Compare commits

...

28 Commits

Author SHA1 Message Date
Ryan Dick
2ed86c082a Assume LoRA alpha=8 for FLUX diffusers PEFT LoRAs. 2024-09-12 22:04:20 +00:00
Ryan Dick
41ff0a5af6 Consolidate all LoRA patching logic in the LoRAPatcher. 2024-09-12 21:59:17 +00:00
Ryan Dick
c2ec65d582 lora_layer_from_state_dict(...) -> any_lora_layer_from_state_dict(...) 2024-09-12 21:59:17 +00:00
Ryan Dick
a0bede02f4 Rename peft/ -> lora/ 2024-09-12 21:59:17 +00:00
Ryan Dick
8f3c09348d Genera cleanup/documentation. 2024-09-12 21:59:17 +00:00
Ryan Dick
940269e60a Add a check that all keys are handled in the FLUX Diffusers LoRA loading code. 2024-09-12 21:59:17 +00:00
Ryan Dick
4fe42e2e48 Add model probe support for FLUX LoRA models in Diffusers format. 2024-09-12 21:59:17 +00:00
Ryan Dick
cbba28bdec Add utility test function for creating a dummy state_dict. 2024-09-12 21:59:17 +00:00
Ryan Dick
2e8effe83f Add is_state_dict_likely_in_flux_diffusers_format(...) function with unit test. 2024-09-12 21:59:17 +00:00
Ryan Dick
1b406e6d6a Add unit test for lora_model_from_flux_diffusers_state_dict(...). 2024-09-12 21:59:17 +00:00
Ryan Dick
757251266d First draft of lora_model_from_flux_diffusers_state_dict(...). 2024-09-12 21:59:17 +00:00
Ryan Dick
b91a9ec54c (minor) Rename test file. 2024-09-12 21:59:17 +00:00
Ryan Dick
0745d7ecfa Add ConcatenateLoRALayer class. 2024-09-12 21:59:17 +00:00
Ryan Dick
690bf4eb9d WIP on supporting diffusers format FLUX LoRAs. 2024-09-12 21:59:17 +00:00
Ryan Dick
c238b60db9 Rename flux_kohya_lora_conversion_utils.py 2024-09-12 21:59:17 +00:00
Ryan Dick
de5e9f33fa Fixup FLUX LoRA unit tests. 2024-09-12 21:59:17 +00:00
Ryan Dick
91ada8fc4c WIP 2024-09-12 21:59:17 +00:00
Ryan Dick
26be5ea030 WIP - add invocations to support FLUX LORAs. 2024-09-12 21:59:17 +00:00
Ryan Dick
d038d635f1 Get probing of FLUX LoRA kohya models working. 2024-09-12 21:59:17 +00:00
Ryan Dick
5225c77908 Add utility function for detecting whether a state_dict is in the FLUX kohya LoRA format. 2024-09-12 21:59:17 +00:00
Ryan Dick
33761066f1 Update convert_flux_kohya_state_dict_to_invoke_format() to raise an exception if an unexpected key is encountered, and add a corresponding unit test. 2024-09-12 21:59:17 +00:00
Ryan Dick
931942754d Move the responsibilities of 1) state_dict loading from file, and 2) SDXL lora key conversions, out of LoRAModelRaw and into LoRALoader. 2024-09-12 21:59:17 +00:00
Ryan Dick
04cdf00702 Remove unused LoRAModelRaw.name attribute. 2024-09-12 21:59:17 +00:00
Ryan Dick
141de5755c Fix type errors in sdxl_lora_conversion_utils.py 2024-09-12 21:59:17 +00:00
Ryan Dick
9b52e9c116 Start moving SDXL-specific LoRA conversions out of the general-purpose LoRAModelRaw class. 2024-09-12 21:59:17 +00:00
Ryan Dick
d0e8ce9056 Get convert_flux_kohya_state_dict_to_invoke_format(...) working, with unit tests. 2024-09-12 21:59:17 +00:00
Ryan Dick
1bad546626 WIP - Initial logic for kohya FLUX LoRA conversion. 2024-09-12 21:59:17 +00:00
Ryan Dick
fa78ad5c5a Add state_dict keys for two FLUX LoRA formats to be used in unit tests. 2024-09-12 21:59:17 +00:00
27 changed files with 3054 additions and 519 deletions

View File

@@ -20,6 +20,7 @@ from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.ti_utils import generate_ti_list
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
@@ -81,9 +82,10 @@ class CompelInvocation(BaseInvocation):
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora_text_encoder(
text_encoder,
loras=_lora_loader(),
LoRAPatcher.apply_lora_patches(
model=text_encoder,
patches=_lora_loader(),
prefix="lora_te_",
cached_weights=cached_weights,
),
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
@@ -176,9 +178,9 @@ class SDXLPromptInvocationBase:
# apply all patches while the model is on the target device
text_encoder_info.model_on_device() as (cached_weights, text_encoder),
tokenizer_info as tokenizer,
ModelPatcher.apply_lora(
LoRAPatcher.apply_lora_patches(
text_encoder,
loras=_lora_loader(),
patches=_lora_loader(),
prefix=lora_prefix,
cached_weights=cached_weights,
),

View File

@@ -37,6 +37,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState
@@ -979,9 +980,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(
unet,
loras=_lora_loader(),
LoRAPatcher.apply_lora_patches(
model=unet,
patches=_lora_loader(),
prefix="lora_unet_",
cached_weights=cached_weights,
),
):

View File

@@ -1,4 +1,4 @@
from typing import Callable, Optional
from typing import Callable, Iterator, Optional, Tuple
import torch
import torchvision.transforms as tv_transforms
@@ -29,6 +29,8 @@ from invokeai.backend.flux.sampling_utils import (
pack,
unpack,
)
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@@ -187,7 +189,16 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
noise=noise,
)
with transformer_info as transformer:
with (
transformer_info.model_on_device() as (cached_weights, transformer),
# Apply the LoRA after transformer has been moved to its target device for faster patching.
LoRAPatcher.apply_lora_patches(
model=transformer,
patches=self._lora_iterator(context),
prefix="",
cached_weights=cached_weights,
),
):
assert isinstance(transformer, Flux)
x = denoise(
@@ -241,6 +252,13 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
# `latents`.
return mask.expand_as(latents)
def _lora_iterator(self, context: InvocationContext) -> Iterator[Tuple[LoRAModelRaw, float]]:
for lora in self.transformer.loras:
lora_info = context.models.load(lora.lora)
assert isinstance(lora_info.model, LoRAModelRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()

View File

@@ -0,0 +1,53 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import LoRAField, ModelIdentifierField, TransformerField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_lora_loader_output")
class FluxLoRALoaderOutput(BaseInvocationOutput):
"""FLUX LoRA Loader Output"""
transformer: TransformerField = OutputField(
default=None, description=FieldDescriptions.transformer, title="FLUX Transformer"
)
@invocation(
"flux_lora_loader",
title="FLUX LoRA",
tags=["lora", "model", "flux"],
category="model",
version="1.0.0",
)
class FluxLoRALoaderInvocation(BaseInvocation):
"""Apply a LoRA model to a FLUX transformer."""
lora: ModelIdentifierField = InputField(
description=FieldDescriptions.lora_model, title="LoRA", ui_type=UIType.LoRAModel
)
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
transformer: TransformerField = InputField(
description=FieldDescriptions.transformer,
input=Input.Connection,
title="FLUX Transformer",
)
def invoke(self, context: InvocationContext) -> FluxLoRALoaderOutput:
lora_key = self.lora.key
if not context.models.exists(lora_key):
raise ValueError(f"Unknown lora: {lora_key}!")
if any(lora.lora.key == lora_key for lora in self.transformer.loras):
raise Exception(f'LoRA "{lora_key}" already applied to transformer.')
transformer = self.transformer.model_copy(deep=True)
transformer.loras.append(
LoRAField(
lora=self.lora,
weight=self.weight,
)
)
return FluxLoRALoaderOutput(transformer=transformer)

View File

@@ -69,6 +69,7 @@ class CLIPField(BaseModel):
class TransformerField(BaseModel):
transformer: ModelIdentifierField = Field(description="Info to load Transformer submodel")
loras: List[LoRAField] = Field(description="LoRAs to apply on model loading")
class T5EncoderField(BaseModel):
@@ -202,7 +203,7 @@ class FluxModelLoaderInvocation(BaseInvocation):
assert isinstance(transformer_config, CheckpointConfigBase)
return FluxModelLoaderOutput(
transformer=TransformerField(transformer=transformer),
transformer=TransformerField(transformer=transformer, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=clip_encoder, loras=[], skipped_layers=0),
t5_encoder=T5EncoderField(tokenizer=tokenizer2, text_encoder=t5_encoder),
vae=VAEField(vae=vae),

View File

@@ -23,7 +23,7 @@ from invokeai.app.invocations.model import UNetField
from invokeai.app.invocations.primitives import LatentsOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, PipelineIntermediateState
from invokeai.backend.stable_diffusion.multi_diffusion_pipeline import (
MultiDiffusionPipeline,
@@ -204,7 +204,11 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
# Load the UNet model.
unet_info = context.models.load(self.unet.unet)
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
with (
ExitStack() as exit_stack,
unet_info as unet,
LoRAPatcher.apply_lora_patches(model=unet, patches=_lora_loader(), prefix="lora_unet_"),
):
assert isinstance(unet, UNet2DConditionModel)
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:

View File

@@ -0,0 +1,211 @@
from typing import Dict
import torch
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Tensor]) -> bool:
"""Checks if the provided state dict is likely in the Diffusers FLUX LoRA format.
This is intended to be a reasonably high-precision detector, but it is not guaranteed to have perfect precision. (A
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
"""
# First, check that all keys end in "lora_A.weight" or "lora_B.weight" (i.e. are in PEFT format).
all_keys_in_peft_format = all(k.endswith(("lora_A.weight", "lora_B.weight")) for k in state_dict.keys())
# Next, check that this is likely a FLUX model by spot-checking a few keys.
expected_keys = [
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
]
all_expected_keys_present = all(k in state_dict for k in expected_keys)
return all_keys_in_peft_format and all_expected_keys_present
def lora_model_from_flux_diffusers_state_dict(state_dict: Dict[str, torch.Tensor], alpha: float) -> LoRAModelRaw: # pyright: ignore[reportRedeclaration] (state_dict is intentionally re-declared)
"""Loads a state dict in the Diffusers FLUX LoRA format into a LoRAModelRaw object.
This function is based on:
https://github.com/huggingface/diffusers/blob/55ac421f7bb12fd00ccbef727be4dc2f3f920abb/scripts/convert_flux_to_diffusers.py
"""
# Group keys by layer.
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_by_layer(state_dict)
# Remove the "transformer." prefix from all keys.
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
# Constants for FLUX.1
num_double_layers = 19
num_single_layers = 38
# inner_dim = 3072
# mlp_ratio = 4.0
layers: dict[str, AnyLoRALayer] = {}
def add_lora_layer_if_present(src_key: str, dst_key: str) -> None:
if src_key in grouped_state_dict:
src_layer_dict = grouped_state_dict.pop(src_key)
layers[dst_key] = LoRALayer(
dst_key,
{
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
"alpha": torch.tensor(alpha),
},
)
assert len(src_layer_dict) == 0
def add_qkv_lora_layer_if_present(src_keys: list[str], dst_qkv_key: str) -> None:
"""Handle the Q, K, V matrices for a transformer block. We need special handling because the diffusers format
stores them in separate matrices, whereas the BFL format used internally by InvokeAI concatenates them.
"""
# We expect that either all src keys are present or none of them are. Verify this.
keys_present = [key in grouped_state_dict for key in src_keys]
assert all(keys_present) or not any(keys_present)
# If none of the keys are present, return early.
if not any(keys_present):
return
src_layer_dicts = [grouped_state_dict.pop(key) for key in src_keys]
sub_layers: list[LoRALayerBase] = []
for src_layer_dict in src_layer_dicts:
sub_layers.append(
LoRALayer(
layer_key="",
values={
"lora_down.weight": src_layer_dict.pop("lora_A.weight"),
"lora_up.weight": src_layer_dict.pop("lora_B.weight"),
"alpha": torch.tensor(alpha),
},
)
)
assert len(src_layer_dict) == 0
layers[dst_qkv_key] = ConcatenatedLoRALayer(layer_key=dst_qkv_key, lora_layers=sub_layers, concat_axis=0)
# time_text_embed.timestep_embedder -> time_in.
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_1", "time_in.in_layer")
add_lora_layer_if_present("time_text_embed.timestep_embedder.linear_2", "time_in.out_layer")
# time_text_embed.text_embedder -> vector_in.
add_lora_layer_if_present("time_text_embed.text_embedder.linear_1", "vector_in.in_layer")
add_lora_layer_if_present("time_text_embed.text_embedder.linear_2", "vector_in.out_layer")
# time_text_embed.guidance_embedder -> guidance_in.
add_lora_layer_if_present("time_text_embed.guidance_embedder.linear_1", "guidance_in")
add_lora_layer_if_present("time_text_embed.guidance_embedder.linear_2", "guidance_in")
# context_embedder -> txt_in.
add_lora_layer_if_present("context_embedder", "txt_in")
# x_embedder -> img_in.
add_lora_layer_if_present("x_embedder", "img_in")
# Double transformer blocks.
for i in range(num_double_layers):
# norms.
add_lora_layer_if_present(f"transformer_blocks.{i}.norm1.linear", f"double_blocks.{i}.img_mod.lin")
add_lora_layer_if_present(f"transformer_blocks.{i}.norm1_context.linear", f"double_blocks.{i}.txt_mod.lin")
# Q, K, V
add_qkv_lora_layer_if_present(
[
f"transformer_blocks.{i}.attn.to_q",
f"transformer_blocks.{i}.attn.to_k",
f"transformer_blocks.{i}.attn.to_v",
],
f"double_blocks.{i}.img_attn.qkv",
)
add_qkv_lora_layer_if_present(
[
f"transformer_blocks.{i}.attn.add_q_proj",
f"transformer_blocks.{i}.attn.add_k_proj",
f"transformer_blocks.{i}.attn.add_v_proj",
],
f"double_blocks.{i}.txt_attn.qkv",
)
# ff img_mlp
add_lora_layer_if_present(
f"transformer_blocks.{i}.ff.net.0.proj",
f"double_blocks.{i}.img_mlp.0",
)
add_lora_layer_if_present(
f"transformer_blocks.{i}.ff.net.2",
f"double_blocks.{i}.img_mlp.2",
)
# ff txt_mlp
add_lora_layer_if_present(
f"transformer_blocks.{i}.ff_context.net.0.proj",
f"double_blocks.{i}.txt_mlp.0",
)
add_lora_layer_if_present(
f"transformer_blocks.{i}.ff_context.net.2",
f"double_blocks.{i}.txt_mlp.2",
)
# output projections.
add_lora_layer_if_present(
f"transformer_blocks.{i}.attn.to_out.0",
f"double_blocks.{i}.img_attn.proj",
)
add_lora_layer_if_present(
f"transformer_blocks.{i}.attn.to_add_out",
f"double_blocks.{i}.txt_attn.proj",
)
# Single transformer blocks.
for i in range(num_single_layers):
# norms
add_lora_layer_if_present(
f"single_transformer_blocks.{i}.norm.linear",
f"single_blocks.{i}.modulation.lin",
)
# Q, K, V, mlp
add_qkv_lora_layer_if_present(
[
f"single_transformer_blocks.{i}.attn.to_q",
f"single_transformer_blocks.{i}.attn.to_k",
f"single_transformer_blocks.{i}.attn.to_v",
f"single_transformer_blocks.{i}.proj_mlp",
],
f"single_blocks.{i}.linear1",
)
# Output projections.
add_lora_layer_if_present(
f"single_transformer_blocks.{i}.proj_out",
f"single_blocks.{i}.linear2",
)
# Final layer.
add_lora_layer_if_present("proj_out", "final_layer.linear")
# Assert that all keys were processed.
assert len(grouped_state_dict) == 0
return LoRAModelRaw(layers=layers)
def _group_by_layer(state_dict: Dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
"""Groups the keys in the state dict by layer."""
layer_dict: dict[str, dict[str, torch.Tensor]] = {}
for key in state_dict:
# Split the 'lora_A.weight' or 'lora_B.weight' suffix from the layer name.
parts = key.rsplit(".", maxsplit=2)
layer_name = parts[0]
key_name = ".".join(parts[1:])
if layer_name not in layer_dict:
layer_dict[layer_name] = {}
layer_dict[layer_name][key_name] = state_dict[key]
return layer_dict

View File

@@ -0,0 +1,81 @@
import re
from typing import Any, Dict, TypeVar
import torch
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
# A regex pattern that matches all of the keys in the Kohya FLUX LoRA format.
# Example keys:
# lora_unet_double_blocks_0_img_attn_proj.alpha
# lora_unet_double_blocks_0_img_attn_proj.lora_down.weight
# lora_unet_double_blocks_0_img_attn_proj.lora_up.weight
FLUX_KOHYA_KEY_REGEX = (
r"lora_unet_(\w+_blocks)_(\d+)_(img_attn|img_mlp|img_mod|txt_attn|txt_mlp|txt_mod|linear1|linear2|modulation)_?(.*)"
)
def is_state_dict_likely_in_flux_kohya_format(state_dict: Dict[str, Any]) -> bool:
"""Checks if the provided state dict is likely in the Kohya FLUX LoRA format.
This is intended to be a high-precision detector, but it is not guaranteed to have perfect precision. (A
perfect-precision detector would require checking all keys against a whitelist and verifying tensor shapes.)
"""
return all(re.match(FLUX_KOHYA_KEY_REGEX, k) for k in state_dict.keys())
def lora_model_from_flux_kohya_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
# Group keys by layer.
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
layer_name, param_name = key.split(".", 1)
if layer_name not in grouped_state_dict:
grouped_state_dict[layer_name] = {}
grouped_state_dict[layer_name][param_name] = value
# Convert the state dict to the InvokeAI format.
grouped_state_dict = convert_flux_kohya_state_dict_to_invoke_format(grouped_state_dict)
# Create LoRA layers.
layers: dict[str, AnyLoRALayer] = {}
for layer_key, layer_state_dict in grouped_state_dict.items():
layer = any_lora_layer_from_state_dict(layer_key, layer_state_dict)
layers[layer_key] = layer
# Create and return the LoRAModelRaw.
return LoRAModelRaw(layers=layers)
T = TypeVar("T")
def convert_flux_kohya_state_dict_to_invoke_format(state_dict: Dict[str, T]) -> Dict[str, T]:
"""Converts a state dict from the Kohya FLUX LoRA format to LoRA weight format used internally by InvokeAI.
Example key conversions:
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
"lora_unet_double_blocks_0_img_attn_proj" -> "double_blocks.0.img_attn.proj"
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img_attn.qkv"
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
"lora_unet_double_blocks_0_img_attn_qkv" -> "double_blocks.0.img.attn.qkv"
"""
def replace_func(match: re.Match[str]) -> str:
s = f"{match.group(1)}.{match.group(2)}.{match.group(3)}"
if match.group(4):
s += f".{match.group(4)}"
return s
converted_dict: dict[str, T] = {}
for k, v in state_dict.items():
match = re.match(FLUX_KOHYA_KEY_REGEX, k)
if match:
new_key = re.sub(FLUX_KOHYA_KEY_REGEX, replace_func, k)
converted_dict[new_key] = v
else:
raise ValueError(f"Key '{k}' does not match the expected pattern for FLUX LoRA weights.")
return converted_dict

View File

@@ -0,0 +1,30 @@
from typing import Dict
import torch
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.utils import any_lora_layer_from_state_dict
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
def lora_model_from_sd_state_dict(state_dict: Dict[str, torch.Tensor]) -> LoRAModelRaw:
grouped_state_dict: dict[str, dict[str, torch.Tensor]] = _group_state(state_dict)
layers: dict[str, AnyLoRALayer] = {}
for layer_key, values in grouped_state_dict.items():
layer = any_lora_layer_from_state_dict(layer_key, values)
layers[layer_key] = layer
return LoRAModelRaw(layers=layers)
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped

View File

@@ -0,0 +1,154 @@
import bisect
from typing import Dict, List, Tuple, TypeVar
T = TypeVar("T")
def convert_sdxl_keys_to_diffusers_format(state_dict: Dict[str, T]) -> dict[str, T]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict: dict[str, T] = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def _make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer: list[tuple[str, str]] = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map: list[tuple[str, str]] = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in _make_sdxl_unet_conversion_map()
}

View File

@@ -1,5 +1,6 @@
from typing import Union
from invokeai.backend.lora.layers.concatenated_lora_layer import ConcatenatedLoRALayer
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
@@ -7,4 +8,4 @@ from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer]
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer, NormLayer, ConcatenatedLoRALayer]

View File

@@ -0,0 +1,46 @@
from typing import List, Optional
import torch
from invokeai.backend.lora.layers.lora_layer_base import LoRALayerBase
class ConcatenatedLoRALayer(LoRALayerBase):
"""A LoRA layer that is composed of multiple LoRA layers concatenated along a specified axis.
This class was created to handle a special case with FLUX LoRA models. In the BFL FLUX model format, the attention
Q, K, V matrices are concatenated along the first dimension. In the diffusers LoRA format, the Q, K, V matrices are
stored as separate tensors. This class enables diffusers LoRA layers to be used in BFL FLUX models.
"""
def __init__(self, layer_key: str, lora_layers: List[LoRALayerBase], concat_axis: int = 0):
# Note: We pass values={} to the base class, because the values are handled by the individual LoRA layers.
super().__init__(layer_key, values={})
self._lora_layers = lora_layers
self._concat_axis = concat_axis
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
# TODO(ryand): Currently, we pass orig_weight=None to the sub-layers. If we want to support sub-layers that
# require this value, we will need to implement chunking of the original weight tensor here.
layer_weights = [lora_layer.get_weight(None) for lora_layer in self._lora_layers] # pyright: ignore[reportArgumentType]
return torch.cat(layer_weights, dim=self._concat_axis)
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
# TODO(ryand): Currently, we pass orig_bias=None to the sub-layers. If we want to support sub-layers that
# require this value, we will need to implement chunking of the original bias tensor here.
layer_biases = [lora_layer.get_bias(None) for lora_layer in self._lora_layers] # pyright: ignore[reportArgumentType]
layer_bias_is_none = [layer_bias is None for layer_bias in layer_biases]
if any(layer_bias_is_none):
assert all(layer_bias_is_none)
return None
# Ignore the type error, because we have just verified that all layer biases are non-None.
return torch.cat(layer_biases, dim=self._concat_axis)
def calc_size(self) -> int:
return sum(lora_layer.calc_size() for lora_layer in self._lora_layers)
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
for lora_layer in self._lora_layers:
lora_layer.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,33 @@
from typing import Dict
import torch
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
def any_lora_layer_from_state_dict(layer_key: str, state_dict: Dict[str, torch.Tensor]) -> AnyLoRALayer:
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
if "lora_up.weight" in state_dict:
# LoRA a.k.a LoCon
return LoRALayer(layer_key, state_dict)
elif "hada_w1_a" in state_dict:
return LoHALayer(layer_key, state_dict)
elif "lokr_w1" in state_dict or "lokr_w1_a" in state_dict:
return LoKRLayer(layer_key, state_dict)
elif "diff" in state_dict:
# Full a.k.a Diff
return FullLayer(layer_key, state_dict)
elif "on_input" in state_dict:
return IA3Layer(layer_key, state_dict)
elif "w_norm" in state_dict:
return NormLayer(layer_key, state_dict)
else:
raise ValueError(f"Unsupported lora format: {state_dict.keys()}")

View File

@@ -1,43 +1,17 @@
# Copyright (c) 2024 The InvokeAI Development team
"""LoRA model support."""
import bisect
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from typing import Dict, Optional
import torch
from safetensors.torch import load_file
from typing_extensions import Self
from invokeai.backend.lora.layers.any_lora_layer import AnyLoRALayer
from invokeai.backend.lora.layers.full_layer import FullLayer
from invokeai.backend.lora.layers.ia3_layer import IA3Layer
from invokeai.backend.lora.layers.loha_layer import LoHALayer
from invokeai.backend.lora.layers.lokr_layer import LoKRLayer
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.layers.norm_layer import NormLayer
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.raw_model import RawModel
class LoRAModelRaw(RawModel): # (torch.nn.Module):
_name: str
layers: Dict[str, AnyLoRALayer]
def __init__(
self,
name: str,
layers: Dict[str, AnyLoRALayer],
):
self._name = name
def __init__(self, layers: Dict[str, AnyLoRALayer]):
self.layers = layers
@property
def name(self) -> str:
return self._name
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
# TODO: try revert if exception?
for _key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
@@ -46,234 +20,3 @@ class LoRAModelRaw(RawModel): # (torch.nn.Module):
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = {}
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
) -> Self:
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
name=file_path.stem,
layers={},
)
if file_path.suffix == ".safetensors":
sd = load_file(file_path.absolute().as_posix(), device="cpu")
else:
sd = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(sd)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
# lora and locon
if "lora_up.weight" in values:
layer: AnyLoRALayer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_a" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1" in values or "lokr_w1_a" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "on_input" in values:
layer = IA3Layer(layer_key, values)
# norms
elif "w_norm" in values:
layer = NormLayer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = {}
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}

View File

@@ -0,0 +1,148 @@
from contextlib import contextmanager
from typing import Dict, Iterable, Optional, Tuple
import torch
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
class LoRAPatcher:
@staticmethod
@torch.no_grad()
@contextmanager
def apply_lora_patches(
model: torch.nn.Module,
patches: Iterable[Tuple[LoRAModelRaw, float]],
prefix: str,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
):
"""Apply one or more LoRA patches to a model within a context manager.
:param model: The model to patch.
:param loras: An iterator that returns tuples of LoRA patches and associated weights. An iterator is used so
that the LoRA patches do not need to be loaded into memory all at once.
:param prefix: The keys in the patches will be filtered to only include weights with this prefix.
:cached_weights: Read-only copy of the model's state dict in CPU, for efficient unpatching purposes.
"""
original_weights = OriginalWeightsStorage(cached_weights)
try:
for patch, patch_weight in patches:
LoRAPatcher.apply_lora_patch(
model=model,
prefix=prefix,
patch=patch,
patch_weight=patch_weight,
original_weights=original_weights,
)
del patch
yield
finally:
for param_key, weight in original_weights.get_changed_weights():
model.get_parameter(param_key).copy_(weight)
@staticmethod
@torch.no_grad()
def apply_lora_patch(
model: torch.nn.Module,
prefix: str,
patch: LoRAModelRaw,
patch_weight: float,
original_weights: OriginalWeightsStorage,
):
"""
Apply a single LoRA patch to a model.
:param model: The model to patch.
:param patch: LoRA model to patch in.
:param patch_weight: LoRA patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
"""
if patch_weight == 0:
return
# If the layer keys contain a dot, then they are not flattened, and can be directly used to access model
# submodules. If the layer keys do not contain a dot, then they are flattened, meaning that all '.' have been
# replaced with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly
# without searching, but some legacy code still uses flattened keys.
layer_keys_are_flattened = "." not in next(iter(patch.layers.keys()))
prefix_len = len(prefix)
for layer_key, layer in patch.layers.items():
if not layer_key.startswith(prefix):
continue
module_key, module = LoRAPatcher._get_submodule(
model, layer_key[prefix_len:], layer_key_is_flattened=layer_keys_are_flattened
)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, lora_param_weight in layer.get_parameters(module).items():
param_key = module_key + "." + param_name
module_param = module.get_parameter(param_name)
# Save original weight
original_weights.save(param_key, module_param)
if module_param.shape != lora_param_weight.shape:
lora_param_weight = lora_param_weight.reshape(module_param.shape)
lora_param_weight *= patch_weight * layer_scale
module_param += lora_param_weight.to(dtype=dtype)
layer.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
def _get_submodule(
model: torch.nn.Module, layer_key: str, layer_key_is_flattened: bool
) -> tuple[str, torch.nn.Module]:
"""Get the submodule corresponding to the given layer key.
:param model: The model to search.
:param layer_key: The layer key to search for.
:param layer_key_is_flattened: Whether the layer key is flattened. If flattened, then all '.' have been replaced
with '_'. Non-flattened keys are preferred, because they allow submodules to be accessed directly without
searching, but some legacy code still uses flattened keys.
:return: A tuple containing the module key and the submodule.
"""
if not layer_key_is_flattened:
return layer_key, model.get_submodule(layer_key)
# Handle flattened keys.
assert "." not in layer_key
module = model
module_key = ""
key_parts = layer_key.split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return module_key, module

View File

@@ -5,8 +5,18 @@ from logging import Logger
from pathlib import Path
from typing import Optional
import torch
from safetensors.torch import load_file
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
lora_model_from_flux_diffusers_state_dict,
)
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
lora_model_from_flux_kohya_state_dict,
)
from invokeai.backend.lora.conversions.sd_lora_conversion_utils import lora_model_from_sd_state_dict
from invokeai.backend.lora.conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
from invokeai.backend.model_manager import (
AnyModel,
AnyModelConfig,
@@ -45,14 +55,39 @@ class LoRALoader(ModelLoader):
raise ValueError("There are no submodels in a LoRA model.")
model_path = Path(config.path)
assert self._model_base is not None
model = LoRAModelRaw.from_checkpoint(
file_path=model_path,
dtype=self._torch_dtype,
base_model=self._model_base,
)
# Load the state dict from the model file.
if model_path.suffix == ".safetensors":
state_dict = load_file(model_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(model_path, map_location="cpu")
# Apply state_dict key conversions, if necessary.
if self._model_base == BaseModelType.StableDiffusionXL:
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
model = lora_model_from_sd_state_dict(state_dict=state_dict)
elif self._model_base == BaseModelType.Flux:
if config.format == ModelFormat.Diffusers:
# HACK(ryand): We assume alpha=8 for diffusers PEFT format models. These models are typically
# distributed as a single file without the associated metadata containing the alpha value. We chose
# alpha=8, because this is the default value in the PEFT library:
# https://github.com/huggingface/peft/blob/7868d0372b86a6b9ac5f365b8f0eef2f2f5dedce/src/peft/tuners/lora/config.py#L169
# Other reasonable defaults for alpha could be 1.0 or the rank of the LoRA. If our assumption is wrong,
# the user will need to adjust the weight accordingly to account for the difference.
model = lora_model_from_flux_diffusers_state_dict(state_dict=state_dict, alpha=8)
elif config.format == ModelFormat.LyCORIS:
model = lora_model_from_flux_kohya_state_dict(state_dict=state_dict)
else:
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
# Currently, we don't apply any conversions for SD1 and SD2 LoRA models.
model = lora_model_from_sd_state_dict(state_dict=state_dict)
else:
raise ValueError(f"Unsupported LoRA base model: {self._model_base}")
model.to(dtype=self._torch_dtype)
return model
# override
def _get_model_path(self, config: AnyModelConfig) -> Path:
# cheating a little - we remember this variable for using in the subsequent call to _load_model()
self._model_base = config.base

View File

@@ -10,6 +10,10 @@ from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.app.util.misc import uuid_string
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
is_state_dict_likely_in_flux_diffusers_format,
)
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import is_state_dict_likely_in_flux_kohya_format
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.model_manager.config import (
AnyModelConfig,
@@ -244,7 +248,9 @@ class ModelProbe(object):
return ModelType.VAE
elif key.startswith(("lora_te_", "lora_unet_")):
return ModelType.LoRA
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight")):
# "lora_A.weight" and "lora_B.weight" are associated with models in PEFT format. We don't support all PEFT
# LoRA models, but as of the time of writing, we support Diffusers FLUX PEFT LoRA models.
elif key.endswith(("to_k_lora.up.weight", "to_q_lora.down.weight", "lora_A.weight", "lora_B.weight")):
return ModelType.LoRA
elif key.startswith(("controlnet", "control_model", "input_blocks")):
return ModelType.ControlNet
@@ -554,12 +560,21 @@ class LoRACheckpointProbe(CheckpointProbeBase):
"""Class for LoRA checkpoints."""
def get_format(self) -> ModelFormat:
return ModelFormat("lycoris")
if is_state_dict_likely_in_flux_diffusers_format(self.checkpoint):
# TODO(ryand): This is an unusual case. In other places throughout the codebase, we treat
# ModelFormat.Diffusers as meaning that the model is in a directory. In this case, the model is a single
# file, but the weight keys are in the diffusers format.
return ModelFormat.Diffusers
return ModelFormat.LyCORIS
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
token_vector_length = lora_token_vector_length(checkpoint)
if is_state_dict_likely_in_flux_kohya_format(self.checkpoint) or is_state_dict_likely_in_flux_diffusers_format(
self.checkpoint
):
return BaseModelType.Flux
# If we've gotten here, we assume that the model is a Stable Diffusion model.
token_vector_length = lora_token_vector_length(self.checkpoint)
if token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif token_vector_length == 1024:

View File

@@ -5,32 +5,18 @@ from __future__ import annotations
import pickle
from contextlib import contextmanager
from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Type, Union
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
import numpy as np
import torch
from diffusers import OnnxRuntimeModel, UNet2DConditionModel
from diffusers import UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from invokeai.app.shared.models import FreeUConfig
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_manager import AnyModel
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
from invokeai.backend.stable_diffusion.extensions.lora import LoRAExt
from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw
from invokeai.backend.util.original_weights_storage import OriginalWeightsStorage
"""
loras = [
(lora_model1, 0.7),
(lora_model2, 0.4),
]
with LoRAHelper.apply_lora_unet(unet, loras):
# unet with applied loras
# unmodified unet
"""
class ModelPatcher:
@@ -54,95 +40,6 @@ class ModelPatcher:
finally:
unet.set_attn_processor(unet_orig_processors)
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(
unet,
loras=loras,
prefix="lora_unet_",
cached_weights=cached_weights,
):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", cached_weights=cached_weights):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: AnyModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
prefix: str,
cached_weights: Optional[Dict[str, torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param loras: An iterator that returns the LoRA to patch in and its patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:cached_weights: Read-only copy of the model's state dict in CPU, for unpatching purposes.
"""
original_weights = OriginalWeightsStorage(cached_weights)
try:
for lora_model, lora_weight in loras:
LoRAExt.patch_model(
model=model,
prefix=prefix,
lora=lora_model,
lora_weight=lora_weight,
original_weights=original_weights,
)
del lora_model
yield
finally:
with torch.no_grad():
for param_key, weight in original_weights.get_changed_weights():
model.get_parameter(param_key).copy_(weight)
@classmethod
@contextmanager
def apply_ti(
@@ -282,26 +179,6 @@ class ModelPatcher:
class ONNXModelPatcher:
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: OnnxRuntimeModel,
loras: Iterator[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: OnnxRuntimeModel,
loras: List[Tuple[LoRAModelRaw, float]],
) -> None:
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
# based on
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
@classmethod

View File

@@ -1,14 +1,13 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TYPE_CHECKING, Tuple
from typing import TYPE_CHECKING
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.lora.lora_patcher import LoRAPatcher
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
from invokeai.backend.util.devices import TorchDevice
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
@@ -31,107 +30,14 @@ class LoRAExt(ExtensionBase):
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, original_weights: OriginalWeightsStorage):
lora_model = self._node_context.models.load(self._model_id).model
self.patch_model(
assert isinstance(lora_model, LoRAModelRaw)
LoRAPatcher.apply_lora_patch(
model=unet,
prefix="lora_unet_",
lora=lora_model,
lora_weight=self._weight,
patch=lora_model,
patch_weight=self._weight,
original_weights=original_weights,
)
del lora_model
yield
@classmethod
@torch.no_grad()
def patch_model(
cls,
model: torch.nn.Module,
prefix: str,
lora: LoRAModelRaw,
lora_weight: float,
original_weights: OriginalWeightsStorage,
):
"""
Apply one or more LoRAs to a model.
:param model: The model to patch.
:param lora: LoRA model to patch in.
:param lora_weight: LoRA patch weight.
:param prefix: A string prefix that precedes keys used in the LoRAs weight layers.
:param original_weights: Storage with original weights, filled by weights which lora patches, used for unpatching.
"""
if lora_weight == 0:
return
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
# should be improved in the following ways:
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
# LoRA model is applied.
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
# weights to have valid keys.
assert isinstance(model, torch.nn.Module)
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
# All of the LoRA weight calculations will be done on the same device as the module weight.
# (Performance will be best if this is a CUDA device.)
device = module.weight.device
dtype = module.weight.dtype
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
# We intentionally move to the target device first, then cast. Experimentally, this was found to
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
# same thing in a single call to '.to(...)'.
layer.to(device=device)
layer.to(dtype=torch.float32)
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
for param_name, lora_param_weight in layer.get_parameters(module).items():
param_key = module_key + "." + param_name
module_param = module.get_parameter(param_name)
# save original weight
original_weights.save(param_key, module_param)
if module_param.shape != lora_param_weight.shape:
# TODO: debug on lycoris
lora_param_weight = lora_param_weight.reshape(module_param.shape)
lora_param_weight *= lora_weight * layer_scale
module_param += lora_param_weight.to(dtype=dtype)
layer.to(device=TorchDevice.CPU_DEVICE)
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
key_parts = lora_key[len(prefix) :].split("_")
submodule_name = key_parts.pop(0)
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except Exception:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
return (module_key, module)

View File

@@ -0,0 +1,993 @@
# A sample state dict in the Diffusers FLUX LoRA format.
# These keys are based on the LoRA model here:
# https://civitai.com/models/200255/hands-xl-sd-15-flux1-dev?modelVersionId=781855
state_dict_keys = [
"transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.0.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.0.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.0.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.0.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.1.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.1.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.1.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.1.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.1.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.1.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.1.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.1.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.1.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.1.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.1.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.1.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.10.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.10.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.10.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.10.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.10.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.10.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.10.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.10.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.10.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.10.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.10.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.10.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.11.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.11.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.11.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.11.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.11.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.11.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.11.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.11.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.11.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.11.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.11.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.11.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.12.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.12.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.12.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.12.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.12.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.12.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.12.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.12.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.12.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.12.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.12.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.12.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.13.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.13.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.13.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.13.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.13.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.13.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.13.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.13.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.13.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.13.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.13.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.13.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.14.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.14.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.14.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.14.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.14.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.14.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.14.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.14.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.14.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.14.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.14.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.14.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.15.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.15.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.15.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.15.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.15.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.15.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.15.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.15.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.15.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.15.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.15.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.15.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.16.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.16.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.16.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.16.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.16.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.16.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.16.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.16.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.16.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.16.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.16.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.16.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.17.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.17.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.17.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.17.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.17.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.17.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.17.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.17.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.17.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.17.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.17.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.17.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.18.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.18.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.18.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.18.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.18.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.18.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.18.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.18.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.18.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.18.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.18.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.18.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.19.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.19.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.19.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.19.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.19.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.19.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.19.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.19.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.19.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.19.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.19.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.19.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.2.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.2.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.2.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.2.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.2.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.2.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.2.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.2.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.2.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.2.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.2.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.2.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.20.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.20.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.20.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.20.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.20.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.20.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.20.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.20.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.20.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.20.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.20.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.20.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.21.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.21.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.21.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.21.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.21.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.21.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.21.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.21.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.21.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.21.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.21.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.21.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.22.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.22.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.22.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.22.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.22.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.22.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.22.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.22.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.22.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.22.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.22.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.22.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.23.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.23.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.23.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.23.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.23.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.23.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.23.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.23.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.23.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.23.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.23.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.23.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.24.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.24.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.24.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.24.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.24.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.24.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.24.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.24.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.24.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.24.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.24.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.24.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.25.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.25.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.25.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.25.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.25.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.25.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.25.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.25.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.25.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.25.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.25.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.25.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.26.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.26.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.26.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.26.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.26.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.26.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.26.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.26.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.26.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.26.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.26.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.26.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.27.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.27.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.27.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.27.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.27.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.27.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.27.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.27.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.27.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.27.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.27.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.27.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.28.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.28.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.28.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.28.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.28.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.28.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.28.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.28.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.28.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.28.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.28.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.28.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.29.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.29.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.29.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.29.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.29.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.29.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.29.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.29.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.29.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.29.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.29.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.29.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.3.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.3.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.3.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.3.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.3.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.3.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.3.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.3.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.3.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.3.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.3.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.3.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.30.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.30.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.30.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.30.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.30.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.30.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.30.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.30.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.30.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.30.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.30.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.30.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.31.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.31.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.31.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.31.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.31.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.31.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.31.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.31.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.31.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.31.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.31.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.31.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.32.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.32.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.32.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.32.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.32.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.32.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.32.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.32.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.32.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.32.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.32.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.32.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.33.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.33.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.33.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.33.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.33.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.33.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.33.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.33.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.33.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.33.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.33.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.33.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.34.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.34.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.34.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.34.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.34.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.34.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.34.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.34.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.34.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.34.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.34.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.34.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.35.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.35.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.35.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.35.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.35.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.35.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.35.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.35.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.35.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.35.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.35.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.35.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.36.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.36.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.36.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.36.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.36.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.36.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.36.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.36.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.36.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.36.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.36.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.36.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.37.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.37.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.37.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.37.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.37.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.37.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.37.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.37.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.37.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.37.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.37.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.37.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.4.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.4.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.4.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.4.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.4.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.4.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.4.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.4.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.4.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.4.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.4.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.4.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.5.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.5.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.5.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.5.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.5.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.5.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.5.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.5.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.5.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.5.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.5.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.5.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.6.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.6.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.6.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.6.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.6.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.6.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.6.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.6.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.6.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.6.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.6.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.6.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.7.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.7.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.7.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.7.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.7.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.7.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.7.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.7.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.7.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.7.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.7.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.7.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.8.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.8.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.8.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.8.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.8.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.8.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.8.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.8.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.8.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.8.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.8.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.8.proj_out.lora_B.weight",
"transformer.single_transformer_blocks.9.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.9.attn.to_k.lora_B.weight",
"transformer.single_transformer_blocks.9.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.9.attn.to_q.lora_B.weight",
"transformer.single_transformer_blocks.9.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.9.attn.to_v.lora_B.weight",
"transformer.single_transformer_blocks.9.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.9.norm.linear.lora_B.weight",
"transformer.single_transformer_blocks.9.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.9.proj_mlp.lora_B.weight",
"transformer.single_transformer_blocks.9.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.9.proj_out.lora_B.weight",
"transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.0.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.0.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.0.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.0.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.0.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.0.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.0.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.0.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.0.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.0.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.1.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.1.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.1.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.1.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.1.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.1.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.1.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.1.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.1.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.1.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.1.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.1.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.1.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.1.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.1.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.1.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.1.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.1.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.1.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.1.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.1.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.1.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.1.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.1.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.1.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.1.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.1.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.1.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.10.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.10.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.10.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.10.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.10.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.10.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.10.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.10.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.10.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.10.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.10.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.10.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.10.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.10.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.10.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.10.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.10.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.10.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.10.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.10.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.10.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.10.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.10.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.10.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.10.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.10.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.10.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.10.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.11.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.11.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.11.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.11.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.11.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.11.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.11.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.11.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.11.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.11.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.11.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.11.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.11.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.11.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.11.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.11.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.11.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.11.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.11.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.11.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.11.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.11.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.11.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.11.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.11.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.11.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.11.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.11.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.12.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.12.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.12.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.12.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.12.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.12.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.12.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.12.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.12.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.12.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.12.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.12.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.12.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.12.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.12.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.12.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.12.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.12.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.12.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.12.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.12.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.12.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.12.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.12.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.12.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.12.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.12.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.12.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.13.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.13.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.13.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.13.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.13.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.13.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.13.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.13.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.13.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.13.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.13.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.13.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.13.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.13.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.13.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.13.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.13.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.13.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.13.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.13.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.13.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.13.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.13.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.13.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.13.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.13.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.13.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.13.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.14.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.14.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.14.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.14.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.14.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.14.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.14.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.14.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.14.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.14.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.14.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.14.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.14.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.14.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.14.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.14.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.14.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.14.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.14.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.14.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.14.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.14.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.14.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.14.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.14.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.14.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.14.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.14.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.15.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.15.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.15.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.15.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.15.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.15.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.15.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.15.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.15.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.15.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.15.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.15.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.15.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.15.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.15.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.15.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.15.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.15.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.15.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.15.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.15.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.15.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.15.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.15.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.15.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.15.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.15.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.15.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.16.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.16.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.16.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.16.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.16.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.16.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.16.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.16.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.16.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.16.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.16.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.16.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.16.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.16.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.16.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.16.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.16.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.16.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.16.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.16.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.16.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.16.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.16.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.16.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.16.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.16.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.16.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.16.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.17.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.17.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.17.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.17.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.17.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.17.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.17.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.17.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.17.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.17.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.17.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.17.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.17.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.17.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.17.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.17.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.17.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.17.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.17.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.17.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.17.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.17.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.17.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.17.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.17.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.17.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.17.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.17.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.18.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.18.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.18.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.18.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.18.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.18.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.18.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.18.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.18.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.18.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.18.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.18.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.18.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.18.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.18.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.18.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.18.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.18.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.18.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.18.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.18.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.18.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.18.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.18.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.18.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.18.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.18.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.18.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.2.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.2.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.2.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.2.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.2.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.2.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.2.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.2.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.2.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.2.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.2.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.2.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.2.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.2.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.2.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.2.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.2.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.2.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.2.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.2.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.2.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.2.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.2.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.2.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.2.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.2.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.2.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.2.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.3.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.3.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.3.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.3.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.3.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.3.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.3.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.3.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.3.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.3.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.3.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.3.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.3.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.3.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.3.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.3.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.3.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.3.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.3.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.3.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.3.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.3.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.3.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.3.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.3.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.3.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.3.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.3.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.4.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.4.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.4.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.4.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.4.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.4.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.4.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.4.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.4.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.4.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.4.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.4.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.4.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.4.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.4.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.4.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.4.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.4.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.4.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.4.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.4.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.4.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.4.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.4.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.4.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.4.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.4.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.4.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.5.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.5.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.5.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.5.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.5.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.5.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.5.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.5.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.5.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.5.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.5.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.5.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.5.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.5.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.5.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.5.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.5.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.5.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.5.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.5.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.5.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.5.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.5.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.5.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.5.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.5.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.5.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.5.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.6.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.6.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.6.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.6.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.6.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.6.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.6.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.6.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.6.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.6.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.6.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.6.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.6.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.6.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.6.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.6.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.6.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.6.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.6.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.6.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.6.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.6.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.6.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.6.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.6.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.6.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.6.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.6.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.7.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.7.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.7.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.7.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.7.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.7.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.7.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.7.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.7.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.7.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.7.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.7.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.7.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.7.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.7.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.7.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.7.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.7.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.7.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.7.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.7.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.7.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.7.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.7.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.7.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.7.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.7.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.7.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.8.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.8.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.8.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.8.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.8.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.8.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.8.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.8.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.8.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.8.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.8.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.8.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.8.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.8.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.8.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.8.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.8.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.8.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.8.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.8.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.8.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.8.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.8.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.8.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.8.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.8.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.8.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.8.norm1_context.linear.lora_B.weight",
"transformer.transformer_blocks.9.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.9.attn.add_k_proj.lora_B.weight",
"transformer.transformer_blocks.9.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.9.attn.add_q_proj.lora_B.weight",
"transformer.transformer_blocks.9.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.9.attn.add_v_proj.lora_B.weight",
"transformer.transformer_blocks.9.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.9.attn.to_add_out.lora_B.weight",
"transformer.transformer_blocks.9.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.9.attn.to_k.lora_B.weight",
"transformer.transformer_blocks.9.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.9.attn.to_out.0.lora_B.weight",
"transformer.transformer_blocks.9.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.9.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.9.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.9.attn.to_v.lora_B.weight",
"transformer.transformer_blocks.9.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.9.ff.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.9.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.9.ff.net.2.lora_B.weight",
"transformer.transformer_blocks.9.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.9.ff_context.net.0.proj.lora_B.weight",
"transformer.transformer_blocks.9.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.9.ff_context.net.2.lora_B.weight",
"transformer.transformer_blocks.9.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.9.norm1.linear.lora_B.weight",
"transformer.transformer_blocks.9.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.9.norm1_context.linear.lora_B.weight",
]

View File

@@ -0,0 +1,917 @@
# A sample state dict in the Kohya FLUX LoRA format.
# These keys are based on the LoRA model here:
# https://civitai.com/models/159333/pokemon-trainer-sprite-pixelart?modelVersionId=779247
state_dict_keys = [
"lora_unet_double_blocks_0_img_attn_proj.alpha",
"lora_unet_double_blocks_0_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_0_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_0_img_attn_qkv.alpha",
"lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_0_img_mlp_0.alpha",
"lora_unet_double_blocks_0_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_0_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_0_img_mlp_2.alpha",
"lora_unet_double_blocks_0_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_0_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_0_img_mod_lin.alpha",
"lora_unet_double_blocks_0_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_0_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_0_txt_attn_proj.alpha",
"lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_0_txt_attn_qkv.alpha",
"lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_0_txt_mlp_0.alpha",
"lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_0_txt_mlp_2.alpha",
"lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_0_txt_mod_lin.alpha",
"lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_10_img_attn_proj.alpha",
"lora_unet_double_blocks_10_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_10_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_10_img_attn_qkv.alpha",
"lora_unet_double_blocks_10_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_10_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_10_img_mlp_0.alpha",
"lora_unet_double_blocks_10_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_10_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_10_img_mlp_2.alpha",
"lora_unet_double_blocks_10_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_10_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_10_img_mod_lin.alpha",
"lora_unet_double_blocks_10_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_10_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_10_txt_attn_proj.alpha",
"lora_unet_double_blocks_10_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_10_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_10_txt_attn_qkv.alpha",
"lora_unet_double_blocks_10_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_10_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_10_txt_mlp_0.alpha",
"lora_unet_double_blocks_10_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_10_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_10_txt_mlp_2.alpha",
"lora_unet_double_blocks_10_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_10_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_10_txt_mod_lin.alpha",
"lora_unet_double_blocks_10_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_10_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_11_img_attn_proj.alpha",
"lora_unet_double_blocks_11_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_11_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_11_img_attn_qkv.alpha",
"lora_unet_double_blocks_11_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_11_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_11_img_mlp_0.alpha",
"lora_unet_double_blocks_11_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_11_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_11_img_mlp_2.alpha",
"lora_unet_double_blocks_11_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_11_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_11_img_mod_lin.alpha",
"lora_unet_double_blocks_11_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_11_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_11_txt_attn_proj.alpha",
"lora_unet_double_blocks_11_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_11_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_11_txt_attn_qkv.alpha",
"lora_unet_double_blocks_11_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_11_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_11_txt_mlp_0.alpha",
"lora_unet_double_blocks_11_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_11_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_11_txt_mlp_2.alpha",
"lora_unet_double_blocks_11_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_11_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_11_txt_mod_lin.alpha",
"lora_unet_double_blocks_11_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_11_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_12_img_attn_proj.alpha",
"lora_unet_double_blocks_12_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_12_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_12_img_attn_qkv.alpha",
"lora_unet_double_blocks_12_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_12_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_12_img_mlp_0.alpha",
"lora_unet_double_blocks_12_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_12_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_12_img_mlp_2.alpha",
"lora_unet_double_blocks_12_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_12_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_12_img_mod_lin.alpha",
"lora_unet_double_blocks_12_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_12_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_12_txt_attn_proj.alpha",
"lora_unet_double_blocks_12_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_12_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_12_txt_attn_qkv.alpha",
"lora_unet_double_blocks_12_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_12_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_12_txt_mlp_0.alpha",
"lora_unet_double_blocks_12_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_12_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_12_txt_mlp_2.alpha",
"lora_unet_double_blocks_12_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_12_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_12_txt_mod_lin.alpha",
"lora_unet_double_blocks_12_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_12_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_13_img_attn_proj.alpha",
"lora_unet_double_blocks_13_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_13_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_13_img_attn_qkv.alpha",
"lora_unet_double_blocks_13_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_13_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_13_img_mlp_0.alpha",
"lora_unet_double_blocks_13_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_13_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_13_img_mlp_2.alpha",
"lora_unet_double_blocks_13_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_13_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_13_img_mod_lin.alpha",
"lora_unet_double_blocks_13_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_13_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_13_txt_attn_proj.alpha",
"lora_unet_double_blocks_13_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_13_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_13_txt_attn_qkv.alpha",
"lora_unet_double_blocks_13_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_13_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_13_txt_mlp_0.alpha",
"lora_unet_double_blocks_13_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_13_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_13_txt_mlp_2.alpha",
"lora_unet_double_blocks_13_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_13_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_13_txt_mod_lin.alpha",
"lora_unet_double_blocks_13_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_13_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_14_img_attn_proj.alpha",
"lora_unet_double_blocks_14_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_14_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_14_img_attn_qkv.alpha",
"lora_unet_double_blocks_14_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_14_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_14_img_mlp_0.alpha",
"lora_unet_double_blocks_14_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_14_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_14_img_mlp_2.alpha",
"lora_unet_double_blocks_14_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_14_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_14_img_mod_lin.alpha",
"lora_unet_double_blocks_14_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_14_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_14_txt_attn_proj.alpha",
"lora_unet_double_blocks_14_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_14_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_14_txt_attn_qkv.alpha",
"lora_unet_double_blocks_14_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_14_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_14_txt_mlp_0.alpha",
"lora_unet_double_blocks_14_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_14_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_14_txt_mlp_2.alpha",
"lora_unet_double_blocks_14_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_14_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_14_txt_mod_lin.alpha",
"lora_unet_double_blocks_14_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_14_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_15_img_attn_proj.alpha",
"lora_unet_double_blocks_15_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_15_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_15_img_attn_qkv.alpha",
"lora_unet_double_blocks_15_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_15_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_15_img_mlp_0.alpha",
"lora_unet_double_blocks_15_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_15_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_15_img_mlp_2.alpha",
"lora_unet_double_blocks_15_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_15_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_15_img_mod_lin.alpha",
"lora_unet_double_blocks_15_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_15_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_15_txt_attn_proj.alpha",
"lora_unet_double_blocks_15_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_15_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_15_txt_attn_qkv.alpha",
"lora_unet_double_blocks_15_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_15_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_15_txt_mlp_0.alpha",
"lora_unet_double_blocks_15_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_15_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_15_txt_mlp_2.alpha",
"lora_unet_double_blocks_15_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_15_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_15_txt_mod_lin.alpha",
"lora_unet_double_blocks_15_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_15_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_16_img_attn_proj.alpha",
"lora_unet_double_blocks_16_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_16_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_16_img_attn_qkv.alpha",
"lora_unet_double_blocks_16_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_16_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_16_img_mlp_0.alpha",
"lora_unet_double_blocks_16_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_16_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_16_img_mlp_2.alpha",
"lora_unet_double_blocks_16_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_16_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_16_img_mod_lin.alpha",
"lora_unet_double_blocks_16_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_16_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_16_txt_attn_proj.alpha",
"lora_unet_double_blocks_16_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_16_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_16_txt_attn_qkv.alpha",
"lora_unet_double_blocks_16_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_16_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_16_txt_mlp_0.alpha",
"lora_unet_double_blocks_16_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_16_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_16_txt_mlp_2.alpha",
"lora_unet_double_blocks_16_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_16_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_16_txt_mod_lin.alpha",
"lora_unet_double_blocks_16_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_16_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_17_img_attn_proj.alpha",
"lora_unet_double_blocks_17_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_17_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_17_img_attn_qkv.alpha",
"lora_unet_double_blocks_17_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_17_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_17_img_mlp_0.alpha",
"lora_unet_double_blocks_17_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_17_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_17_img_mlp_2.alpha",
"lora_unet_double_blocks_17_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_17_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_17_img_mod_lin.alpha",
"lora_unet_double_blocks_17_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_17_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_17_txt_attn_proj.alpha",
"lora_unet_double_blocks_17_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_17_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_17_txt_attn_qkv.alpha",
"lora_unet_double_blocks_17_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_17_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_17_txt_mlp_0.alpha",
"lora_unet_double_blocks_17_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_17_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_17_txt_mlp_2.alpha",
"lora_unet_double_blocks_17_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_17_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_17_txt_mod_lin.alpha",
"lora_unet_double_blocks_17_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_17_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_18_img_attn_proj.alpha",
"lora_unet_double_blocks_18_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_18_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_18_img_attn_qkv.alpha",
"lora_unet_double_blocks_18_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_18_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_18_img_mlp_0.alpha",
"lora_unet_double_blocks_18_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_18_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_18_img_mlp_2.alpha",
"lora_unet_double_blocks_18_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_18_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_18_img_mod_lin.alpha",
"lora_unet_double_blocks_18_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_18_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_18_txt_attn_proj.alpha",
"lora_unet_double_blocks_18_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_18_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_18_txt_attn_qkv.alpha",
"lora_unet_double_blocks_18_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_18_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_18_txt_mlp_0.alpha",
"lora_unet_double_blocks_18_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_18_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_18_txt_mlp_2.alpha",
"lora_unet_double_blocks_18_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_18_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_18_txt_mod_lin.alpha",
"lora_unet_double_blocks_18_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_18_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_1_img_attn_proj.alpha",
"lora_unet_double_blocks_1_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_1_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_1_img_attn_qkv.alpha",
"lora_unet_double_blocks_1_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_1_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_1_img_mlp_0.alpha",
"lora_unet_double_blocks_1_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_1_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_1_img_mlp_2.alpha",
"lora_unet_double_blocks_1_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_1_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_1_img_mod_lin.alpha",
"lora_unet_double_blocks_1_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_1_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_1_txt_attn_proj.alpha",
"lora_unet_double_blocks_1_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_1_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_1_txt_attn_qkv.alpha",
"lora_unet_double_blocks_1_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_1_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_1_txt_mlp_0.alpha",
"lora_unet_double_blocks_1_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_1_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_1_txt_mlp_2.alpha",
"lora_unet_double_blocks_1_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_1_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_1_txt_mod_lin.alpha",
"lora_unet_double_blocks_1_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_1_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_2_img_attn_proj.alpha",
"lora_unet_double_blocks_2_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_2_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_2_img_attn_qkv.alpha",
"lora_unet_double_blocks_2_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_2_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_2_img_mlp_0.alpha",
"lora_unet_double_blocks_2_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_2_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_2_img_mlp_2.alpha",
"lora_unet_double_blocks_2_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_2_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_2_img_mod_lin.alpha",
"lora_unet_double_blocks_2_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_2_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_2_txt_attn_proj.alpha",
"lora_unet_double_blocks_2_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_2_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_2_txt_attn_qkv.alpha",
"lora_unet_double_blocks_2_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_2_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_2_txt_mlp_0.alpha",
"lora_unet_double_blocks_2_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_2_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_2_txt_mlp_2.alpha",
"lora_unet_double_blocks_2_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_2_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_2_txt_mod_lin.alpha",
"lora_unet_double_blocks_2_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_2_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_3_img_attn_proj.alpha",
"lora_unet_double_blocks_3_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_3_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_3_img_attn_qkv.alpha",
"lora_unet_double_blocks_3_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_3_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_3_img_mlp_0.alpha",
"lora_unet_double_blocks_3_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_3_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_3_img_mlp_2.alpha",
"lora_unet_double_blocks_3_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_3_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_3_img_mod_lin.alpha",
"lora_unet_double_blocks_3_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_3_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_3_txt_attn_proj.alpha",
"lora_unet_double_blocks_3_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_3_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_3_txt_attn_qkv.alpha",
"lora_unet_double_blocks_3_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_3_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_3_txt_mlp_0.alpha",
"lora_unet_double_blocks_3_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_3_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_3_txt_mlp_2.alpha",
"lora_unet_double_blocks_3_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_3_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_3_txt_mod_lin.alpha",
"lora_unet_double_blocks_3_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_3_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_4_img_attn_proj.alpha",
"lora_unet_double_blocks_4_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_4_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_4_img_attn_qkv.alpha",
"lora_unet_double_blocks_4_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_4_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_4_img_mlp_0.alpha",
"lora_unet_double_blocks_4_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_4_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_4_img_mlp_2.alpha",
"lora_unet_double_blocks_4_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_4_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_4_img_mod_lin.alpha",
"lora_unet_double_blocks_4_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_4_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_4_txt_attn_proj.alpha",
"lora_unet_double_blocks_4_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_4_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_4_txt_attn_qkv.alpha",
"lora_unet_double_blocks_4_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_4_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_4_txt_mlp_0.alpha",
"lora_unet_double_blocks_4_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_4_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_4_txt_mlp_2.alpha",
"lora_unet_double_blocks_4_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_4_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_4_txt_mod_lin.alpha",
"lora_unet_double_blocks_4_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_4_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_5_img_attn_proj.alpha",
"lora_unet_double_blocks_5_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_5_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_5_img_attn_qkv.alpha",
"lora_unet_double_blocks_5_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_5_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_5_img_mlp_0.alpha",
"lora_unet_double_blocks_5_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_5_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_5_img_mlp_2.alpha",
"lora_unet_double_blocks_5_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_5_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_5_img_mod_lin.alpha",
"lora_unet_double_blocks_5_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_5_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_5_txt_attn_proj.alpha",
"lora_unet_double_blocks_5_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_5_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_5_txt_attn_qkv.alpha",
"lora_unet_double_blocks_5_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_5_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_5_txt_mlp_0.alpha",
"lora_unet_double_blocks_5_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_5_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_5_txt_mlp_2.alpha",
"lora_unet_double_blocks_5_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_5_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_5_txt_mod_lin.alpha",
"lora_unet_double_blocks_5_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_5_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_6_img_attn_proj.alpha",
"lora_unet_double_blocks_6_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_6_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_6_img_attn_qkv.alpha",
"lora_unet_double_blocks_6_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_6_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_6_img_mlp_0.alpha",
"lora_unet_double_blocks_6_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_6_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_6_img_mlp_2.alpha",
"lora_unet_double_blocks_6_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_6_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_6_img_mod_lin.alpha",
"lora_unet_double_blocks_6_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_6_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_6_txt_attn_proj.alpha",
"lora_unet_double_blocks_6_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_6_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_6_txt_attn_qkv.alpha",
"lora_unet_double_blocks_6_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_6_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_6_txt_mlp_0.alpha",
"lora_unet_double_blocks_6_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_6_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_6_txt_mlp_2.alpha",
"lora_unet_double_blocks_6_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_6_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_6_txt_mod_lin.alpha",
"lora_unet_double_blocks_6_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_6_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_7_img_attn_proj.alpha",
"lora_unet_double_blocks_7_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_7_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_7_img_attn_qkv.alpha",
"lora_unet_double_blocks_7_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_7_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_7_img_mlp_0.alpha",
"lora_unet_double_blocks_7_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_7_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_7_img_mlp_2.alpha",
"lora_unet_double_blocks_7_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_7_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_7_img_mod_lin.alpha",
"lora_unet_double_blocks_7_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_7_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_7_txt_attn_proj.alpha",
"lora_unet_double_blocks_7_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_7_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_7_txt_attn_qkv.alpha",
"lora_unet_double_blocks_7_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_7_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_7_txt_mlp_0.alpha",
"lora_unet_double_blocks_7_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_7_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_7_txt_mlp_2.alpha",
"lora_unet_double_blocks_7_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_7_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_7_txt_mod_lin.alpha",
"lora_unet_double_blocks_7_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_7_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_8_img_attn_proj.alpha",
"lora_unet_double_blocks_8_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_8_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_8_img_attn_qkv.alpha",
"lora_unet_double_blocks_8_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_8_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_8_img_mlp_0.alpha",
"lora_unet_double_blocks_8_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_8_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_8_img_mlp_2.alpha",
"lora_unet_double_blocks_8_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_8_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_8_img_mod_lin.alpha",
"lora_unet_double_blocks_8_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_8_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_8_txt_attn_proj.alpha",
"lora_unet_double_blocks_8_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_8_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_8_txt_attn_qkv.alpha",
"lora_unet_double_blocks_8_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_8_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_8_txt_mlp_0.alpha",
"lora_unet_double_blocks_8_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_8_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_8_txt_mlp_2.alpha",
"lora_unet_double_blocks_8_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_8_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_8_txt_mod_lin.alpha",
"lora_unet_double_blocks_8_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_8_txt_mod_lin.lora_up.weight",
"lora_unet_double_blocks_9_img_attn_proj.alpha",
"lora_unet_double_blocks_9_img_attn_proj.lora_down.weight",
"lora_unet_double_blocks_9_img_attn_proj.lora_up.weight",
"lora_unet_double_blocks_9_img_attn_qkv.alpha",
"lora_unet_double_blocks_9_img_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_9_img_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_9_img_mlp_0.alpha",
"lora_unet_double_blocks_9_img_mlp_0.lora_down.weight",
"lora_unet_double_blocks_9_img_mlp_0.lora_up.weight",
"lora_unet_double_blocks_9_img_mlp_2.alpha",
"lora_unet_double_blocks_9_img_mlp_2.lora_down.weight",
"lora_unet_double_blocks_9_img_mlp_2.lora_up.weight",
"lora_unet_double_blocks_9_img_mod_lin.alpha",
"lora_unet_double_blocks_9_img_mod_lin.lora_down.weight",
"lora_unet_double_blocks_9_img_mod_lin.lora_up.weight",
"lora_unet_double_blocks_9_txt_attn_proj.alpha",
"lora_unet_double_blocks_9_txt_attn_proj.lora_down.weight",
"lora_unet_double_blocks_9_txt_attn_proj.lora_up.weight",
"lora_unet_double_blocks_9_txt_attn_qkv.alpha",
"lora_unet_double_blocks_9_txt_attn_qkv.lora_down.weight",
"lora_unet_double_blocks_9_txt_attn_qkv.lora_up.weight",
"lora_unet_double_blocks_9_txt_mlp_0.alpha",
"lora_unet_double_blocks_9_txt_mlp_0.lora_down.weight",
"lora_unet_double_blocks_9_txt_mlp_0.lora_up.weight",
"lora_unet_double_blocks_9_txt_mlp_2.alpha",
"lora_unet_double_blocks_9_txt_mlp_2.lora_down.weight",
"lora_unet_double_blocks_9_txt_mlp_2.lora_up.weight",
"lora_unet_double_blocks_9_txt_mod_lin.alpha",
"lora_unet_double_blocks_9_txt_mod_lin.lora_down.weight",
"lora_unet_double_blocks_9_txt_mod_lin.lora_up.weight",
"lora_unet_single_blocks_0_linear1.alpha",
"lora_unet_single_blocks_0_linear1.lora_down.weight",
"lora_unet_single_blocks_0_linear1.lora_up.weight",
"lora_unet_single_blocks_0_linear2.alpha",
"lora_unet_single_blocks_0_linear2.lora_down.weight",
"lora_unet_single_blocks_0_linear2.lora_up.weight",
"lora_unet_single_blocks_0_modulation_lin.alpha",
"lora_unet_single_blocks_0_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_0_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_10_linear1.alpha",
"lora_unet_single_blocks_10_linear1.lora_down.weight",
"lora_unet_single_blocks_10_linear1.lora_up.weight",
"lora_unet_single_blocks_10_linear2.alpha",
"lora_unet_single_blocks_10_linear2.lora_down.weight",
"lora_unet_single_blocks_10_linear2.lora_up.weight",
"lora_unet_single_blocks_10_modulation_lin.alpha",
"lora_unet_single_blocks_10_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_10_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_11_linear1.alpha",
"lora_unet_single_blocks_11_linear1.lora_down.weight",
"lora_unet_single_blocks_11_linear1.lora_up.weight",
"lora_unet_single_blocks_11_linear2.alpha",
"lora_unet_single_blocks_11_linear2.lora_down.weight",
"lora_unet_single_blocks_11_linear2.lora_up.weight",
"lora_unet_single_blocks_11_modulation_lin.alpha",
"lora_unet_single_blocks_11_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_11_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_12_linear1.alpha",
"lora_unet_single_blocks_12_linear1.lora_down.weight",
"lora_unet_single_blocks_12_linear1.lora_up.weight",
"lora_unet_single_blocks_12_linear2.alpha",
"lora_unet_single_blocks_12_linear2.lora_down.weight",
"lora_unet_single_blocks_12_linear2.lora_up.weight",
"lora_unet_single_blocks_12_modulation_lin.alpha",
"lora_unet_single_blocks_12_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_12_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_13_linear1.alpha",
"lora_unet_single_blocks_13_linear1.lora_down.weight",
"lora_unet_single_blocks_13_linear1.lora_up.weight",
"lora_unet_single_blocks_13_linear2.alpha",
"lora_unet_single_blocks_13_linear2.lora_down.weight",
"lora_unet_single_blocks_13_linear2.lora_up.weight",
"lora_unet_single_blocks_13_modulation_lin.alpha",
"lora_unet_single_blocks_13_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_13_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_14_linear1.alpha",
"lora_unet_single_blocks_14_linear1.lora_down.weight",
"lora_unet_single_blocks_14_linear1.lora_up.weight",
"lora_unet_single_blocks_14_linear2.alpha",
"lora_unet_single_blocks_14_linear2.lora_down.weight",
"lora_unet_single_blocks_14_linear2.lora_up.weight",
"lora_unet_single_blocks_14_modulation_lin.alpha",
"lora_unet_single_blocks_14_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_14_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_15_linear1.alpha",
"lora_unet_single_blocks_15_linear1.lora_down.weight",
"lora_unet_single_blocks_15_linear1.lora_up.weight",
"lora_unet_single_blocks_15_linear2.alpha",
"lora_unet_single_blocks_15_linear2.lora_down.weight",
"lora_unet_single_blocks_15_linear2.lora_up.weight",
"lora_unet_single_blocks_15_modulation_lin.alpha",
"lora_unet_single_blocks_15_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_15_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_16_linear1.alpha",
"lora_unet_single_blocks_16_linear1.lora_down.weight",
"lora_unet_single_blocks_16_linear1.lora_up.weight",
"lora_unet_single_blocks_16_linear2.alpha",
"lora_unet_single_blocks_16_linear2.lora_down.weight",
"lora_unet_single_blocks_16_linear2.lora_up.weight",
"lora_unet_single_blocks_16_modulation_lin.alpha",
"lora_unet_single_blocks_16_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_16_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_17_linear1.alpha",
"lora_unet_single_blocks_17_linear1.lora_down.weight",
"lora_unet_single_blocks_17_linear1.lora_up.weight",
"lora_unet_single_blocks_17_linear2.alpha",
"lora_unet_single_blocks_17_linear2.lora_down.weight",
"lora_unet_single_blocks_17_linear2.lora_up.weight",
"lora_unet_single_blocks_17_modulation_lin.alpha",
"lora_unet_single_blocks_17_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_17_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_18_linear1.alpha",
"lora_unet_single_blocks_18_linear1.lora_down.weight",
"lora_unet_single_blocks_18_linear1.lora_up.weight",
"lora_unet_single_blocks_18_linear2.alpha",
"lora_unet_single_blocks_18_linear2.lora_down.weight",
"lora_unet_single_blocks_18_linear2.lora_up.weight",
"lora_unet_single_blocks_18_modulation_lin.alpha",
"lora_unet_single_blocks_18_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_18_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_19_linear1.alpha",
"lora_unet_single_blocks_19_linear1.lora_down.weight",
"lora_unet_single_blocks_19_linear1.lora_up.weight",
"lora_unet_single_blocks_19_linear2.alpha",
"lora_unet_single_blocks_19_linear2.lora_down.weight",
"lora_unet_single_blocks_19_linear2.lora_up.weight",
"lora_unet_single_blocks_19_modulation_lin.alpha",
"lora_unet_single_blocks_19_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_19_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_1_linear1.alpha",
"lora_unet_single_blocks_1_linear1.lora_down.weight",
"lora_unet_single_blocks_1_linear1.lora_up.weight",
"lora_unet_single_blocks_1_linear2.alpha",
"lora_unet_single_blocks_1_linear2.lora_down.weight",
"lora_unet_single_blocks_1_linear2.lora_up.weight",
"lora_unet_single_blocks_1_modulation_lin.alpha",
"lora_unet_single_blocks_1_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_1_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_20_linear1.alpha",
"lora_unet_single_blocks_20_linear1.lora_down.weight",
"lora_unet_single_blocks_20_linear1.lora_up.weight",
"lora_unet_single_blocks_20_linear2.alpha",
"lora_unet_single_blocks_20_linear2.lora_down.weight",
"lora_unet_single_blocks_20_linear2.lora_up.weight",
"lora_unet_single_blocks_20_modulation_lin.alpha",
"lora_unet_single_blocks_20_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_20_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_21_linear1.alpha",
"lora_unet_single_blocks_21_linear1.lora_down.weight",
"lora_unet_single_blocks_21_linear1.lora_up.weight",
"lora_unet_single_blocks_21_linear2.alpha",
"lora_unet_single_blocks_21_linear2.lora_down.weight",
"lora_unet_single_blocks_21_linear2.lora_up.weight",
"lora_unet_single_blocks_21_modulation_lin.alpha",
"lora_unet_single_blocks_21_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_21_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_22_linear1.alpha",
"lora_unet_single_blocks_22_linear1.lora_down.weight",
"lora_unet_single_blocks_22_linear1.lora_up.weight",
"lora_unet_single_blocks_22_linear2.alpha",
"lora_unet_single_blocks_22_linear2.lora_down.weight",
"lora_unet_single_blocks_22_linear2.lora_up.weight",
"lora_unet_single_blocks_22_modulation_lin.alpha",
"lora_unet_single_blocks_22_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_22_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_23_linear1.alpha",
"lora_unet_single_blocks_23_linear1.lora_down.weight",
"lora_unet_single_blocks_23_linear1.lora_up.weight",
"lora_unet_single_blocks_23_linear2.alpha",
"lora_unet_single_blocks_23_linear2.lora_down.weight",
"lora_unet_single_blocks_23_linear2.lora_up.weight",
"lora_unet_single_blocks_23_modulation_lin.alpha",
"lora_unet_single_blocks_23_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_23_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_24_linear1.alpha",
"lora_unet_single_blocks_24_linear1.lora_down.weight",
"lora_unet_single_blocks_24_linear1.lora_up.weight",
"lora_unet_single_blocks_24_linear2.alpha",
"lora_unet_single_blocks_24_linear2.lora_down.weight",
"lora_unet_single_blocks_24_linear2.lora_up.weight",
"lora_unet_single_blocks_24_modulation_lin.alpha",
"lora_unet_single_blocks_24_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_24_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_25_linear1.alpha",
"lora_unet_single_blocks_25_linear1.lora_down.weight",
"lora_unet_single_blocks_25_linear1.lora_up.weight",
"lora_unet_single_blocks_25_linear2.alpha",
"lora_unet_single_blocks_25_linear2.lora_down.weight",
"lora_unet_single_blocks_25_linear2.lora_up.weight",
"lora_unet_single_blocks_25_modulation_lin.alpha",
"lora_unet_single_blocks_25_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_25_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_26_linear1.alpha",
"lora_unet_single_blocks_26_linear1.lora_down.weight",
"lora_unet_single_blocks_26_linear1.lora_up.weight",
"lora_unet_single_blocks_26_linear2.alpha",
"lora_unet_single_blocks_26_linear2.lora_down.weight",
"lora_unet_single_blocks_26_linear2.lora_up.weight",
"lora_unet_single_blocks_26_modulation_lin.alpha",
"lora_unet_single_blocks_26_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_26_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_27_linear1.alpha",
"lora_unet_single_blocks_27_linear1.lora_down.weight",
"lora_unet_single_blocks_27_linear1.lora_up.weight",
"lora_unet_single_blocks_27_linear2.alpha",
"lora_unet_single_blocks_27_linear2.lora_down.weight",
"lora_unet_single_blocks_27_linear2.lora_up.weight",
"lora_unet_single_blocks_27_modulation_lin.alpha",
"lora_unet_single_blocks_27_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_27_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_28_linear1.alpha",
"lora_unet_single_blocks_28_linear1.lora_down.weight",
"lora_unet_single_blocks_28_linear1.lora_up.weight",
"lora_unet_single_blocks_28_linear2.alpha",
"lora_unet_single_blocks_28_linear2.lora_down.weight",
"lora_unet_single_blocks_28_linear2.lora_up.weight",
"lora_unet_single_blocks_28_modulation_lin.alpha",
"lora_unet_single_blocks_28_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_28_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_29_linear1.alpha",
"lora_unet_single_blocks_29_linear1.lora_down.weight",
"lora_unet_single_blocks_29_linear1.lora_up.weight",
"lora_unet_single_blocks_29_linear2.alpha",
"lora_unet_single_blocks_29_linear2.lora_down.weight",
"lora_unet_single_blocks_29_linear2.lora_up.weight",
"lora_unet_single_blocks_29_modulation_lin.alpha",
"lora_unet_single_blocks_29_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_29_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_2_linear1.alpha",
"lora_unet_single_blocks_2_linear1.lora_down.weight",
"lora_unet_single_blocks_2_linear1.lora_up.weight",
"lora_unet_single_blocks_2_linear2.alpha",
"lora_unet_single_blocks_2_linear2.lora_down.weight",
"lora_unet_single_blocks_2_linear2.lora_up.weight",
"lora_unet_single_blocks_2_modulation_lin.alpha",
"lora_unet_single_blocks_2_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_2_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_30_linear1.alpha",
"lora_unet_single_blocks_30_linear1.lora_down.weight",
"lora_unet_single_blocks_30_linear1.lora_up.weight",
"lora_unet_single_blocks_30_linear2.alpha",
"lora_unet_single_blocks_30_linear2.lora_down.weight",
"lora_unet_single_blocks_30_linear2.lora_up.weight",
"lora_unet_single_blocks_30_modulation_lin.alpha",
"lora_unet_single_blocks_30_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_30_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_31_linear1.alpha",
"lora_unet_single_blocks_31_linear1.lora_down.weight",
"lora_unet_single_blocks_31_linear1.lora_up.weight",
"lora_unet_single_blocks_31_linear2.alpha",
"lora_unet_single_blocks_31_linear2.lora_down.weight",
"lora_unet_single_blocks_31_linear2.lora_up.weight",
"lora_unet_single_blocks_31_modulation_lin.alpha",
"lora_unet_single_blocks_31_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_31_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_32_linear1.alpha",
"lora_unet_single_blocks_32_linear1.lora_down.weight",
"lora_unet_single_blocks_32_linear1.lora_up.weight",
"lora_unet_single_blocks_32_linear2.alpha",
"lora_unet_single_blocks_32_linear2.lora_down.weight",
"lora_unet_single_blocks_32_linear2.lora_up.weight",
"lora_unet_single_blocks_32_modulation_lin.alpha",
"lora_unet_single_blocks_32_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_32_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_33_linear1.alpha",
"lora_unet_single_blocks_33_linear1.lora_down.weight",
"lora_unet_single_blocks_33_linear1.lora_up.weight",
"lora_unet_single_blocks_33_linear2.alpha",
"lora_unet_single_blocks_33_linear2.lora_down.weight",
"lora_unet_single_blocks_33_linear2.lora_up.weight",
"lora_unet_single_blocks_33_modulation_lin.alpha",
"lora_unet_single_blocks_33_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_33_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_34_linear1.alpha",
"lora_unet_single_blocks_34_linear1.lora_down.weight",
"lora_unet_single_blocks_34_linear1.lora_up.weight",
"lora_unet_single_blocks_34_linear2.alpha",
"lora_unet_single_blocks_34_linear2.lora_down.weight",
"lora_unet_single_blocks_34_linear2.lora_up.weight",
"lora_unet_single_blocks_34_modulation_lin.alpha",
"lora_unet_single_blocks_34_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_34_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_35_linear1.alpha",
"lora_unet_single_blocks_35_linear1.lora_down.weight",
"lora_unet_single_blocks_35_linear1.lora_up.weight",
"lora_unet_single_blocks_35_linear2.alpha",
"lora_unet_single_blocks_35_linear2.lora_down.weight",
"lora_unet_single_blocks_35_linear2.lora_up.weight",
"lora_unet_single_blocks_35_modulation_lin.alpha",
"lora_unet_single_blocks_35_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_35_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_36_linear1.alpha",
"lora_unet_single_blocks_36_linear1.lora_down.weight",
"lora_unet_single_blocks_36_linear1.lora_up.weight",
"lora_unet_single_blocks_36_linear2.alpha",
"lora_unet_single_blocks_36_linear2.lora_down.weight",
"lora_unet_single_blocks_36_linear2.lora_up.weight",
"lora_unet_single_blocks_36_modulation_lin.alpha",
"lora_unet_single_blocks_36_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_36_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_37_linear1.alpha",
"lora_unet_single_blocks_37_linear1.lora_down.weight",
"lora_unet_single_blocks_37_linear1.lora_up.weight",
"lora_unet_single_blocks_37_linear2.alpha",
"lora_unet_single_blocks_37_linear2.lora_down.weight",
"lora_unet_single_blocks_37_linear2.lora_up.weight",
"lora_unet_single_blocks_37_modulation_lin.alpha",
"lora_unet_single_blocks_37_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_37_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_3_linear1.alpha",
"lora_unet_single_blocks_3_linear1.lora_down.weight",
"lora_unet_single_blocks_3_linear1.lora_up.weight",
"lora_unet_single_blocks_3_linear2.alpha",
"lora_unet_single_blocks_3_linear2.lora_down.weight",
"lora_unet_single_blocks_3_linear2.lora_up.weight",
"lora_unet_single_blocks_3_modulation_lin.alpha",
"lora_unet_single_blocks_3_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_3_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_4_linear1.alpha",
"lora_unet_single_blocks_4_linear1.lora_down.weight",
"lora_unet_single_blocks_4_linear1.lora_up.weight",
"lora_unet_single_blocks_4_linear2.alpha",
"lora_unet_single_blocks_4_linear2.lora_down.weight",
"lora_unet_single_blocks_4_linear2.lora_up.weight",
"lora_unet_single_blocks_4_modulation_lin.alpha",
"lora_unet_single_blocks_4_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_4_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_5_linear1.alpha",
"lora_unet_single_blocks_5_linear1.lora_down.weight",
"lora_unet_single_blocks_5_linear1.lora_up.weight",
"lora_unet_single_blocks_5_linear2.alpha",
"lora_unet_single_blocks_5_linear2.lora_down.weight",
"lora_unet_single_blocks_5_linear2.lora_up.weight",
"lora_unet_single_blocks_5_modulation_lin.alpha",
"lora_unet_single_blocks_5_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_5_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_6_linear1.alpha",
"lora_unet_single_blocks_6_linear1.lora_down.weight",
"lora_unet_single_blocks_6_linear1.lora_up.weight",
"lora_unet_single_blocks_6_linear2.alpha",
"lora_unet_single_blocks_6_linear2.lora_down.weight",
"lora_unet_single_blocks_6_linear2.lora_up.weight",
"lora_unet_single_blocks_6_modulation_lin.alpha",
"lora_unet_single_blocks_6_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_6_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_7_linear1.alpha",
"lora_unet_single_blocks_7_linear1.lora_down.weight",
"lora_unet_single_blocks_7_linear1.lora_up.weight",
"lora_unet_single_blocks_7_linear2.alpha",
"lora_unet_single_blocks_7_linear2.lora_down.weight",
"lora_unet_single_blocks_7_linear2.lora_up.weight",
"lora_unet_single_blocks_7_modulation_lin.alpha",
"lora_unet_single_blocks_7_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_7_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_8_linear1.alpha",
"lora_unet_single_blocks_8_linear1.lora_down.weight",
"lora_unet_single_blocks_8_linear1.lora_up.weight",
"lora_unet_single_blocks_8_linear2.alpha",
"lora_unet_single_blocks_8_linear2.lora_down.weight",
"lora_unet_single_blocks_8_linear2.lora_up.weight",
"lora_unet_single_blocks_8_modulation_lin.alpha",
"lora_unet_single_blocks_8_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_8_modulation_lin.lora_up.weight",
"lora_unet_single_blocks_9_linear1.alpha",
"lora_unet_single_blocks_9_linear1.lora_down.weight",
"lora_unet_single_blocks_9_linear1.lora_up.weight",
"lora_unet_single_blocks_9_linear2.alpha",
"lora_unet_single_blocks_9_linear2.lora_down.weight",
"lora_unet_single_blocks_9_linear2.lora_up.weight",
"lora_unet_single_blocks_9_modulation_lin.alpha",
"lora_unet_single_blocks_9_modulation_lin.lora_down.weight",
"lora_unet_single_blocks_9_modulation_lin.lora_up.weight",
]

View File

@@ -0,0 +1,8 @@
import torch
def keys_to_mock_state_dict(keys: list[str]) -> dict[str, torch.Tensor]:
state_dict: dict[str, torch.Tensor] = {}
for k in keys:
state_dict[k] = torch.empty(1)
return state_dict

View File

@@ -0,0 +1,66 @@
import pytest
import torch
from invokeai.backend.lora.conversions.flux_diffusers_lora_conversion_utils import (
is_state_dict_likely_in_flux_diffusers_format,
lora_model_from_flux_diffusers_state_dict,
)
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_diffusers_format import (
state_dict_keys as flux_diffusers_state_dict_keys,
)
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_kohya_format import (
state_dict_keys as flux_kohya_state_dict_keys,
)
from tests.backend.lora.conversions.lora_state_dicts.utils import keys_to_mock_state_dict
def test_is_state_dict_likely_in_flux_diffusers_format_true():
"""Test that is_state_dict_likely_in_flux_diffusers_format() can identify a state dict in the Diffusers FLUX LoRA format."""
# Construct a state dict that is in the Diffusers FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
assert is_state_dict_likely_in_flux_diffusers_format(state_dict)
def test_is_state_dict_likely_in_flux_diffusers_format_false():
"""Test that is_state_dict_likely_in_flux_diffusers_format() returns False for a state dict that is not in the Kohya
FLUX LoRA format.
"""
# Construct a state dict that is not in the Kohya FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
assert not is_state_dict_likely_in_flux_diffusers_format(state_dict)
def test_lora_model_from_flux_diffusers_state_dict():
"""Test that lora_model_from_flux_diffusers_state_dict() can load a state dict in the Diffusers FLUX LoRA format."""
# Construct a state dict that is in the Diffusers FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
# Load the state dict into a LoRAModelRaw object.
model = lora_model_from_flux_diffusers_state_dict(state_dict)
# Check that the model has the correct number of LoRA layers.
expected_lora_layers: set[str] = set()
for k in flux_diffusers_state_dict_keys:
k = k.replace("lora_A.weight", "")
k = k.replace("lora_B.weight", "")
expected_lora_layers.add(k)
# Drop the K/V/proj_mlp weights because these are all concatenated into a single layer in the BFL format (we keep
# the Q weights so that we count these layers once).
concatenated_weights = ["to_k", "to_v", "proj_mlp", "add_k_proj", "add_v_proj"]
expected_lora_layers = {k for k in expected_lora_layers if not any(w in k for w in concatenated_weights)}
assert len(model.layers) == len(expected_lora_layers)
def test_lora_model_from_flux_diffusers_state_dict_extra_keys_error():
"""Test that lora_model_from_flux_diffusers_state_dict() raises an error if the input state_dict contains unexpected
keys that we don't handle.
"""
# Construct a state dict that is in the Diffusers FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
# Add an unexpected key.
state_dict["transformer.single_transformer_blocks.0.unexpected_key.lora_A.weight"] = torch.empty(1)
# Check that an error is raised.
with pytest.raises(AssertionError):
lora_model_from_flux_diffusers_state_dict(state_dict)

View File

@@ -0,0 +1,98 @@
import pytest
import torch
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.util import params
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
convert_flux_kohya_state_dict_to_invoke_format,
is_state_dict_likely_in_flux_kohya_format,
lora_model_from_flux_kohya_state_dict,
)
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_diffusers_format import (
state_dict_keys as flux_diffusers_state_dict_keys,
)
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_kohya_format import (
state_dict_keys as flux_kohya_state_dict_keys,
)
from tests.backend.lora.conversions.lora_state_dicts.utils import keys_to_mock_state_dict
def test_is_state_dict_likely_in_flux_kohya_format_true():
"""Test that is_state_dict_likely_in_flux_kohya_format() can identify a state dict in the Kohya FLUX LoRA format."""
# Construct a state dict that is in the Kohya FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
assert is_state_dict_likely_in_flux_kohya_format(state_dict)
def test_is_state_dict_likely_in_flux_kohya_format_false():
"""Test that is_state_dict_likely_in_flux_kohya_format() returns False for a state dict that is in the Diffusers
FLUX LoRA format.
"""
state_dict = keys_to_mock_state_dict(flux_diffusers_state_dict_keys)
assert not is_state_dict_likely_in_flux_kohya_format(state_dict)
def test_convert_flux_kohya_state_dict_to_invoke_format():
# Construct state_dict from state_dict_keys.
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
converted_state_dict = convert_flux_kohya_state_dict_to_invoke_format(state_dict)
# Extract the prefixes from the converted state dict (i.e. without the .lora_up.weight, .lora_down.weight, and
# .alpha suffixes).
converted_key_prefixes: list[str] = []
for k in converted_state_dict.keys():
k = k.replace(".lora_up.weight", "")
k = k.replace(".lora_down.weight", "")
k = k.replace(".alpha", "")
converted_key_prefixes.append(k)
# Initialize a FLUX model on the meta device.
with torch.device("meta"):
model = Flux(params["flux-dev"])
model_keys = set(model.state_dict().keys())
# Assert that the converted state dict matches the keys in the actual model.
for converted_key_prefix in converted_key_prefixes:
found_match = False
for model_key in model_keys:
if model_key.startswith(converted_key_prefix):
found_match = True
break
if not found_match:
raise AssertionError(f"Could not find a match for the converted key prefix: {converted_key_prefix}")
def test_convert_flux_kohya_state_dict_to_invoke_format_error():
"""Test that an error is raised by convert_flux_kohya_state_dict_to_invoke_format() if the input state_dict contains
unexpected keys.
"""
state_dict = {
"unexpected_key.lora_up.weight": torch.empty(1),
}
with pytest.raises(ValueError):
convert_flux_kohya_state_dict_to_invoke_format(state_dict)
def test_lora_model_from_flux_kohya_state_dict():
"""Test that a LoRAModelRaw can be created from a state dict in the Kohya FLUX LoRA format."""
# Construct a state dict that is in the Kohya FLUX LoRA format.
state_dict = keys_to_mock_state_dict(flux_kohya_state_dict_keys)
lora_model = lora_model_from_flux_kohya_state_dict(state_dict)
# Prepare expected layer keys.
expected_layer_keys: set[str] = set()
for k in flux_kohya_state_dict_keys:
k = k.replace("lora_unet_", "")
k = k.replace(".lora_up.weight", "")
k = k.replace(".lora_down.weight", "")
k = k.replace(".alpha", "")
expected_layer_keys.add(k)
# Assert that the lora_model has the expected layers.
lora_model_keys = set(lora_model.layers.keys())
lora_model_keys = {k.replace(".", "_") for k in lora_model_keys}
assert lora_model_keys == expected_layer_keys

View File

@@ -0,0 +1,97 @@
import pytest
import torch
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.util import params
from invokeai.backend.lora.conversions.flux_kohya_lora_conversion_utils import (
convert_flux_kohya_state_dict_to_invoke_format,
is_state_dict_likely_in_flux_kohya_format,
lora_model_from_flux_kohya_state_dict,
)
from tests.backend.lora.conversions.lora_state_dicts.flux_lora_kohya_format import state_dict_keys
def test_is_state_dict_likely_in_flux_kohya_format_true():
"""Test that is_state_dict_likely_in_flux_kohya_format() can identify a state dict in the Kohya FLUX LoRA format."""
# Construct a state dict that is in the Kohya FLUX LoRA format.
state_dict: dict[str, torch.Tensor] = {}
for k in state_dict_keys:
state_dict[k] = torch.empty(1)
assert is_state_dict_likely_in_flux_kohya_format(state_dict)
def test_is_state_dict_likely_in_flux_kohya_format_false():
"""Test that is_state_dict_likely_in_flux_kohya_format() returns False for a state dict that is not in the Kohya FLUX LoRA format."""
state_dict: dict[str, torch.Tensor] = {
"unexpected_key.lora_up.weight": torch.empty(1),
}
assert not is_state_dict_likely_in_flux_kohya_format(state_dict)
def test_convert_flux_kohya_state_dict_to_invoke_format():
# Construct state_dict from state_dict_keys.
state_dict: dict[str, torch.Tensor] = {}
for k in state_dict_keys:
state_dict[k] = torch.empty(1)
converted_state_dict = convert_flux_kohya_state_dict_to_invoke_format(state_dict)
# Extract the prefixes from the converted state dict (i.e. without the .lora_up.weight, .lora_down.weight, and
# .alpha suffixes).
converted_key_prefixes: list[str] = []
for k in converted_state_dict.keys():
k = k.replace(".lora_up.weight", "")
k = k.replace(".lora_down.weight", "")
k = k.replace(".alpha", "")
converted_key_prefixes.append(k)
# Initialize a FLUX model on the meta device.
with torch.device("meta"):
model = Flux(params["flux-dev"])
model_keys = set(model.state_dict().keys())
# Assert that the converted state dict matches the keys in the actual model.
for converted_key_prefix in converted_key_prefixes:
found_match = False
for model_key in model_keys:
if model_key.startswith(converted_key_prefix):
found_match = True
break
if not found_match:
raise AssertionError(f"Could not find a match for the converted key prefix: {converted_key_prefix}")
def test_convert_flux_kohya_state_dict_to_invoke_format_error():
"""Test that an error is raised by convert_flux_kohya_state_dict_to_invoke_format() if the input state_dict contains
unexpected keys.
"""
state_dict = {
"unexpected_key.lora_up.weight": torch.empty(1),
}
with pytest.raises(ValueError):
convert_flux_kohya_state_dict_to_invoke_format(state_dict)
def test_lora_model_from_flux_kohya_state_dict():
"""Test that a LoRAModelRaw can be created from a state dict in the Kohya FLUX LoRA format."""
# Construct state_dict from state_dict_keys.
state_dict: dict[str, torch.Tensor] = {}
for k in state_dict_keys:
state_dict[k] = torch.empty(1)
lora_model = lora_model_from_flux_kohya_state_dict(state_dict)
# Prepare expected layer keys.
expected_layer_keys: set[str] = set()
for k in state_dict_keys:
k = k.replace("lora_unet_", "")
k = k.replace(".lora_up.weight", "")
k = k.replace(".lora_down.weight", "")
k = k.replace(".alpha", "")
expected_layer_keys.add(k)
# Assert that the lora_model has the expected layers.
lora_model_keys = set(lora_model.layers.keys())
lora_model_keys = {k.replace(".", "_") for k in lora_model_keys}
assert lora_model_keys == expected_layer_keys

View File

@@ -1,13 +1,9 @@
# test that if the model's device changes while the lora is applied, the weights can still be restored
# test that LoRA patching works on both CPU and CUDA
import pytest
import torch
from invokeai.backend.lora.layers.lora_layer import LoRALayer
from invokeai.backend.lora.lora_model_raw import LoRAModelRaw
from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.lora.lora_patcher import LoRAPatcher
@pytest.mark.parametrize(
@@ -18,7 +14,7 @@ from invokeai.backend.model_patcher import ModelPatcher
],
)
@torch.no_grad()
def test_apply_lora(device):
def test_apply_lora(device: str):
"""Test the basic behavior of ModelPatcher.apply_lora(...). Check that patching and unpatching produce the correct
result, and that model/LoRA tensors are moved between devices as expected.
"""
@@ -39,13 +35,13 @@ def test_apply_lora(device):
},
)
}
lora = LoRAModelRaw("lora_name", lora_layers)
lora = LoRAModelRaw(lora_layers)
lora_weight = 0.5
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight)
with ModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""):
with LoRAPatcher.apply_lora_patches(model=model, patches=[(lora, lora_weight)], prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
assert lora_layers["linear_layer_1"].down.device.type == "cpu"
@@ -83,11 +79,11 @@ def test_apply_lora_change_device():
},
)
}
lora = LoRAModelRaw("lora_name", lora_layers)
lora = LoRAModelRaw(lora_layers)
orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone()
with ModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""):
with LoRAPatcher.apply_lora_patches(model=model, patches=[(lora, 0.5)], prefix=""):
# After patching, all LoRA layer weights should have been moved back to the cpu.
assert lora_layers["linear_layer_1"].up.device.type == "cpu"
assert lora_layers["linear_layer_1"].down.device.type == "cpu"