Compare commits

...

41 Commits

Author SHA1 Message Date
Lincoln Stein
9dcace7d82 ruff fixes and restore default map location of object serializer load 2024-07-18 15:07:38 -04:00
Lincoln Stein
02957be333 fix compel conditioning object caching issue by applying deepcopy() before moving to VRAM 2024-07-18 14:53:03 -04:00
Lincoln Stein
5d6a77d336 fixup ip adapter handling 2024-06-24 14:57:54 -04:00
Lincoln Stein
9b7b182cf7 remove dangling attributes in ModelCache class 2024-06-24 11:58:26 -04:00
Lincoln Stein
2219e3643a copy model from a meta device template
- temporarily disable vram cache
2024-06-24 11:40:35 -04:00
Lincoln Stein
6932f27b43 fixup code broken by merge with main 2024-06-23 12:17:16 -04:00
Lincoln Stein
0df018bd4e resolve merge conflicts 2024-06-23 10:31:35 -04:00
Lincoln Stein
7088d5610b add script to sync models db with models.yaml 2024-06-16 19:50:49 -04:00
Lincoln Stein
589a7959c0 fixup unit tests and remove debugging statements 2024-06-02 21:28:54 -04:00
Lincoln Stein
e26360f85b merged multi-gpu support into new session_processor architecture 2024-06-02 14:10:08 -04:00
Lincoln Stein
debef2476e Merge branch 'main' into lstein/feat/multi-gpu 2024-05-06 16:48:51 -04:00
Lincoln Stein
e57809e1c6 Merge branch 'main' into lstein/feat/multi-gpu 2024-05-03 00:05:04 -04:00
Lincoln Stein
1c0067f931 Merge branch 'main' into lstein/feat/multi-gpu 2024-04-30 18:14:03 -04:00
Lincoln Stein
c3d1252892 revert to old system for doing RAM <-> VRAM transfers; new way leaks memory 2024-04-17 09:51:57 -04:00
Lincoln Stein
84f5cbdd97 make choose_torch_dtype() usable outside an invocation context 2024-04-16 19:19:19 -04:00
Lincoln Stein
edac01d4fb reverse stupid hack 2024-04-16 18:13:59 -04:00
Lincoln Stein
d04c880cce fix ValueError on model manager install 2024-04-16 17:57:40 -04:00
Lincoln Stein
763a2e2632 added more unit tests 2024-04-16 17:18:51 -04:00
Lincoln Stein
eaadc55c7d make pause/resume work in multithreaded environment 2024-04-16 16:55:56 -04:00
Lincoln Stein
89f8326c0b Merge branch 'lstein/feat/multi-gpu' of github.com:invoke-ai/InvokeAI into lstein/feat/multi-gpu 2024-04-16 16:27:08 -04:00
Lincoln Stein
99558de178 device selection calls go through TorchDevice 2024-04-16 16:26:58 -04:00
Lincoln Stein
77130f108d Merge branch 'main' into lstein/feat/multi-gpu 2024-04-16 16:14:27 -04:00
Lincoln Stein
371f5bc782 simplify logic for retrieving execution devices 2024-04-16 15:52:03 -04:00
Lincoln Stein
fb9b7fb63a make object_serializer._new_name() thread-safe; add max_threads config 2024-04-16 15:23:49 -04:00
Lincoln Stein
bd833900a3 add tid to cache name to avoid non-safe uuid4 on windows 2024-04-16 15:02:06 -04:00
Lincoln Stein
a84f3058e2 revert object_serializer_forward_cache.py 2024-04-15 22:28:48 -04:00
Lincoln Stein
f7436f3bae fixup config_default; patch TorchDevice to work dynamically 2024-04-15 22:15:50 -04:00
Lincoln Stein
7dd93cb810 fix merge issues; likely nonfunctional 2024-04-15 21:16:21 -04:00
Lincoln Stein
9adb15f86c working but filled with debug statements 2024-04-01 18:44:24 -04:00
Lincoln Stein
3d69372785 implement session-level reservation of gpus 2024-04-01 16:01:43 -04:00
Lincoln Stein
eca29c41d0 added notes 2024-04-01 13:30:02 -04:00
Lincoln Stein
9df0980c46 parallel processing working on single-GPU, not tested on multi 2024-04-01 00:07:47 -04:00
Lincoln Stein
cef51ad80d Merge branch 'psyche/fix/nodes/processor-cpu-usage' into lstein/feat/multi-gpu 2024-03-31 17:05:23 -04:00
Lincoln Stein
83356ec74c fix merge conflicts 2024-03-31 17:04:57 -04:00
Lincoln Stein
9336a076de add locking around thread-critical sections 2024-03-31 16:58:56 -04:00
psychedelicious
32d3e4dc5c feat(nodes): simplify processor loop with an early continue
Prefer an early return/continue to reduce the indentation of the processor loop. Easier to read.

There are other ways to improve its structure but at first glance, they seem to involve changing the logic in scarier ways.
2024-04-01 07:55:42 +11:00
Lincoln Stein
a1dcab9c38 remove references to vram_cache in tests 2024-03-31 16:52:01 -04:00
psychedelicious
bd9b00a6bf fix(nodes): 100% cpu usage when processor paused
Should be waiting on the resume event instead of checking it in a loop
2024-04-01 07:45:36 +11:00
Lincoln Stein
eaa2c68693 remove vram_cache and don't move VRAM models back into CPU 2024-03-31 16:37:13 -04:00
Lincoln Stein
24d73280ee Merge branch 'main' into lstein/feat/multi-gpu 2024-03-21 20:29:38 -04:00
Lincoln Stein
6b991a5269 add draft multi-gpu support 2024-03-19 23:27:38 -04:00
31 changed files with 533 additions and 339 deletions

View File

@@ -1328,7 +1328,7 @@ from invokeai.app.services.model_load import ModelLoadService, ModelLoaderRegist
config = InvokeAIAppConfig.get_config()
ram_cache = ModelCache(
max_cache_size=config.ram_cache_size, max_vram_cache_size=config.vram_cache_size, logger=logger
max_cache_size=config.ram_cache_size, logger=logger
)
convert_cache = ModelConvertCache(
cache_path=config.models_convert_cache_path, max_size=config.convert_cache_size

View File

@@ -103,6 +103,7 @@ class CompelInvocation(BaseInvocation):
textual_inversion_manager=ti_manager,
dtype_for_device_getter=TorchDevice.choose_torch_dtype,
truncate_long_prompts=False,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(self.prompt)
@@ -117,6 +118,7 @@ class CompelInvocation(BaseInvocation):
conditioning_data = ConditioningFieldData(conditionings=[BasicConditioningInfo(embeds=c)])
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
@@ -203,6 +205,7 @@ class SDXLPromptInvocationBase:
truncate_long_prompts=False, # TODO:
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=get_pooled,
device=TorchDevice.choose_torch_device(),
)
conjunction = Compel.parse_prompt_string(prompt)
@@ -313,7 +316,6 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
)
]
)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput(

View File

@@ -1,4 +1,5 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import copy
import inspect
from contextlib import ExitStack
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
@@ -193,9 +194,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
text_embeddings: Union[list[BasicConditioningInfo], list[SDXLConditioningInfo]] = []
text_embeddings_masks: list[Optional[torch.Tensor]] = []
for cond in cond_list:
cond_data = context.conditioning.load(cond.conditioning_name)
cond_data = copy.deepcopy(context.conditioning.load(cond.conditioning_name))
text_embeddings.append(cond_data.conditionings[0].to(device=device, dtype=dtype))
mask = cond.mask
if mask is not None:
mask = context.tensors.load(mask.tensor_name)
@@ -226,6 +226,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# Add a batch dimension to the mask, because torchvision expects shape (batch, channels, h, w).
mask = mask.unsqueeze(0) # Shape: (1, h, w) -> (1, 1, h, w)
resized_mask = tf(mask)
assert isinstance(resized_mask, torch.Tensor)
return resized_mask
def _concat_regional_text_embeddings(

View File

@@ -26,13 +26,13 @@ LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_RAM_CACHE = 10.0
DEFAULT_VRAM_CACHE = 0.25
DEFAULT_CONVERT_CACHE = 20.0
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
DEVICE = Literal["auto", "cpu", "cuda:0", "cuda:1", "cuda:2", "cuda:3", "cuda:4", "cuda:5", "cuda:6", "cuda:7", "mps"]
PRECISION = Literal["auto", "float16", "bfloat16", "float32", "autocast"]
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
LOG_FORMAT = Literal["plain", "color", "syslog", "legacy"]
LOG_LEVEL = Literal["debug", "info", "warning", "error", "critical"]
CONFIG_SCHEMA_VERSION = "4.0.1"
CONFIG_SCHEMA_VERSION = "4.0.2"
def get_default_ram_cache_size() -> float:
@@ -105,14 +105,16 @@ class InvokeAIAppConfig(BaseSettings):
convert_cache: Maximum size of on-disk converted models cache (GB).
lazy_offload: Keep models in VRAM until their space is needed.
log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda:0`, `cuda:1`, `cuda:2`, `cuda:3`, `cuda:4`, `cuda:5`, `cuda:6`, `cuda:7`, `mps`
devices: List of execution devices; will override default device selected.
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`, `autocast`
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp`
attention_slice_size: Slice size, valid when attention_type=="sliced".<br>Valid values: `auto`, `balanced`, `max`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`
force_tiled_decode: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).
pil_compress_level: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.
max_queue_size: Maximum number of items in the session queue.
max_threads: Maximum number of session queue execution threads. Autocalculated from number of GPUs if not set.
clear_queue_on_startup: Empties session queue on startup.
allow_nodes: List of nodes to allow. Omit to allow all.
deny_nodes: List of nodes to deny. Omit to deny none.
@@ -178,6 +180,7 @@ class InvokeAIAppConfig(BaseSettings):
# DEVICE
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")
devices: Optional[list[DEVICE]] = Field(default=None, description="List of execution devices; will override default device selected.")
precision: PRECISION = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.")
# GENERATION
@@ -187,6 +190,7 @@ class InvokeAIAppConfig(BaseSettings):
force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).")
pil_compress_level: int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.")
max_queue_size: int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.")
max_threads: Optional[int] = Field(default=None, description="Maximum number of session queue execution threads. Autocalculated from number of GPUs if not set.")
clear_queue_on_startup: bool = Field(default=False, description="Empties session queue on startup.")
# NODES
@@ -376,9 +380,6 @@ def migrate_v3_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
# `max_cache_size` was renamed to `ram` some time in v3, but both names were used
if k == "max_cache_size" and "ram" not in category_dict:
parsed_config_dict["ram"] = v
# `max_vram_cache_size` was renamed to `vram` some time in v3, but both names were used
if k == "max_vram_cache_size" and "vram" not in category_dict:
parsed_config_dict["vram"] = v
# autocast was removed in v4.0.1
if k == "precision" and v == "autocast":
parsed_config_dict["precision"] = "auto"
@@ -426,6 +427,27 @@ def migrate_v4_0_0_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig
return config
def migrate_v4_0_1_config_dict(config_dict: dict[str, Any]) -> InvokeAIAppConfig:
"""Migrate v4.0.1 config dictionary to a current config object.
A few new multi-GPU options were added in 4.0.2, and this simply
updates the schema label.
Args:
config_dict: A dictionary of settings from a v4.0.1 config file.
Returns:
An instance of `InvokeAIAppConfig` with the migrated settings.
"""
parsed_config_dict: dict[str, Any] = {}
for k, _ in config_dict.items():
if k == "schema_version":
parsed_config_dict[k] = CONFIG_SCHEMA_VERSION
config = DefaultInvokeAIAppConfig.model_validate(parsed_config_dict)
return config
# TO DO: replace this with a formal registration and migration system
def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
"""Load and migrate a config file to the latest version.
@@ -457,6 +479,10 @@ def load_and_migrate_config(config_path: Path) -> InvokeAIAppConfig:
loaded_config_dict = migrate_v4_0_0_config_dict(loaded_config_dict)
loaded_config_dict.write_file(config_path)
elif loaded_config_dict["schema_version"] == "4.0.1":
loaded_config_dict = migrate_v4_0_1_config_dict(loaded_config_dict)
loaded_config_dict.write_file(config_path)
# Attempt to load as a v4 config file
try:
# Meta is not included in the model fields, so we need to validate it separately

View File

@@ -53,11 +53,11 @@ class InvocationServices:
model_images: "ModelImageFileStorageBase",
model_manager: "ModelManagerServiceBase",
download_queue: "DownloadQueueServiceBase",
performance_statistics: "InvocationStatsServiceBase",
session_queue: "SessionQueueBase",
session_processor: "SessionProcessorBase",
invocation_cache: "InvocationCacheBase",
names: "NameServiceBase",
performance_statistics: "InvocationStatsServiceBase",
urls: "UrlServiceBase",
workflow_records: "WorkflowRecordsStorageBase",
tensors: "ObjectSerializerBase[torch.Tensor]",
@@ -77,11 +77,11 @@ class InvocationServices:
self.model_images = model_images
self.model_manager = model_manager
self.download_queue = download_queue
self.performance_statistics = performance_statistics
self.session_queue = session_queue
self.session_processor = session_processor
self.invocation_cache = invocation_cache
self.names = names
self.performance_statistics = performance_statistics
self.urls = urls
self.workflow_records = workflow_records
self.tensors = tensors

View File

@@ -74,9 +74,9 @@ class InvocationStatsService(InvocationStatsServiceBase):
)
self._stats[graph_execution_state_id].add_node_execution_stats(node_stats)
def reset_stats(self):
self._stats = {}
self._cache_stats = {}
def reset_stats(self, graph_execution_state_id: str):
self._stats.pop(graph_execution_state_id)
self._cache_stats.pop(graph_execution_state_id)
def get_stats(self, graph_execution_state_id: str) -> InvocationStatsSummary:
graph_stats_summary = self._get_graph_summary(graph_execution_state_id)

View File

@@ -284,9 +284,14 @@ class ModelInstallService(ModelInstallServiceBase):
unfinished_jobs = [x for x in self._install_jobs if not x.in_terminal_state]
self._install_jobs = unfinished_jobs
def _migrate_yaml(self) -> None:
def _migrate_yaml(self, rename_yaml: Optional[bool] = True, overwrite_db: Optional[bool] = False) -> None:
db_models = self.record_store.all_models()
if overwrite_db:
for model in db_models:
self.record_store.del_model(model.key)
db_models = self.record_store.all_models()
legacy_models_yaml_path = (
self._app_config.legacy_models_yaml_path or self._app_config.root_path / "configs" / "models.yaml"
)
@@ -336,7 +341,8 @@ class ModelInstallService(ModelInstallServiceBase):
self._logger.warning(f"Model at {model_path} could not be migrated: {e}")
# Rename `models.yaml` to `models.yaml.bak` to prevent re-migration
legacy_models_yaml_path.rename(legacy_models_yaml_path.with_suffix(".yaml.bak"))
if rename_yaml:
legacy_models_yaml_path.rename(legacy_models_yaml_path.with_suffix(".yaml.bak"))
# Unset the path - we are done with it either way
self._app_config.legacy_models_yaml_path = None

View File

@@ -33,6 +33,11 @@ class ModelLoadServiceBase(ABC):
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""
@property
@abstractmethod
def gpu_count(self) -> int:
"""Return the number of GPUs we are configured to use."""
@abstractmethod
def load_model_from_path(
self, model_path: Path, loader: Optional[Callable[[Path], AnyModel]] = None

View File

@@ -46,6 +46,7 @@ class ModelLoadService(ModelLoadServiceBase):
self._registry = registry
def start(self, invoker: Invoker) -> None:
"""Start the service."""
self._invoker = invoker
@property
@@ -53,6 +54,11 @@ class ModelLoadService(ModelLoadServiceBase):
"""Return the RAM cache used by this loader."""
return self._ram_cache
@property
def gpu_count(self) -> int:
"""Return the number of GPUs available for our uses."""
return len(self._ram_cache.execution_devices)
@property
def convert_cache(self) -> ModelConvertCacheBase:
"""Return the checkpoint convert cache used by this loader."""

View File

@@ -1,6 +1,7 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from abc import ABC, abstractmethod
from typing import Optional, Set
import torch
from typing_extensions import Self
@@ -31,7 +32,7 @@ class ModelManagerServiceBase(ABC):
model_record_service: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
events: EventServiceBase,
execution_device: torch.device,
execution_devices: Optional[Set[torch.device]] = None,
) -> Self:
"""
Construct the model manager service instance.

View File

@@ -1,14 +1,10 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
"""Implementation of ModelManagerServiceBase."""
from typing import Optional
import torch
from typing_extensions import Self
from invokeai.app.services.invoker import Invoker
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache, ModelLoaderRegistry
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
from ..config import InvokeAIAppConfig
@@ -69,7 +65,6 @@ class ModelManagerService(ModelManagerServiceBase):
model_record_service: ModelRecordServiceBase,
download_queue: DownloadQueueServiceBase,
events: EventServiceBase,
execution_device: Optional[torch.device] = None,
) -> Self:
"""
Construct the model manager service instance.
@@ -82,9 +77,7 @@ class ModelManagerService(ModelManagerServiceBase):
ram_cache = ModelCache(
max_cache_size=app_config.ram,
max_vram_cache_size=app_config.vram,
lazy_offloading=app_config.lazy_offload,
logger=logger,
execution_device=execution_device or TorchDevice.choose_torch_device(),
)
convert_cache = ModelConvertCache(cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache)
loader = ModelLoadService(

View File

@@ -1,5 +1,6 @@
import shutil
import tempfile
import threading
import typing
from pathlib import Path
from typing import TYPE_CHECKING, Optional, TypeVar
@@ -9,6 +10,7 @@ import torch
from invokeai.app.services.object_serializer.object_serializer_base import ObjectSerializerBase
from invokeai.app.services.object_serializer.object_serializer_common import ObjectNotFoundError
from invokeai.app.util.misc import uuid_string
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.services.invoker import Invoker
@@ -70,7 +72,10 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
return self._output_dir / name
def _new_name(self) -> str:
return f"{self._obj_class_name}_{uuid_string()}"
tid = threading.current_thread().ident
# Add tid to the object name because uuid4 not thread-safe on windows
# See https://stackoverflow.com/questions/2759644/python-multiprocessing-doesnt-play-nicely-with-uuid-uuid4
return f"{self._obj_class_name}_{tid}-{uuid_string()}"
def _tempdir_cleanup(self) -> None:
"""Calls `cleanup` on the temporary directory, if it exists."""

View File

@@ -1,8 +1,9 @@
import traceback
from contextlib import suppress
from threading import BoundedSemaphore, Thread
from queue import Queue
from threading import BoundedSemaphore, Lock, Thread
from threading import Event as ThreadEvent
from typing import Optional
from typing import Optional, Set
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput
from invokeai.app.services.events.events_common import (
@@ -26,6 +27,7 @@ from invokeai.app.services.session_queue.session_queue_common import SessionQueu
from invokeai.app.services.shared.graph import NodeInputError
from invokeai.app.services.shared.invocation_context import InvocationContextData, build_invocation_context
from invokeai.app.util.profiler import Profiler
from invokeai.backend.util.devices import TorchDevice
from ..invoker import Invoker
from .session_processor_base import InvocationServices, SessionProcessorBase, SessionRunnerBase
@@ -57,8 +59,11 @@ class DefaultSessionRunner(SessionRunnerBase):
self._on_after_run_node_callbacks = on_after_run_node_callbacks or []
self._on_node_error_callbacks = on_node_error_callbacks or []
self._on_after_run_session_callbacks = on_after_run_session_callbacks or []
self._process_lock = Lock()
def start(self, services: InvocationServices, cancel_event: ThreadEvent, profiler: Optional[Profiler] = None):
def start(
self, services: InvocationServices, cancel_event: ThreadEvent, profiler: Optional[Profiler] = None
) -> None:
self._services = services
self._cancel_event = cancel_event
self._profiler = profiler
@@ -76,7 +81,8 @@ class DefaultSessionRunner(SessionRunnerBase):
# Loop over invocations until the session is complete or canceled
while True:
try:
invocation = queue_item.session.next()
with self._process_lock:
invocation = queue_item.session.next()
# Anything other than a `NodeInputError` is handled as a processor error
except NodeInputError as e:
error_type = e.__class__.__name__
@@ -108,7 +114,7 @@ class DefaultSessionRunner(SessionRunnerBase):
self._on_after_run_session(queue_item=queue_item)
def run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem):
def run_node(self, invocation: BaseInvocation, queue_item: SessionQueueItem) -> None:
try:
# Any unhandled exception in this scope is an invocation error & will fail the graph
with self._services.performance_statistics.collect_stats(invocation, queue_item.session_id):
@@ -210,7 +216,7 @@ class DefaultSessionRunner(SessionRunnerBase):
# we don't care about that - suppress the error.
with suppress(GESStatsNotFoundError):
self._services.performance_statistics.log_stats(queue_item.session.id)
self._services.performance_statistics.reset_stats()
self._services.performance_statistics.reset_stats(queue_item.session.id)
for callback in self._on_after_run_session_callbacks:
callback(queue_item=queue_item)
@@ -324,7 +330,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
def start(self, invoker: Invoker) -> None:
self._invoker: Invoker = invoker
self._queue_item: Optional[SessionQueueItem] = None
self._active_queue_items: Set[SessionQueueItem] = set()
self._invocation: Optional[BaseInvocation] = None
self._resume_event = ThreadEvent()
@@ -350,7 +356,14 @@ class DefaultSessionProcessor(SessionProcessorBase):
else None
)
self._worker_thread_count = self._invoker.services.configuration.max_threads or len(
TorchDevice.execution_devices()
)
self._session_worker_queue: Queue[SessionQueueItem] = Queue()
self.session_runner.start(services=invoker.services, cancel_event=self._cancel_event, profiler=self._profiler)
# Session processor - singlethreaded
self._thread = Thread(
name="session_processor",
target=self._process,
@@ -363,6 +376,16 @@ class DefaultSessionProcessor(SessionProcessorBase):
)
self._thread.start()
# Session processor workers - multithreaded
self._invoker.services.logger.debug(f"Starting {self._worker_thread_count} session processing threads.")
for _i in range(0, self._worker_thread_count):
worker = Thread(
name="session_worker",
target=self._process_next_session,
daemon=True,
)
worker.start()
def stop(self, *args, **kwargs) -> None:
self._stop_event.set()
@@ -370,7 +393,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now_event.set()
async def _on_queue_cleared(self, event: FastAPIEvent[QueueClearedEvent]) -> None:
if self._queue_item and self._queue_item.queue_id == event[1].queue_id:
if any(item.queue_id == event[1].queue_id for item in self._active_queue_items):
self._cancel_event.set()
self._poll_now()
@@ -378,7 +401,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
self._poll_now()
async def _on_queue_item_status_changed(self, event: FastAPIEvent[QueueItemStatusChangedEvent]) -> None:
if self._queue_item and event[1].status in ["completed", "failed", "canceled"]:
if self._active_queue_items and event[1].status in ["completed", "failed", "canceled"]:
# When the queue item is canceled via HTTP, the queue item status is set to `"canceled"` and this event is
# emitted. We need to respond to this event and stop graph execution. This is done by setting the cancel
# event, which the session runner checks between invocations. If set, the session runner loop is broken.
@@ -403,7 +426,7 @@ class DefaultSessionProcessor(SessionProcessorBase):
def get_status(self) -> SessionProcessorStatus:
return SessionProcessorStatus(
is_started=self._resume_event.is_set(),
is_processing=self._queue_item is not None,
is_processing=len(self._active_queue_items) > 0,
)
def _process(
@@ -428,30 +451,22 @@ class DefaultSessionProcessor(SessionProcessorBase):
resume_event.wait()
# Get the next session to process
self._queue_item = self._invoker.services.session_queue.dequeue()
queue_item = self._invoker.services.session_queue.dequeue()
if self._queue_item is None:
if queue_item is None:
# The queue was empty, wait for next polling interval or event to try again
self._invoker.services.logger.debug("Waiting for next polling interval or event")
poll_now_event.wait(self._polling_interval)
continue
self._invoker.services.logger.debug(f"Executing queue item {self._queue_item.item_id}")
self._session_worker_queue.put(queue_item)
self._invoker.services.logger.debug(f"Scheduling queue item {queue_item.item_id} to run")
cancel_event.clear()
# Run the graph
self.session_runner.run(queue_item=self._queue_item)
# self.session_runner.run(queue_item=self._queue_item)
except Exception as e:
error_type = e.__class__.__name__
error_message = str(e)
error_traceback = traceback.format_exc()
self._on_non_fatal_processor_error(
queue_item=self._queue_item,
error_type=error_type,
error_message=error_message,
error_traceback=error_traceback,
)
except Exception:
# Wait for next polling interval or event to try again
poll_now_event.wait(self._polling_interval)
continue
@@ -466,9 +481,25 @@ class DefaultSessionProcessor(SessionProcessorBase):
finally:
stop_event.clear()
poll_now_event.clear()
self._queue_item = None
self._thread_semaphore.release()
def _process_next_session(self) -> None:
while True:
self._resume_event.wait()
queue_item = self._session_worker_queue.get()
if queue_item.status == "canceled":
continue
try:
self._active_queue_items.add(queue_item)
# reserve a GPU for this session - may block
with self._invoker.services.model_manager.load.ram_cache.reserve_execution_device():
# Run the session on the reserved GPU
self.session_runner.run(queue_item=queue_item)
except Exception:
continue
finally:
self._active_queue_items.remove(queue_item)
def _on_non_fatal_processor_error(
self,
queue_item: Optional[SessionQueueItem],

View File

@@ -236,6 +236,9 @@ class SessionQueueItemWithoutGraph(BaseModel):
}
)
def __hash__(self) -> int:
return self.item_id
class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
pass

View File

@@ -652,7 +652,7 @@ class Graph(BaseModel):
output_fields = [get_input_field(self.get_node(e.node_id), e.field) for e in outputs]
# Input type must be a list
if get_origin(input_field) != list:
if get_origin(input_field) is not list:
return False
# Validate that all outputs match the input type

View File

@@ -2,6 +2,7 @@ from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Callable, Optional, Union
import torch
from PIL.Image import Image
from pydantic.networks import AnyHttpUrl
from torch import Tensor
@@ -26,11 +27,13 @@ from invokeai.backend.model_manager.config import (
from invokeai.backend.model_manager.load.load_base import LoadedModel, LoadedModelWithoutConfig
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
"""
The InvocationContext provides access to various services and data about the current invocation.
@@ -323,7 +326,6 @@ class ConditioningInterface(InvocationContextInterface):
Returns:
The loaded conditioning data.
"""
return self._services.conditioning.load(name)
@@ -557,6 +559,28 @@ class UtilInterface(InvocationContextInterface):
is_canceled=self.is_canceled,
)
def torch_device(self) -> torch.device:
"""
Return a torch device to use in the current invocation.
Returns:
A torch.device not currently in use by the system.
"""
ram_cache: "ModelCacheBase[AnyModel]" = self._services.model_manager.load.ram_cache
return ram_cache.get_execution_device()
def torch_dtype(self, device: Optional[torch.device] = None) -> torch.dtype:
"""
Return a precision type to use with the current invocation and torch device.
Args:
device: Optional device.
Returns:
A torch.dtype suited for the current device.
"""
return TorchDevice.choose_torch_dtype(device)
class InvocationContext:
"""Provides access to various services and data for the current invocation.

View File

@@ -25,6 +25,7 @@ from enum import Enum
from typing import Literal, Optional, Type, TypeAlias, Union
import torch
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
from typing_extensions import Annotated, Any, Dict
@@ -37,7 +38,7 @@ from ..raw_model import RawModel
# ModelMixin is the base class for all diffusers and transformers models
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
AnyModel = Union[ConfigMixin, ModelMixin, RawModel, torch.nn.Module, Dict[str, torch.Tensor]]
class InvalidModelConfigException(Exception):
@@ -177,6 +178,7 @@ class ModelConfigBase(BaseModel):
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
"""Extend the pydantic schema from a json."""
schema["required"].extend(["key", "type", "format"])
model_config = ConfigDict(validate_assignment=True, json_schema_extra=json_schema_extra)
@@ -443,7 +445,7 @@ class ModelConfigFactory(object):
model = dest_class.model_validate(model_data)
else:
# mypy doesn't typecheck TypeAdapters well?
model = AnyModelConfigValidator.validate_python(model_data) # type: ignore
model = AnyModelConfigValidator.validate_python(model_data)
assert model is not None
if key:
model.key = key

View File

@@ -65,8 +65,7 @@ class LoadedModelWithoutConfig:
def __enter__(self) -> AnyModel:
"""Context entry."""
self._locker.lock()
return self.model
return self._locker.lock()
def __exit__(self, *args: Any, **kwargs: Any) -> None:
"""Context exit."""

View File

@@ -8,9 +8,10 @@ model will be cleared and (re)loaded from disk when next needed.
"""
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict, Generic, Optional, TypeVar
from typing import Dict, Generator, Generic, Optional, Set, TypeVar
import torch
@@ -51,44 +52,13 @@ class CacheRecord(Generic[T]):
Elements of the cache:
key: Unique key for each model, same as used in the models database.
model: Model in memory.
state_dict: A read-only copy of the model's state dict in RAM. It will be
used as a template for creating a copy in the VRAM.
model: Read-only copy of the model *without weights* residing in the "meta device"
size: Size of the model
loaded: True if the model's state dict is currently in VRAM
Before a model is executed, the state_dict template is copied into VRAM,
and then injected into the model. When the model is finished, the VRAM
copy of the state dict is deleted, and the RAM version is reinjected
into the model.
The state_dict should be treated as a read-only attribute. Do not attempt
to patch or otherwise modify it. Instead, patch the copy of the state_dict
after it is loaded into the execution device (e.g. CUDA) using the `LoadedModel`
context manager call `model_on_device()`.
"""
key: str
model: T
device: torch.device
state_dict: Optional[Dict[str, torch.Tensor]]
size: int
loaded: bool = False
_locks: int = 0
def lock(self) -> None:
"""Lock this record."""
self._locks += 1
def unlock(self) -> None:
"""Unlock this record."""
self._locks -= 1
assert self._locks >= 0
@property
def locked(self) -> bool:
"""Return true if record is locked."""
return self._locks > 0
model: T
@dataclass
@@ -115,14 +85,27 @@ class ModelCacheBase(ABC, Generic[T]):
@property
@abstractmethod
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
def execution_devices(self) -> Set[torch.device]:
"""Return the set of available execution devices."""
pass
@property
@contextmanager
@abstractmethod
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
def reserve_execution_device(self, timeout: int = 0) -> Generator[torch.device, None, None]:
"""Reserve an execution device (GPU) under the current thread id."""
pass
@abstractmethod
def get_execution_device(self) -> torch.device:
"""
Return an execution device that has been reserved for current thread.
Note that reservations are done using the current thread's TID.
It might be better to do this using the session ID, but that involves
too many detailed changes to model manager calls.
May generate a ValueError if no GPU has been reserved.
"""
pass
@property
@@ -131,16 +114,6 @@ class ModelCacheBase(ABC, Generic[T]):
"""Return true if the cache is configured to lazily offload models in VRAM."""
pass
@abstractmethod
def offload_unlocked_models(self, size_required: int) -> None:
"""Offload from VRAM any models not actively in use."""
pass
@abstractmethod
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device."""
pass
@property
@abstractmethod
def stats(self) -> Optional[CacheStats]:
@@ -202,6 +175,11 @@ class ModelCacheBase(ABC, Generic[T]):
"""Return true if the model identified by key and submodel_type is in the cache."""
pass
@abstractmethod
def model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> AnyModel:
"""Move a copy of the model into the indicated device and return it."""
pass
@abstractmethod
def cache_size(self) -> int:
"""Get the total size of the models currently cached."""

View File

@@ -18,17 +18,19 @@ context. Use like this:
"""
import copy
import gc
import math
import time
from contextlib import suppress
import sys
import threading
from contextlib import contextmanager, suppress
from logging import Logger
from typing import Dict, List, Optional
from threading import BoundedSemaphore
from typing import Dict, Generator, List, Optional, Set
import torch
from invokeai.backend.model_manager import AnyModel, SubModelType
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
@@ -39,9 +41,7 @@ from .model_locker import ModelLocker
# Maximum size of the cache, in gigs
# Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously
DEFAULT_MAX_CACHE_SIZE = 6.0
# amount of GPU memory to hold in reserve for use by generations (GB)
DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
DEFAULT_MAX_VRAM_CACHE_SIZE = 0.25
# actual size of a gig
GIG = 1073741824
@@ -57,12 +57,8 @@ class ModelCache(ModelCacheBase[AnyModel]):
self,
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
execution_device: torch.device = torch.device("cuda"),
storage_device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float16,
sequential_offload: bool = False,
lazy_offloading: bool = True,
sha_chunksize: int = 16777216,
log_memory_usage: bool = False,
logger: Optional[Logger] = None,
):
@@ -70,23 +66,19 @@ class ModelCache(ModelCacheBase[AnyModel]):
Initialize the model RAM cache.
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
:param precision: Precision for loaded models [torch.float16]
:param lazy_offloading: Keep model in VRAM until another model needs to be loaded
:param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially
:param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache
operation, and the result will be logged (at debug level). There is a time cost to capturing the memory
snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's
behaviour.
"""
# allow lazy offloading only when vram cache enabled
self._lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self._precision: torch.dtype = precision
self._max_cache_size: float = max_cache_size
self._max_vram_cache_size: float = max_vram_cache_size
self._execution_device: torch.device = execution_device
self._storage_device: torch.device = storage_device
self._ram_lock = threading.Lock()
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage
self._stats: Optional[CacheStats] = None
@@ -94,25 +86,87 @@ class ModelCache(ModelCacheBase[AnyModel]):
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
self._cache_stack: List[str] = []
# device to thread id
self._device_lock = threading.Lock()
self._execution_devices: Dict[torch.device, int] = {x: 0 for x in TorchDevice.execution_devices()}
self._free_execution_device = BoundedSemaphore(len(self._execution_devices))
self.logger.info(
f"Using rendering device(s): {', '.join(sorted([str(x) for x in self._execution_devices.keys()]))}"
)
@property
def logger(self) -> Logger:
"""Return the logger used by the cache."""
return self._logger
@property
def lazy_offloading(self) -> bool:
"""Return true if the cache is configured to lazily offload models in VRAM."""
return self._lazy_offloading
@property
def storage_device(self) -> torch.device:
"""Return the storage device (e.g. "CPU" for RAM)."""
return self._storage_device
@property
def execution_device(self) -> torch.device:
"""Return the exection device (e.g. "cuda" for VRAM)."""
return self._execution_device
def execution_devices(self) -> Set[torch.device]:
"""Return the set of available execution devices."""
devices = self._execution_devices.keys()
return set(devices)
def get_execution_device(self) -> torch.device:
"""
Return an execution device that has been reserved for current thread.
Note that reservations are done using the current thread's TID.
It would be better to do this using the session ID, but that involves
too many detailed changes to model manager calls.
May generate a ValueError if no GPU has been reserved.
"""
current_thread = threading.current_thread().ident
assert current_thread is not None
assigned = [x for x, tid in self._execution_devices.items() if current_thread == tid]
if not assigned:
raise ValueError(f"No GPU has been reserved for the use of thread {current_thread}")
return assigned[0]
@contextmanager
def reserve_execution_device(self, timeout: Optional[int] = None) -> Generator[torch.device, None, None]:
"""Reserve an execution device (e.g. GPU) for exclusive use by a generation thread.
Note that the reservation is done using the current thread's TID.
It would be better to do this using the session ID, but that involves
too many detailed changes to model manager calls.
"""
device = None
with self._device_lock:
current_thread = threading.current_thread().ident
assert current_thread is not None
# look for a device that has already been assigned to this thread
assigned = [x for x, tid in self._execution_devices.items() if current_thread == tid]
if assigned:
device = assigned[0]
# no device already assigned. Get one.
if device is None:
self._free_execution_device.acquire(timeout=timeout)
with self._device_lock:
free_device = [x for x, tid in self._execution_devices.items() if tid == 0]
self._execution_devices[free_device[0]] = current_thread
device = free_device[0]
# we are outside the lock region now
self.logger.info(f"{current_thread} Reserved torch device {device}")
# Tell TorchDevice to use this object to get the torch device.
TorchDevice.set_model_cache(self)
try:
yield device
finally:
with self._device_lock:
self.logger.info(f"{current_thread} Released torch device {device}")
self._execution_devices[device] = 0
self._free_execution_device.release()
torch.cuda.empty_cache()
@property
def max_cache_size(self) -> float:
@@ -157,16 +211,16 @@ class ModelCache(ModelCacheBase[AnyModel]):
submodel_type: Optional[SubModelType] = None,
) -> None:
"""Store model under key and optional submodel_type."""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(model)
self.make_room(size)
with self._ram_lock:
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
return
size = calc_model_size_by_data(model)
self.make_room(size)
state_dict = model.state_dict() if isinstance(model, torch.nn.Module) else None
cache_record = CacheRecord(key=key, model=model, device=self.storage_device, state_dict=state_dict, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
cache_record = CacheRecord(key=key, model=model, size=size)
self._cached_models[key] = cache_record
self._cache_stack.append(key)
def get(
self,
@@ -184,36 +238,37 @@ class ModelCache(ModelCacheBase[AnyModel]):
This may raise an IndexError if the model is not in the cache.
"""
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
with self._ram_lock:
key = self._make_cache_key(key, submodel_type)
if key in self._cached_models:
if self.stats:
self.stats.hits += 1
else:
if self.stats:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
cache_entry = self._cached_models[key]
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GIG)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
# more stats
if self.stats:
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GIG)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return ModelLocker(
cache=self,
cache_entry=cache_entry,
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
return ModelLocker(
cache=self,
cache_entry=cache_entry,
)
def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]:
if self._log_memory_usage:
return MemorySnapshot.capture()
@@ -225,127 +280,34 @@ class ModelCache(ModelCacheBase[AnyModel]):
else:
return model_key
def offload_unlocked_models(self, size_required: int) -> None:
"""Move any unused models from VRAM."""
reserved = self._max_vram_cache_size * GIG
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM needed for models; max allowed={(reserved/GIG):.2f}GB")
for _, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size):
if vram_in_use <= reserved:
break
if not cache_entry.loaded:
continue
if not cache_entry.locked:
self.move_model_to_device(cache_entry, self.storage_device)
cache_entry.loaded = False
vram_in_use = torch.cuda.memory_allocated() + size_required
self.logger.debug(
f"Removing {cache_entry.key} from VRAM to free {(cache_entry.size/GIG):.2f}GB; vram free = {(torch.cuda.memory_allocated()/GIG):.2f}GB"
)
TorchDevice.empty_cache()
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> None:
"""Move model into the indicated device.
def model_to_device(self, cache_entry: CacheRecord[AnyModel], target_device: torch.device) -> AnyModel:
"""Move a copy of the model into the indicated device and return it.
:param cache_entry: The CacheRecord for the model
:param target_device: The torch.device to move the model into
May raise a torch.cuda.OutOfMemoryError
"""
self.logger.debug(f"Called to move {cache_entry.key} to {target_device}")
source_device = cache_entry.device
with self._ram_lock:
self.logger.debug(f"Called to move {cache_entry.key} ({type(cache_entry.model)=}) to {target_device}")
# Note: We compare device types only so that 'cuda' == 'cuda:0'.
# This would need to be revised to support multi-GPU.
if torch.device(source_device).type == torch.device(target_device).type:
return
# Some models don't have a `to` method, in which case they run in RAM/CPU.
if not hasattr(cache_entry.model, "to"):
return
# This roundabout method for moving the model around is done to avoid
# the cost of moving the model from RAM to VRAM and then back from VRAM to RAM.
# When moving to VRAM, we copy (not move) each element of the state dict from
# RAM to a new state dict in VRAM, and then inject it into the model.
# This operation is slightly faster than running `to()` on the whole model.
#
# When the model needs to be removed from VRAM we simply delete the copy
# of the state dict in VRAM, and reinject the state dict that is cached
# in RAM into the model. So this operation is very fast.
start_model_to_time = time.time()
snapshot_before = self._capture_memory_snapshot()
try:
if cache_entry.state_dict is not None:
assert hasattr(cache_entry.model, "load_state_dict")
if target_device == self.storage_device:
cache_entry.model.load_state_dict(cache_entry.state_dict, assign=True)
else:
new_dict: Dict[str, torch.Tensor] = {}
for k, v in cache_entry.state_dict.items():
new_dict[k] = v.to(torch.device(target_device), copy=True, non_blocking=True)
cache_entry.model.load_state_dict(new_dict, assign=True)
cache_entry.model.to(target_device, non_blocking=True)
cache_entry.device = target_device
except Exception as e: # blow away cache entry
self._delete_cache_entry(cache_entry)
raise e
snapshot_after = self._capture_memory_snapshot()
end_model_to_time = time.time()
self.logger.debug(
f"Moved model '{cache_entry.key}' from {source_device} to"
f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s."
f"Estimated model size: {(cache_entry.size/GIG):.3f} GB."
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
if (
snapshot_before is not None
and snapshot_after is not None
and snapshot_before.vram is not None
and snapshot_after.vram is not None
):
vram_change = abs(snapshot_before.vram - snapshot_after.vram)
# If the estimated model size does not match the change in VRAM, log a warning.
if not math.isclose(
vram_change,
cache_entry.size,
rel_tol=0.1,
abs_tol=10 * MB,
):
self.logger.debug(
f"Moving model '{cache_entry.key}' from {source_device} to"
f" {target_device} caused an unexpected change in VRAM usage. The model's"
" estimated size may be incorrect. Estimated model size:"
f" {(cache_entry.size/GIG):.3f} GB.\n"
f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}"
)
# Some models don't have a state dictionary, in which case the
# stored model will still reside in CPU
if hasattr(cache_entry.model, "to"):
model_in_gpu = copy.deepcopy(cache_entry.model)
assert hasattr(model_in_gpu, "to")
model_in_gpu.to(target_device)
return model_in_gpu
else:
return cache_entry.model # what happens in CPU stays in CPU
def print_cuda_stats(self) -> None:
"""Log CUDA diagnostics."""
vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG)
ram = "%4.2fG" % (self.cache_size() / GIG)
in_ram_models = 0
in_vram_models = 0
locked_in_vram_models = 0
for cache_record in self._cached_models.values():
if hasattr(cache_record.model, "device"):
if cache_record.model.device == self.storage_device:
in_ram_models += 1
else:
in_vram_models += 1
if cache_record.locked:
locked_in_vram_models += 1
self.logger.debug(
f"Current VRAM/RAM usage: {vram}/{ram}; models_in_ram/models_in_vram(locked) ="
f" {in_ram_models}/{in_vram_models}({locked_in_vram_models})"
)
in_ram_models = len(self._cached_models)
self.logger.debug(f"Current VRAM/RAM usage for {in_ram_models} models: {vram}/{ram}")
def make_room(self, size: int) -> None:
"""Make enough room in the cache to accommodate a new model of indicated size."""
@@ -368,12 +330,14 @@ class ModelCache(ModelCacheBase[AnyModel]):
while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack):
model_key = self._cache_stack[pos]
cache_entry = self._cached_models[model_key]
device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None
self.logger.debug(
f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}"
)
if not cache_entry.locked:
refs = sys.getrefcount(cache_entry.model)
# Expected refs:
# 1 from cache_entry
# 1 from getrefcount function
# 1 from onnx runtime object
if refs <= (3 if "onnx" in model_key else 2):
self.logger.debug(
f"Removing {model_key} from RAM cache to free at least {(size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
)
@@ -400,10 +364,26 @@ class ModelCache(ModelCacheBase[AnyModel]):
if self.stats:
self.stats.cleared = models_cleared
gc.collect()
TorchDevice.empty_cache()
self.logger.debug(f"After making room: cached_models={len(self._cached_models)}")
def _check_free_vram(self, target_device: torch.device, needed_size: int) -> None:
if target_device.type != "cuda":
return
vram_device = ( # mem_get_info() needs an indexed device
target_device if target_device.index is not None else torch.device(str(target_device), index=0)
)
free_mem, _ = torch.cuda.mem_get_info(torch.device(vram_device))
if needed_size > free_mem:
raise torch.cuda.OutOfMemoryError
def _delete_cache_entry(self, cache_entry: CacheRecord[AnyModel]) -> None:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]
try:
self._cache_stack.remove(cache_entry.key)
del self._cached_models[cache_entry.key]
except ValueError:
pass
@staticmethod
def _device_name(device: torch.device) -> str:
return f"{device.type}:{device.index}"

View File

@@ -10,6 +10,8 @@ from invokeai.backend.model_manager import AnyModel
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
MAX_GPU_WAIT = 600 # wait up to 10 minutes for a GPU to become free
class ModelLocker(ModelLockerBase):
"""Internal class that mediates movement in and out of GPU."""
@@ -29,33 +31,29 @@ class ModelLocker(ModelLockerBase):
"""Return the model without moving it around."""
return self._cache_entry.model
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return self._cache_entry.state_dict
def lock(self) -> AnyModel:
"""Move the model into the execution device (GPU) and lock it."""
self._cache_entry.lock()
try:
if self._cache.lazy_offloading:
self._cache.offload_unlocked_models(self._cache_entry.size)
self._cache.move_model_to_device(self._cache_entry, self._cache.execution_device)
self._cache_entry.loaded = True
self._cache.logger.debug(f"Locking {self._cache_entry.key} in {self._cache.execution_device}")
device = self._cache.get_execution_device()
model_on_device = self._cache.model_to_device(self._cache_entry, device)
self._cache.logger.debug(f"Moved {self._cache_entry.key} to {device}")
self._cache.print_cuda_stats()
except torch.cuda.OutOfMemoryError:
self._cache.logger.warning("Insufficient GPU memory to load model. Aborting")
self._cache_entry.unlock()
raise
except Exception:
self._cache_entry.unlock()
raise
return self.model
return model_on_device
# It is no longer necessary to move the model out of VRAM
# because it will be removed when it goes out of scope
# in the caller's context
def unlock(self) -> None:
"""Call upon exit from context."""
self._cache_entry.unlock()
if not self._cache.lazy_offloading:
self._cache.offload_unlocked_models(0)
self._cache.print_cuda_stats()
self._cache.print_cuda_stats()
# This is no longer in use in MGPU.
def get_state_dict(self) -> Optional[Dict[str, torch.Tensor]]:
"""Return the state dict (if any) for the cached model."""
return None

View File

@@ -4,6 +4,7 @@
from __future__ import annotations
import pickle
import threading
from contextlib import contextmanager
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union
@@ -34,6 +35,8 @@ with LoRAHelper.apply_lora_unet(unet, loras):
# TODO: rename smth like ModelPatcher and add TI method?
class ModelPatcher:
_thread_lock = threading.Lock()
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
@@ -106,7 +109,7 @@ class ModelPatcher:
"""
original_weights = {}
try:
with torch.no_grad():
with torch.no_grad(), cls._thread_lock:
for lora, lora_weight in loras:
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
@@ -129,9 +132,7 @@ class ModelPatcher:
dtype = module.weight.dtype
if module_key not in original_weights:
if model_state_dict is not None: # we were provided with the CPU copy of the state dict
original_weights[module_key] = model_state_dict[module_key + ".weight"]
else:
if model_state_dict is None: # no CPU copy of the state dict was provided
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0

View File

@@ -32,8 +32,11 @@ class SDXLConditioningInfo(BasicConditioningInfo):
def to(self, device, dtype=None):
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
assert self.pooled_embeds.device == device
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
return super().to(device=device, dtype=dtype)
result = super().to(device=device, dtype=dtype)
assert self.embeds.device == device
return result
@dataclass

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import math
import threading
from typing import Any, Callable, Optional, Union
import torch
@@ -293,24 +294,31 @@ class InvokeAIDiffuserComponent:
cross_attention_kwargs["regional_ip_data"] = regional_ip_data
added_cond_kwargs = None
if conditioning_data.is_sdxl():
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.uncond_text.pooled_embeds,
conditioning_data.cond_text.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.uncond_text.add_time_ids,
conditioning_data.cond_text.add_time_ids,
],
dim=0,
),
}
try:
if conditioning_data.is_sdxl():
# tid = threading.current_thread().ident
# print(f'DEBUG {tid} {conditioning_data.uncond_text.pooled_embeds.device=} {conditioning_data.cond_text.pooled_embeds.device=}', flush=True),
added_cond_kwargs = {
"text_embeds": torch.cat(
[
# TODO: how to pad? just by zeros? or even truncate?
conditioning_data.uncond_text.pooled_embeds,
conditioning_data.cond_text.pooled_embeds,
],
dim=0,
),
"time_ids": torch.cat(
[
conditioning_data.uncond_text.add_time_ids,
conditioning_data.cond_text.add_time_ids,
],
dim=0,
),
}
except Exception as e:
tid = threading.current_thread().ident
print(f"DEBUG: {tid} {str(e)}")
raise e
if conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None:
# TODO(ryand): We currently initialize RegionalPromptData for every denoising step. The text conditionings

View File

@@ -1,10 +1,16 @@
from typing import Dict, Literal, Optional, Union
"""Torch Device class provides torch device selection services."""
from typing import TYPE_CHECKING, Dict, Literal, Optional, Set, Union
import torch
from deprecated import deprecated
from invokeai.app.services.config.config_default import get_config
if TYPE_CHECKING:
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
# legacy APIs
TorchPrecisionNames = Literal["float32", "float16", "bfloat16"]
CPU_DEVICE = torch.device("cpu")
@@ -42,9 +48,23 @@ PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NA
class TorchDevice:
"""Abstraction layer for torch devices."""
_model_cache: Optional["ModelCacheBase[AnyModel]"] = None
@classmethod
def set_model_cache(cls, cache: "ModelCacheBase[AnyModel]"):
"""Set the current model cache."""
cls._model_cache = cache
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
if cls._model_cache:
return cls._model_cache.get_execution_device()
else:
return cls._choose_device()
@classmethod
def _choose_device(cls) -> torch.device:
app_config = get_config()
if app_config.device != "auto":
device = torch.device(app_config.device)
@@ -56,11 +76,19 @@ class TorchDevice:
device = CPU_DEVICE
return cls.normalize(device)
@classmethod
def execution_devices(cls) -> Set[torch.device]:
"""Return a list of torch.devices that can be used for accelerated inference."""
app_config = get_config()
if app_config.devices is None:
return cls._lookup_execution_devices()
return {torch.device(x) for x in app_config.devices}
@classmethod
def choose_torch_dtype(cls, device: Optional[torch.device] = None) -> torch.dtype:
"""Return the precision to use for accelerated inference."""
device = device or cls.choose_torch_device()
config = get_config()
device = device or cls._choose_device()
if device.type == "cuda" and torch.cuda.is_available():
device_name = torch.cuda.get_device_name(device)
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
@@ -108,3 +136,13 @@ class TorchDevice:
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@classmethod
def _lookup_execution_devices(cls) -> Set[torch.device]:
if torch.cuda.is_available():
devices = {torch.device(f"cuda:{x}") for x in range(0, torch.cuda.device_count())}
elif torch.backends.mps.is_available():
devices = {torch.device("mps")}
else:
devices = {torch.device("cpu")}
return devices

View File

@@ -0,0 +1,54 @@
#!/bin/env python
from argparse import ArgumentParser, Namespace
from pathlib import Path
from invokeai.app.services.config import InvokeAIAppConfig, get_config
from invokeai.app.services.download import DownloadQueueService
from invokeai.app.services.model_install import ModelInstallService
from invokeai.app.services.model_records import ModelRecordServiceSQL
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
from invokeai.backend.util.logging import InvokeAILogger
def get_args() -> Namespace:
parser = ArgumentParser(description="Update models database from yaml file")
parser.add_argument("--root", type=Path, required=False, default=None)
parser.add_argument("--yaml_file", type=Path, required=False, default=None)
return parser.parse_args()
def populate_config() -> InvokeAIAppConfig:
args = get_args()
config = get_config()
if args.root:
config._root = args.root
if args.yaml_file:
config.legacy_models_yaml_path = args.yaml_file
else:
config.legacy_models_yaml_path = config.root_path / "configs/models.yaml"
return config
def initialize_installer(config: InvokeAIAppConfig) -> ModelInstallService:
logger = InvokeAILogger.get_logger(config=config)
db = SqliteDatabase(config.db_path, logger)
record_store = ModelRecordServiceSQL(db)
queue = DownloadQueueService()
queue.start()
installer = ModelInstallService(app_config=config, record_store=record_store, download_queue=queue)
return installer
def main() -> None:
config = populate_config()
installer = initialize_installer(config)
installer._migrate_yaml(rename_yaml=False, overwrite_db=True)
print("\n<INSTALLED MODELS>")
print("\t".join(["key", "name", "type", "path"]))
for model in installer.record_store.all_models():
print("\t".join([model.key, model.name, model.type, (config.models_path / model.path).as_posix()]))
if __name__ == "__main__":
main()

View File

@@ -14,13 +14,14 @@ def test_loading(mm2_model_manager: ModelManagerServiceBase, embedding_file: Pat
matches = store.search_by_attr(model_name="test_embedding")
assert len(matches) == 0
key = mm2_model_manager.install.register_path(embedding_file)
loaded_model = mm2_model_manager.load.load_model(store.get_model(key))
assert loaded_model is not None
assert loaded_model.config.key == key
with loaded_model as model:
assert isinstance(model, TextualInversionModelRaw)
with mm2_model_manager.load.ram_cache.reserve_execution_device():
loaded_model = mm2_model_manager.load.load_model(store.get_model(key))
assert loaded_model is not None
assert loaded_model.config.key == key
with loaded_model as model:
assert isinstance(model, TextualInversionModelRaw)
config = mm2_model_manager.store.get_model(key)
loaded_model_2 = mm2_model_manager.load.load_model(config)
config = mm2_model_manager.store.get_model(key)
loaded_model_2 = mm2_model_manager.load.load_model(config)
assert loaded_model.config.key == loaded_model_2.config.key
assert loaded_model.config.key == loaded_model_2.config.key

View File

@@ -89,11 +89,10 @@ def mm2_download_queue(mm2_session: Session) -> DownloadQueueServiceBase:
@pytest.fixture
def mm2_loader(mm2_app_config: InvokeAIAppConfig, mm2_record_store: ModelRecordServiceBase) -> ModelLoadServiceBase:
def mm2_loader(mm2_app_config: InvokeAIAppConfig) -> ModelLoadServiceBase:
ram_cache = ModelCache(
logger=InvokeAILogger.get_logger(),
max_cache_size=mm2_app_config.ram,
max_vram_cache_size=mm2_app_config.vram,
)
convert_cache = ModelConvertCache(mm2_app_config.convert_cache_path)
return ModelLoadService(

View File

@@ -8,7 +8,9 @@ import pytest
import torch
from invokeai.app.services.config import get_config
from invokeai.backend.model_manager.load import ModelCache
from invokeai.backend.util.devices import TorchDevice, choose_precision, choose_torch_device, torch_dtype
from tests.backend.model_manager.model_manager_fixtures import * # noqa F403
devices = ["cpu", "cuda:0", "cuda:1", "mps"]
device_types_cpu = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", torch.float32)]
@@ -20,6 +22,7 @@ device_types_mps = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", t
def test_device_choice(device_name):
config = get_config()
config.device = device_name
TorchDevice.set_model_cache(None) # disable dynamic selection of GPU device
torch_device = TorchDevice.choose_torch_device()
assert torch_device == torch.device(device_name)
@@ -130,3 +133,32 @@ def test_legacy_precision_name():
assert "float16" == choose_precision(torch.device("cuda"))
assert "float16" == choose_precision(torch.device("mps"))
assert "float32" == choose_precision(torch.device("cpu"))
def test_multi_device_support_1():
config = get_config()
config.devices = ["cuda:0", "cuda:1"]
assert TorchDevice.execution_devices() == {torch.device("cuda:0"), torch.device("cuda:1")}
def test_multi_device_support_2():
config = get_config()
config.devices = None
with (
patch("torch.cuda.device_count", return_value=3),
patch("torch.cuda.is_available", return_value=True),
):
assert TorchDevice.execution_devices() == {
torch.device("cuda:0"),
torch.device("cuda:1"),
torch.device("cuda:2"),
}
def test_multi_device_support_3():
config = get_config()
config.devices = ["cuda:0", "cuda:1"]
cache = ModelCache()
with cache.reserve_execution_device() as gpu:
assert gpu in [torch.device(x) for x in config.devices]
assert TorchDevice.choose_torch_device() == gpu

View File

@@ -17,7 +17,6 @@ from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.images.images_default import ImageService
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.invocation_stats.invocation_stats_default import InvocationStatsService
from invokeai.app.services.invoker import Invoker
from invokeai.backend.util.logging import InvokeAILogger
from tests.backend.model_manager.model_manager_fixtures import * # noqa: F403
@@ -49,13 +48,13 @@ def mock_services() -> InvocationServices:
model_manager=None, # type: ignore
download_queue=None, # type: ignore
names=None, # type: ignore
performance_statistics=InvocationStatsService(),
session_processor=None, # type: ignore
session_queue=None, # type: ignore
urls=None, # type: ignore
workflow_records=None, # type: ignore
tensors=None, # type: ignore
conditioning=None, # type: ignore
performance_statistics=None, # type: ignore
)

View File

@@ -92,7 +92,6 @@ def test_migrate_v3_config_from_file(tmp_path: Path, patch_rootdir: None):
assert config.host == "192.168.1.1"
assert config.port == 8080
assert config.ram == 100
assert config.vram == 50
assert config.legacy_models_yaml_path == Path("/custom/models.yaml")
# This should be stripped out
assert not hasattr(config, "esrgan")