher.apply_lora(
|
||||
LoraPatcher.apply_lora_patches(
|
||||
text_encoder,
|
||||
loras=_lora_loader(),
|
||||
patches=_lora_loader(),
|
||||
prefix=lora_prefix,
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
|
||||
@@ -36,7 +36,8 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState
|
||||
@@ -979,9 +980,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
|
||||
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_unet(
|
||||
unet,
|
||||
loras=_lora_loader(),
|
||||
LoraPatcher.apply_lora_patches(
|
||||
model=unet,
|
||||
patches=_lora_loader(),
|
||||
prefix="lora_unet_",
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
):
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Callable, Optional
|
||||
from typing import Callable, Iterator, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as tv_transforms
|
||||
@@ -29,6 +29,8 @@ from invokeai.backend.flux.sampling_utils import (
|
||||
pack,
|
||||
unpack,
|
||||
)
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
@@ -187,7 +189,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
noise=noise,
|
||||
)
|
||||
|
||||
with transformer_info as transformer:
|
||||
with (
|
||||
transformer_info.model_on_device() as (cached_weights, transformer),
|
||||
# Apply the LoRA after transformer has been moved to its target device for faster patching.
|
||||
LoraPatcher.apply_lora_patches(
|
||||
model=transformer,
|
||||
patches=self._lora_iterator(context),
|
||||
prefix="",
|
||||
cached_weights=cached_weights,
|
||||
),
|
||||
):
|
||||
assert isinstance(transformer, Flux)
|
||||
|
||||
x = denoise(
|
||||
@@ -241,6 +252,13 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
# `latents`.
|
||||
return mask.expand_as(latents)
|
||||
|
||||
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.transformer.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
|
||||
|
||||
53
invokeai/app/invocations/flux_lora_loader.py
Normal file
53
invokeai/app/invocations/flux_lora_loader.py
Normal file
@@ -0,0 +1,53 @@
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.invocations.model import LoRAField, ModelIdentifierField, TransformerField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("flux_lora_loader_output")
|
||||
class FluxLoRALoaderOutput(BaseInvocationOutput):
|
||||
"""FLUX LoRA Loader Output"""
|
||||
|
||||
transformer: TransformerField = OutputField(
|
||||
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_lora_loader",
|
||||
title="FLUX LoRA",
|
||||
tags=["lora", "model", "flux"],
|
||||
category="model",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxLoRALoaderInvocation(BaseInvocation):
|
||||
"""Apply a LoRA model to a FLUX transformer."""
|
||||
|
||||
lora: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
|
||||
)
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
transformer: TransformerField = InputField(
|
||||
description=FieldDescriptions.transformer,
|
||||
input=Input.Connection,
|
||||
title="FLUX Transformer",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(lora_key):
|
||||
raise ValueError(f"Unknown lora: {lora_key}!")
|
||||
|
||||
if any(lora.lora.key == lora_key for lora in self.transformer.loras):
|
||||
raise Exception(f'LoRA "{lora_key}" already applied to transformer.')
|
||||
|
||||
transformer = self.transformer.model_copy(deep=True)
|
||||
transformer.loras.append(
|
||||
LoRAField(
|
||||
lora=self.lora,
|
||||
weight=self.weight,
|
||||
)
|
||||
)
|
||||
|
||||
return FluxLoRALoaderOutput(transformer=transformer)
|
||||
@@ -69,6 +69,7 @@ class CLIPField(BaseModel):
|
||||
|
||||
class TransformerField(BaseModel):
|
||||
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
|
||||
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
|
||||
|
||||
|
||||
class T5EncoderField(BaseModel):
|
||||
@@ -202,7 +203,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
|
||||
assert isinstance(transformer_config, CheckpointConfigBase)
|
||||
|
||||
return FluxModelLoaderOutput(
|
||||
transformer=TransformerField(transformer=transformer),
|
||||
transformer=TransformerField(transformer=transformer, loras=[]),
|
||||
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
|
||||
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
|
||||
vae=VAEField(vae=vae),
|
||||
|
||||
@@ -22,8 +22,8 @@ from invokeai.app.invocations.fields import (
|
||||
from invokeai.app.invocations.model import UNetField
|
||||
from invokeai.app.invocations.primitives import LatentsOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
|
||||
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
|
||||
MultiDiffusionPipeline,
|
||||
@@ -204,7 +204,11 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
unet_info as unet,
|
||||
LoraPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
|
||||
):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
|
||||
@@ -1,672 +0,0 @@
|
||||
# Copyright (c) 2024 The InvokeAI Development team
|
||||
"""LoRA model support."""
|
||||
|
||||
import bisect
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from typing_extensions import Self
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
# bias: Optional[torch.Tensor]
|
||||
# layer_key: str
|
||||
|
||||
# @property
|
||||
# def scale(self):
|
||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
if "alpha" in values:
|
||||
self.alpha = values["alpha"].item()
|
||||
else:
|
||||
self.alpha = None
|
||||
|
||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
||||
values["bias_indices"],
|
||||
values["bias_values"],
|
||||
tuple(values["bias_size"]),
|
||||
)
|
||||
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
self.rank = None # set in layer implementation
|
||||
self.layer_key = layer_key
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
return self.bias
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
params = {"weight": self.get_weight(orig_module.weight)}
|
||||
bias = self.get_bias(orig_module.bias)
|
||||
if bias is not None:
|
||||
params["bias"] = bias
|
||||
return params
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for val in [self.bias]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
|
||||
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
|
||||
"""Log a warning if values contains unhandled keys."""
|
||||
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
|
||||
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
|
||||
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
|
||||
unknown_keys = set(values.keys()) - all_known_keys
|
||||
if unknown_keys:
|
||||
logger.warning(
|
||||
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
|
||||
)
|
||||
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
class LoRALayer(LoRALayerBase):
|
||||
# up: torch.Tensor
|
||||
# mid: Optional[torch.Tensor]
|
||||
# down: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.up = values["lora_up.weight"]
|
||||
self.down = values["lora_down.weight"]
|
||||
self.mid = values.get("lora_mid.weight", None)
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lora_up.weight",
|
||||
"lora_down.weight",
|
||||
"lora_mid.weight",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||
else:
|
||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.up, self.mid, self.down]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
# w1_a: torch.Tensor
|
||||
# w1_b: torch.Tensor
|
||||
# w2_a: torch.Tensor
|
||||
# w2_b: torch.Tensor
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
self.w1_b = values["hada_w1_b"]
|
||||
self.w2_a = values["hada_w2_a"]
|
||||
self.w2_b = values["hada_w2_b"]
|
||||
self.t1 = values.get("hada_t1", None)
|
||||
self.t2 = values.get("hada_t2", None)
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"hada_w1_a",
|
||||
"hada_w1_b",
|
||||
"hada_w2_a",
|
||||
"hada_w2_b",
|
||||
"hada_t1",
|
||||
"hada_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.t1 is None:
|
||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
else:
|
||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||
weight = rebuild1 * rebuild2
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
# w1: Optional[torch.Tensor] = None
|
||||
# w1_a: Optional[torch.Tensor] = None
|
||||
# w1_b: Optional[torch.Tensor] = None
|
||||
# w2: Optional[torch.Tensor] = None
|
||||
# w2_a: Optional[torch.Tensor] = None
|
||||
# w2_b: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1 = values.get("lokr_w1", None)
|
||||
if self.w1 is None:
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
else:
|
||||
self.w1_b = None
|
||||
self.w1_a = None
|
||||
|
||||
self.w2 = values.get("lokr_w2", None)
|
||||
if self.w2 is None:
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
else:
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
|
||||
self.t2 = values.get("lokr_t2", None)
|
||||
|
||||
if self.w1_b is not None:
|
||||
self.rank = self.w1_b.shape[0]
|
||||
elif self.w2_b is not None:
|
||||
self.rank = self.w2_b.shape[0]
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lokr_w1",
|
||||
"lokr_w1_a",
|
||||
"lokr_w1_b",
|
||||
"lokr_w2",
|
||||
"lokr_w2_a",
|
||||
"lokr_w2_b",
|
||||
"lokr_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
w1: Optional[torch.Tensor] = self.w1
|
||||
if w1 is None:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
w1 = self.w1_a @ self.w1_b
|
||||
|
||||
w2 = self.w2
|
||||
if w2 is None:
|
||||
if self.t2 is None:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
w2 = self.w2_a @ self.w2_b
|
||||
else:
|
||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
assert w1 is not None
|
||||
assert w2 is not None
|
||||
weight = torch.kron(w1, w2)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
if self.w1 is not None:
|
||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class FullLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["diff"]
|
||||
self.bias = values.get("diff_b", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"diff", "diff_b"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class IA3Layer(LoRALayerBase):
|
||||
# weight: torch.Tensor
|
||||
# on_input: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["weight"]
|
||||
self.on_input = values["on_input"]
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"weight", "on_input"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
weight = self.weight
|
||||
if not self.on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
assert orig_weight is not None
|
||||
return orig_weight * weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
model_size += self.on_input.nelement() * self.on_input.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
class NormLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.weight = values["w_norm"]
|
||||
self.bias = values.get("b_norm", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"w_norm", "b_norm"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
|
||||
|
||||
|
||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
_name: str
|
||||
layers: Dict[str, AnyLoRALayer]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
layers: Dict[str, AnyLoRALayer],
|
||||
):
|
||||
self._name = name
|
||||
self.layers = layers
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._name
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
# TODO: try revert if exception?
|
||||
for _key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for _, layer in self.layers.items():
|
||||
model_size += layer.calc_size()
|
||||
return model_size
|
||||
|
||||
@classmethod
|
||||
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
) -> Self:
|
||||
device = device or torch.device("cpu")
|
||||
dtype = dtype or torch.float32
|
||||
|
||||
if isinstance(file_path, str):
|
||||
file_path = Path(file_path)
|
||||
|
||||
model = cls(
|
||||
name=file_path.stem,
|
||||
layers={},
|
||||
)
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
sd = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
sd = torch.load(file_path, map_location="cpu")
|
||||
|
||||
state_dict = cls._group_state(sd)
|
||||
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
|
||||
for layer_key, values in state_dict.items():
|
||||
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
||||
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
||||
|
||||
# lora and locon
|
||||
if "lora_up.weight" in values:
|
||||
layer: AnyLoRALayer = LoRALayer(layer_key, values)
|
||||
|
||||
# loha
|
||||
elif "hada_w1_a" in values:
|
||||
layer = LoHALayer(layer_key, values)
|
||||
|
||||
# lokr
|
||||
elif "lokr_w1" in values or "lokr_w1_a" in values:
|
||||
layer = LoKRLayer(layer_key, values)
|
||||
|
||||
# diff
|
||||
elif "diff" in values:
|
||||
layer = FullLayer(layer_key, values)
|
||||
|
||||
# ia3
|
||||
elif "on_input" in values:
|
||||
layer = IA3Layer(layer_key, values)
|
||||
|
||||
# norms
|
||||
elif "w_norm" in values:
|
||||
layer = NormLayer(layer_key, values)
|
||||
|
||||
else:
|
||||
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
|
||||
raise Exception("Unknown lora format!")
|
||||
|
||||
# lower memory consumption by removing already parsed layer values
|
||||
state_dict[layer_key].clear()
|
||||
|
||||
layer.to(device=device, dtype=dtype)
|
||||
model.layers[layer_key] = layer
|
||||
|
||||
return model
|
||||
|
||||
@staticmethod
|
||||
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
||||
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
||||
|
||||
for key, value in state_dict.items():
|
||||
stem, leaf = key.split(".", 1)
|
||||
if stem not in state_dict_groupped:
|
||||
state_dict_groupped[stem] = {}
|
||||
state_dict_groupped[stem][leaf] = value
|
||||
|
||||
return state_dict_groupped
|
||||
|
||||
|
||||
# code from
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||
}
|
||||
0
invokeai/backend/lora/__init__.py
Normal file
0
invokeai/backend/lora/__init__.py
Normal file
0
invokeai/backend/lora/conversions/__init__.py
Normal file
0
invokeai/backend/lora/conversions/__init__.py
Normal file
@@ -0,0 +1,210 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Tensor]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the Diffusers FLUX LoRA format.
|
||||
|
||||
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
# First, check that all keys end in "lora_A.weight" or "lora_B.weight" (i.e. are in PEFT format).
|
||||
all_keys_in_peft_format = all(k.endswith(("lora_A.weight", "lora_B.weight")) for k in state_dict.keys())
|
||||
|
||||
# Next, check that this is likely a FLUX model by spot-checking a few keys.
|
||||
expected_keys = [
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
|
||||
]
|
||||
all_expected_keys_present = all(k in state_dict for k in expected_keys)
|
||||
|
||||
return all_keys_in_peft_format and all_expected_keys_present
|
||||
|
||||
|
||||
# TODO(ryand): What alpha should we use? 1.0? Rank of the LoRA?
|
||||
def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor], alpha: float = 1.0) -> LoRAModelRaw: # pyright: ignore[reportRedeclaration] (state_dict is intentionally re-declared)
|
||||
"""Loads a state dict in the Diffusers FLUX LoRA format into a LoRAModelRaw object.
|
||||
|
||||
This function is based on:
|
||||
https://github.com/huggingface/diffusers/blob/55ac421f7bb12fd00ccbef727be4dc2f3f920abb/scripts/convert_flux_to_diffusers.py
|
||||
"""
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_by_layer(state_dict)
|
||||
|
||||
# Remove the "transformer." prefix from all keys.
|
||||
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
|
||||
|
||||
# Constants for FLUX.1
|
||||
num_double_layers = 19
|
||||
num_single_layers = 38
|
||||
# inner_dim = 3072
|
||||
# mlp_ratio = 4.0
|
||||
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
|
||||
def add_lora_layer_if_present(src_key: str, dst_key: str) -> None:
|
||||
if src_key in grouped_state_dict:
|
||||
src_layer_dict = grouped_state_dict.pop(src_key)
|
||||
layers[dst_key] = LoRALayer(
|
||||
values={
|
||||
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
|
||||
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
|
||||
"alpha": torch.tensor(alpha),
|
||||
},
|
||||
)
|
||||
assert len(src_layer_dict) == 0
|
||||
|
||||
def add_qkv_lora_layer_if_present(src_keys: list[str], dst_qkv_key: str) -> None:
|
||||
"""Handle the Q, K, V matrices for a transformer block. We need special handling because the diffusers format
|
||||
stores them in separate matrices, whereas the BFL format used internally by InvokeAI concatenates them.
|
||||
"""
|
||||
# We expect that either all src keys are present or none of them are. Verify this.
|
||||
keys_present = [key in grouped_state_dict for key in src_keys]
|
||||
assert all(keys_present) or not any(keys_present)
|
||||
|
||||
# If none of the keys are present, return early.
|
||||
if not any(keys_present):
|
||||
return
|
||||
|
||||
src_layer_dicts = [grouped_state_dict.pop(key) for key in src_keys]
|
||||
sub_layers: list[LoRALayerBase] = []
|
||||
for src_layer_dict in src_layer_dicts:
|
||||
sub_layers.append(
|
||||
LoRALayer(
|
||||
values={
|
||||
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
|
||||
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
|
||||
"alpha": torch.tensor(alpha),
|
||||
},
|
||||
)
|
||||
)
|
||||
assert len(src_layer_dict) == 0
|
||||
layers[dst_qkv_key] = ConcatenatedLoRALayer(lora_layers=sub_layers, concat_axis=0)
|
||||
|
||||
# time_text_embed.timestep_embedder -> time_in.
|
||||
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_1", "time_in.in_layer")
|
||||
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_2", "time_in.out_layer")
|
||||
|
||||
# time_text_embed.text_embedder -> vector_in.
|
||||
add_lora_layer_if_present("time_text_embed.text_embedder.linear_1", "vector_in.in_layer")
|
||||
add_lora_layer_if_present("time_text_embed.text_embedder.linear_2", "vector_in.out_layer")
|
||||
|
||||
# time_text_embed.guidance_embedder -> guidance_in.
|
||||
add_lora_layer_if_present("time_text_embed.guidance_embedder.linear_1", "guidance_in")
|
||||
add_lora_layer_if_present("time_text_embed.guidance_embedder.linear_2", "guidance_in")
|
||||
|
||||
# context_embedder -> txt_in.
|
||||
add_lora_layer_if_present("context_embedder", "txt_in")
|
||||
|
||||
# x_embedder -> img_in.
|
||||
add_lora_layer_if_present("x_embedder", "img_in")
|
||||
|
||||
# Double transformer blocks.
|
||||
for i in range(num_double_layers):
|
||||
# norms.
|
||||
add_lora_layer_if_present(f"transformer_blocks.{i}.norm1.linear", f"double_blocks.{i}.img_mod.lin")
|
||||
add_lora_layer_if_present(f"transformer_blocks.{i}.norm1_context.linear", f"double_blocks.{i}.txt_mod.lin")
|
||||
|
||||
# Q, K, V
|
||||
add_qkv_lora_layer_if_present(
|
||||
[
|
||||
f"transformer_blocks.{i}.attn.to_q",
|
||||
f"transformer_blocks.{i}.attn.to_k",
|
||||
f"transformer_blocks.{i}.attn.to_v",
|
||||
],
|
||||
f"double_blocks.{i}.img_attn.qkv",
|
||||
)
|
||||
add_qkv_lora_layer_if_present(
|
||||
[
|
||||
f"transformer_blocks.{i}.attn.add_q_proj",
|
||||
f"transformer_blocks.{i}.attn.add_k_proj",
|
||||
f"transformer_blocks.{i}.attn.add_v_proj",
|
||||
],
|
||||
f"double_blocks.{i}.txt_attn.qkv",
|
||||
)
|
||||
|
||||
# ff img_mlp
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.ff.net.0.proj",
|
||||
f"double_blocks.{i}.img_mlp.0",
|
||||
)
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.ff.net.2",
|
||||
f"double_blocks.{i}.img_mlp.2",
|
||||
)
|
||||
|
||||
# ff txt_mlp
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.ff_context.net.0.proj",
|
||||
f"double_blocks.{i}.txt_mlp.0",
|
||||
)
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.ff_context.net.2",
|
||||
f"double_blocks.{i}.txt_mlp.2",
|
||||
)
|
||||
|
||||
# output projections.
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.attn.to_out.0",
|
||||
f"double_blocks.{i}.img_attn.proj",
|
||||
)
|
||||
add_lora_layer_if_present(
|
||||
f"transformer_blocks.{i}.attn.to_add_out",
|
||||
f"double_blocks.{i}.txt_attn.proj",
|
||||
)
|
||||
|
||||
# Single transformer blocks.
|
||||
for i in range(num_single_layers):
|
||||
# norms
|
||||
add_lora_layer_if_present(
|
||||
f"single_transformer_blocks.{i}.norm.linear",
|
||||
f"single_blocks.{i}.modulation.lin",
|
||||
)
|
||||
|
||||
# Q, K, V, mlp
|
||||
add_qkv_lora_layer_if_present(
|
||||
[
|
||||
f"single_transformer_blocks.{i}.attn.to_q",
|
||||
f"single_transformer_blocks.{i}.attn.to_k",
|
||||
f"single_transformer_blocks.{i}.attn.to_v",
|
||||
f"single_transformer_blocks.{i}.proj_mlp",
|
||||
],
|
||||
f"single_blocks.{i}.linear1",
|
||||
)
|
||||
|
||||
# Output projections.
|
||||
add_lora_layer_if_present(
|
||||
f"single_transformer_blocks.{i}.proj_out",
|
||||
f"single_blocks.{i}.linear2",
|
||||
)
|
||||
|
||||
# Final layer.
|
||||
add_lora_layer_if_present("proj_out", "final_layer.linear")
|
||||
|
||||
# Assert that all keys were processed.
|
||||
assert len(grouped_state_dict) == 0
|
||||
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
|
||||
def _group_by_layer(state_dict: Dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
|
||||
"""Groups the keys in the state dict by layer."""
|
||||
layer_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key in state_dict:
|
||||
# Split the 'lora_A.weight' or 'lora_B.weight' suffix from the layer name.
|
||||
parts = key.rsplit(".", maxsplit=2)
|
||||
layer_name = parts[0]
|
||||
key_name = ".".join(parts[1:])
|
||||
if layer_name not in layer_dict:
|
||||
layer_dict[layer_name] = {}
|
||||
layer_dict[layer_name][key_name] = state_dict[key]
|
||||
return layer_dict
|
||||
@@ -0,0 +1,80 @@
|
||||
import re
|
||||
from typing import Any, Dict, TypeVar
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
|
||||
# A regex pattern that matches all of the keys in the Kohya FLUX LoRA format.
|
||||
# Example keys:
|
||||
# lora_unet_double_blocks_0_img_attn_proj.alpha
|
||||
# lora_unet_double_blocks_0_img_attn_proj.lora_down.weight
|
||||
# lora_unet_double_blocks_0_img_attn_proj.lora_up.weight
|
||||
FLUX_KOHYA_KEY_REGEX = (
|
||||
r"lora_unet_(\w+_blocks)_(\d+)_(img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear1|linear2|modulation)_?(.*)"
|
||||
)
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> bool:
|
||||
"""Checks if the provided state dict is likely in the Kohya FLUX LoRA format.
|
||||
|
||||
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
|
||||
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
|
||||
"""
|
||||
return all(re.match(FLUX_KOHYA_KEY_REGEX, k) for k in state_dict.keys())
|
||||
|
||||
|
||||
def lora_model_from_flux_kohya_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
# Group keys by layer.
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
|
||||
for key, value in state_dict.items():
|
||||
layer_name, param_name = key.split(".", 1)
|
||||
if layer_name not in grouped_state_dict:
|
||||
grouped_state_dict[layer_name] = {}
|
||||
grouped_state_dict[layer_name][param_name] = value
|
||||
|
||||
# Convert the state dict to the InvokeAI format.
|
||||
grouped_state_dict = convert_flux_kohya_state_dict_to_invoke_format(grouped_state_dict)
|
||||
|
||||
# Create LoRA layers.
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, layer_state_dict in grouped_state_dict.items():
|
||||
layers[layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
|
||||
# Create and return the LoRAModelRaw.
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def convert_flux_kohya_state_dict_to_invoke_format(state_dict: Dict[str, T]) -> Dict[str, T]:
|
||||
"""Converts a state dict from the Kohya FLUX LoRA format to LoRA weight format used internally by InvokeAI.
|
||||
|
||||
Example key conversions:
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img_attn.qkv"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
|
||||
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
|
||||
"""
|
||||
|
||||
def replace_func(match: re.Match[str]) -> str:
|
||||
s = f"{match.group(1)}.{match.group(2)}.{match.group(3)}"
|
||||
if match.group(4):
|
||||
s += f".{match.group(4)}"
|
||||
return s
|
||||
|
||||
converted_dict: dict[str, T] = {}
|
||||
for k, v in state_dict.items():
|
||||
match = re.match(FLUX_KOHYA_KEY_REGEX, k)
|
||||
if match:
|
||||
new_key = re.sub(FLUX_KOHYA_KEY_REGEX, replace_func, k)
|
||||
converted_dict[new_key] = v
|
||||
else:
|
||||
raise ValueError(f"Key '{k}' does not match the expected pattern for FLUX LoRA weights.")
|
||||
|
||||
return converted_dict
|
||||
@@ -0,0 +1,29 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
|
||||
|
||||
def lora_model_from_sd_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
|
||||
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_state(state_dict)
|
||||
|
||||
layers: dict[str, AnyLoRALayer] = {}
|
||||
for layer_key, values in grouped_state_dict.items():
|
||||
layers[layer_key] = any_lora_layer_from_state_dict(values)
|
||||
|
||||
return LoRAModelRaw(layers=layers)
|
||||
|
||||
|
||||
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
||||
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
||||
|
||||
for key, value in state_dict.items():
|
||||
stem, leaf = key.split(".", 1)
|
||||
if stem not in state_dict_groupped:
|
||||
state_dict_groupped[stem] = {}
|
||||
state_dict_groupped[stem][leaf] = value
|
||||
|
||||
return state_dict_groupped
|
||||
154
invokeai/backend/lora/conversions/sdxl_lora_conversion_utils.py
Normal file
154
invokeai/backend/lora/conversions/sdxl_lora_conversion_utils.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import bisect
|
||||
from typing import Dict, List, Tuple, TypeVar
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def convert_sdxl_keys_to_diffusers_format(state_dict: Dict[str, T]) -> dict[str, T]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict: dict[str, T] = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# code from
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map: list[tuple[str, str]] = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in _make_sdxl_unet_conversion_map()
|
||||
}
|
||||
0
invokeai/backend/lora/layers/__init__.py
Normal file
0
invokeai/backend/lora/layers/__init__.py
Normal file
11
invokeai/backend/lora/layers/any_lora_layer.py
Normal file
11
invokeai/backend/lora/layers/any_lora_layer.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from typing import Union
|
||||
|
||||
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
|
||||
from invokeai.backend.lora.layers.full_layer import FullLayer
|
||||
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
|
||||
from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer]
|
||||
46
invokeai/backend/lora/layers/concatenated_lora_layer.py
Normal file
46
invokeai/backend/lora/layers/concatenated_lora_layer.py
Normal file
@@ -0,0 +1,46 @@
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class ConcatenatedLoRALayer(LoRALayerBase):
|
||||
"""A LoRA layer that is composed of multiple LoRA layers concatenated along a specified axis.
|
||||
|
||||
This class was created to handle a special case with FLUX LoRA models. In the BFL FLUX model format, the attention
|
||||
Q, K, V matrices are concatenated along the first dimension. In the diffusers LoRA format, the Q, K, V matrices are
|
||||
stored as separate tensors. This class enables diffusers LoRA layers to be used in BFL FLUX models.
|
||||
"""
|
||||
|
||||
def __init__(self, lora_layers: List[LoRALayerBase], concat_axis: int = 0):
|
||||
# Note: We pass values={} to the base class, because the values are handled by the individual LoRA layers.
|
||||
super().__init__(values={})
|
||||
|
||||
self._lora_layers = lora_layers
|
||||
self._concat_axis = concat_axis
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(ryand): Currently, we pass orig_weight=None to the sub-layers. If we want to support sub-layers that
|
||||
# require this value, we will need to implement chunking of the original weight tensor here.
|
||||
layer_weights = [lora_layer.get_weight(None) for lora_layer in self._lora_layers] # pyright: ignore[reportArgumentType]
|
||||
return torch.cat(layer_weights, dim=self._concat_axis)
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
# TODO(ryand): Currently, we pass orig_bias=None to the sub-layers. If we want to support sub-layers that
|
||||
# require this value, we will need to implement chunking of the original bias tensor here.
|
||||
layer_biases = [lora_layer.get_bias(None) for lora_layer in self._lora_layers] # pyright: ignore[reportArgumentType]
|
||||
layer_bias_is_none = [layer_bias is None for layer_bias in layer_biases]
|
||||
if any(layer_bias_is_none):
|
||||
assert all(layer_bias_is_none)
|
||||
return None
|
||||
|
||||
# Ignore the type error, because we have just verified that all layer biases are non-None.
|
||||
return torch.cat(layer_biases, dim=self._concat_axis)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
return sum(lora_layer.calc_size() for lora_layer in self._lora_layers)
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
for lora_layer in self._lora_layers:
|
||||
lora_layer.to(device=device, dtype=dtype)
|
||||
36
invokeai/backend/lora/layers/full_layer.py
Normal file
36
invokeai/backend/lora/layers/full_layer.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class FullLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(values)
|
||||
|
||||
self.weight = values["diff"]
|
||||
self.bias = values.get("diff_b", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"diff", "diff_b"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
41
invokeai/backend/lora/layers/ia3_layer.py
Normal file
41
invokeai/backend/lora/layers/ia3_layer.py
Normal file
@@ -0,0 +1,41 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class IA3Layer(LoRALayerBase):
|
||||
# weight: torch.Tensor
|
||||
# on_input: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(values)
|
||||
|
||||
self.weight = values["weight"]
|
||||
self.on_input = values["on_input"]
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"weight", "on_input"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
weight = self.weight
|
||||
if not self.on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
assert orig_weight is not None
|
||||
return orig_weight * weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
model_size += self.on_input.nelement() * self.on_input.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
68
invokeai/backend/lora/layers/loha_layer.py
Normal file
68
invokeai/backend/lora/layers/loha_layer.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class LoHALayer(LoRALayerBase):
|
||||
# w1_a: torch.Tensor
|
||||
# w1_b: torch.Tensor
|
||||
# w2_a: torch.Tensor
|
||||
# w2_b: torch.Tensor
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(self, values: Dict[str, torch.Tensor]):
|
||||
super().__init__(values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
self.w1_b = values["hada_w1_b"]
|
||||
self.w2_a = values["hada_w2_a"]
|
||||
self.w2_b = values["hada_w2_b"]
|
||||
self.t1 = values.get("hada_t1", None)
|
||||
self.t2 = values.get("hada_t2", None)
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"hada_w1_a",
|
||||
"hada_w1_b",
|
||||
"hada_w2_a",
|
||||
"hada_w2_b",
|
||||
"hada_t1",
|
||||
"hada_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.t1 is None:
|
||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
else:
|
||||
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
||||
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
||||
weight = rebuild1 * rebuild2
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
if self.t1 is not None:
|
||||
self.t1 = self.t1.to(device=device, dtype=dtype)
|
||||
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
113
invokeai/backend/lora/layers/lokr_layer.py
Normal file
113
invokeai/backend/lora/layers/lokr_layer.py
Normal file
@@ -0,0 +1,113 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class LoKRLayer(LoRALayerBase):
|
||||
# w1: Optional[torch.Tensor] = None
|
||||
# w1_a: Optional[torch.Tensor] = None
|
||||
# w1_b: Optional[torch.Tensor] = None
|
||||
# w2: Optional[torch.Tensor] = None
|
||||
# w2_a: Optional[torch.Tensor] = None
|
||||
# w2_b: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(values)
|
||||
|
||||
self.w1 = values.get("lokr_w1", None)
|
||||
if self.w1 is None:
|
||||
self.w1_a = values["lokr_w1_a"]
|
||||
self.w1_b = values["lokr_w1_b"]
|
||||
else:
|
||||
self.w1_b = None
|
||||
self.w1_a = None
|
||||
|
||||
self.w2 = values.get("lokr_w2", None)
|
||||
if self.w2 is None:
|
||||
self.w2_a = values["lokr_w2_a"]
|
||||
self.w2_b = values["lokr_w2_b"]
|
||||
else:
|
||||
self.w2_a = None
|
||||
self.w2_b = None
|
||||
|
||||
self.t2 = values.get("lokr_t2", None)
|
||||
|
||||
if self.w1_b is not None:
|
||||
self.rank = self.w1_b.shape[0]
|
||||
elif self.w2_b is not None:
|
||||
self.rank = self.w2_b.shape[0]
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lokr_w1",
|
||||
"lokr_w1_a",
|
||||
"lokr_w1_b",
|
||||
"lokr_w2",
|
||||
"lokr_w2_a",
|
||||
"lokr_w2_b",
|
||||
"lokr_t2",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
w1: Optional[torch.Tensor] = self.w1
|
||||
if w1 is None:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
w1 = self.w1_a @ self.w1_b
|
||||
|
||||
w2 = self.w2
|
||||
if w2 is None:
|
||||
if self.t2 is None:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
w2 = self.w2_a @ self.w2_b
|
||||
else:
|
||||
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
assert w1 is not None
|
||||
assert w2 is not None
|
||||
weight = torch.kron(w1, w2)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
if self.w1 is not None:
|
||||
self.w1 = self.w1.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w1_a is not None
|
||||
assert self.w1_b is not None
|
||||
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
||||
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.w2 is not None:
|
||||
self.w2 = self.w2.to(device=device, dtype=dtype)
|
||||
else:
|
||||
assert self.w2_a is not None
|
||||
assert self.w2_b is not None
|
||||
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
||||
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
||||
|
||||
if self.t2 is not None:
|
||||
self.t2 = self.t2.to(device=device, dtype=dtype)
|
||||
58
invokeai/backend/lora/layers/lora_layer.py
Normal file
58
invokeai/backend/lora/layers/lora_layer.py
Normal file
@@ -0,0 +1,58 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
# TODO: find and debug lora/locon with bias
|
||||
class LoRALayer(LoRALayerBase):
|
||||
# up: torch.Tensor
|
||||
# mid: Optional[torch.Tensor]
|
||||
# down: torch.Tensor
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(values)
|
||||
|
||||
self.up = values["lora_up.weight"]
|
||||
self.down = values["lora_down.weight"]
|
||||
self.mid = values.get("lora_mid.weight", None)
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
self.check_keys(
|
||||
values,
|
||||
{
|
||||
"lora_up.weight",
|
||||
"lora_down.weight",
|
||||
"lora_mid.weight",
|
||||
},
|
||||
)
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
||||
else:
|
||||
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
||||
|
||||
return weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
for val in [self.up, self.mid, self.down]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.up = self.up.to(device=device, dtype=dtype)
|
||||
self.down = self.down.to(device=device, dtype=dtype)
|
||||
|
||||
if self.mid is not None:
|
||||
self.mid = self.mid.to(device=device, dtype=dtype)
|
||||
71
invokeai/backend/lora/layers/lora_layer_base.py
Normal file
71
invokeai/backend/lora/layers/lora_layer_base.py
Normal file
@@ -0,0 +1,71 @@
|
||||
from typing import Dict, Optional, Set
|
||||
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
# @property
|
||||
# def scale(self):
|
||||
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
if "alpha" in values:
|
||||
self.alpha = values["alpha"].item()
|
||||
else:
|
||||
self.alpha = None
|
||||
|
||||
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
||||
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
||||
values["bias_indices"],
|
||||
values["bias_values"],
|
||||
tuple(values["bias_size"]),
|
||||
)
|
||||
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
self.rank = None # set in layer implementation
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
||||
return self.bias
|
||||
|
||||
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
||||
params = {"weight": self.get_weight(orig_module.weight)}
|
||||
bias = self.get_bias(orig_module.bias)
|
||||
if bias is not None:
|
||||
params["bias"] = bias
|
||||
return params
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for val in [self.bias]:
|
||||
if val is not None:
|
||||
model_size += val.nelement() * val.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
if self.bias is not None:
|
||||
self.bias = self.bias.to(device=device, dtype=dtype)
|
||||
|
||||
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
|
||||
"""Log a warning if values contains unhandled keys."""
|
||||
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
|
||||
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
|
||||
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
|
||||
unknown_keys = set(values.keys()) - all_known_keys
|
||||
if unknown_keys:
|
||||
logger.warning(
|
||||
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
|
||||
)
|
||||
36
invokeai/backend/lora/layers/norm_layer.py
Normal file
36
invokeai/backend/lora/layers/norm_layer.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
|
||||
|
||||
|
||||
class NormLayer(LoRALayerBase):
|
||||
# bias handled in LoRALayerBase(calc_size, to)
|
||||
# weight: torch.Tensor
|
||||
# bias: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(values)
|
||||
|
||||
self.weight = values["w_norm"]
|
||||
self.bias = values.get("b_norm", None)
|
||||
|
||||
self.rank = None # unscaled
|
||||
self.check_keys(values, {"w_norm", "b_norm"})
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = super().calc_size()
|
||||
model_size += self.weight.nelement() * self.weight.element_size()
|
||||
return model_size
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
33
invokeai/backend/lora/layers/utils.py
Normal file
33
invokeai/backend/lora/layers/utils.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.lora.layers.full_layer import FullLayer
|
||||
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
|
||||
from invokeai.backend.lora.layers.loha_layer import LoHALayer
|
||||
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.layers.norm_layer import NormLayer
|
||||
|
||||
|
||||
def any_lora_layer_from_state_dict(state_dict: Dict[str, torch.Tensor]) -> AnyLoRALayer:
|
||||
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
||||
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
||||
|
||||
if "lora_up.weight" in state_dict:
|
||||
# LoRA a.k.a LoCon
|
||||
return LoRALayer(state_dict)
|
||||
elif "hada_w1_a" in state_dict:
|
||||
return LoHALayer(state_dict)
|
||||
elif "lokr_w1" in state_dict or "lokr_w1_a" in state_dict:
|
||||
return LoKRLayer(state_dict)
|
||||
elif "diff" in state_dict:
|
||||
# Full a.k.a Diff
|
||||
return FullLayer(state_dict)
|
||||
elif "on_input" in state_dict:
|
||||
return IA3Layer(state_dict)
|
||||
elif "w_norm" in state_dict:
|
||||
return NormLayer(state_dict)
|
||||
else:
|
||||
raise ValueError(f"Unsupported lora format: {state_dict.keys()}")
|
||||
22
invokeai/backend/lora/lora_model_raw.py
Normal file
22
invokeai/backend/lora/lora_model_raw.py
Normal file
@@ -0,0 +1,22 @@
|
||||
# Copyright (c) 2024 The InvokeAI Development team
|
||||
from typing import Dict, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
|
||||
from invokeai.backend.raw_model import RawModel
|
||||
|
||||
|
||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
||||
def __init__(self, layers: Dict[str, AnyLoRALayer]):
|
||||
self.layers = layers
|
||||
|
||||
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
||||
for _key, layer in self.layers.items():
|
||||
layer.to(device=device, dtype=dtype)
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for _, layer in self.layers.items():
|
||||
model_size += layer.calc_size()
|
||||
return model_size
|
||||
148
invokeai/backend/lora/lora_patcher.py
Normal file
148
invokeai/backend/lora/lora_patcher.py
Normal file
@@ -0,0 +1,148 @@
|
||||
from contextlib import contextmanager
|
||||
from typing import Dict, Iterable, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
class LoraPatcher:
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@contextmanager
|
||||
def apply_lora_patches(
|
||||
model: torch.nn.Module,
|
||||
patches: Iterable[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
):
|
||||
"""Apply one or more LoRA patches to a model within a context manager.
|
||||
|
||||
:param model: The model to patch.
|
||||
:param loras: An iterator that returns tuples of LoRA patches and associated weights. An iterator is used so
|
||||
that the LoRA patches do not need to be loaded into memory all at once.
|
||||
:param prefix: The keys in the patches will be filtered to only include weights with this prefix.
|
||||
:cached_weights: Read-only copy of the model's state dict in CPU, for efficient unpatching purposes.
|
||||
"""
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
for patch, patch_weight in patches:
|
||||
LoraPatcher.apply_lora_patch(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
patch=patch,
|
||||
patch_weight=patch_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
del patch
|
||||
|
||||
yield
|
||||
finally:
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def apply_lora_patch(
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
patch: LoRAModelRaw,
|
||||
patch_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
"""
|
||||
Apply a single LoRA patch to a model.
|
||||
:param model: The model to patch.
|
||||
:param patch: LoRA model to patch in.
|
||||
:param patch_weight: LoRA patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
|
||||
"""
|
||||
|
||||
if patch_weight == 0:
|
||||
return
|
||||
|
||||
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
|
||||
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
|
||||
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
|
||||
# without searching, but some legacy code still uses flattened keys.
|
||||
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
|
||||
|
||||
prefix_len = len(prefix)
|
||||
|
||||
for layer_key, layer in patch.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
module_key, module = LoraPatcher._get_submodule(
|
||||
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
|
||||
)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in layer.get_parameters(module).items():
|
||||
param_key = module_key + "." + param_name
|
||||
module_param = module.get_parameter(param_name)
|
||||
|
||||
# Save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
lora_param_weight = lora_param_weight.reshape(module_param.shape)
|
||||
|
||||
lora_param_weight *= patch_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
|
||||
layer.to(device=TorchDevice.CPU_DEVICE)
|
||||
|
||||
@staticmethod
|
||||
def _get_submodule(
|
||||
model: torch.nn.Module, layer_key: str, layer_key_is_flattened: bool
|
||||
) -> tuple[str, torch.nn.Module]:
|
||||
"""Get the submodule corresponding to the given layer key.
|
||||
:param model: The model to search.
|
||||
:param layer_key: The layer key to search for.
|
||||
:param layer_key_is_flattened: Whether the layer key is flattened. If flattened, then all '.' have been replaced
|
||||
with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly without
|
||||
searching, but some legacy code still uses flattened keys.
|
||||
:return: A tuple containing the module key and the submodule.
|
||||
"""
|
||||
if not layer_key_is_flattened:
|
||||
return layer_key, model.get_submodule(layer_key)
|
||||
|
||||
# Handle flattened keys.
|
||||
assert "." not in layer_key
|
||||
|
||||
module = model
|
||||
module_key = ""
|
||||
key_parts = layer_key.split("_")
|
||||
|
||||
submodule_name = key_parts.pop(0)
|
||||
|
||||
while len(key_parts) > 0:
|
||||
try:
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key += "." + submodule_name
|
||||
submodule_name = key_parts.pop(0)
|
||||
except Exception:
|
||||
submodule_name += "_" + key_parts.pop(0)
|
||||
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key = (module_key + "." + submodule_name).lstrip(".")
|
||||
|
||||
return module_key, module
|
||||
@@ -5,8 +5,18 @@ from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
|
||||
lora_model_from_flux_diffusers_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
|
||||
from invokeai.backend.lora.conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@@ -45,14 +55,33 @@ class LoRALoader(ModelLoader):
|
||||
raise ValueError("There are no submodels in a LoRA model.")
|
||||
model_path = Path(config.path)
|
||||
assert self._model_base is not None
|
||||
model = LoRAModelRaw.from_checkpoint(
|
||||
file_path=model_path,
|
||||
dtype=self._torch_dtype,
|
||||
base_model=self._model_base,
|
||||
)
|
||||
|
||||
# Load the state dict from the model file.
|
||||
if model_path.suffix == ".safetensors":
|
||||
state_dict = load_file(model_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
|
||||
# Apply state_dict key conversions, if necessary.
|
||||
if self._model_base == BaseModelType.StableDiffusionXL:
|
||||
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
model = lora_model_from_sd_state_dict(state_dict=state_dict)
|
||||
elif self._model_base == BaseModelType.Flux:
|
||||
if config.format == ModelFormat.Diffusers:
|
||||
model = lora_model_from_flux_diffusers_state_dict(state_dict=state_dict)
|
||||
elif config.format == ModelFormat.LyCORIS:
|
||||
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
# Currently, we don't apply any conversions for SD1 and SD2 LoRA models.
|
||||
model = lora_model_from_sd_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"Unsupported LoRA base model: {self._model_base}")
|
||||
|
||||
model.to(dtype=self._torch_dtype)
|
||||
return model
|
||||
|
||||
# override
|
||||
def _get_model_path(self, config: AnyModelConfig) -> Path:
|
||||
# cheating a little - we remember this variable for using in the subsequent call to _load_model()
|
||||
self._model_base = config.base
|
||||
|
||||
@@ -15,7 +15,7 @@ from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import D
|
||||
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
|
||||
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.model_manager.config import AnyModel
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
||||
|
||||
@@ -10,6 +10,10 @@ from picklescan.scanner import scan_file_path
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_diffusers_format,
|
||||
)
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import is_state_dict_likely_in_flux_kohya_format
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
@@ -244,7 +248,9 @@ class ModelProbe(object):
|
||||
return ModelType.VAE
|
||||
elif key.startswith(("lora_te_", "lora_unet_")):
|
||||
return ModelType.LoRA
|
||||
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight")):
|
||||
# "lora_A.weight" and "lora_B.weight" are associated with models in PEFT format. We don't support all PEFT
|
||||
# LoRA models, but as of the time of writing, we support Diffusers FLUX PEFT LoRA models.
|
||||
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight", "lora_A.weight", "lora_B.weight")):
|
||||
return ModelType.LoRA
|
||||
elif key.startswith(("controlnet", "control_model", "input_blocks")):
|
||||
return ModelType.ControlNet
|
||||
@@ -554,12 +560,21 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
"""Class for LoRA checkpoints."""
|
||||
|
||||
def get_format(self) -> ModelFormat:
|
||||
return ModelFormat("lycoris")
|
||||
if is_state_dict_likely_in_flux_diffusers_format(self.checkpoint):
|
||||
# TODO(ryand): This is an unusual case. In other places throughout the codebase, we treat
|
||||
# ModelFormat.Diffusers as meaning that the model is in a directory. In this case, the model is a single
|
||||
# file, but the weight keys are in the diffusers format.
|
||||
return ModelFormat.Diffusers
|
||||
return ModelFormat.LyCORIS
|
||||
|
||||
def get_base_type(self) -> BaseModelType:
|
||||
checkpoint = self.checkpoint
|
||||
token_vector_length = lora_token_vector_length(checkpoint)
|
||||
if is_state_dict_likely_in_flux_kohya_format(self.checkpoint) or is_state_dict_likely_in_flux_diffusers_format(
|
||||
self.checkpoint
|
||||
):
|
||||
return BaseModelType.Flux
|
||||
|
||||
# If we've gotten here, we assume that the model is a Stable Diffusion model.
|
||||
token_vector_length = lora_token_vector_length(self.checkpoint)
|
||||
if token_vector_length == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif token_vector_length == 1024:
|
||||
|
||||
@@ -5,32 +5,18 @@ from __future__ import annotations
|
||||
|
||||
import pickle
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Type, Union
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
||||
from diffusers import UNet2DConditionModel
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
|
||||
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
"""
|
||||
loras = [
|
||||
(lora_model1, 0.7),
|
||||
(lora_model2, 0.4),
|
||||
]
|
||||
with LoRAHelper.apply_lora_unet(unet, loras):
|
||||
# unet with applied loras
|
||||
# unmodified unet
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ModelPatcher:
|
||||
@@ -54,95 +40,6 @@ class ModelPatcher:
|
||||
finally:
|
||||
unet.set_attn_processor(unet_orig_processors)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
|
||||
assert "." not in lora_key
|
||||
|
||||
if not lora_key.startswith(prefix):
|
||||
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
|
||||
|
||||
module = model
|
||||
module_key = ""
|
||||
key_parts = lora_key[len(prefix) :].split("_")
|
||||
|
||||
submodule_name = key_parts.pop(0)
|
||||
|
||||
while len(key_parts) > 0:
|
||||
try:
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key += "." + submodule_name
|
||||
submodule_name = key_parts.pop(0)
|
||||
except Exception:
|
||||
submodule_name += "_" + key_parts.pop(0)
|
||||
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key = (module_key + "." + submodule_name).lstrip(".")
|
||||
|
||||
return (module_key, module)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_unet(
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(
|
||||
unet,
|
||||
loras=loras,
|
||||
prefix="lora_unet_",
|
||||
cached_weights=cached_weights,
|
||||
):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", cached_weights=cached_weights):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: AnyModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
"""
|
||||
Apply one or more LoRAs to a model.
|
||||
|
||||
:param model: The model to patch.
|
||||
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:cached_weights: Read-only copy of the model's state dict in CPU, for unpatching purposes.
|
||||
"""
|
||||
original_weights = OriginalWeightsStorage(cached_weights)
|
||||
try:
|
||||
for lora_model, lora_weight in loras:
|
||||
LoRAExt.patch_model(
|
||||
model=model,
|
||||
prefix=prefix,
|
||||
lora=lora_model,
|
||||
lora_weight=lora_weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
del lora_model
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
with torch.no_grad():
|
||||
for param_key, weight in original_weights.get_changed_weights():
|
||||
model.get_parameter(param_key).copy_(weight)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_ti(
|
||||
@@ -282,26 +179,6 @@ class ModelPatcher:
|
||||
|
||||
|
||||
class ONNXModelPatcher:
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_unet(
|
||||
cls,
|
||||
unet: OnnxRuntimeModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
# based on
|
||||
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
|
||||
@classmethod
|
||||
|
||||
@@ -1,18 +1,17 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import torch
|
||||
from diffusers import UNet2DConditionModel
|
||||
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
|
||||
|
||||
|
||||
@@ -31,107 +30,14 @@ class LoRAExt(ExtensionBase):
|
||||
@contextmanager
|
||||
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
|
||||
lora_model = self._node_context.models.load(self._model_id).model
|
||||
self.patch_model(
|
||||
assert isinstance(lora_model, LoRAModelRaw)
|
||||
LoraPatcher.apply_lora_patch(
|
||||
model=unet,
|
||||
prefix="lora_unet_",
|
||||
lora=lora_model,
|
||||
lora_weight=self._weight,
|
||||
patch=lora_model,
|
||||
patch_weight=self._weight,
|
||||
original_weights=original_weights,
|
||||
)
|
||||
del lora_model
|
||||
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@torch.no_grad()
|
||||
def patch_model(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
prefix: str,
|
||||
lora: LoRAModelRaw,
|
||||
lora_weight: float,
|
||||
original_weights: OriginalWeightsStorage,
|
||||
):
|
||||
"""
|
||||
Apply one or more LoRAs to a model.
|
||||
:param model: The model to patch.
|
||||
:param lora: LoRA model to patch in.
|
||||
:param lora_weight: LoRA patch weight.
|
||||
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
|
||||
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
|
||||
"""
|
||||
|
||||
if lora_weight == 0:
|
||||
return
|
||||
|
||||
# assert lora.device.type == "cpu"
|
||||
for layer_key, layer in lora.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
|
||||
# should be improved in the following ways:
|
||||
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
|
||||
# LoRA model is applied.
|
||||
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
|
||||
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
|
||||
# weights to have valid keys.
|
||||
assert isinstance(model, torch.nn.Module)
|
||||
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
for param_name, lora_param_weight in layer.get_parameters(module).items():
|
||||
param_key = module_key + "." + param_name
|
||||
module_param = module.get_parameter(param_name)
|
||||
|
||||
# save original weight
|
||||
original_weights.save(param_key, module_param)
|
||||
|
||||
if module_param.shape != lora_param_weight.shape:
|
||||
# TODO: debug on lycoris
|
||||
lora_param_weight = lora_param_weight.reshape(module_param.shape)
|
||||
|
||||
lora_param_weight *= lora_weight * layer_scale
|
||||
module_param += lora_param_weight.to(dtype=dtype)
|
||||
|
||||
layer.to(device=TorchDevice.CPU_DEVICE)
|
||||
|
||||
@staticmethod
|
||||
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
|
||||
assert "." not in lora_key
|
||||
|
||||
if not lora_key.startswith(prefix):
|
||||
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
|
||||
|
||||
module = model
|
||||
module_key = ""
|
||||
key_parts = lora_key[len(prefix) :].split("_")
|
||||
|
||||
submodule_name = key_parts.pop(0)
|
||||
|
||||
while len(key_parts) > 0:
|
||||
try:
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key += "." + submodule_name
|
||||
submodule_name = key_parts.pop(0)
|
||||
except Exception:
|
||||
submodule_name += "_" + key_parts.pop(0)
|
||||
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key = (module_key + "." + submodule_name).lstrip(".")
|
||||
|
||||
return (module_key, module)
|
||||
|
||||
@@ -0,0 +1,993 @@
|
||||
# A sample state dict in the Diffusers FLUX LoRA format.
|
||||
# These keys are based on the LoRA model here:
|
||||
# https://civitai.com/models/200255/hands-xl-sd-15-flux1-dev?modelVersionId=781855
|
||||
state_dict_keys = [
|
||||
"transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.0.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.0.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.1.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.1.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.10.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.10.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.11.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.11.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.12.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.12.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.13.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.13.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.14.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.14.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.15.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.15.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.16.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.16.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.17.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.17.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.18.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.18.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.19.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.19.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.2.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.2.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.20.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.20.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.21.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.21.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.22.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.22.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.23.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.23.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.24.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.24.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.25.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.25.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.26.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.26.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.27.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.27.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.28.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.28.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.29.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.29.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.3.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.3.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.30.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.30.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.31.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.31.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.32.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.32.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.33.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.33.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.34.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.34.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.35.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.35.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.36.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.36.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.37.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.37.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.4.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.4.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.5.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.5.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.6.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.6.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.7.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.7.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.8.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.8.proj_out.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_k.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_k.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_q.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_v.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.attn.to_v.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.norm.linear.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.norm.linear.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.proj_mlp.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.proj_mlp.lora_B.weight",
|
||||
"transformer.single_transformer_blocks.9.proj_out.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.9.proj_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.1.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.1.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.10.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.10.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.11.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.11.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.12.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.12.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.13.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.13.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.14.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.14.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.15.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.15.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.16.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.16.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.17.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.17.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.18.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.18.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.2.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.2.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.3.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.3.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.4.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.4.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.5.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.5.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.6.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.6.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.7.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.7.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.8.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.8.norm1_context.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_k_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_k_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_q_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_v_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.add_v_proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_add_out.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_add_out.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_k.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_k.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_out.0.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_out.0.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_q.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_v.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.attn.to_v.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.ff.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.ff.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.ff.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.ff.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.ff_context.net.0.proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.ff_context.net.0.proj.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.ff_context.net.2.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.ff_context.net.2.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.norm1.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.norm1.linear.lora_B.weight",
|
||||
"transformer.transformer_blocks.9.norm1_context.linear.lora_A.weight",
|
||||
"transformer.transformer_blocks.9.norm1_context.linear.lora_B.weight",
|
||||
]
|
||||
@@ -0,0 +1,917 @@
|
||||
# A sample state dict in the Kohya FLUX LoRA format.
|
||||
# These keys are based on the LoRA model here:
|
||||
# https://civitai.com/models/159333/pokemon-trainer-sprite-pixelart?modelVersionId=779247
|
||||
state_dict_keys = [
|
||||
"lora_unet_double_blocks_0_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_0_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_0_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_0_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_0_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_0_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_10_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_10_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_10_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_10_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_10_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_10_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_10_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_10_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_10_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_10_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_10_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_10_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_11_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_11_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_11_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_11_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_11_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_11_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_11_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_11_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_11_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_11_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_11_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_11_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_12_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_12_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_12_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_12_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_12_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_12_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_12_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_12_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_12_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_12_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_12_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_12_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_13_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_13_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_13_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_13_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_13_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_13_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_13_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_13_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_13_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_13_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_13_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_13_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_14_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_14_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_14_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_14_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_14_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_14_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_14_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_14_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_14_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_14_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_14_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_14_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_15_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_15_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_15_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_15_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_15_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_15_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_15_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_15_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_15_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_15_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_15_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_15_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_16_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_16_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_16_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_16_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_16_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_16_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_16_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_16_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_16_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_16_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_16_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_16_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_17_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_17_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_17_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_17_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_17_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_17_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_17_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_17_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_17_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_17_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_17_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_17_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_18_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_18_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_18_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_18_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_18_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_18_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_18_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_18_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_18_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_18_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_18_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_18_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_1_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_1_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_1_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_1_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_1_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_1_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_1_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_1_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_1_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_1_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_1_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_1_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_2_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_2_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_2_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_2_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_2_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_2_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_2_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_2_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_2_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_2_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_2_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_2_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_3_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_3_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_3_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_3_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_3_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_3_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_3_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_3_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_3_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_3_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_3_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_3_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_4_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_4_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_4_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_4_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_4_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_4_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_4_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_4_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_4_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_4_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_4_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_4_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_5_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_5_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_5_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_5_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_5_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_5_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_5_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_5_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_5_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_5_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_5_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_5_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_6_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_6_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_6_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_6_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_6_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_6_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_6_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_6_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_6_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_6_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_6_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_6_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_7_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_7_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_7_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_7_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_7_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_7_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_7_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_7_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_7_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_7_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_7_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_7_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_8_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_8_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_8_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_8_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_8_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_8_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_8_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_8_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_8_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_8_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_8_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_8_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_img_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_9_img_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_img_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_img_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_9_img_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_img_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_img_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_9_img_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_img_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_img_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_9_img_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_img_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_img_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_9_img_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_img_mod_lin.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_txt_attn_proj.alpha",
|
||||
"lora_unet_double_blocks_9_txt_attn_proj.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_txt_attn_proj.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_txt_attn_qkv.alpha",
|
||||
"lora_unet_double_blocks_9_txt_attn_qkv.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_txt_attn_qkv.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_txt_mlp_0.alpha",
|
||||
"lora_unet_double_blocks_9_txt_mlp_0.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_txt_mlp_0.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_txt_mlp_2.alpha",
|
||||
"lora_unet_double_blocks_9_txt_mlp_2.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_txt_mlp_2.lora_up.weight",
|
||||
"lora_unet_double_blocks_9_txt_mod_lin.alpha",
|
||||
"lora_unet_double_blocks_9_txt_mod_lin.lora_down.weight",
|
||||
"lora_unet_double_blocks_9_txt_mod_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_0_linear1.alpha",
|
||||
"lora_unet_single_blocks_0_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_0_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_0_linear2.alpha",
|
||||
"lora_unet_single_blocks_0_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_0_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_0_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_0_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_0_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_10_linear1.alpha",
|
||||
"lora_unet_single_blocks_10_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_10_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_10_linear2.alpha",
|
||||
"lora_unet_single_blocks_10_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_10_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_10_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_10_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_10_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_11_linear1.alpha",
|
||||
"lora_unet_single_blocks_11_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_11_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_11_linear2.alpha",
|
||||
"lora_unet_single_blocks_11_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_11_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_11_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_11_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_11_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_12_linear1.alpha",
|
||||
"lora_unet_single_blocks_12_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_12_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_12_linear2.alpha",
|
||||
"lora_unet_single_blocks_12_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_12_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_12_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_12_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_12_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_13_linear1.alpha",
|
||||
"lora_unet_single_blocks_13_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_13_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_13_linear2.alpha",
|
||||
"lora_unet_single_blocks_13_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_13_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_13_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_13_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_13_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_14_linear1.alpha",
|
||||
"lora_unet_single_blocks_14_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_14_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_14_linear2.alpha",
|
||||
"lora_unet_single_blocks_14_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_14_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_14_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_14_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_14_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_15_linear1.alpha",
|
||||
"lora_unet_single_blocks_15_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_15_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_15_linear2.alpha",
|
||||
"lora_unet_single_blocks_15_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_15_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_15_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_15_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_15_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_16_linear1.alpha",
|
||||
"lora_unet_single_blocks_16_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_16_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_16_linear2.alpha",
|
||||
"lora_unet_single_blocks_16_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_16_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_16_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_16_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_16_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_17_linear1.alpha",
|
||||
"lora_unet_single_blocks_17_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_17_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_17_linear2.alpha",
|
||||
"lora_unet_single_blocks_17_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_17_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_17_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_17_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_17_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_18_linear1.alpha",
|
||||
"lora_unet_single_blocks_18_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_18_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_18_linear2.alpha",
|
||||
"lora_unet_single_blocks_18_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_18_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_18_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_18_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_18_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_19_linear1.alpha",
|
||||
"lora_unet_single_blocks_19_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_19_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_19_linear2.alpha",
|
||||
"lora_unet_single_blocks_19_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_19_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_19_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_19_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_19_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_1_linear1.alpha",
|
||||
"lora_unet_single_blocks_1_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_1_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_1_linear2.alpha",
|
||||
"lora_unet_single_blocks_1_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_1_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_1_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_1_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_1_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_20_linear1.alpha",
|
||||
"lora_unet_single_blocks_20_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_20_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_20_linear2.alpha",
|
||||
"lora_unet_single_blocks_20_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_20_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_20_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_20_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_20_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_21_linear1.alpha",
|
||||
"lora_unet_single_blocks_21_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_21_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_21_linear2.alpha",
|
||||
"lora_unet_single_blocks_21_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_21_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_21_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_21_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_21_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_22_linear1.alpha",
|
||||
"lora_unet_single_blocks_22_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_22_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_22_linear2.alpha",
|
||||
"lora_unet_single_blocks_22_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_22_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_22_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_22_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_22_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_23_linear1.alpha",
|
||||
"lora_unet_single_blocks_23_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_23_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_23_linear2.alpha",
|
||||
"lora_unet_single_blocks_23_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_23_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_23_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_23_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_23_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_24_linear1.alpha",
|
||||
"lora_unet_single_blocks_24_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_24_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_24_linear2.alpha",
|
||||
"lora_unet_single_blocks_24_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_24_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_24_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_24_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_24_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_25_linear1.alpha",
|
||||
"lora_unet_single_blocks_25_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_25_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_25_linear2.alpha",
|
||||
"lora_unet_single_blocks_25_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_25_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_25_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_25_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_25_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_26_linear1.alpha",
|
||||
"lora_unet_single_blocks_26_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_26_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_26_linear2.alpha",
|
||||
"lora_unet_single_blocks_26_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_26_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_26_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_26_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_26_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_27_linear1.alpha",
|
||||
"lora_unet_single_blocks_27_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_27_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_27_linear2.alpha",
|
||||
"lora_unet_single_blocks_27_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_27_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_27_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_27_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_27_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_28_linear1.alpha",
|
||||
"lora_unet_single_blocks_28_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_28_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_28_linear2.alpha",
|
||||
"lora_unet_single_blocks_28_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_28_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_28_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_28_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_28_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_29_linear1.alpha",
|
||||
"lora_unet_single_blocks_29_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_29_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_29_linear2.alpha",
|
||||
"lora_unet_single_blocks_29_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_29_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_29_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_29_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_29_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_2_linear1.alpha",
|
||||
"lora_unet_single_blocks_2_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_2_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_2_linear2.alpha",
|
||||
"lora_unet_single_blocks_2_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_2_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_2_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_2_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_2_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_30_linear1.alpha",
|
||||
"lora_unet_single_blocks_30_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_30_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_30_linear2.alpha",
|
||||
"lora_unet_single_blocks_30_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_30_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_30_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_30_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_30_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_31_linear1.alpha",
|
||||
"lora_unet_single_blocks_31_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_31_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_31_linear2.alpha",
|
||||
"lora_unet_single_blocks_31_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_31_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_31_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_31_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_31_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_32_linear1.alpha",
|
||||
"lora_unet_single_blocks_32_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_32_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_32_linear2.alpha",
|
||||
"lora_unet_single_blocks_32_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_32_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_32_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_32_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_32_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_33_linear1.alpha",
|
||||
"lora_unet_single_blocks_33_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_33_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_33_linear2.alpha",
|
||||
"lora_unet_single_blocks_33_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_33_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_33_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_33_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_33_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_34_linear1.alpha",
|
||||
"lora_unet_single_blocks_34_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_34_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_34_linear2.alpha",
|
||||
"lora_unet_single_blocks_34_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_34_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_34_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_34_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_34_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_35_linear1.alpha",
|
||||
"lora_unet_single_blocks_35_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_35_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_35_linear2.alpha",
|
||||
"lora_unet_single_blocks_35_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_35_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_35_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_35_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_35_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_36_linear1.alpha",
|
||||
"lora_unet_single_blocks_36_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_36_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_36_linear2.alpha",
|
||||
"lora_unet_single_blocks_36_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_36_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_36_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_36_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_36_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_37_linear1.alpha",
|
||||
"lora_unet_single_blocks_37_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_37_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_37_linear2.alpha",
|
||||
"lora_unet_single_blocks_37_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_37_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_37_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_37_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_37_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_3_linear1.alpha",
|
||||
"lora_unet_single_blocks_3_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_3_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_3_linear2.alpha",
|
||||
"lora_unet_single_blocks_3_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_3_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_3_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_3_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_3_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_4_linear1.alpha",
|
||||
"lora_unet_single_blocks_4_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_4_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_4_linear2.alpha",
|
||||
"lora_unet_single_blocks_4_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_4_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_4_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_4_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_4_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_5_linear1.alpha",
|
||||
"lora_unet_single_blocks_5_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_5_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_5_linear2.alpha",
|
||||
"lora_unet_single_blocks_5_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_5_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_5_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_5_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_5_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_6_linear1.alpha",
|
||||
"lora_unet_single_blocks_6_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_6_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_6_linear2.alpha",
|
||||
"lora_unet_single_blocks_6_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_6_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_6_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_6_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_6_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_7_linear1.alpha",
|
||||
"lora_unet_single_blocks_7_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_7_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_7_linear2.alpha",
|
||||
"lora_unet_single_blocks_7_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_7_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_7_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_7_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_7_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_8_linear1.alpha",
|
||||
"lora_unet_single_blocks_8_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_8_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_8_linear2.alpha",
|
||||
"lora_unet_single_blocks_8_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_8_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_8_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_8_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_8_modulation_lin.lora_up.weight",
|
||||
"lora_unet_single_blocks_9_linear1.alpha",
|
||||
"lora_unet_single_blocks_9_linear1.lora_down.weight",
|
||||
"lora_unet_single_blocks_9_linear1.lora_up.weight",
|
||||
"lora_unet_single_blocks_9_linear2.alpha",
|
||||
"lora_unet_single_blocks_9_linear2.lora_down.weight",
|
||||
"lora_unet_single_blocks_9_linear2.lora_up.weight",
|
||||
"lora_unet_single_blocks_9_modulation_lin.alpha",
|
||||
"lora_unet_single_blocks_9_modulation_lin.lora_down.weight",
|
||||
"lora_unet_single_blocks_9_modulation_lin.lora_up.weight",
|
||||
]
|
||||
8
tests/backend/lora/conversions/lora_state_dicts/utils.py
Normal file
8
tests/backend/lora/conversions/lora_state_dicts/utils.py
Normal file
@@ -0,0 +1,8 @@
|
||||
import torch
|
||||
|
||||
|
||||
def keys_to_mock_state_dict(keys: list[str]) -> dict[str, torch.Tensor]:
|
||||
state_dict: dict[str, torch.Tensor] = {}
|
||||
for k in keys:
|
||||
state_dict[k] = torch.empty(1)
|
||||
return state_dict
|
||||
@@ -0,0 +1,66 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_diffusers_format,
|
||||
lora_model_from_flux_diffusers_state_dict,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_diffusers_format import (
|
||||
state_dict_keys as flux_diffusers_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_kohya_format import (
|
||||
state_dict_keys as flux_kohya_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.utils import keys_to_mock_state_dict
|
||||
|
||||
|
||||
def test_is_state_dict_likely_in_flux_diffusers_format_true():
|
||||
"""Test that is_state_dict_likely_in_flux_diffusers_format() can identify a state dict in the Diffusers FLUX LoRA format."""
|
||||
# Construct a state dict that is in the Diffusers FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
|
||||
|
||||
assert is_state_dict_likely_in_flux_diffusers_format(state_dict)
|
||||
|
||||
|
||||
def test_is_state_dict_likely_in_flux_diffusers_format_false():
|
||||
"""Test that is_state_dict_likely_in_flux_diffusers_format() returns False for a state dict that is not in the Kohya
|
||||
FLUX LoRA format.
|
||||
"""
|
||||
# Construct a state dict that is not in the Kohya FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
|
||||
|
||||
assert not is_state_dict_likely_in_flux_diffusers_format(state_dict)
|
||||
|
||||
|
||||
def test_lora_model_from_flux_diffusers_state_dict():
|
||||
"""Test that lora_model_from_flux_diffusers_state_dict() can load a state dict in the Diffusers FLUX LoRA format."""
|
||||
# Construct a state dict that is in the Diffusers FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
|
||||
# Load the state dict into a LoRAModelRaw object.
|
||||
model = lora_model_from_flux_diffusers_state_dict(state_dict)
|
||||
|
||||
# Check that the model has the correct number of LoRA layers.
|
||||
expected_lora_layers: set[str] = set()
|
||||
for k in flux_diffusers_state_dict_keys:
|
||||
k = k.replace("lora_A.weight", "")
|
||||
k = k.replace("lora_B.weight", "")
|
||||
expected_lora_layers.add(k)
|
||||
# Drop the K/V/proj_mlp weights because these are all concatenated into a single layer in the BFL format (we keep
|
||||
# the Q weights so that we count these layers once).
|
||||
concatenated_weights = ["to_k", "to_v", "proj_mlp", "add_k_proj", "add_v_proj"]
|
||||
expected_lora_layers = {k for k in expected_lora_layers if not any(w in k for w in concatenated_weights)}
|
||||
assert len(model.layers) == len(expected_lora_layers)
|
||||
|
||||
|
||||
def test_lora_model_from_flux_diffusers_state_dict_extra_keys_error():
|
||||
"""Test that lora_model_from_flux_diffusers_state_dict() raises an error if the input state_dict contains unexpected
|
||||
keys that we don't handle.
|
||||
"""
|
||||
# Construct a state dict that is in the Diffusers FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
|
||||
# Add an unexpected key.
|
||||
state_dict["transformer.single_transformer_blocks.0.unexpected_key.lora_A.weight"] = torch.empty(1)
|
||||
|
||||
# Check that an error is raised.
|
||||
with pytest.raises(AssertionError):
|
||||
lora_model_from_flux_diffusers_state_dict(state_dict)
|
||||
@@ -0,0 +1,98 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.flux.model import Flux
|
||||
from invokeai.backend.flux.util import params
|
||||
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
|
||||
convert_flux_kohya_state_dict_to_invoke_format,
|
||||
is_state_dict_likely_in_flux_kohya_format,
|
||||
lora_model_from_flux_kohya_state_dict,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_diffusers_format import (
|
||||
state_dict_keys as flux_diffusers_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_kohya_format import (
|
||||
state_dict_keys as flux_kohya_state_dict_keys,
|
||||
)
|
||||
from tests.backend.lora.conversions.lora_state_dicts.utils import keys_to_mock_state_dict
|
||||
|
||||
|
||||
def test_is_state_dict_likely_in_flux_kohya_format_true():
|
||||
"""Test that is_state_dict_likely_in_flux_kohya_format() can identify a state dict in the Kohya FLUX LoRA format."""
|
||||
# Construct a state dict that is in the Kohya FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
|
||||
|
||||
assert is_state_dict_likely_in_flux_kohya_format(state_dict)
|
||||
|
||||
|
||||
def test_is_state_dict_likely_in_flux_kohya_format_false():
|
||||
"""Test that is_state_dict_likely_in_flux_kohya_format() returns False for a state dict that is in the Diffusers
|
||||
FLUX LoRA format.
|
||||
"""
|
||||
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
|
||||
assert not is_state_dict_likely_in_flux_kohya_format(state_dict)
|
||||
|
||||
|
||||
def test_convert_flux_kohya_state_dict_to_invoke_format():
|
||||
# Construct state_dict from state_dict_keys.
|
||||
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
|
||||
|
||||
converted_state_dict = convert_flux_kohya_state_dict_to_invoke_format(state_dict)
|
||||
|
||||
# Extract the prefixes from the converted state dict (i.e. without the .lora_up.weight, .lora_down.weight, and
|
||||
# .alpha suffixes).
|
||||
converted_key_prefixes: list[str] = []
|
||||
for k in converted_state_dict.keys():
|
||||
k = k.replace(".lora_up.weight", "")
|
||||
k = k.replace(".lora_down.weight", "")
|
||||
k = k.replace(".alpha", "")
|
||||
converted_key_prefixes.append(k)
|
||||
|
||||
# Initialize a FLUX model on the meta device.
|
||||
with torch.device("meta"):
|
||||
model = Flux(params["flux-dev"])
|
||||
model_keys = set(model.state_dict().keys())
|
||||
|
||||
# Assert that the converted state dict matches the keys in the actual model.
|
||||
for converted_key_prefix in converted_key_prefixes:
|
||||
found_match = False
|
||||
for model_key in model_keys:
|
||||
if model_key.startswith(converted_key_prefix):
|
||||
found_match = True
|
||||
break
|
||||
if not found_match:
|
||||
raise AssertionError(f"Could not find a match for the converted key prefix: {converted_key_prefix}")
|
||||
|
||||
|
||||
def test_convert_flux_kohya_state_dict_to_invoke_format_error():
|
||||
"""Test that an error is raised by convert_flux_kohya_state_dict_to_invoke_format() if the input state_dict contains
|
||||
unexpected keys.
|
||||
"""
|
||||
state_dict = {
|
||||
"unexpected_key.lora_up.weight": torch.empty(1),
|
||||
}
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
convert_flux_kohya_state_dict_to_invoke_format(state_dict)
|
||||
|
||||
|
||||
def test_lora_model_from_flux_kohya_state_dict():
|
||||
"""Test that a LoRAModelRaw can be created from a state dict in the Kohya FLUX LoRA format."""
|
||||
# Construct a state dict that is in the Kohya FLUX LoRA format.
|
||||
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
|
||||
|
||||
lora_model = lora_model_from_flux_kohya_state_dict(state_dict)
|
||||
|
||||
# Prepare expected layer keys.
|
||||
expected_layer_keys: set[str] = set()
|
||||
for k in flux_kohya_state_dict_keys:
|
||||
k = k.replace("lora_unet_", "")
|
||||
k = k.replace(".lora_up.weight", "")
|
||||
k = k.replace(".lora_down.weight", "")
|
||||
k = k.replace(".alpha", "")
|
||||
expected_layer_keys.add(k)
|
||||
|
||||
# Assert that the lora_model has the expected layers.
|
||||
lora_model_keys = set(lora_model.layers.keys())
|
||||
lora_model_keys = {k.replace(".", "_") for k in lora_model_keys}
|
||||
assert lora_model_keys == expected_layer_keys
|
||||
@@ -1,12 +1,9 @@
|
||||
# test that if the model's device changes while the lora is applied, the weights can still be restored
|
||||
|
||||
# test that LoRA patching works on both CPU and CUDA
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from invokeai.backend.lora import LoRALayer, LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.lora.layers.lora_layer import LoRALayer
|
||||
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
|
||||
from invokeai.backend.lora.lora_patcher import LoraPatcher
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@@ -17,7 +14,7 @@ from invokeai.backend.model_patcher import ModelPatcher
|
||||
],
|
||||
)
|
||||
@torch.no_grad()
|
||||
def test_apply_lora(device):
|
||||
def test_apply_lora(device: str):
|
||||
"""Test the basic behavior of ModelPatcher.apply_lora(...). Check that patching and unpatching produce the correct
|
||||
result, and that model/LoRA tensors are moved between devices as expected.
|
||||
"""
|
||||
@@ -31,20 +28,19 @@ def test_apply_lora(device):
|
||||
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer(
|
||||
layer_key="linear_layer_1",
|
||||
values={
|
||||
"lora_down.weight": torch.ones((lora_dim, linear_in_features), device="cpu", dtype=torch.float16),
|
||||
"lora_up.weight": torch.ones((linear_out_features, lora_dim), device="cpu", dtype=torch.float16),
|
||||
},
|
||||
)
|
||||
}
|
||||
lora = LoRAModelRaw("lora_name", lora_layers)
|
||||
lora = LoRAModelRaw(lora_layers)
|
||||
|
||||
lora_weight = 0.5
|
||||
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
||||
expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight)
|
||||
|
||||
with ModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
|
||||
with LoraPatcher.apply_lora_patches(model=model, patches=[(lora, lora_weight)], prefix=""):
|
||||
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
||||
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
||||
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
||||
@@ -75,18 +71,17 @@ def test_apply_lora_change_device():
|
||||
|
||||
lora_layers = {
|
||||
"linear_layer_1": LoRALayer(
|
||||
layer_key="linear_layer_1",
|
||||
values={
|
||||
"lora_down.weight": torch.ones((lora_dim, linear_in_features), device="cpu", dtype=torch.float16),
|
||||
"lora_up.weight": torch.ones((linear_out_features, lora_dim), device="cpu", dtype=torch.float16),
|
||||
},
|
||||
)
|
||||
}
|
||||
lora = LoRAModelRaw("lora_name", lora_layers)
|
||||
lora = LoRAModelRaw(lora_layers)
|
||||
|
||||
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
|
||||
|
||||
with ModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
|
||||
with LoraPatcher.apply_lora_patches(model=model, patches=[(lora, 0.5)], prefix=""):
|
||||
# After patching, all LoRA layer weights should have been moved back to the cpu.
|
||||
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
|
||||
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
|
||||
Reference in New Issue
Block a user