Compare commits

...

772 Commits

Author SHA1 Message Date
Kent Keirsey
3a14791da3 bria-ui-updates-wip 2025-07-25 12:58:27 -04:00
Ilan Tchenak
711a579945 fixed schema 2025-07-24 17:22:15 +00:00
Ilan Tchenak
1ac5a24a8a ruff fix 2025-07-24 19:10:29 +03:00
Ubuntu
282df322d5 fixed node issue 2025-07-24 10:56:37 -04:00
Ilan Tchenak
8523ea88f2 moved bria's nodes to invocations folder 2025-07-24 10:56:37 -04:00
Ubuntu
cad97d3da3 Small cosmetic fixes 2025-07-24 10:56:37 -04:00
Ubuntu
efc5a762fc removed unused file 2025-07-24 10:56:37 -04:00
Ubuntu
9131c45645 Added scikit-image required for Bria's OpenposeDetector model 2025-07-24 10:56:37 -04:00
Ilan Tchenak
75ca44d5f9 Add Bria text to image model and controlnet support 2025-07-24 10:56:37 -04:00
Ilan Tchenak
8b08af3949 Setup Probe and UI to accept bria controlnet models 2025-07-24 10:56:37 -04:00
Ubuntu
df9ea8dcc1 addded bria nodes for bria3.1 and bria3.2 2025-07-24 10:56:37 -04:00
Ubuntu
25a57326b3 front end support for bria 2025-07-24 10:56:37 -04:00
Ubuntu
7f3e8087ba added support for loading bria transformer 2025-07-24 10:56:37 -04:00
Brandon Rising
dfc7835359 Setup Probe and UI to accept bria main models 2025-07-24 10:56:37 -04:00
psychedelicious
169d58ea4c feat(ui): restore clear queue button
It is accessible in two places:
- The queue actions hamburger menu.
- On the queue tab.

If the clear queue app feature is disabled, it is not shown in either of
those places.
2025-07-23 23:38:53 +10:00
psychedelicious
b53d2250f7 feat(ui): reduce snap tolerance to make it easier to break the snap 2025-07-23 23:05:40 +10:00
psychedelicious
242eea8295 fix(ui): incorrect zoom direction w/ small scroll amounts 2025-07-23 23:05:40 +10:00
psychedelicious
4dabe09e0d tests(ui): remove test for no-longer-valid behaviour 2025-07-23 23:03:02 +10:00
psychedelicious
07fa0d3b77 fix(ui): do not attempt toggle when target panel isn't registered 2025-07-23 23:03:02 +10:00
psychedelicious
e97f82292f tests(ui): add tests for disposable handling 2025-07-23 23:03:02 +10:00
psychedelicious
005bab9035 fix(ui): tab disposables not being added correctly 2025-07-23 23:03:02 +10:00
psychedelicious
409173919c tests(ui): add tests for toggleViewer functionality 2025-07-23 23:03:02 +10:00
psychedelicious
7915180047 feat(ui): restore viewer toggle hotkey 2025-07-23 23:03:02 +10:00
Riccardo Giovanetti
4349b8387d translationBot(ui): update translation (Italian)
Currently translated at 97.9% (2000 of 2042 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-23 12:26:48 +10:00
Kent Keirsey
f95b686bdc reposition export button 2025-07-23 11:55:11 +10:00
Mary Hipp
72afb9c3fd fix iterations for all API models 2025-07-22 13:27:35 -04:00
Mary Hipp
f004fc31f1 update whats new 2025-07-22 12:24:10 -04:00
psychedelicious
2aa163b3a2 feat(ui): add default inpaint mask layer on canvas reset 2025-07-22 10:26:57 +10:00
psychedelicious
f40900c173 chore: bump version to v6.1.0 2025-07-22 08:24:31 +10:00
psychedelicious
2c1f2b2873 tidy(ui): move star hotkey into own hook & use reactive state for focus 2025-07-22 08:11:57 +10:00
Kent Keirsey
8418e34480 lint 2025-07-22 08:11:57 +10:00
Kent Keirsey
b548ac0ccf Add Star/Unstar Hotkey and fix hotkey translations 2025-07-22 08:11:57 +10:00
Linos
2af2b8b6c4 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2003 of 2003 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Hosted Weblate
058dc06748 translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riccardo Giovanetti
8acb1c0088 translationBot(ui): update translation (Italian)
Currently translated at 98.7% (1978 of 2003 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1978 of 2003 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.6% (1968 of 1994 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Hosted Weblate
683732a37c translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.

Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riku
b990eacca0 translationBot(ui): update translation (German)
Currently translated at 62.1% (1251 of 2012 strings)

Co-authored-by: Riku <riku.block@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
RyoKoba
5f7e920deb translationBot(ui): update translation (Japanese)
Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 99.8% (2007 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 92.0% (1851 of 2011 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 87.4% (1744 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 87.4% (1744 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 81.0% (1616 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

translationBot(ui): update translation (Japanese)

Currently translated at 75.6% (1510 of 1995 strings)

Co-authored-by: RyoKoba <kobayashi_ryo@cyberagent.co.jp>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Riccardo Giovanetti
55dfdc0a9c translationBot(ui): update translation (Italian)
Currently translated at 97.9% (1953 of 1994 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1986 of 2011 strings)

translationBot(ui): update translation (Italian)

Currently translated at 98.7% (1970 of 1995 strings)

translationBot(ui): update translation (Italian)

Currently translated at 97.8% (1910 of 1952 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
Linos
10d6d19e17 translationBot(ui): update translation (Vietnamese)
Currently translated at 100.0% (2012 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (2012 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.7% (2006 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.7% (2006 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.5% (2002 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 99.5% (2002 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 97.8% (1968 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 96.4% (1940 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 96.4% (1940 of 2012 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1921 of 1921 strings)

translationBot(ui): update translation (Vietnamese)

Currently translated at 100.0% (1917 of 1917 strings)

Co-authored-by: Linos <linos.coding@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/vi/
Translation: InvokeAI/Web UI
2025-07-22 07:58:19 +10:00
skunkworxdark
15542b954d Fix nodes ui: Make nodes dot background to be the same as the snap to grid size and position
Fix nodes ui:  Make nodes dot background to be the same as the snap to grid size and position
Update to Flow.tsx

Changes the size and offset of the dots background to be the same size as the snap to grid, and also fix the background dot pattern alignment.

Currently, the snapGrid is 25x25, and the default background dot gap is 20x20, these do not align.  This is fixed by making the gap property of the background the same as the snapGrid.

Additionally, there is a bug in the rectFlow background code that incorrectly sets the offset to be the centre of the dot pattern with the default offset of 0.  To work around this issue, setting the background offset property to the snapGrid size will realign the dot pattern correctly. 

I have logged a bug for the rectFlow background issue in its repo. 
https://github.com/xyflow/xyflow/issues/5405
2025-07-22 07:46:52 +10:00
skunkworxdark
6430d830c1 Update nodes auto layout spacing for snap to grid size
Update workflowSettingsSlice.ts

Change the default settings for auto layout nodeSpacing and layerSpacing  to 30 instead of 32.    This will make the x position of auto layed nodes land on the snap to grid positions. 

Because the node width (320) + 30 = 350 which is divisible by the snap to grid size of 25.
2025-07-22 07:40:58 +10:00
Kent Keirsey
c3f6389291 fix ruff and remove unused API route 2025-07-22 07:33:48 +10:00
Kent Keirsey
070eef3eff remove whitespace 2025-07-22 07:33:48 +10:00
Kent Keirsey
b14d841d57 Extract util and fix model image logic 2025-07-22 07:33:48 +10:00
Kent Keirsey
dd35ab026a update logic and remove bad test 2025-07-22 07:33:48 +10:00
Cursor Agent
7fc06db8ad Add LoRA model metadata extraction from JSON and PNG files
Co-authored-by: kent <kent@invoke.ai>
2025-07-22 07:33:48 +10:00
psychedelicious
9d1f09c0f3 fix(ui): return wrapped history in redux-remember unserialize
We intermittently get an error like this:
```
TypeError: Cannot read properties of undefined (reading 'length')
```

This error is caused by a `redux-undo`-enhanced slice being rehydrated
without the extra stuff it adds to the slice to make it undoable (e.g.
an array of `past` states, the `present` state, array of `future`
states, and some other metadata).

`redux-undo` may need to check the length of the past/future arrays as
part of its internal functionality. These keys don't exist so we get the
error. I'm not sure _why_ they don't exist - my understanding of
`redux-undo` is that it should be checking and wrapping the state w/ the
history stuff automatically. Seems to be related to `redux-remember` -
may be a race condition.

The solution is to ensure we wrap rehydrated state for undoable slices
as we rehydrate them. I discovered the solution while troubleshooting
#8314 when the changes therein somehow triggered the issue to start
occuring every time instead of rarely.
2025-07-22 07:00:57 +10:00
skunkworxdark
cacfb183a6 Add auto layout controls to node editor (#8239)
* Add auto layout controls using elkjs to node editor

Introduces auto layout functionality for the node editor using elkjs, including a new UI popover for layout options (placement strategy, layering, spacing, direction). Adds related state and actions to workflowSettingsSlice, updates translations, and ensures elkjs is included in optimized dependencies.

* feat(nodes): Improve workflow auto-layout controls and accuracy

- The auto-layout settings panel is updated to use `Select` dropdowns and `NumberInput`
- The layout algorithm now uses the actual rendered dimensions of nodes from the DOM, falling back to estimates only when necessary. This results in a much more accurate and predictable layout.
- The ELKjs library integration is refactored to fix some warnings

* Update useAutoLayout.ts

prettier

* feat(nodes): Improve workflow auto-layout controls and accuracy

- The auto-layout settings panel is updated to use `Select` dropdowns and `NumberInput`
- The layout algorithm now uses the actual rendered dimensions of nodes from the DOM, falling back to estimates only when necessary. This results in a much more accurate and predictable layout.
- The ELKjs library integration is refactored to fix some warnings

* Update useAutoLayout.ts

prettier

* build(ui): import elkjs directly

* updated to use  dagrejs for autolayout

updated to use dagrejs - it has less layout options but is already included

but this is still WIP as some nodes don't report the height correctly. I am still investigating this...

* Update useAutoLayout.ts

update to fix layout issues

* minor updates

- pretty useAutoLayout.ts
- add missing type import in ViewportControls.tsx
- update pnpm-lock.yaml with elkjs removed

* Update ViewportControls.tsx

pnpm fix

* Fix Frontend check + single node selection fix

Fix Frontend check -  remove unused export from workflowSettingsSlice.ts
Update so that if you have a single node selected, it will auto layout all nodes, as this is a common thing to have a single node selected and means that you don't have to unselect it.

* feat(ui): misc improvements for autolayout

- Split popover into own component
- Add util functions to get node w/h
- Use magic wand icon for button
- Fix sizing of input components
- Use CompositeNumberInput instead of base chakra number input
- Add zod schemas for string values and use them in the component to
ensure state integrity

* chore(ui): lint

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-07-21 14:44:29 +10:00
psychedelicious
564f4f7a60 feat(ui): better icon for invert mask button 2025-07-21 13:47:02 +10:00
Kent Keirsey
113a118fcf fix potential for null data 2025-07-21 13:47:02 +10:00
Kent Keirsey
1f930cdaf2 fix 2025-07-21 13:47:02 +10:00
Kent Keirsey
c490e0ce08 feat(ui):invert mask 2025-07-21 13:47:02 +10:00
Kent Keirsey
7640ee307c feat(ui):Adjust-bbox-to-masks 2025-07-21 13:26:49 +10:00
psychedelicious
1f5f70f898 feat(ui): clean up picker compact view default state handling
- Name it `pickerCompactViewStates` bc its not exclusive to model
picker, it is used for all pickers
- Rename redux action to model an event
- Move selector to right file
- Use selector to derive state for individual picker
2025-07-21 13:18:09 +10:00
Mary Hipp
1430858112 cleanup 2025-07-21 13:18:09 +10:00
Mary Hipp
48c27ec117 persist model picker compact/expanded state 2025-07-21 13:18:09 +10:00
psychedelicious
af7737e804 fix(ui): context menu on staging area images
There was a subtle issue where the progress image wasn't ever cleared,
preventing the context menu from working on staging area preview images.

The staging area preview images were displaying the last progress image
_on top of_ the result image. Because the image elements were so small,
you wouldn't notice that you were looking at a low-res progress image.
Right clicking a progress image gets you no menu.

If you refresh the page or switch tabs, this would fix itself, because
those actions clear out the progress images. The result image would then
be the topmost element, and the context menu works.

Fixing this without introducing a flash of empty space as the progress
image was hidden required a bit of refactoring. We have to wait for the
result image element to load before clearing out the progress.

Result - progress images appear to "resolve" to result images in the
staging area without any blips or jank, and the context menu works after
that happens.
2025-07-21 13:15:34 +10:00
psychedelicious
3eca0d2ba0 fix(ui): staging area left/right hotkeys 2025-07-18 08:08:15 -04:00
psychedelicious
307259f096 fix(ui): ensure staging area always has the right state and session association 2025-07-18 08:08:15 -04:00
psychedelicious
bed01941a5 fix(ui): ensure we clean up when session id changes 2025-07-18 08:08:15 -04:00
psychedelicious
89fa43a3b6 docs(ui): update StagingAreaApi docstrings 2025-07-18 08:08:15 -04:00
psychedelicious
d8fcb08abf repo: update ignores 2025-07-18 08:08:15 -04:00
psychedelicious
c61bcd9f50 tests(ui): add test suite for StagingAreaApi 2025-07-18 08:08:15 -04:00
psychedelicious
3fb0fcbbfb tidy(ui): move staging area components to correct dir 2025-07-18 08:08:15 -04:00
psychedelicious
db9af5083f tidy(ui): move launchpad components to ui dir 2025-07-18 08:08:15 -04:00
psychedelicious
720f1bb65c chore(ui): rename context2.tsx -> context.tsx 2025-07-18 08:08:15 -04:00
psychedelicious
7dfb318ba2 chore(ui): lint 2025-07-18 08:08:15 -04:00
psychedelicious
9b024da2b4 refactor(ui): move staging area logic out side react
Was running into difficultlies reasoning about the logic and couldn't
write tests because it was all in react.

Moved logic outside react, updated context, make it testable.
2025-07-18 08:08:15 -04:00
psychedelicious
15ca3b727a wip 2025-07-18 08:08:15 -04:00
psychedelicious
74ca604ae0 fix(ui): unstyled error boundary 2025-07-18 08:08:15 -04:00
psychedelicious
6934b05c85 fix(ui): use invocation context provider in inspector panel 2025-07-18 08:08:15 -04:00
psychedelicious
1a47a5317c chore(ui): update dockview to latest
Remove extraneous fix now that the disableDnd issue is resolved upstream
2025-07-18 08:08:15 -04:00
psychedelicious
bc3ef21c64 chore(ui): bump version to v6.1.0rc2 2025-07-18 08:08:15 -04:00
psychedelicious
e329f5ad43 fix(ui): negative style prompt not recorded in metadata 2025-07-18 06:41:21 +10:00
psychedelicious
e6ad91bf89 chore(ui): update prettier config 2025-07-17 22:04:57 +10:00
psychedelicious
2f586416a5 chore(ui): remove unused pkgs 2025-07-17 22:04:57 +10:00
psychedelicious
33b56f421c chore(ui): lint 2025-07-17 22:04:57 +10:00
psychedelicious
e58ee4c492 chore(ui): upgrade zod 2025-07-17 22:04:57 +10:00
psychedelicious
49691aa07e chore(ui): upgrade rollup vis 2025-07-17 22:04:57 +10:00
psychedelicious
56570f235f chore(ui): actually upgrade storybook 2025-07-17 22:04:57 +10:00
psychedelicious
a2d95cf5b6 chore(ui): upgrade minor bump packages 2025-07-17 22:04:57 +10:00
psychedelicious
704dbfd04a chore(ui): upgrade storybook 2025-07-17 22:04:57 +10:00
psychedelicious
5d9e078043 chore(ui): finish eslint v9 migration 2025-07-17 22:04:57 +10:00
psychedelicious
875cde13ae chore(ui): migrate to eslint v9 (wip) 2025-07-17 22:04:57 +10:00
psychedelicious
77655aed86 chore(ui): update eslint config 2025-07-17 22:04:57 +10:00
psychedelicious
0628b92d63 chore: bump version to v6.1.0rc1 2025-07-17 19:30:38 +10:00
psychedelicious
9e526d00c2 chore(ui): lint 2025-07-17 15:36:24 +10:00
psychedelicious
1a24396be8 feat(ui): styling when nodes have error 2025-07-17 15:36:24 +10:00
psychedelicious
d97e73a565 chore(ui): lint 2025-07-17 15:36:24 +10:00
psychedelicious
55b14c8aaf perf(ui): optimize redux selectors for workflow editor
- Build selectors for each node in a react context so components can
re-use the same selectors
- Cache the selectors in the context
2025-07-17 15:36:24 +10:00
psychedelicious
79f65e57eb fix(ui): remove unnecessary coalescing operator 2025-07-17 14:21:02 +10:00
Kent Keirsey
b4c8950278 address comments 2025-07-17 14:21:02 +10:00
Kent Keirsey
400b2e9a55 unlint. 2025-07-17 14:21:02 +10:00
Kent Keirsey
3a687c583a lint 2025-07-17 14:21:02 +10:00
Kent Keirsey
833950078d commit tile size controls 2025-07-17 14:21:02 +10:00
Kent Keirsey
e698dcb148 unlint. 2025-07-17 14:21:02 +10:00
Kent Keirsey
218386e077 lint 2025-07-17 14:21:02 +10:00
Kent Keirsey
4426be9e64 commit tile size controls 2025-07-17 14:21:02 +10:00
psychedelicious
86f4cf7857 feat(ui): related embedding styling/tidy 2025-07-17 14:12:29 +10:00
Kent Keirsey
49ae66d94a Added related model support 2025-07-17 14:12:29 +10:00
Cursor Agent
c10865c7ef Reorder embedding options in PromptTriggerSelect component
Co-authored-by: kent <kent@invoke.ai>
2025-07-17 14:12:29 +10:00
psychedelicious
f3478a189a fix(ui): able to drag empty space in tab bar and detach panels 2025-07-17 13:58:32 +10:00
psychedelicious
43db29176a chore(ui): lint 2025-07-17 13:52:24 +10:00
psychedelicious
f38922929c docs(ui): comments in modelsLoaded 2025-07-17 13:52:24 +10:00
psychedelicious
7d02c58f86 fix(ui): move <ParamTileControlNetModel /> to <UpscaleTabAdvancedSettingsAccordion /> 2025-07-17 13:52:24 +10:00
Kent Keirsey
6edce8be87 Add scaling in 2025-07-17 13:52:24 +10:00
Kent Keirsey
31f63e38bd lint 2025-07-17 13:52:24 +10:00
Kent Keirsey
78a68ac3a7 Updated 2025-07-17 13:52:24 +10:00
Kent Keirsey
8cd3bcd1c0 Updates 2025-07-17 13:52:24 +10:00
Cursor Agent
264cc5ef46 Add tile ControlNet model selection to upscale settings
Co-authored-by: kent <kent@invoke.ai>
2025-07-17 13:52:24 +10:00
JPPhoto
8bfbea5ed3 Updated __init__.py 2025-07-17 06:33:56 +10:00
JPPhoto
f06a66da07 Updated schema.ts 2025-07-17 06:33:56 +10:00
Jonathan
337cae9b22 Update __init__.py
Added FluxConditioningField, FluxConditioningCollectionOutput, and FluxConditioningCollectionOutput,
2025-07-17 06:33:56 +10:00
Jonathan
bf926bb7d5 Update primitives.py
Added FluxConditioningCollectionOutput
2025-07-17 06:33:56 +10:00
psychedelicious
18ad9a6af3 feat(ui): canvas/viewer panel tabs show progress 2025-07-17 06:20:05 +10:00
psychedelicious
b6ed31c222 feat(ui): clicking invoke switches to viewer tab instead of canvas when save all images to gallery is enabled 2025-07-17 06:20:05 +10:00
psychedelicious
200beb5af5 feat(ui): make save all images to gallery option also bypass canvas 2025-07-17 06:20:05 +10:00
psychedelicious
f82a948bdd refactor(ui): canvas autoswitch logic
Simplify the canvas auto-switch logic to not rely on the preview images
loading. This fixes an issue where offscreen preview images didn't get
auto-switched to. Images are now loaded directly.
2025-07-17 06:20:05 +10:00
psychedelicious
dd03e3ddcd refactor(ui): simplify canvas session logic 2025-07-17 06:20:05 +10:00
psychedelicious
7561b73e8f fix(ui): uppercase file extensions blocked for image upload
Closes #8284
2025-07-17 00:48:36 +10:00
psychedelicious
caa97608c7 fix(ui): aspect ratios out of order 2025-07-16 23:27:37 +10:00
Mary Hipp
72a6d1edc1 simplify descriptoin styling 2025-07-16 09:19:33 -04:00
Mary Hipp
b8bf89c2f1 add fallback image and make sure description text is legible for model picker noncompact 2025-07-16 09:19:33 -04:00
psychedelicious
a1ade2b8c0 feat(ui): export apis & actions from package 2025-07-16 08:21:03 -04:00
Eugene Brodsky
4bdcae1f8f fix(docker): switch to pnpm10.x 2025-07-15 13:03:15 -04:00
Jonathan
4b22c84407 Update dev-environment.md
Document the latest changes required to build Invoke 6.0.
2025-07-15 15:21:01 +10:00
Eugene Brodsky
c9daf1db30 (fix) remove timeout from image prompt expansion (#8281) 2025-07-14 11:19:20 -04:00
psychedelicious
06d3cfbe97 gh: update bug report template
- Add require drop down for install method
- Make browser version optional
- Link to latest release
- Update verbiage for sys info section
2025-07-14 12:18:52 +10:00
psychedelicious
71e4901313 fix(ui): ignore disalbed ref images in readiness checks 2025-07-14 10:51:51 +10:00
psychedelicious
82fb897b62 chore(ui): lint 2025-07-12 14:56:57 +10:00
psychedelicious
192b00d969 chore: bump version to v6.0.2 2025-07-12 14:56:57 +10:00
psychedelicious
7bb25ef1b4 fix(ui): gallery dnd 2025-07-12 14:56:57 +10:00
psychedelicious
62f52c74a8 fix(ui): linked negative style prompt not passed in
Closes #8256
2025-07-12 10:22:17 +10:00
psychedelicious
97439c1daa fix(ui): native context menu shown on right click on short fat images
Closes #8254
2025-07-12 10:22:17 +10:00
psychedelicious
b23bff1b53 fix(ui): center staging area images 2025-07-12 10:22:17 +10:00
psychedelicious
d9a1efbabf fix(ui): staging area images may be slightly too large 2025-07-12 10:22:17 +10:00
psychedelicious
d4e903ee2d chore: bump version to v6.0.1 2025-07-12 10:22:17 +10:00
Kevin Turner
bb3e5d16d8 feat(Model Manager): refuse to download a file when there's insufficient space 2025-07-12 10:14:25 +10:00
psychedelicious
e62d3f01a8 feat(app): better error message for failed model probe
- Old: No valid config found
- New: Unable to determine model type
2025-07-11 23:35:43 +10:00
psychedelicious
757ecdbf82 build(ui): downgrade idb-keyval
We have increased error rates after updating this package. Let's try
downgrading to see if that fixes the issue.
2025-07-11 15:00:10 +10:00
psychedelicious
694c85b041 fix(ui): language file filenames
Need to replace the underscores w/ dashes - this was missed in #8246.
2025-07-11 14:21:41 +10:00
psychedelicious
988d7ba24c chore: bump version to v6.0.1rc1 2025-07-11 09:05:24 +10:00
psychedelicious
ac981879ef fix(ui): runtime errors related to calling reduce on array iterator
Fix an issue in certain browsers/builds causing a runtime error.

A zod enum has a .options property, which is an array of all the options
for the enum. This is handy for when you need to derive something from a
zod schema.

In this case, we represented the possible focus regions in the zod enum,
then derived a mapping of region names to set of target HTML elements.
Why isn't important, but suffice to say, we were using the .options
property for this.

But actually, we were using .options.values(), then calling .reduce() on
that. An array's .values() method returns an _array iterator_. Array
iterators do not have .reduce() methods!

Except, apparently in some environments they do - it depends on the JS
engine and whether or not polyfills for iterator helpers were included
in the build.

Turns out my dev environment - and most user browsers - do provide
.reduce(), so we didn't catch this error. It took a large deployment and
error monitoring to catch it.

I've refactored the code to totally avoid deriving data from zod in this
way.
2025-07-11 08:25:47 +10:00
psychedelicious
fc71849c24 feat(app): expose a cursor, not a connection in db util 2025-07-11 08:20:06 +10:00
psychedelicious
a19aa3b032 feat(app): db abstraction to prevent threading conflicts
- Add a context manager to the SqliteDatabase class which abstracts away
creating a transaction, committing it on success and rolling back on
error.
- Use it everywhere. The context manager should be exited before
returning results. No business logic changes should be present.
2025-07-11 08:20:06 +10:00
psychedelicious
ef4d5d7377 feat(ui): virtualized list for staging area
Make the staging area a virtualized list so it doesn't choke when there
are a large number (i.e. more than a few hundred) of queue items.
2025-07-11 07:50:57 +10:00
Mary Hipp Rogers
6b0dfd8427 dont reset canvas if studio is loaded with canvas destination (#8252)
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2025-07-10 09:36:41 -04:00
psychedelicious
471c010217 fix(ui): invalid language crashes app
- Apparently locales must use hyphens instead of underscores. This must
have been a fairly recent change that we didn't catch. It caused i18n to
throw for Brasilian Portuguese and both Simplified and Traditional
Mandarin. Change the locales to use the right strings.
- Move the theme + locale provider inside of the error boundary. This
allows errors with locals to be caught by the error boundary instead of
hard-crashing the app. The error screen is unstyled if this happens but
at least it has the reset button.
- Add a migration for the system slice to fix existing users' language
selections. For example, if the user had an incorrect language setting
of `zh_CN`, it will be changed to the correct `zh-CN`.
2025-07-10 14:27:36 +10:00
psychedelicious
b1193022f7 fix(ui): sometimes images added to gallery show as placeholder only
The range-based fetching logic had a subtle bug - it didn't keep track
of what the _current_ visible range is - only the ranges that the user
last scrolled to.

When an image was added to the gallery, the logic saw that the images
had changed, but thought it had already loaded everything it needed to,
so it didn't load the new image.

The updated logic tracks the current visible range separately from the
accumulated scroll ranges to address this issue.
2025-07-10 14:27:36 +10:00
psychedelicious
2152ca092c fix(ui): workaround for dockview bug that lets you drag tabs in certain ways 2025-07-10 14:27:36 +10:00
psychedelicious
ccc62ba56d perf(ui): revised range-based fetching strategy
When the user scrolls in the gallery, we are alerted of the new range of
visible images. Then we fetch those specific images.

Previously, each change of range triggered a throttled function to fetch
that range. The throttle timeout was 100ms.

Now, each change of range appends that range to a list of ranges and
triggers the throttled fetch. The timeout is increased to 500ms, but to
compensate, each fetch handles all ranges that had been accumulated
since the last fetch.

The result is far fewer network requests, but each of them gets more
images.
2025-07-10 14:27:36 +10:00
psychedelicious
9cf82de8c5 fix(ui): check for absolute value of scroll velocity to handle scrolling up 2025-07-10 14:27:36 +10:00
psychedelicious
aced349152 perf(ui): increase viewport in gallery
This allows us to prefetch more images and reduce how often placeholders
are shown as we fetch more images in the gallery.
2025-07-10 14:27:36 +10:00
psychedelicious
0d67ee6548 tests(ui): fix logging mock 2025-07-09 23:15:25 +10:00
psychedelicious
03c21d1607 fix(ui): gallery not updating when saving staging area image 2025-07-09 23:15:25 +10:00
psychedelicious
752e8db1f5 tidy(ui): demote logging in nav api to trace 2025-07-09 23:15:25 +10:00
psychedelicious
85fc861dd9 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
458cbfd874 fix(ui): selected model not highlighted 2025-07-09 23:15:25 +10:00
psychedelicious
04331c070a fix(ui): set denoise w/h when running flux fill 2025-07-09 23:15:25 +10:00
psychedelicious
632ddf0cb4 tests(ui): update tests for navigation api 2025-07-09 23:15:25 +10:00
psychedelicious
2b193ff416 fix(ui): delete stored state on error & save new state 2025-07-09 23:15:25 +10:00
psychedelicious
96ee394f9e refactor(ui): use dockview's own ser/de for persistence 2025-07-09 23:15:25 +10:00
psychedelicious
0badc80c0c fix(ui): ignore disabled ref images in readiness checks 2025-07-09 23:15:25 +10:00
psychedelicious
78e6cbf96e fix(ui): default tab is generate 2025-07-09 23:15:25 +10:00
psychedelicious
0b969a661b fix(ui): remove dep on focus from useDeleteImage 2025-07-09 23:15:25 +10:00
psychedelicious
6fe47ec9f8 feat(ui): improve ref image model autoswitch logic 2025-07-09 23:15:25 +10:00
Kent Keirsey
3850dd61f8 update comment 2025-07-09 23:15:25 +10:00
Kent Keirsey
75520eaf0f Match Chatgpt4o and kontext names exactly 2025-07-09 23:15:25 +10:00
Kent Keirsey
10e88c58c1 fix and lint 2025-07-09 23:15:25 +10:00
Kent Keirsey
30ed4dbd92 lint 2025-07-09 23:15:25 +10:00
Kent Keirsey
ed9c090f33 fixes 2025-07-09 23:15:25 +10:00
Kent Keirsey
d29f65ed22 lint fixes 2025-07-09 23:15:25 +10:00
Kent Keirsey
2062ec8ac0 Update invokeai/frontend/web/src/app/store/middleware/listenerMiddleware/listeners/modelSelected.ts
Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2025-07-09 23:15:25 +10:00
Cursor Agent
49e818338a Changes from background composer bc-abfadb27-a265-41a7-b0db-829879f4701e 2025-07-09 23:15:25 +10:00
Cursor Agent
1caab2b9c4 Implement automatic reference image model switching on base model change
Co-authored-by: kent <kent@invoke.ai>
2025-07-09 23:15:25 +10:00
psychedelicious
50079ea349 fix(ui): big red cancel button has diff behaviour than staging discard 2025-07-09 23:15:25 +10:00
psychedelicious
fffa1b24c4 fix(ui): isStaging selector could return wrong query cache 2025-07-09 23:15:25 +10:00
psychedelicious
a6d6170387 fix(ui): discarding 1 item when 2 items left in staging area discards both 2025-07-09 23:15:25 +10:00
psychedelicious
e5fceb0448 fix(ui): whole app scrolls while selecting staging area image 2025-07-09 23:15:25 +10:00
psychedelicious
059baf5b29 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
1be8a9a310 fix(ui): add metadata i18nKey to handler; fixes metadata toasts 2025-07-09 23:15:25 +10:00
psychedelicious
7adc33e04d refactor(ui): metadata recall buttons & hotkeys (WIP) 2025-07-09 23:15:25 +10:00
psychedelicious
7f2dd22d47 refactor(ui): metadata recall buttons & hotkeys (WIP) 2025-07-09 23:15:25 +10:00
psychedelicious
bb50f4b8a2 fix(ui): prevent panels from growing on init
This works but I think a better solution is to use dockview's provided
serialization API to store and restore layouts.
2025-07-09 23:15:25 +10:00
psychedelicious
a48958e0d4 chore(ui): lint 2025-07-09 23:15:25 +10:00
psychedelicious
e3a1e9af53 feat(ui): staging area updates
- Smaller staged image previews.
- Move autoswitch buttons to staging area toolbar, remove from settings
popover and the little three-dots menu. Use persisted autoswitch
setting, which is renamed from `defaultAutoSwitch` to
`stagingAreaAutoSwitch`.
- Fix issue with misaligned border radii in staging area preview images.
Required small changes to DndImage and its usage elsewhere.
- Fix issue where staging area toolbar could show up without any
previews in the list.
- Migrate canvas settings slice to use zod schema and inferred types for
its state.
2025-07-09 23:15:25 +10:00
psychedelicious
c6fe11c42f fix(ui): disable gallery hotkeys when in staging area 2025-07-09 23:15:25 +10:00
psychedelicious
4eb1bd67df fix(ui): hide staging area when there are no items 2025-07-09 23:15:25 +10:00
psychedelicious
c376f914d2 chore: bump version v6.0.0 2025-07-09 23:15:25 +10:00
Kent Keirsey
b5d1c47ef7 final link fix 2025-07-09 10:17:38 +10:00
Kent Keirsey
004a52ca65 fix to direct links 2025-07-09 10:17:38 +10:00
Kent Keirsey
b1d5a51ddf add-quantized-kontext-dev 2025-07-09 10:17:38 +10:00
Kent Keirsey
2b2498eaa1 fix prettier quirk 2025-07-08 14:54:29 -04:00
Kent Keirsey
10dda4440e Fix label 2025-07-08 14:54:29 -04:00
Cursor Agent
98f78abefa Add default auto-switch mode setting for canvas sessions
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 14:54:29 -04:00
Mary Hipp Rogers
cc93fa270f update whats new for v6 (#8234)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 18:24:33 +00:00
Mary Hipp Rogers
014b27680f fix flux kontext error (#8235)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 13:42:48 -04:00
Mary Hipp Rogers
c3d8f875de if on generate tab, recall dimensions instead of bbox (#8233)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 13:09:21 -04:00
Mary Hipp Rogers
79f9dc6e4a fix(ui): dont show option to add new layer from if on generate tab (#8231)
* dont show option to add new layer from if on generate tab

* only disable width/height recall is staging AND canvas tab

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 11:46:54 -04:00
psychedelicious
6e1c0c1105 chore: bump version to v6.0.0rc5 2025-07-08 11:26:47 -04:00
Mary Hipp Rogers
0362524040 remove hard-coded flux kontext dev guidance (#8230)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-08 10:26:20 -04:00
psychedelicious
dc6656459b docs(ui): updated comments for navigation api 2025-07-08 07:30:36 -04:00
psychedelicious
3ea1b97f6f fix(ui): protect against getting stuck on tab loading screen 2025-07-08 07:30:36 -04:00
psychedelicious
a7c7405ccc feat(ui): style model picker selected item 2025-07-08 07:28:07 -04:00
psychedelicious
c391f1117a fix(ui): traverse groups when finding selected model in picker 2025-07-08 07:28:07 -04:00
psychedelicious
b1e2cb8401 fix(ui): queue tab list of queue items
Reverted incomplete change to how queue items are listed. In the future
I think we should redo it to work like the gallery. For now, it is back
the way it was in v5.
2025-07-08 07:22:51 -04:00
Emmanuel Ferdman
db6af134b7 fix: resolve FastAPI deprecation warning for example fields
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-07-08 20:54:08 +10:00
Emmanuel Ferdman
7e6cffb00c fix: resolve FastAPI deprecation warning for example fields
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-07-08 20:54:08 +10:00
psychedelicious
5b187bcb00 fix(ui): pull bbox into ref image component 2025-07-08 14:54:43 +10:00
psychedelicious
0843d609a3 feat(ui): add list of warnings in tooltip on ref image 2025-07-08 14:54:43 +10:00
Kent Keirsey
95bd9cef18 Lint 2025-07-08 14:54:43 +10:00
Kent Keirsey
931d6521f6 Adds bbox to ref image button 2025-07-08 14:54:43 +10:00
psychedelicious
e37665ff59 tests(ui): add wiggle room to timeout tests 2025-07-08 12:55:33 +10:00
psychedelicious
56857fbbe6 tests(ui): add tests for panel storage 2025-07-08 12:55:33 +10:00
psychedelicious
43cfb8a574 tests(ui): get tests passing
Still need tests for panel storage.
2025-07-08 12:55:33 +10:00
psychedelicious
05b1682d15 fix(ui): handle collapsed panels when rehydrating their state 2025-07-08 12:55:33 +10:00
psychedelicious
69a08ee7f2 feat(ui): panel state persistence (WIP) 2025-07-08 12:55:33 +10:00
psychedelicious
18212c7d8a feat(ui): clean up navigation API surface and add comments 2025-07-08 12:55:33 +10:00
psychedelicious
7de26f8e69 feat(ui): clean up auto layout context for panels 2025-07-08 12:55:33 +10:00
Kent Keirsey
0652b12a6f Address comments 2025-07-08 12:31:11 +10:00
Kent Keirsey
43a361a00f prettier 2025-07-08 12:31:11 +10:00
Kent Keirsey
cf68ad9cbc update links to playlist instead of video 2025-07-08 12:31:11 +10:00
Kent Keirsey
ec02a39325 fixes 2025-07-08 12:31:11 +10:00
Kent Keirsey
e52d7a05c2 Update support links. 2025-07-08 12:31:11 +10:00
Cursor Agent
c9d4e2b761 Refactor support videos modal to simplify video and playlist handling
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 12:31:11 +10:00
Kent Keirsey
ac26aa9508 fix 2025-07-08 12:31:11 +10:00
Cursor Agent
9ff6ada15b Add support for video playlists in support videos modal
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 12:31:11 +10:00
psychedelicious
e81a115169 chore(ui): lint 2025-07-08 12:23:57 +10:00
Kent Keirsey
52827807de remove ref image from upscale 2025-07-08 12:23:57 +10:00
Kent Keirsey
b631de4cb5 consistency 2025-07-08 12:20:08 +10:00
Kent Keirsey
099ebdbc37 fix 2025-07-08 12:20:08 +10:00
psychedelicious
4de6549be9 refactor(ui): track discarded items instead of using delete method 2025-07-08 12:12:55 +10:00
psychedelicious
368be34949 chore(ui): lint 2025-07-08 12:12:55 +10:00
psychedelicious
5baa4bd916 refactor(ui): use cancelation for staging area (mostly) 2025-07-08 12:12:55 +10:00
psychedelicious
4229377532 fix(app): ensure cancel events are emitted for current item when bulk canceling
There was a bug where bulk cancel operations would cancel the current
queue item in the DB but not emit the status changed events correctly.
2025-07-08 12:12:55 +10:00
psychedelicious
2610772ffd feat(ui): tighten up launchpad content to fit better 2025-07-08 08:57:44 +10:00
psychedelicious
193de6a8f2 feat(ui): add launchpad container component 2025-07-08 08:57:44 +10:00
psychedelicious
7ea343c787 tidy(ui): remove "staging" from the new settings verbiage 2025-07-08 07:10:55 +10:00
Kent Keirsey
12179dabba fix prettier 2025-07-08 07:10:55 +10:00
Cursor Agent
ef135f9923 Add option to save all staging images to gallery in canvas mode
Co-authored-by: kent <kent@invoke.ai>
2025-07-08 07:10:55 +10:00
Mary Hipp
e6c67cc00f update toast for prompt expansion failed 2025-07-08 06:42:00 +10:00
psychedelicious
179b988148 fix(ui): prompt concat derived state recall 2025-07-08 06:37:43 +10:00
psychedelicious
d913a3c85b fix(ui): reset selected ref image when replacing all
Fixes an unhandled error in a selector that can throw.
2025-07-08 06:37:43 +10:00
psychedelicious
e79525c40c docs(ui): update comments 2025-07-08 06:11:32 +10:00
psychedelicious
f409f913ac fix(ui): navigation api usage 2025-07-08 06:11:32 +10:00
Mary Hipp
7a79f61d4c add claude nodes to blacklist for publishing 2025-07-08 05:50:40 +10:00
psychedelicious
ea182c234b chore: bump version to v6.0.0rc4 2025-07-07 22:15:28 +10:00
psychedelicious
f2eee4a82d chore(ui): lint 2025-07-07 22:05:49 +10:00
psychedelicious
e129525306 fix(app): handle None in queue count queries 2025-07-07 22:05:49 +10:00
psychedelicious
ecedfce758 feat(ui): support a min expanded size for collapsible panels 2025-07-07 22:05:49 +10:00
psychedelicious
702cb2cb1e fix(ui): flux kontext special handlign for ref image models 2025-07-07 22:05:49 +10:00
psychedelicious
2e8db3cce3 fix(ui): ensure noise is correctly sized 2025-07-07 22:05:49 +10:00
psychedelicious
7845623fa5 fix(ui): session context indexing bug 2025-07-07 22:05:49 +10:00
psychedelicious
e6a25ca7a2 feat(ui): render progress as indeterminate when percentage is 0
When percentage is zero, the progress bar looks the same as it does when
no generation is in progress. Render it as indeterminate (pulsing) when
percentage is zero to indicate that somethign is happenign.
2025-07-07 22:05:49 +10:00
psychedelicious
71e12bcebe fix(ui): when no negative prompt is provided, recall it as null 2025-07-07 22:05:49 +10:00
psychedelicious
863c7eb9e2 fix(ui): metadata display for primitive values 2025-07-07 22:05:49 +10:00
psychedelicious
9945c20d02 refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
e3c1334b1f refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
c143f63ef0 refactor(ui): simplifiy graph builders (WIP) 2025-07-07 22:05:49 +10:00
psychedelicious
067026a0d0 feat(ui): add autocomplete for Graph.addEdgeToMetadata 2025-07-07 22:05:49 +10:00
psychedelicious
66991334fc refactor(ui): simplify graph builder handling of VAE encode and seed 2025-07-07 22:05:49 +10:00
psychedelicious
b771c3b164 refactor(ui): update graphs to use the right w/h/aspect 2025-07-07 22:05:49 +10:00
psychedelicious
4925694dc1 feat(ui): generate tab has separate w/h/aspect 2025-07-07 22:05:49 +10:00
psychedelicious
0a737ced44 feat(ui): add dimensions to params slice 2025-07-07 22:05:49 +10:00
psychedelicious
8d83caaae0 feat(ui): extract aspect ratios from canvas reducers 2025-07-07 22:05:49 +10:00
psychedelicious
16c8017f1a feat(ui): more resilient gallery scrollIntoView 2025-07-07 22:05:49 +10:00
psychedelicious
61a35f1396 fix(ui): skip optimistic updates for gallery when using search term 2025-07-07 22:05:49 +10:00
psychedelicious
6bd004d868 fix(ui): clear ref images when recalling all
Closes #8202
2025-07-07 22:05:49 +10:00
psychedelicious
b6a6d406c7 chore(ui): typegen 2025-07-07 10:25:24 +10:00
psychedelicious
8e287c32ee chore(ui): lint 2025-07-07 10:25:24 +10:00
psychedelicious
2d8b5e26c2 build(ui): bump vite to latest 2025-07-07 10:25:24 +10:00
psychedelicious
50914b74ee chore(build): update pnpm to v10 2025-07-07 10:25:24 +10:00
psychedelicious
0fc1c33536 chore(ui): knip 2025-07-07 10:25:24 +10:00
psychedelicious
3b08c35f72 chore(ui): update knip config 2025-07-07 10:25:24 +10:00
psychedelicious
607b2561fd chore(ui): bump knip to latest 2025-07-07 10:25:24 +10:00
psychedelicious
d68f922efb fix(ui): restore upscale-tab-specific settings components 2025-07-07 10:25:24 +10:00
psychedelicious
2bbd74d418 feat(ui): restore canvas busy spinner 2025-07-07 10:25:24 +10:00
psychedelicious
3a5392a9ee chore: bump version to v6.0.0rc3 2025-07-04 20:46:08 +10:00
psychedelicious
6f80efe71d fix(ui): bump expandprompt timeout to 15s 2025-07-04 20:46:08 +10:00
psychedelicious
7fac833813 fix(ui): ref image model types again 2025-07-04 20:35:29 +10:00
psychedelicious
b67eb4134d fix(ui): select next image when deleting 2025-07-04 20:35:29 +10:00
psychedelicious
522eeda2e2 fix(ui): ref image model types 2025-07-04 20:35:29 +10:00
psychedelicious
76233241f0 fix(ui): include ref image metadata for flux kontext 2025-07-04 20:35:29 +10:00
psychedelicious
54be9989c5 feat(ui): add 'replace' and 'merge' strategies for upsertMetadata 2025-07-04 20:35:29 +10:00
psychedelicious
0d3af08d27 fix(ui): prompt parsing in useImageActions 2025-07-04 20:35:29 +10:00
psychedelicious
767ac91f2c fix(nodes): revert unnecessary version bump 2025-07-04 20:35:29 +10:00
psychedelicious
68571ece8f tidy(app): remove unused methods 2025-07-04 20:35:29 +10:00
psychedelicious
01100a2b9a fix(ui): check for ref image config compatibility for flux kontext dev 2025-07-04 20:35:29 +10:00
psychedelicious
ce2e6d8ab6 fix(ui): kontext gen mode error tkey 2025-07-04 20:35:29 +10:00
psychedelicious
4887424ca3 chore: ruff 2025-07-04 20:35:29 +10:00
Kent Keirsey
28f6a20e71 format import block 2025-07-04 20:35:29 +10:00
Kent Keirsey
c4142e75b2 fix import 2025-07-04 20:35:29 +10:00
Kent Keirsey
fefe563127 fix resizing and versioning 2025-07-04 20:35:29 +10:00
Mary Hipp
1c72f1ff9f include flux kontext non-api models in ref image dropdown options 2025-07-04 20:35:29 +10:00
Mary Hipp
605cc7369d update flux kontext implementation to include flux kontext dev non-api models 2025-07-04 20:35:29 +10:00
Kent Keirsey
e7ce08cffa ruff format 2025-07-04 19:24:44 +10:00
Kent Keirsey
983cb5ebd2 ruff ruff 2025-07-04 19:24:44 +10:00
Kent Keirsey
52dbdb7118 ruff 2025-07-04 19:24:44 +10:00
Kent Keirsey
71e6f00e10 test fixes
fix

test

fix 2

fix 3

fix 4

yet another

attempt new fix

pray

more pray

lol
2025-07-04 19:24:44 +10:00
psychedelicious
e73150c3e6 feat(ui): improved automatic tab/panel switching on user actions 2025-07-04 19:18:03 +10:00
psychedelicious
f2426c3ab2 fix(ui): type for dnd action 2025-07-04 19:18:03 +10:00
psychedelicious
9d9c4c0f1a tidy(ui): remove unused old metadata impl 2025-07-04 17:53:47 +10:00
psychedelicious
acb930f6b9 fix(ui): flux redux saves metadata 2025-07-04 17:53:47 +10:00
psychedelicious
585b54dc7d feat(ui): ref image recall w/ old canvas metadata backup 2025-07-04 17:53:47 +10:00
psychedelicious
f65affc0ec fix(ui): do not attempt to recall ref images from canvas metadata 2025-07-04 17:53:47 +10:00
psychedelicious
22d574c92a feat(ui): canvas metadata recall 2025-07-04 17:53:47 +10:00
psychedelicious
f23be119fc refactor(ui): migrating to new metadata handlers 2025-07-04 17:53:47 +10:00
psychedelicious
2d06949e80 feat(ui): display cached metadata if it exists instead of always waiting for debounce 2025-07-04 17:53:47 +10:00
psychedelicious
67804313e1 fix(ui): add ref images to metadata 2025-07-04 17:53:47 +10:00
psychedelicious
dc23be117a refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
350de058fc refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
fd5cd707a3 refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
98ecefdce0 refactor(ui): simplified metadata parsing (WIP) 2025-07-04 17:53:47 +10:00
psychedelicious
42688a0993 refactor(ui): metadata parsing 2025-07-04 17:53:47 +10:00
psychedelicious
d94aa4abf7 feat(ui): enforce loader when switching tabs 2025-07-04 16:49:57 +10:00
psychedelicious
69a56aafed feat(ui): do not require root ref to focus on prompt 2025-07-04 16:49:57 +10:00
psychedelicious
56873f6936 feat(ui): queue and models tab are wrapped in dockview panels 2025-07-04 16:49:57 +10:00
psychedelicious
6bc6a680cf tests(ui): NavigationApi 2025-07-04 16:49:57 +10:00
psychedelicious
9a49682f60 feat(ui): utils to get tab/panel keys to prevent typos 2025-07-04 16:49:57 +10:00
psychedelicious
ff84b0a495 refactor(ui): navigation api 2025-07-04 16:49:57 +10:00
psychedelicious
bcced8a5e8 refactor(ui): navigation api 2025-07-04 16:49:57 +10:00
psychedelicious
4a18e9eaea refactor(ui): panel api (WIP) 2025-07-04 16:49:57 +10:00
psychedelicious
dde5bf61be feat(ui): use exact brand colors in loader 2025-07-04 16:49:57 +10:00
psychedelicious
987e401709 perf(ui): lora components 2025-07-04 14:55:52 +10:00
psychedelicious
5c5ac570e3 fix(ui): hardcode literals for run graph errors
When we build, the class names are minified. This hardcodes the values
to literals.
2025-07-04 14:52:08 +10:00
psychedelicious
309903fe0f feat(ui): refetch gallery image names on reconnect
Maybe fixes JP's issue (again)
2025-07-04 14:49:32 +10:00
psychedelicious
f16ea43e9a feat(ui): enable RTK Query's refetchOnReconnect 2025-07-04 14:49:32 +10:00
Jeremy Gooch
d794aedb43 fix(ui): sets cfg_rescael_multiplier to 0 if there is no default. Also fixes issue with truthiness check causing 0 value to be missed. See https://github.com/invoke-ai/InvokeAI/issues/7584 2025-07-04 06:20:14 +10:00
psychedelicious
9930440f33 chore: bump version to v6.0.0rc2 2025-07-03 12:35:04 +10:00
psychedelicious
f0a6c4aa1f fix(ui): after canceling a filter, layer loses its content 2025-07-03 12:30:01 +10:00
psychedelicious
f36d22f13c fix(ui): control layers ignored in txt2img 2025-07-03 12:27:05 +10:00
Cursor Agent
e0d7fab524 Fix: Toggle right panel instead of left panel in navigation
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:15:22 +10:00
Cursor Agent
f20c230f4a Add drag-and-drop comparison image target to ImageViewerPanel
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:10:51 +10:00
Cursor Agent
05c9bc730e Fix canvas export layer bounds calculation in PSD export hook
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:07:22 +10:00
Cursor Agent
f17ac06591 Fix PSD export to use layer content bounds and crop canvas
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:07:22 +10:00
Kent Keirsey
b35f93d919 Change implementation to check $ispending 2025-07-03 12:04:27 +10:00
Cursor Agent
289d8076d8 Reset canvas session when queue item is canceled in current session
Co-authored-by: kent <kent@invoke.ai>
2025-07-03 12:04:27 +10:00
skunkworxdark
604763d20f Update flux.py
Replace T5Tokenizer with T5TokenizerFast
2025-07-03 08:04:08 +10:00
Mary Hipp
7b452f098d lint 2025-07-02 16:27:44 -04:00
Mary Hipp
b41c18d35f disable dropzone if prompt expansion is disabled 2025-07-02 16:27:44 -04:00
Mary Hipp
8328081333 properly build batch for flux kontext api batches 2025-07-02 14:27:57 -04:00
Mary Hipp Rogers
07517cf2c2 remove pulsing animation (#8181)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-07-02 16:12:52 +00:00
Kent Keirsey
6b98ad9095 Only display one icon on disabled state 2025-07-02 10:54:46 -04:00
Kent Keirsey
0de3967e7e remove stray file 2025-07-02 10:54:46 -04:00
Kent Keirsey
1335377fb1 Fixes 2025-07-02 10:54:46 -04:00
Cursor Agent
adbcc191d9 Add reference image enable/disable functionality
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:54:46 -04:00
Kent Keirsey
11fc7af1c8 fix 2025-07-02 10:47:01 -04:00
Cursor Agent
6f12fd22b9 Optimize image API invalidation tags and simplify cache invalidation logic
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:47:01 -04:00
Cursor Agent
324b6e2af4 Update LoRA select placeholder text for better clarity
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:36:45 -04:00
Mary Hipp Rogers
038010a1ca feat(ui): prompt expansion (#8140)
* initializing prompt expansion and putting response in prompt box working for all methods

* properly disable UI and show loading state on prompt box when there is a pending prompt expansion item

* misc wrapup: disable apploying prompt templates, dont block textarea resize handle

* update progress to differentiate between prompt expansion and non

* cleanup

* lint

* more cleanup

* add image to background of loading state

* add allowPromptExpansion for front-end gating

* updated readiness text for needing to accept or discard

* fix tsc

* lint

* lint

* refactor(ui): prompt expansion logic

* tidy(ui): remove unnecessary changes

* revert(ui): unused arg on useImageUploadButton

* feat(ui): simplify prompt expansion state

* set pending for dragndrop and context menu

* add readiness logic for generate tab

* missing translation

* update error handling for prompt expansion

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-07-02 10:26:48 -04:00
Cursor Agent
2dd1bc54c9 Set brush tool automatically when sending image to canvas
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 10:09:22 -04:00
Kent Keirsey
8b69842678 lint 2025-07-02 09:46:32 -04:00
Kent Keirsey
9821f7c4fc Remove Canvas Session 2025-07-02 09:46:32 -04:00
Cursor Agent
2290ff4ad6 Fix: Focus viewer panel when switching to workflow view mode
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 09:42:21 -04:00
psychedelicious
8d82ad6d0b fix(api): return HTTP errors from session queue handlers 2025-07-02 08:42:06 -04:00
Mary Hipp
8ed9f652e8 lint 2025-07-02 08:25:42 -04:00
Mary Hipp
ee8ed344bd add modelRelationships and aboutModal to disable-able features 2025-07-02 08:25:42 -04:00
Mary Hipp
6d16cfdbe2 missing import 2025-07-02 08:23:13 -04:00
Mary Hipp
3ef2872dda handle flux-kontext models 2025-07-02 08:23:13 -04:00
Cursor Agent
b52ba149b4 Update regional guidance empty state translation key
Co-authored-by: kent <kent@invoke.ai>
2025-07-02 08:09:42 -04:00
Kent Keirsey
c6126c6875 Remove all references to New Sessions entirely. 2025-07-01 17:20:35 -04:00
psychedelicious
3f78ac9295 fix(ui): really do not load disabled tabs
Ensure disabled tabs are never mounted:
- Add didLoad flag to configSlice, default false
- Always merge in config - even it is is empty
- On first merge, set didLoad to true
- Until didLoad is true, mark _all_ tabs as disabled

This gets around an issue where tabs are all enabled for a brief moment
before the config is loaded.

A bit hacky but it works.
2025-07-01 10:52:28 -04:00
psychedelicious
79fea1ac40 chore: bump version to v6.0.0rc1 2025-07-02 00:14:13 +10:00
psychedelicious
6eade5781d feat(ui): remove mini metadata viewer 2025-07-01 23:37:31 +10:00
psychedelicious
3d8f865fb0 fix(ui): initial panel sizing 2025-07-01 23:37:31 +10:00
psychedelicious
dc9cd22d9d feat(ui): better naming for panel apis 2025-07-01 23:37:31 +10:00
psychedelicious
fe115ff8f9 fix(ui): models & queue tab styling 2025-07-01 23:37:31 +10:00
psychedelicious
1d35aad213 feat(ui): move more things over to pane lreg 2025-07-01 23:37:31 +10:00
psychedelicious
195d6ce893 refactor(ui): implement global panel registry, replace context-based panel API 2025-07-01 23:37:31 +10:00
psychedelicious
f13ced7ed4 fix(ui): rebase conflicts 2025-07-01 23:37:31 +10:00
psychedelicious
735fc276e5 tidy(ui): clean up focus/layout container 2025-07-01 23:37:31 +10:00
psychedelicious
cd3caf8c30 fix(ui): delete image hotkey 2025-07-01 23:37:31 +10:00
psychedelicious
e9012280ab fix(ui): upscaling tab boards/gallery collapse 2025-07-01 23:37:31 +10:00
psychedelicious
fa72a97794 refactor(ui): even more better focus handling 2025-07-01 23:37:31 +10:00
psychedelicious
e817631ba3 refactor(ui): focus handling for new layout system (WIP) 2025-07-01 23:37:31 +10:00
psychedelicious
d0619c033f feat(ui): add edit button to current image buttons 2025-07-01 16:29:20 +10:00
psychedelicious
6f4850f34f tidy(ui): launchpad tab with icon cleanup 2025-07-01 15:37:06 +10:00
Kent Keirsey
072cd9dee7 Styling Fixes 2025-07-01 15:37:06 +10:00
Cursor Agent
19b6dc1c1f Add custom Launchpad tab with dynamic icon based on active tab
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:37:06 +10:00
Cursor Agent
7566d0d6c6 Enhance workflow mode toggle with panel navigation and focus
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:27:21 +10:00
psychedelicious
f123888b46 feat(ui): tidy workflows tab launchapd 2025-07-01 15:24:08 +10:00
psychedelicious
aeab7d0cab feat(ui): tidy upscaling tab launchapd 2025-07-01 15:24:08 +10:00
Kent Keirsey
3f1b2c39ab Model Guide link update 2025-07-01 15:24:08 +10:00
Kent Keirsey
72e3a4b4be Fixes & Updates 2025-07-01 15:24:08 +10:00
Kent Keirsey
58e0f80138 Lint 2025-07-01 15:24:08 +10:00
Kent Keirsey
8b8e29d22d Fixes & Styling updates 2025-07-01 15:24:08 +10:00
Kent Keirsey
90201be670 lint 2025-07-01 15:24:08 +10:00
Kent Keirsey
46a5619100 Update all text to translations 2025-07-01 15:24:08 +10:00
Kent Keirsey
d608a7469e Upscale Workflow Launchpad updates & translation updates 2025-07-01 15:24:08 +10:00
Cursor Agent
a7d413d372 Refactor Upscaling and Workflows Launchpad Panels with enhanced UI
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 15:24:08 +10:00
Cursor Agent
f5c9e68dbf Fix division by zero in multi-diffusion pipeline with creativity values
Co-authored-by: kent <kent@invoke.ai>

Revert unnecessary validation changes in multi-diffusion

Fix in python instead of graphbuilder

tidy(ui): remove extraneous comment
2025-07-01 15:00:02 +10:00
psychedelicious
1ded459f03 refactor(ui): clean up related models impl for picker 2025-07-01 14:52:26 +10:00
Kent Keirsey
d9024dc230 linting fixes 2025-07-01 14:52:26 +10:00
Kent Keirsey
40528692c3 Update icon 2025-07-01 14:52:26 +10:00
Kent Keirsey
f35b05be43 simplifies Modelpicker wrapper 2025-07-01 14:52:26 +10:00
Kent Keirsey
29e87fc615 lints 2025-07-01 14:52:26 +10:00
Kent Keirsey
ca26b2718e Small Changes 2025-07-01 14:52:26 +10:00
Cursor Agent
5fa6c0b413 Enhance model picker with related models and improved filtering
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 14:52:26 +10:00
psychedelicious
c37c8c50cd tidy(ui): clean up psd export 2025-07-01 14:12:14 +10:00
Kent Keirsey
f0a4de245d Moved size constants to a reasonable spot... 2025-07-01 14:12:14 +10:00
Kent Keirsey
5db62f8643 Fix Type refs 2025-07-01 14:12:14 +10:00
Kent Keirsey
e1c478f94c Size Updates 2025-07-01 14:12:14 +10:00
Kent Keirsey
11fe3b6332 Comments 2025-07-01 14:12:14 +10:00
Kent Keirsey
e4aae1a591 prettier 2025-07-01 14:12:14 +10:00
Kent Keirsey
4d83d1c56d Linting 2025-07-01 14:12:14 +10:00
Kent Keirsey
34def323e8 Restyle & locate 2025-07-01 14:12:14 +10:00
Kent Keirsey
854956316b Fix export layers 2025-07-01 14:12:14 +10:00
Cursor Agent
91afe7884a Add PSD export functionality for canvas layers
Co-authored-by: kent <kent@invoke.ai>
2025-07-01 14:12:14 +10:00
psychedelicious
8417ee8a7b chore(ui): lint 2025-06-30 23:42:53 +10:00
psychedelicious
a035645ed3 refactor(ui): graph building respects selected tab 2025-06-30 23:42:53 +10:00
psychedelicious
e00ccba7d3 perf(ui): select only loading state for enqueueBatch mutation 2025-06-30 23:42:53 +10:00
psychedelicious
fb883d63aa refactor(ui): dedicated enqueue funcs for each tab 2025-06-30 23:42:53 +10:00
psychedelicious
b113c57fc4 refactor(ui): use redux-provided hooks for accessing store 2025-06-30 23:42:53 +10:00
psychedelicious
7636007349 fix(ui): useAppStore uses correct types 2025-06-30 23:42:53 +10:00
psychedelicious
fda86ae981 fix(app): incorrect node mappings when preparing collect nodes
The previous logic had a subtle python bug related the scope and nested
generators.

Python generators are lazily evaluated - the expressions are stored and
only evaluated when needed (e.g. calling next() or list() on them)

The old logic used a variable `s`, which was continually overwritten as
the generator expressions were created. As a result, the final mappings
all use the _final_ value for `s`.

Following the consequences of this down the line, we find that collect
nodes can end up with multiple edges from exactly one of their ancestor
nodes, instead of one edge from each ancestor. Notably, it's only the
source _node_id_ that is affected - the source _fields_ have the correct
values.

So the invalid edges will point to a real node and a real field, but the
field exists on a different node.

---

This can result in a number of cryptic problems - include an error about
incompatible field types:

```
InvalidEdgeError: Field types are incompatible
(31758fd5-14a8-4de7-a840-b73ec1a1b94f.value ->
3459c793-41a2-4d82-9204-7df2d6d099ba.item)
```

Here are the conditions that lead to this error:
- The collect node has at least two incoming connections.
- The two incoming connections come from nodes of different types.
- The nodes both output a value of the same type, but the name of the
output field differs between them.

---

This commit uses non-generator logic to build up the mappings, avoiding
the issue entirely. As a bonus, it is much easier to read.
2025-06-30 23:39:28 +10:00
psychedelicious
c02be4bdf4 refactor(app): lean on pydantic to get field types in edge validation logic
Previously we used python's own type introspection utilties to determine
input and output field types. We can use pydantic to get the field types
in a clearer, more direct way.

This improvement also exposed an awkward behaviour in this utility,
where it would return None when a field doesn't exist. I've added a
comment in the code describing the issue, but changing it would require
some significant changes and I don't want to risk breaking anything.
2025-06-30 23:39:28 +10:00
psychedelicious
ed7772d993 tests(app): add more tests for complex iterate/collect graph topologies 2025-06-30 23:39:28 +10:00
psychedelicious
baae998b5b tests(app): add failing test for collector edge case
squash

squash
2025-06-30 23:39:28 +10:00
DustyShoe
4077ffe595 Fixed a typo 2025-06-30 15:44:23 +10:00
psychedelicious
c1937b1379 chore: ruff 2025-06-30 12:56:51 +10:00
psychedelicious
5c66dfed8e fix(app): remove errant comment from prev impl 2025-06-30 12:56:51 +10:00
psychedelicious
126dcc96c0 feat(ui): clean up logging and comments in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
cb9c7b4a28 feat(ui): simplify runGraph logic for error handling 2025-06-30 12:56:51 +10:00
psychedelicious
e8c4f49a14 feat(ui): add .wrap() method to WrappedError 2025-06-30 12:56:51 +10:00
psychedelicious
30fffae637 feat(ui): runGraph settlement callbacks can simply return or throw 2025-06-30 12:56:51 +10:00
psychedelicious
4558a292b6 tests(ui): update runGraph tests for separate options 2025-06-30 12:56:51 +10:00
psychedelicious
825d17441c feat(ui): separate options arg for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
9b16504af9 docs(ui): improved runGraph docstring 2025-06-30 12:56:51 +10:00
psychedelicious
46c92fadff feat(ui): use system logger for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
c0467b82ac tests(ui): update runGraph tests for new error state 2025-06-30 12:56:51 +10:00
psychedelicious
6dafa67286 feat(ui): improved logging for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
eb406aa07e feat(ui): mark runGraph error properties public readonly 2025-06-30 12:56:51 +10:00
psychedelicious
d9422ffebd tests(ui): add testes for enriched cancel/timeout errors 2025-06-30 12:56:51 +10:00
psychedelicious
d5c033be4d feat(ui): enrich cancel/timeout errors when queue item cancel fails 2025-06-30 12:56:51 +10:00
psychedelicious
4662cd6f15 fix(ui): await cancelation of queue item before returning 2025-06-30 12:56:51 +10:00
psychedelicious
a740a22613 feat(ui): runGraph uses settle for all promise handling, better comments 2025-06-30 12:56:51 +10:00
psychedelicious
bf4016b4bc feat(ui): add getNodes method to Graph 2025-06-30 12:56:51 +10:00
psychedelicious
6fa7c8c2ee feat(ui): better exception naming and docstrings in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
ea40f582da tweak(ui): naming, code style 2025-06-30 12:56:51 +10:00
psychedelicious
01caf56251 feat(ui): clearer naming in WrappedError 2025-06-30 12:56:51 +10:00
psychedelicious
42d577e65a tests(ui): check for error instance instead of message 2025-06-30 12:56:51 +10:00
psychedelicious
38d80c9ce5 fix(ui): clear cleanupFunctions when finished calling them 2025-06-30 12:56:51 +10:00
psychedelicious
6acaa8abbf refactor(ui): use deferred promise as workaround to antipattern of async promise executor 2025-06-30 12:56:51 +10:00
psychedelicious
4b84e34599 refactor(ui): better race condition handling in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
bbd21b1eb2 feat(ui): rename isSettled -> isFinished 2025-06-30 12:56:51 +10:00
psychedelicious
4fa83a6228 feat(ui): better error handling for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
051876dcff feat(ui): ensure promise always marked as settled, better comments 2025-06-30 12:56:51 +10:00
psychedelicious
8dc6d0b5ae feat(ui): use runGraph in canvas 2025-06-30 12:56:51 +10:00
psychedelicious
40e9624954 tests(ui): edge cases in runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
ae27c83dc4 feat(ui): log when cancelation fails 2025-06-30 12:56:51 +10:00
psychedelicious
161059551b fix(ui): handle errors during cleanup 2025-06-30 12:56:51 +10:00
psychedelicious
c196f8a5d5 tests(ui): add tests for runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
2c6d22664e feat(ui): use DI to make runGraph testable 2025-06-30 12:56:51 +10:00
psychedelicious
b9ce5389ef fix(ui): clean up signal 2025-06-30 12:56:51 +10:00
psychedelicious
d1cbf56695 feat(ui): iterate on runGraph 2025-06-30 12:56:51 +10:00
psychedelicious
e379ac12c3 feat(ui): abstraction to make a graph await-able 2025-06-30 12:56:51 +10:00
psychedelicious
aa10373292 feat(ui): loosen typings for Result 2025-06-30 12:56:51 +10:00
psychedelicious
780f3692a0 chore(ui): typegen 2025-06-30 12:56:51 +10:00
psychedelicious
3604dcfdd1 feat(api): return list of enqueued item ids when enqueuing 2025-06-30 12:56:51 +10:00
Jonathan
2b1cffde5e typegen 2025-06-30 11:28:02 +10:00
Jonathan
83d642ed15 Update flux_denoise.py
Fixed version to 4.0.0
2025-06-30 11:28:02 +10:00
Jonathan
455c73235e Update flux_denoise.py
Updated version, removed WithBoard and WithMetadata
2025-06-30 11:28:02 +10:00
psychedelicious
8efef8da41 feat(ui): workflows styling tweaks 2025-06-30 11:17:29 +10:00
psychedelicious
060a9e57b9 fix(ui): prevent NaN from getting into konva internals 2025-06-30 10:43:11 +10:00
skunkworxdark
099d75ca1e use "\u2581" instead of the character itself for clarity 2025-06-30 10:40:31 +10:00
skunkworxdark
bbb5d68146 Update flux_text_encoder.py
Added tokenizer logging to flux
2025-06-30 10:40:31 +10:00
psychedelicious
9066dc1839 tidy(nodes): remove extraneous comments & add useful ones 2025-06-27 18:27:46 +10:00
psychedelicious
075345bffd feat(app): add flux kontext dev to starter modelss 2025-06-27 18:27:46 +10:00
psychedelicious
74d1239c87 chore(ui): typegen 2025-06-27 18:27:46 +10:00
Kent Keirsey
51e1c56636 ruff 2025-06-27 18:27:46 +10:00
Kent Keirsey
ca1df60e54 Explain the Magic 2025-06-27 18:27:46 +10:00
Cursor Agent
7549c1250d Add FLUX Kontext conditioning support for reference images
Co-authored-by: kent <kent@invoke.ai>

Fix Kontext sequence length handling in Flux denoise invocation

Co-authored-by: kent <kent@invoke.ai>

Fix Kontext step callback to handle combined token sequences

Co-authored-by: kent <kent@invoke.ai>

fix ruff

Fix Flux Kontext
2025-06-27 18:27:46 +10:00
psychedelicious
df8751b5a1 fix(ui): remove extraneous rect in stagingareamodule 2025-06-27 15:45:53 +10:00
psychedelicious
651b80b997 fix(ui): remove extraneous syncPlaceholderSize method and calls 2025-06-27 15:45:53 +10:00
psychedelicious
5d236ae4e7 fix(ui): canvas staging waiting for image placeholder sizing and layout 2025-06-27 15:45:53 +10:00
psychedelicious
e5dc606f5e fix(ui): get accurate theme tokens 2025-06-27 15:45:53 +10:00
Kent Keirsey
dc6b8e13bd prettier 2025-06-27 15:45:53 +10:00
Cursor Agent
c1b34e1f11 Standardize UI spacing and constants across canvas and image components
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 15:45:53 +10:00
Cursor Agent
89f1684072 Improve placeholder styling with badge and refined text positioning
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 15:45:53 +10:00
Kent Keirsey
14fbee17a3 Rule of 3rds Composition Guide (#8130)
* Add Rule of 4 composition guide to canvas settings and rendering

Co-authored-by: kent <kent@invoke.ai>

* Rename Rule of 4 Guide to Rule of Thirds in canvas composition guide

Co-authored-by: kent <kent@invoke.ai>

* Updates to comp guide and naming

* Fix reference

* Update translation keys and organize settings.

* revert to previous canvas manager for conflict

* Re-add composition guide.

* Fix lint

* prettier

* feat(ui): improve markup in canvas settings popover

* feat(ui): use brand colors for canvas rule of thirds guide

---------

Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-06-27 15:05:34 +10:00
psychedelicious
5dbc32e06e feat(ui): minor restyle of style preset list 2025-06-27 14:40:35 +10:00
psychedelicious
23baf61e51 fix(ui): remove extraneous slice migration for style presets 2025-06-27 14:40:35 +10:00
Kent Keirsey
5e55f6074b prettier 2025-06-27 14:40:35 +10:00
Kent Keirsey
f7c555e501 Change to Toggle Tooltip 2025-06-27 14:40:35 +10:00
Cursor Agent
6aa605e811 Add toggle for showing/hiding style preset prompt previews
Co-authored-by: kent <kent@invoke.ai>
2025-06-27 14:40:35 +10:00
psychedelicious
f51014e108 feat(ui): make launchpad button its own component 2025-06-27 14:37:30 +10:00
psychedelicious
9862ba9210 feat(ui): improved starter model buttons & tooltips 2025-06-27 14:37:30 +10:00
psychedelicious
920aea08cc tidy(ui): remove unused translation strings 2025-06-27 14:37:30 +10:00
psychedelicious
39e584297e feat(ui): fix missing translations 2025-06-27 14:37:30 +10:00
psychedelicious
62a14bb935 feat(ui): use enriched starter model metadata 2025-06-27 14:37:30 +10:00
psychedelicious
d7ae2cdf75 chore(ui): typegen 2025-06-27 14:37:30 +10:00
psychedelicious
6172c859ac feat(api): enrich starer model bundle metadata 2025-06-27 14:37:30 +10:00
psychedelicious
b26fb1f617 feat(ui): simplify markup for install models launchpad form 2025-06-27 14:37:30 +10:00
psychedelicious
05167dfd7a feat(ui): use existing design language for install model bundle buttons 2025-06-27 14:37:30 +10:00
psychedelicious
c090ea7387 feat(ui): use existing design language for install model launchpad buttons 2025-06-27 14:37:30 +10:00
psychedelicious
7ba6c67049 feat(ui): named install models tabs 2025-06-27 14:37:30 +10:00
psychedelicious
3de186061d chore(ui): lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
a716381733 Model Launchpad prettier 2025-06-27 14:37:30 +10:00
Kent Keirsey
fb5df06835 Updating toinclude translations and import fixes 2025-06-27 14:37:30 +10:00
Kent Keirsey
33c597c224 fix lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
19d882d038 Address comments 2025-06-27 14:37:30 +10:00
Kent Keirsey
ee4bc49bd4 Prettier. 2025-06-27 14:37:30 +10:00
Kent Keirsey
188cf37f48 fix lint 2025-06-27 14:37:30 +10:00
Kent Keirsey
15a0a7134c fix circ dependency 2025-06-27 14:37:30 +10:00
Kent Keirsey
22cea0de8b Remove scrap 2025-06-27 14:37:30 +10:00
Kent Keirsey
cd21816d12 Model Launchpad 2025-06-27 14:37:30 +10:00
psychedelicious
605b912ba4 fix(ui): remove noop hook 2025-06-27 11:37:47 +10:00
psychedelicious
52e31112f9 chore(ui): lint 2025-06-27 11:37:47 +10:00
Kent Keirsey
a4c9346cd7 lint 2025-06-27 11:37:47 +10:00
Kent Keirsey
a1647e4c6e Address comments 2025-06-27 11:37:47 +10:00
Kent Keirsey
8c9ca088a7 update tooltip 2025-06-27 11:37:47 +10:00
Cursor Agent
7a7a2e147c Add toggle for non-raster layers with hotkey and UI button 2025-06-27 11:37:47 +10:00
psychedelicious
adf4cc750a fix(ui): Fix LoRA picker to default to current base model architecture (#8135)
Enhance LoRA picker to default filter by current base model architecture

## Summary
Fixes new LoRA picker to auto select the architecture filter for the
current model group

## Related Issues / Discussions
N/A

## QA Instructions

Open LoRA menu with any model group selected. The right models should be
filtered.

## Merge Plan
Merge when ready.

## Checklist

- [X] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-06-27 11:21:39 +10:00
psychedelicious
9f1ea9d1c7 fix(ui): use existing GroupStatusMap type 2025-06-27 11:19:24 +10:00
Cursor Agent
571d286506 Enhance LoRA picker to default to current base model architecture
Co-authored-by: kent <kent@invoke.ai>

Enhance LoRA picker to default filter by current base model architecture

Co-authored-by: kent <kent@invoke.ai>
2025-06-26 20:43:43 -04:00
Mary Hipp
1320a2c5f8 add option to override text for no options available 2025-06-26 18:09:57 -04:00
Mary Hipp
26a9b3131d convert LoRA picker to use new model picker component 2025-06-26 18:09:57 -04:00
psychedelicious
d48140b35d fix(ui): regional guidance ref image not selecting 2025-06-26 10:05:25 -04:00
psychedelicious
9757bb0325 refactor(ui): canvas flow (#8069) 2025-06-26 21:24:17 +10:00
psychedelicious
38ccd8e09c chore: bump version to v6.0.0a10 2025-06-26 21:06:24 +10:00
psychedelicious
7759b166a9 fix(ui): dnd on images
Need to use callback refs else chakra's image fallback breaks the ref
2025-06-26 20:53:50 +10:00
psychedelicious
9fc51c7a6e fix(ui): optimistic updates when sorting by oldest first 2025-06-26 20:24:52 +10:00
psychedelicious
62fa4f42f5 fix(ui): more viewer progress nonsense 2025-06-26 20:17:47 +10:00
psychedelicious
418ad0de38 fix(ui): rebase conflicts 2025-06-26 20:06:26 +10:00
psychedelicious
f4a411326e chore: bump version to v6.0.0a9 2025-06-26 20:00:41 +10:00
psychedelicious
6358f39ebb chore(ui): lint 2025-06-26 20:00:40 +10:00
psychedelicious
ea8da0bfbf chore: ruff 2025-06-26 20:00:40 +10:00
psychedelicious
5385282325 feat(ui): use consistent gallery scrollseek placeholder component 2025-06-26 20:00:40 +10:00
psychedelicious
0bf84ab803 feat(ui): gallery scrollbars autohide 2025-06-26 20:00:40 +10:00
psychedelicious
82f31f2258 feat(ui): tweak canvas entity group list button layout 2025-06-26 20:00:40 +10:00
psychedelicious
966dd8857d feat(ui): boards and gallery panel collapse 2025-06-26 20:00:40 +10:00
psychedelicious
1c778bd719 fix(ui): some progress image jank 2025-06-26 20:00:40 +10:00
psychedelicious
394a14cf61 fix(ui): progress in viewer bg color 2025-06-26 20:00:40 +10:00
psychedelicious
0e843823d1 fix(ui): ensure image selected on first load 2025-06-26 20:00:40 +10:00
psychedelicious
29462e62d2 fix(ui): handle selecting images/boards on invocation complete 2025-06-26 20:00:40 +10:00
psychedelicious
175c0147f8 fix(ui): auto image selection on invocation complete, board change 2025-06-26 20:00:40 +10:00
psychedelicious
df6e67c982 fix(ui): queue count badge showing up multiple times 2025-06-26 20:00:40 +10:00
psychedelicious
4612f0ac50 fix(ui): tab bar shrinkage 2025-06-26 20:00:39 +10:00
psychedelicious
386a932f2a feat(ui): clean up GalleryImage 2025-06-26 20:00:39 +10:00
psychedelicious
32438532b0 fix(ui): prevent duplicate initial galler yfetches 2025-06-26 20:00:39 +10:00
psychedelicious
ab5cb2c264 refactor: optimistic gallery updates 2025-06-26 20:00:39 +10:00
psychedelicious
504daa0ae5 Revert "build(ui): adopt sonda over rollup-plugin-visualizer to examine bundle"
This reverts commit e0cf2a8046.
2025-06-26 20:00:39 +10:00
psychedelicious
14f7c98e8a chore(ui): bump package version 2025-06-26 20:00:39 +10:00
psychedelicious
ab39305223 chore(ui): upgrade zod to v4 2025-06-26 20:00:39 +10:00
psychedelicious
7948bca864 build(ui): adopt sonda over rollup-plugin-visualizer to examine bundle
Requires a change to tsconfig module/moduleResolution settings. We were
on old legacy values anyways so good to update it.
2025-06-26 20:00:39 +10:00
psychedelicious
1a39d22b6c feat(ui): migrate from lodash-es to es-toolkit 2025-06-26 20:00:39 +10:00
psychedelicious
9424271d12 revert(ui): undo accidental downgrade of rtk 2025-06-26 20:00:39 +10:00
psychedelicious
b5acc204a8 feat(ui): migrate from lodash.isEqual to objectEquals 2025-06-26 20:00:39 +10:00
psychedelicious
7aefa8f36b fix(ui): invalidate image name list cache on mutation 2025-06-26 20:00:38 +10:00
psychedelicious
242da9e888 fix(ui): hide ref panel when last one is deleted 2025-06-26 20:00:38 +10:00
psychedelicious
1aedc26041 feat(ui): handle ref image deletion autoswitch 2025-06-26 20:00:38 +10:00
psychedelicious
2c7fa90892 chore: bump version to v6.0.0a8 2025-06-26 20:00:38 +10:00
psychedelicious
6c8cf99ad2 feat(ui): revised ref image panel 2025-06-26 20:00:38 +10:00
psychedelicious
a92ba2542c feat(ui): switch to canvas tab when using launchpad 2025-06-26 20:00:38 +10:00
psychedelicious
2367b9f945 chore: bump version to v6.0.0a7 2025-06-26 20:00:38 +10:00
psychedelicious
a928ed0204 chore(ui): dpdm 2025-06-26 20:00:38 +10:00
psychedelicious
e164451dfe chore: ruff 2025-06-26 20:00:38 +10:00
psychedelicious
d74d079356 fix(ui): restore gallery selection count tag 2025-06-26 20:00:38 +10:00
psychedelicious
0eb4360c01 fix(ui): debounce gallery min width value 2025-06-26 20:00:38 +10:00
psychedelicious
937c03f2ec chore(ui): disable debug logger 2025-06-26 20:00:38 +10:00
psychedelicious
f7b249252d fix(ui): issues with progress viewer 2025-06-26 20:00:37 +10:00
psychedelicious
b2b42be51c refactor: remove unused methods/routes, fix some gallery invalidation issues 2025-06-26 20:00:37 +10:00
psychedelicious
98368b0665 feat(ui): restore gallery hotkeys (except delete) 2025-06-26 20:00:37 +10:00
psychedelicious
b5eb3d9798 fix(ui): gallery updates on image completion 2025-06-26 20:00:37 +10:00
psychedelicious
1218f49e20 fix(ui): remove context from DOM props 2025-06-26 20:00:37 +10:00
psychedelicious
89c609fd61 feat(ui): calculate gridTemplateColumns in selector 2025-06-26 20:00:37 +10:00
psychedelicious
b204fb6a91 chore: ruff 2025-06-26 20:00:37 +10:00
psychedelicious
6e3e316416 chore: bump version to v6.0.0a6 2025-06-26 20:00:37 +10:00
psychedelicious
bf5fc9512d fix(ui): minor jank when siwtching images rapidly 2025-06-26 20:00:37 +10:00
psychedelicious
7080889ed4 feat(ui): scrollbar styles 2025-06-26 20:00:37 +10:00
psychedelicious
adea983bfc refactor: gallery scroll (improved impl) 2025-06-26 20:00:37 +10:00
psychedelicious
f68d8ed36a refactor: gallery scroll (improved impl) 2025-06-26 20:00:37 +10:00
psychedelicious
d45197e0af refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
434d8a2b12 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
f55c593705 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
8327d86774 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
c8254710e6 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
0a8f647260 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
32a5e9652a refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
87909a06a8 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
2c8ce6f2f4 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
bee4cf41b4 refactor: gallery scroll 2025-06-26 20:00:36 +10:00
psychedelicious
049a8d8144 fix(ui): fix metadata toggle stuck disabled 2025-06-26 20:00:36 +10:00
psychedelicious
ac81ec41c3 chore: bump version to v6.0.0a5 2025-06-26 20:00:35 +10:00
psychedelicious
a294e8e0fd chore(ui): lint 2025-06-26 20:00:35 +10:00
psychedelicious
4665f0df40 refactor(ui): use image names for selection instead of dtos
Update the frontend to incorporate the previous changes to how image
selection and general image identification is handled in the frontend.
2025-06-26 20:00:35 +10:00
psychedelicious
70382294f5 chore(ui): typegen 2025-06-26 20:00:35 +10:00
psychedelicious
4028cadfaf feat(api): return more data when doing image/board mutations
When we delete images, boards, or do any other board mutation, we need
to invalidate numerous query caches and related internal frontend state.
This gets complicated very quickly.

We can drastically reduce the complexity by having the backend return
some more information when we make these mutations.

For example, when deleting a list of images by name, we can return a
list of deleted image name and affected boards. The frontend can use
this information to determine which queries to invalidate with far less
tedium.

This will also enable the more efficient storage of images (e.g. in the
gallery selection). Previously, we had to store the entire image DTO
object, else we wouldn't be able to figure out which queries to
invalidate. But now that the backend tells us exactly what images/boards
have changed, we can just store image names in frontend state. This
amounts to a substantial improvement in DX and reduction in frontend
complexity.
2025-06-26 20:00:35 +10:00
psychedelicious
d23cdfd0ad feat(ui): viewer integrates progress (wip) 2025-06-26 20:00:35 +10:00
psychedelicious
f0ba693922 feat(ui): switch to viewer/canvas on invoke 2025-06-26 20:00:35 +10:00
psychedelicious
214005d795 feat(ui): generation progress tab improvements 2025-06-26 20:00:35 +10:00
psychedelicious
34aa131115 feat(ui): show last progress message & placeholder in generation progress panel 2025-06-26 20:00:35 +10:00
psychedelicious
5d8061bea9 fix(ui): staging area does not show placeholder on first render 2025-06-26 20:00:35 +10:00
psychedelicious
36ec1015d6 feat(ui): double-click staging area image to disable auto-switch 2025-06-26 20:00:35 +10:00
psychedelicious
7208373576 fix(ui): reset last started item id when doing autoswitch 2025-06-26 20:00:35 +10:00
psychedelicious
e10afe3026 feat(ui): re-implement multiple auto-switch modes 2025-06-26 20:00:34 +10:00
psychedelicious
399d6e7bce chore: bump version to v6.0.0a4 2025-06-26 20:00:34 +10:00
psychedelicious
8d0fe5522b feat(ui): no model error state for ref images 2025-06-26 20:00:34 +10:00
psychedelicious
81341deb46 feat(ui): mini metadata viewer 2025-06-26 20:00:34 +10:00
psychedelicious
a30933b09c feat(ui): clean up image view components & code 2025-06-26 20:00:34 +10:00
psychedelicious
3264188ffd fix(ui): launchpad layouts 2025-06-26 20:00:34 +10:00
psychedelicious
3984b341e1 fix(ui): don't use layers when generating on generate tab 2025-06-26 20:00:34 +10:00
psychedelicious
041023df53 feat(ui): tweak vertical tab bar layout 2025-06-26 20:00:34 +10:00
psychedelicious
b06f76cdb6 fix(ui): unable to resize prompt box bc negative prompt button is over
the handle
2025-06-26 20:00:34 +10:00
psychedelicious
852badc90b feat(ui): standardize auto layout structure 2025-06-26 20:00:34 +10:00
psychedelicious
01953cf057 feat(ui): tweak dockview tabs 2025-06-26 20:00:34 +10:00
psychedelicious
241844bdef refactor(ui): rip out image viewer as modal 2025-06-26 20:00:34 +10:00
psychedelicious
33a28ad4f9 chore: bump version to v6.0.0a3 2025-06-26 20:00:34 +10:00
psychedelicious
7c4550cbd5 chore(ui): lint 2025-06-26 20:00:33 +10:00
psychedelicious
553d1a6ac6 feat(ui): restore all panel hotkeys 2025-06-26 20:00:33 +10:00
psychedelicious
f4794e409b fix(ui): generate tab hotkey 2025-06-26 20:00:33 +10:00
psychedelicious
df87800d61 feat(ui): restore floating panel buttons 2025-06-26 20:00:33 +10:00
psychedelicious
16993cd216 feat(ui): get all tabs working w/ new layout 2025-06-26 20:00:33 +10:00
psychedelicious
7f222ffb9d fix(ui): unnecessary dependency on tab selection in
useCanvasDeleteLayerHotkey
2025-06-26 20:00:33 +10:00
psychedelicious
e0ed56ff8d fix(ui): inverted logic for resume queue button 2025-06-26 20:00:33 +10:00
psychedelicious
e7e1142c77 feat(ui): get layouts working 2025-06-26 20:00:33 +10:00
psychedelicious
fcaeba290e feat(ui): canvas launchpad 2025-06-26 20:00:33 +10:00
psychedelicious
6eecdca56c wip 2025-06-26 20:00:33 +10:00
psychedelicious
7f44da4902 fix(ui): wonky stage sizing on first visibility 2025-06-26 20:00:33 +10:00
psychedelicious
abaa33e22c wip 2025-06-26 20:00:32 +10:00
psychedelicious
d5c238e7c2 feat(ui): port UI slice to zod 2025-06-26 20:00:32 +10:00
psychedelicious
18775e8b67 fix(ui): only show weight for IP adapters 2025-06-26 20:00:32 +10:00
psychedelicious
903776bfbc feat(ui): represent IP adapter weight in ref image thumbnail 2025-06-26 20:00:32 +10:00
psychedelicious
a5baf0c102 fix(ui): overflow on ref image model 2025-06-26 20:00:32 +10:00
psychedelicious
a7e45731ec feat(ui): ref images feel more like buttons 2025-06-26 20:00:32 +10:00
psychedelicious
32aa3e6d48 feat(ui): switch tab on drag over tab button 2025-06-26 20:00:32 +10:00
psychedelicious
2f9ea91896 feat(ui): tweak splash screen layout 2025-06-26 20:00:32 +10:00
psychedelicious
5ac5115269 chore(ui): lint 2025-06-26 20:00:32 +10:00
psychedelicious
161624c722 feat(ui): rework simple session initial state 2025-06-26 20:00:32 +10:00
psychedelicious
c31cb0b106 fix(ui): invoke button tooltip on generate tab 2025-06-26 20:00:32 +10:00
psychedelicious
893f7a8744 fix(ui): progress image fixes 2025-06-26 20:00:32 +10:00
psychedelicious
2e0824a799 feat(ui): make autoswitch on/off
When the invocation cache is used, we might skip all progress images. This can prevent auto-switch-on-first-progress from working, as we don't get any of those events.

It's much easier to only support auto-switch on complete.
2025-06-26 20:00:31 +10:00
psychedelicious
ed05bf2df3 feat(ui): refine ref images UI 2025-06-26 20:00:31 +10:00
psychedelicious
0f1a69a0c3 feat(ui): toggleable negative prompt 2025-06-26 20:00:31 +10:00
psychedelicious
450a0bf142 fix(ui): remove old isSelected from refImageAdded call 2025-06-26 19:59:05 +10:00
psychedelicious
a28c15d545 chore: bump version to v6.0.0a2 2025-06-26 19:59:05 +10:00
psychedelicious
1b1e1983d9 fix(ui): update queue item preview images on init of queue items context 2025-06-26 19:59:05 +10:00
psychedelicious
d08e2fbd82 fix(ui): hack to close chakra tooltips on drag 2025-06-26 19:59:04 +10:00
psychedelicious
45b1ef6231 tweak(ui): ref image header 2025-06-26 19:59:04 +10:00
psychedelicious
3bb446c08f experiment(ui): add generate tab 2025-06-26 19:59:04 +10:00
psychedelicious
8d1ab0a2e5 refactor(ui): ref images (WIP) 2025-06-26 19:59:04 +10:00
psychedelicious
48e2e7e4a1 refactor(ui): ref images (WIP) 2025-06-26 19:59:04 +10:00
psychedelicious
5a2f5c105d refactor(ui): refImage.ipAdapter -> refImage.config 2025-06-26 19:57:15 +10:00
psychedelicious
aa93e95a94 feat(ui): split out ref images into own slice (WIP) 2025-06-26 19:55:21 +10:00
psychedelicious
a5e5cbd7c3 feat(ui): simple session initial state cards are buttons 2025-06-26 19:51:37 +10:00
psychedelicious
baa9141be3 chore(ui): dpdm 2025-06-26 19:51:37 +10:00
psychedelicious
c7ed351bab refactor(ui): async modal pattern; use for deleting images
This was needed for a canvas flow change which is currently paused, but the new API is much much nicer to use, so I am keeping it.
2025-06-26 19:51:37 +10:00
psychedelicious
8c17bde4ea fix(ui): use imageDTO in staging area 2025-06-26 19:51:37 +10:00
psychedelicious
ba082ccc2f fix(ui): wait until last queue item deleted before flagging canvas session finished 2025-06-26 19:51:37 +10:00
psychedelicious
01784fb3bf feat(ui): store output image DTO in session context instead of just the name 2025-06-26 19:51:37 +10:00
psychedelicious
a71a0e143c feat(ui): add AppGetState type 2025-06-26 19:51:37 +10:00
psychedelicious
94afc13813 feat(ui): close viewer on escape 2025-06-26 19:51:37 +10:00
psychedelicious
d640a9001b fix(ui): switch only on first progress image 2025-06-26 19:51:37 +10:00
psychedelicious
711fe91b24 feat(ui): add on first progress autoswitch mode 2025-06-26 19:51:37 +10:00
psychedelicious
2f26657c17 feat(ui): move canvas-specific staging subscriptions to CanvasStagingAreaModule 2025-06-26 19:51:37 +10:00
psychedelicious
6754fde935 chore(ui): lint 2025-06-26 19:51:37 +10:00
psychedelicious
ac206f4767 feat(ui): make main panel styling and title consistent 2025-06-26 19:51:37 +10:00
psychedelicious
c316f07fb2 feat(ui): add startover button to canvas toolbar 2025-06-26 19:51:36 +10:00
psychedelicious
e81dde0933 feat(ui): fiddle w/ staging area header 2025-06-26 19:51:36 +10:00
psychedelicious
9f392c8c3c feat(ui): remove technical progress message from full preview 2025-06-26 19:51:36 +10:00
psychedelicious
2531366386 feat(ui): simple session initial state 2025-06-26 19:51:36 +10:00
psychedelicious
9df69496e4 feat(ui): remove vary and edit as control buttons 2025-06-26 19:51:36 +10:00
psychedelicious
2ddcde13ff refactor(ui): migrate from canceling queue items to deleteing, make queue hook APIs consistent 2025-06-26 19:51:36 +10:00
psychedelicious
cc5083599d fix(ui): mini preview bg color 2025-06-26 19:51:36 +10:00
psychedelicious
2431060a7e fix(ui): hide layers when not on canvas tab 2025-06-26 19:51:36 +10:00
psychedelicious
592c842632 build(ui): temporarily ignore all knip issues 2025-06-26 19:51:36 +10:00
psychedelicious
bc3550f238 feat(ui): finish generation when discarding last item 2025-06-26 19:51:36 +10:00
psychedelicious
23511d68db feat(ui): when discarding last item, select new last instead of first 2025-06-26 19:51:36 +10:00
psychedelicious
cd0668dd0b feat(ui): tweak staging image display 2025-06-26 19:51:35 +10:00
psychedelicious
bf5ed61b84 feat(ui): add staging area toolbar to simple session 2025-06-26 19:51:35 +10:00
psychedelicious
3038a797a6 fix(ui): ensure canvas tool modules are destroyed 2025-06-26 19:51:35 +10:00
psychedelicious
9bbc31b2d9 fix(ui): reset layers when changing session type 2025-06-26 19:51:35 +10:00
psychedelicious
526e6335a1 feat(ui): improved staging placeholders 2025-06-26 19:51:35 +10:00
psychedelicious
1412c079ad feat(ui): improved staging placeholders 2025-06-26 19:51:35 +10:00
psychedelicious
6570c0c3b9 feat(ui): more staging fixes 2025-06-26 19:51:35 +10:00
psychedelicious
3a08ea799a feat(ui): update canvas session state handling for new staging strat 2025-06-26 19:51:35 +10:00
psychedelicious
e3fc244126 chore(ui): lint (partial cleanup) 2025-06-26 19:51:35 +10:00
psychedelicious
56938ca0a1 feat(ui): rough out canvas staging area 2025-06-26 19:51:34 +10:00
psychedelicious
5d80642ea4 feat(app): support deleting queue items by id or destination 2025-06-26 19:50:37 +10:00
psychedelicious
da4b084a8b feat(ui): tweak canvas scroll to zoom feel 2025-06-26 19:50:37 +10:00
psychedelicious
86e1a37a00 docs(ui): add comment about auto-switch not being quite right yet 2025-06-26 19:50:37 +10:00
psychedelicious
ea34690709 feat: canvas flow rework (wip) 2025-06-26 19:50:37 +10:00
psychedelicious
c8df7cd2c0 feat(ui): prevent flicker of image action buttons 2025-06-26 19:50:37 +10:00
psychedelicious
628367b97b feat(ui): move socket events handling into ctx component 2025-06-26 19:50:37 +10:00
psychedelicious
002816653e feat(ui): modularize all staging area logic so it can be shared w/ canvas more easily 2025-06-26 19:50:37 +10:00
psychedelicious
b05de8634d perf(ui): queue actions menu is lazy 2025-06-26 19:50:36 +10:00
psychedelicious
5088e700ad fix(ui): cursor on staging area preview image 2025-06-26 19:50:36 +10:00
psychedelicious
d2155e98ef feat(ui): remove clear queue ui components 2025-06-26 19:50:36 +10:00
psychedelicious
7ec511da01 feat(app): do not prune queue on startup
With the new canvas design, this will result in loss of staging area images.
2025-06-26 19:50:36 +10:00
psychedelicious
985cd8272b tidy(ui): component organization 2025-06-26 19:50:36 +10:00
psychedelicious
cd136194ad fix(ui): prevent drag of progress images 2025-06-26 19:50:36 +10:00
psychedelicious
2e2ac71278 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
db4220fb20 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
84f70942e7 chore(ui): typegen 2025-06-26 19:50:36 +10:00
psychedelicious
0af20b03e5 feat(api): remove status from list all queue items query 2025-06-26 19:50:36 +10:00
psychedelicious
e16414b452 tidy(ui): app layout components 2025-06-26 19:50:36 +10:00
psychedelicious
5dbc2a74a2 feat: canvas flow rework (wip) 2025-06-26 19:50:36 +10:00
psychedelicious
ad736bc190 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
0e9b71801a feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
e80f0b2b43 fix(ui): unstable selector results in lora drop down 2025-06-26 19:50:35 +10:00
psychedelicious
c9042e52d4 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
8a78e37634 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
5e93f58530 wip progress events 2025-06-26 19:50:35 +10:00
psychedelicious
a3851e0b08 refactor(ui): canvas flow (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
eb45a457e9 fix(ui): ref goes undefined in GalleryImage
This appears to be a bug in Chakra UI v2 - use of a fallback component makes the ref passed to an image end up undefined. Had to remove the skeleton loader fallback component.
2025-06-26 19:50:35 +10:00
psychedelicious
1446d3490b fix(ui): merge refs when forwardingin DndImage 2025-06-26 19:50:35 +10:00
psychedelicious
579318af70 fix(ui): remove unused sessionId field from type 2025-06-26 19:50:35 +10:00
psychedelicious
57bfae6774 fix(ui): ensure all args are passed to handler when creating new canvas from image 2025-06-26 19:50:35 +10:00
psychedelicious
2a92524546 feat(ui): bookmark new inpaint masks 2025-06-26 19:50:34 +10:00
psychedelicious
7a5fa25b48 feat(ui): support bookmarking an entity when adding it 2025-06-26 19:50:34 +10:00
psychedelicious
b3f3020793 fix(ui): ensure images are added to gallery in simple sessions 2025-06-26 19:50:34 +10:00
psychedelicious
650809e50d feat(ui): images always added to gallery in simple session 2025-06-26 19:50:34 +10:00
psychedelicious
7308428f32 wip 2025-06-26 19:50:34 +10:00
psychedelicious
4dc3f1bcee refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
faeb5f0c3b refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
d985dfe821 refactor(ui): canvas flow events (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
ce5ae83689 refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
c0428ee7ef refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
aa3b2106d4 refactor(ui): canvas flow (wip) 2025-06-26 19:50:34 +10:00
psychedelicious
cf2d67ef3d refactor(ui): canvas flow (wip) 2025-06-26 19:50:33 +10:00
psychedelicious
c4d1e78f59 fix(ui): circular import issue 2025-06-26 19:50:33 +10:00
psychedelicious
02e4a3aa82 refactor(ui): params state zodification 2025-06-26 19:50:33 +10:00
psychedelicious
a0b0c30be9 refactor(ui): move params state to big file of canvas zod stuff 2025-06-26 19:50:33 +10:00
psychedelicious
5c4cbc7fa2 refactor(ui): zod-ify params slice state 2025-06-26 19:50:33 +10:00
psychedelicious
5f2f12f803 refactor(ui): org state in prep for new flow 2025-06-26 19:50:33 +10:00
psychedelicious
c9cd0a87be refactor(ui): image viewer & comparison convolutedness 2025-06-26 19:49:01 +10:00
psychedelicious
668c475271 feat(ui): default canvas tool is move 2025-06-26 19:49:01 +10:00
psychedelicious
341910739e chore(ui): bump @reduxjs/toolkit to latest 2025-06-26 19:49:01 +10:00
psychedelicious
53a3dc52bc feat(ui): viewer is a modal (wip) 2025-06-26 19:49:01 +10:00
Billy
23b0a4a7f4 Update uv lock 2025-06-26 19:47:06 +10:00
Billy
6afbf31750 Ruff formatting 2025-06-26 19:47:06 +10:00
Billy
3cd4306eec Update import path 2025-06-26 19:47:06 +10:00
Billy
827191d2fc Use definitions in config 2025-06-26 19:47:06 +10:00
Billy
aaa34f717d OMI files 2025-06-26 19:47:06 +10:00
Billy
fe83c2f81f Add OMI vendor files 2025-06-26 19:47:06 +10:00
Billy
17dead3309 Remove OMI from dependencies 2025-06-26 19:47:06 +10:00
Mary Hipp Rogers
979bd33dfb fix 1:1 ratio (#8127)
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 19:39:21 -04:00
psychedelicious
5128f072a8 feat: add user_label to FieldIdentifier (#8126)
Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2025-06-25 13:44:57 +00:00
Mary Hipp Rogers
2ad5b5cc2e Flux Kontext UI support (#8111)
* add support for flux-kontext models in nodes

* flux kontext in canvas

* add aspect ratio support

* lint

* restore aspect ratio logic

* more linting

* typegen

* fix typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 09:39:57 -04:00
jazzhaiku
24d8a96071 Omi (#8120)
## Summary

Support for
[OMI](https://github.com/Open-Model-Initiative/OMI-Model-Standards/tree/main)
LoRAs that use Flux and SDXL as the base model. Automated tests for
config classification. Manually tested (visual inspection) for LoRA
loading and execution.



## Related Issues / Discussions

<!--WHEN APPLICABLE: List any related issues or discussions on github or
discord. If this PR closes an issue, please use the "Closes #1234"
format, so that the issue will be automatically closed when the PR
merges.-->

## QA Instructions

<!--WHEN APPLICABLE: Describe how you have tested the changes in this
PR. Provide enough detail that a reviewer can reproduce your tests.-->

## Merge Plan

<!--WHEN APPLICABLE: Large PRs, or PRs that touch sensitive things like
DB schemas, may need some care when merging. For example, a careful
rebase by the change author, timing to not interfere with a pending
release, or a message to contributors on discord after merging.-->

## Checklist

- [ ] _The PR has a short but descriptive title, suitable for a
changelog_
- [ ] _Tests added / updated (if applicable)_
- [ ] _Documentation added / updated (if applicable)_
- [ ] _Updated `What's New` copy (if doing a release after this PR)_
2025-06-24 14:53:57 +10:00
Billy
f1e4665aa2 Revert 2025-06-24 08:53:39 +10:00
Billy
1cbfea3a21 Update uv lock 2025-06-24 08:45:57 +10:00
Billy
981e8e217d Regenerate uv lock 2025-06-24 07:42:44 +10:00
Billy
e7ca30f406 Updated schema 2025-06-24 07:38:51 +10:00
Billy
2832ca300f Formatting 2025-06-24 07:26:42 +10:00
Billy
de5f413440 Filter bundle_emb for all LoRAs 2025-06-24 07:12:11 +10:00
Billy
fbc14c61ea Remove bundle_emb filter 2025-06-24 06:53:33 +10:00
Kent Keirsey
77e029a49f Ignore bundled embeddings in conversion 2025-06-23 10:05:55 -04:00
Kent Keirsey
61b049ad35 Fix to config 2025-06-23 09:52:47 -04:00
Billy
b88f4a24d0 Frontend types 2025-06-23 14:01:41 +10:00
Billy
8c632f0d32 Remove files 2025-06-23 13:54:21 +10:00
Billy
150a876c73 Formatting 2025-06-23 13:52:19 +10:00
Billy
62c3b01e4f Merge branch 'main' into OMI 2025-06-23 13:52:07 +10:00
Billy
e1157f343b Support for Flux and SDXL 2025-06-23 13:51:16 +10:00
Kent Keirsey
6a78739076 Change save button to Invoke Blue 2025-06-20 15:07:40 +10:00
psychedelicious
0794eb43e7 fix(nodes): ensure each invocation overrides _original_model_fields with own field data 2025-06-20 15:03:55 +10:00
Billy
4ee54eac1d Another attempt 2025-06-20 14:10:06 +10:00
Billy
5851c46c81 Hard code source 2025-06-19 11:05:43 +10:00
Billy
a296559e79 Ignore 2025-06-19 11:02:18 +10:00
Billy
1fd83f5e68 Import 2025-06-19 11:01:50 +10:00
Billy
637487c573 Convert FROM OMI to diffusers 2025-06-19 11:00:27 +10:00
Billy
4e98e7d0a2 Typo: dot should be comma 2025-06-19 10:47:24 +10:00
Billy
12f65d800d Formatting 2025-06-19 09:40:58 +10:00
Billy
45d09f8f51 Use OMI conversion utils 2025-06-19 09:40:49 +10:00
Billy
2876c72fa9 Schema update 2025-06-18 10:54:01 +10:00
Billy
9b4fdb493e Loader 2025-06-18 10:53:54 +10:00
Billy
47e21d6e04 Formatting 2025-06-17 13:56:38 +10:00
Billy
84ab4a1c30 Convert from OMI to default LoRA state dict 2025-06-17 13:56:22 +10:00
Billy
85c4304efd Add OMI LoRA config 2025-06-17 13:34:03 +10:00
Billy
8f152f162b Add OMI to model format taxonomy 2025-06-17 13:33:40 +10:00
Billy
63b49f045a Add stripped models for testing OMI 2025-06-17 13:33:23 +10:00
910 changed files with 46254 additions and 24555 deletions

View File

@@ -21,6 +21,20 @@ body:
- label: I have searched the existing issues
required: true
- type: dropdown
id: install_method
attributes:
label: Install method
description: How did you install Invoke?
multiple: false
options:
- "Invoke's Launcher"
- 'Stability Matrix'
- 'Pinokio'
- 'Manual'
validations:
required: true
- type: markdown
attributes:
value: __Describe your environment__
@@ -76,8 +90,8 @@ body:
attributes:
label: Version number
description: |
The version of Invoke you have installed. If it is not the latest version, please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. 3.6.1
The version of Invoke you have installed. If it is not the [latest version](https://github.com/invoke-ai/InvokeAI/releases/latest), please update and try again to confirm the issue still exists. If you are testing main, please include the commit hash instead.
placeholder: ex. v6.0.2
validations:
required: true
@@ -85,17 +99,17 @@ body:
id: browser-version
attributes:
label: Browser
description: Your web browser and version.
description: Your web browser and version, if you do not use the Launcher's provided GUI.
placeholder: ex. Firefox 123.0b3
validations:
required: true
required: false
- type: textarea
id: python-deps
attributes:
label: Python dependencies
label: System Information
description: |
If the problem occurred during image generation, click the gear icon at the bottom left corner, click "About", click the copy button and then paste here.
Click the gear icon at the bottom left corner, then click "About". Click the copy button and then paste here.
validations:
required: false

View File

@@ -3,15 +3,15 @@ description: Installs frontend dependencies with pnpm, with caching
runs:
using: 'composite'
steps:
- name: setup node 18
- name: setup node 20
uses: actions/setup-node@v4
with:
node-version: '18'
node-version: '20'
- name: setup pnpm
uses: pnpm/action-setup@v4
with:
version: 8.15.6
version: 10
run_install: false
- name: get pnpm store directory

3
.gitignore vendored
View File

@@ -180,6 +180,7 @@ cython_debug/
# Scratch folder
.scratch/
.vscode/
.zed/
# source installer files
installer/*zip
@@ -189,3 +190,5 @@ installer/update.bat
installer/update.sh
installer/InvokeAI-Installer/
.aider*
.claude/

View File

@@ -5,8 +5,7 @@
FROM docker.io/node:22-slim AS web-builder
ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable
RUN corepack use pnpm@10.x && corepack enable
WORKDIR /build
COPY invokeai/frontend/web/ ./

View File

@@ -41,7 +41,7 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
With the modifications made, the install command should look something like this:
```sh
uv pip install -e ".[dev,test,docs,xformers]" --python 3.12 --python-preference only-managed --index=https://download.pytorch.org/whl/cu126 --reinstall
uv pip install -e ".[dev,test,docs,xformers]" --python 3.12 --python-preference only-managed --index=https://download.pytorch.org/whl/cu128 --reinstall
```
6. At this point, you should have Invoke installed, a venv set up and activated, and the server running. But you will see a warning in the terminal that no UI was found. If you go to the URL for the server, you won't get a UI.
@@ -50,11 +50,11 @@ If you just want to use Invoke, you should use the [launcher][launcher link].
If you only want to edit the docs, you can stop here and skip to the **Documentation** section below.
7. Install the frontend dev toolchain:
7. Install the frontend dev toolchain, paying attention to versions:
- [`nodejs`](https://nodejs.org/) (v20+)
- [`nodejs`](https://nodejs.org/) (tested on LTS, v22)
- [`pnpm`](https://pnpm.io/8.x/installation) (must be v8 - not v9!)
- [`pnpm`](https://pnpm.io/installation) (tested on v10)
8. Do a production build of the frontend:

View File

@@ -35,7 +35,7 @@ More detail on system requirements can be found [here](./requirements.md).
## Step 2: Download
Download the most launcher for your operating system:
Download the most recent launcher for your operating system:
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)

View File

@@ -1,21 +1,12 @@
from fastapi import Body, HTTPException
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.images.images_common import AddImagesToBoardResult, RemoveImagesFromBoardResult
board_images_router = APIRouter(prefix="/v1/board_images", tags=["boards"])
class AddImagesToBoardResult(BaseModel):
board_id: str = Field(description="The id of the board the images were added to")
added_image_names: list[str] = Field(description="The image names that were added to the board")
class RemoveImagesFromBoardResult(BaseModel):
removed_image_names: list[str] = Field(description="The image names that were removed from their board")
@board_images_router.post(
"/",
operation_id="add_image_to_board",
@@ -23,17 +14,26 @@ class RemoveImagesFromBoardResult(BaseModel):
201: {"description": "The image was added to a board successfully"},
},
status_code=201,
response_model=AddImagesToBoardResult,
)
async def add_image_to_board(
board_id: str = Body(description="The id of the board to add to"),
image_name: str = Body(description="The name of the image to add"),
):
) -> AddImagesToBoardResult:
"""Creates a board_image"""
try:
result = ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
added_images: set[str] = set()
affected_boards: set[str] = set()
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.add_image_to_board(board_id=board_id, image_name=image_name)
added_images.add(image_name)
affected_boards.add(board_id)
affected_boards.add(old_board_id)
return AddImagesToBoardResult(
added_images=list(added_images),
affected_boards=list(affected_boards),
)
return result
except Exception:
raise HTTPException(status_code=500, detail="Failed to add image to board")
@@ -45,14 +45,25 @@ async def add_image_to_board(
201: {"description": "The image was removed from the board successfully"},
},
status_code=201,
response_model=RemoveImagesFromBoardResult,
)
async def remove_image_from_board(
image_name: str = Body(description="The name of the image to remove", embed=True),
):
) -> RemoveImagesFromBoardResult:
"""Removes an image from its board, if it had one"""
try:
result = ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
return result
removed_images: set[str] = set()
affected_boards: set[str] = set()
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_images.add(image_name)
affected_boards.add("none")
affected_boards.add(old_board_id)
return RemoveImagesFromBoardResult(
removed_images=list(removed_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove image from board")
@@ -72,16 +83,25 @@ async def add_images_to_board(
) -> AddImagesToBoardResult:
"""Adds a list of images to a board"""
try:
added_image_names: list[str] = []
added_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.add_image_to_board(
board_id=board_id, image_name=image_name
board_id=board_id,
image_name=image_name,
)
added_image_names.append(image_name)
added_images.add(image_name)
affected_boards.add(board_id)
affected_boards.add(old_board_id)
except Exception:
pass
return AddImagesToBoardResult(board_id=board_id, added_image_names=added_image_names)
return AddImagesToBoardResult(
added_images=list(added_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to add images to board")
@@ -100,13 +120,20 @@ async def remove_images_from_board(
) -> RemoveImagesFromBoardResult:
"""Removes a list of images from their board, if they had one"""
try:
removed_image_names: list[str] = []
removed_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
old_board_id = ApiDependencies.invoker.services.images.get_dto(image_name).board_id or "none"
ApiDependencies.invoker.services.board_images.remove_image_from_board(image_name=image_name)
removed_image_names.append(image_name)
removed_images.add(image_name)
affected_boards.add("none")
affected_boards.add(old_board_id)
except Exception:
pass
return RemoveImagesFromBoardResult(removed_image_names=removed_image_names)
return RemoveImagesFromBoardResult(
removed_images=list(removed_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to remove images from board")

View File

@@ -14,10 +14,17 @@ from invokeai.app.api.extract_metadata_from_image import extract_metadata_from_i
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageNamesResult,
ImageRecordChanges,
ResourceOrigin,
)
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO
from invokeai.app.services.images.images_common import (
DeleteImagesResult,
ImageDTO,
ImageUrlsDTO,
StarredImagesResult,
UnstarredImagesResult,
)
from invokeai.app.services.shared.pagination import OffsetPaginatedResults
from invokeai.app.services.shared.sqlite.sqlite_common import SQLiteDirection
from invokeai.app.util.controlnet_utils import heuristic_resize_fast
@@ -65,7 +72,7 @@ async def upload_image(
resize_to: Optional[str] = Body(
default=None,
description=f"Dimensions to resize the image to, must be stringified tuple of 2 integers. Max total pixel count: {ResizeToDimensions.MAX_SIZE}",
example='"[1024,1024]"',
examples=['"[1024,1024]"'],
),
metadata: Optional[str] = Body(
default=None,
@@ -153,18 +160,30 @@ async def create_image_upload_entry(
raise HTTPException(status_code=501, detail="Not implemented")
@images_router.delete("/i/{image_name}", operation_id="delete_image")
@images_router.delete("/i/{image_name}", operation_id="delete_image", response_model=DeleteImagesResult)
async def delete_image(
image_name: str = Path(description="The name of the image to delete"),
) -> None:
) -> DeleteImagesResult:
"""Deletes an image"""
deleted_images: set[str] = set()
affected_boards: set[str] = set()
try:
image_dto = ApiDependencies.invoker.services.images.get_dto(image_name)
board_id = image_dto.board_id or "none"
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.add(image_name)
affected_boards.add(board_id)
except Exception:
# TODO: Does this need any exception handling at all?
pass
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
@images_router.delete("/intermediates", operation_id="clear_intermediates")
async def clear_intermediates() -> int:
@@ -376,31 +395,32 @@ async def list_image_dtos(
return image_dtos
class DeleteImagesFromListResult(BaseModel):
deleted_images: list[str]
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesFromListResult)
@images_router.post("/delete", operation_id="delete_images_from_list", response_model=DeleteImagesResult)
async def delete_images_from_list(
image_names: list[str] = Body(description="The list of names of images to delete", embed=True),
) -> DeleteImagesFromListResult:
) -> DeleteImagesResult:
try:
deleted_images: list[str] = []
deleted_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
image_dto = ApiDependencies.invoker.services.images.get_dto(image_name)
board_id = image_dto.board_id or "none"
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
deleted_images.add(image_name)
affected_boards.add(board_id)
except Exception:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete images")
@images_router.delete(
"/uncategorized", operation_id="delete_uncategorized_images", response_model=DeleteImagesFromListResult
)
async def delete_uncategorized_images() -> DeleteImagesFromListResult:
@images_router.delete("/uncategorized", operation_id="delete_uncategorized_images", response_model=DeleteImagesResult)
async def delete_uncategorized_images() -> DeleteImagesResult:
"""Deletes all images that are uncategorized"""
image_names = ApiDependencies.invoker.services.board_images.get_all_board_image_names_for_board(
@@ -408,14 +428,19 @@ async def delete_uncategorized_images() -> DeleteImagesFromListResult:
)
try:
deleted_images: list[str] = []
deleted_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.delete(image_name)
deleted_images.append(image_name)
deleted_images.add(image_name)
affected_boards.add("none")
except Exception:
pass
return DeleteImagesFromListResult(deleted_images=deleted_images)
return DeleteImagesResult(
deleted_images=list(deleted_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to delete images")
@@ -424,36 +449,50 @@ class ImagesUpdatedFromListResult(BaseModel):
updated_image_names: list[str] = Field(description="The image names that were updated")
@images_router.post("/star", operation_id="star_images_in_list", response_model=ImagesUpdatedFromListResult)
@images_router.post("/star", operation_id="star_images_in_list", response_model=StarredImagesResult)
async def star_images_in_list(
image_names: list[str] = Body(description="The list of names of images to star", embed=True),
) -> ImagesUpdatedFromListResult:
) -> StarredImagesResult:
try:
updated_image_names: list[str] = []
starred_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=True))
updated_image_names.append(image_name)
updated_image_dto = ApiDependencies.invoker.services.images.update(
image_name, changes=ImageRecordChanges(starred=True)
)
starred_images.add(image_name)
affected_boards.add(updated_image_dto.board_id or "none")
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
return StarredImagesResult(
starred_images=list(starred_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to star images")
@images_router.post("/unstar", operation_id="unstar_images_in_list", response_model=ImagesUpdatedFromListResult)
@images_router.post("/unstar", operation_id="unstar_images_in_list", response_model=UnstarredImagesResult)
async def unstar_images_in_list(
image_names: list[str] = Body(description="The list of names of images to unstar", embed=True),
) -> ImagesUpdatedFromListResult:
) -> UnstarredImagesResult:
try:
updated_image_names: list[str] = []
unstarred_images: set[str] = set()
affected_boards: set[str] = set()
for image_name in image_names:
try:
ApiDependencies.invoker.services.images.update(image_name, changes=ImageRecordChanges(starred=False))
updated_image_names.append(image_name)
updated_image_dto = ApiDependencies.invoker.services.images.update(
image_name, changes=ImageRecordChanges(starred=False)
)
unstarred_images.add(image_name)
affected_boards.add(updated_image_dto.board_id or "none")
except Exception:
pass
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
return UnstarredImagesResult(
unstarred_images=list(unstarred_images),
affected_boards=list(affected_boards),
)
except Exception:
raise HTTPException(status_code=500, detail="Failed to unstar images")
@@ -524,3 +563,61 @@ async def get_bulk_download_item(
return response
except Exception:
raise HTTPException(status_code=404)
@images_router.get("/names", operation_id="get_image_names")
async def get_image_names(
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate images."),
board_id: Optional[str] = Query(
default=None,
description="The board id to filter by. Use 'none' to find images without a board.",
),
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
search_term: Optional[str] = Query(default=None, description="The term to search for"),
) -> ImageNamesResult:
"""Gets ordered list of image names with metadata for optimistic updates"""
try:
result = ApiDependencies.invoker.services.images.get_image_names(
starred_first=starred_first,
order_dir=order_dir,
image_origin=image_origin,
categories=categories,
is_intermediate=is_intermediate,
board_id=board_id,
search_term=search_term,
)
return result
except Exception:
raise HTTPException(status_code=500, detail="Failed to get image names")
@images_router.post(
"/images_by_names",
operation_id="get_images_by_names",
responses={200: {"model": list[ImageDTO]}},
)
async def get_images_by_names(
image_names: list[str] = Body(embed=True, description="Object containing list of image names to fetch DTOs for"),
) -> list[ImageDTO]:
"""Gets image DTOs for the specified image names. Maintains order of input names."""
try:
image_service = ApiDependencies.invoker.services.images
# Fetch DTOs preserving the order of requested names
image_dtos: list[ImageDTO] = []
for name in image_names:
try:
dto = image_service.get_dto(name)
image_dtos.append(dto)
except Exception:
# Skip missing images - they may have been deleted between name fetch and DTO fetch
continue
return image_dtos
except Exception:
raise HTTPException(status_code=500, detail="Failed to get image DTOs")

View File

@@ -41,6 +41,7 @@ from invokeai.backend.model_manager.starter_models import (
STARTER_BUNDLES,
STARTER_MODELS,
StarterModel,
StarterModelBundle,
StarterModelWithoutDependencies,
)
@@ -291,7 +292,7 @@ async def get_hugging_face_models(
)
async def update_model_record(
key: Annotated[str, Path(description="Unique key of model")],
changes: Annotated[ModelRecordChanges, Body(description="Model config", example=example_model_input)],
changes: Annotated[ModelRecordChanges, Body(description="Model config", examples=[example_model_input])],
) -> AnyModelConfig:
"""Update a model's config."""
logger = ApiDependencies.invoker.services.logger
@@ -449,7 +450,7 @@ async def install_model(
access_token: Optional[str] = Query(description="access token for the remote resource", default=None),
config: ModelRecordChanges = Body(
description="Object containing fields that override auto-probed values in the model config record, such as name, description and prediction_type ",
example={"name": "string", "description": "string"},
examples=[{"name": "string", "description": "string"}],
),
) -> ModelInstallJob:
"""Install a model using a string identifier.
@@ -799,7 +800,7 @@ async def convert_model(
class StarterModelResponse(BaseModel):
starter_models: list[StarterModel]
starter_bundles: dict[str, list[StarterModel]]
starter_bundles: dict[str, StarterModelBundle]
def get_is_installed(
@@ -833,7 +834,7 @@ async def get_starter_models() -> StarterModelResponse:
model.dependencies = missing_deps
for bundle in starter_bundles.values():
for model in bundle:
for model in bundle.models:
model.is_installed = get_is_installed(model, installed_models)
# Remove already-installed dependencies
missing_deps: list[StarterModelWithoutDependencies] = []

View File

@@ -1,6 +1,6 @@
from typing import Optional
from fastapi import Body, Path, Query
from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field
@@ -14,13 +14,15 @@ from invokeai.app.services.session_queue.session_queue_common import (
CancelByBatchIDsResult,
CancelByDestinationResult,
ClearResult,
DeleteAllExceptCurrentResult,
DeleteByDestinationResult,
EnqueueBatchResult,
FieldIdentifier,
PruneResult,
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
SessionQueueItemNotFoundError,
SessionQueueStatus,
)
from invokeai.app.services.shared.pagination import CursorPaginatedResults
@@ -58,17 +60,19 @@ async def enqueue_batch(
),
) -> EnqueueBatchResult:
"""Processes a batch and enqueues the output graphs for execution."""
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
try:
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
queue_id=queue_id, batch=batch, prepend=prepend
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while enqueuing batch: {e}")
@session_queue_router.get(
"/{queue_id}/list",
operation_id="list_queue_items",
responses={
200: {"model": CursorPaginatedResults[SessionQueueItemDTO]},
200: {"model": CursorPaginatedResults[SessionQueueItem]},
},
)
async def list_queue_items(
@@ -77,12 +81,42 @@ async def list_queue_items(
status: Optional[QUEUE_ITEM_STATUS] = Query(default=None, description="The status of items to fetch"),
cursor: Optional[int] = Query(default=None, description="The pagination cursor"),
priority: int = Query(default=0, description="The pagination cursor priority"),
) -> CursorPaginatedResults[SessionQueueItemDTO]:
"""Gets all queue items (without graphs)"""
destination: Optional[str] = Query(default=None, description="The destination of queue items to fetch"),
) -> CursorPaginatedResults[SessionQueueItem]:
"""Gets cursor-paginated queue items"""
return ApiDependencies.invoker.services.session_queue.list_queue_items(
queue_id=queue_id, limit=limit, status=status, cursor=cursor, priority=priority
)
try:
return ApiDependencies.invoker.services.session_queue.list_queue_items(
queue_id=queue_id,
limit=limit,
status=status,
cursor=cursor,
priority=priority,
destination=destination,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all items: {e}")
@session_queue_router.get(
"/{queue_id}/list_all",
operation_id="list_all_queue_items",
responses={
200: {"model": list[SessionQueueItem]},
},
)
async def list_all_queue_items(
queue_id: str = Path(description="The queue id to perform this operation on"),
destination: Optional[str] = Query(default=None, description="The destination of queue items to fetch"),
) -> list[SessionQueueItem]:
"""Gets all queue items"""
try:
return ApiDependencies.invoker.services.session_queue.list_all_queue_items(
queue_id=queue_id,
destination=destination,
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue items: {e}")
@session_queue_router.put(
@@ -94,7 +128,10 @@ async def resume(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionProcessorStatus:
"""Resumes session processor"""
return ApiDependencies.invoker.services.session_processor.resume()
try:
return ApiDependencies.invoker.services.session_processor.resume()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while resuming queue: {e}")
@session_queue_router.put(
@@ -106,7 +143,10 @@ async def Pause(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionProcessorStatus:
"""Pauses session processor"""
return ApiDependencies.invoker.services.session_processor.pause()
try:
return ApiDependencies.invoker.services.session_processor.pause()
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while pausing queue: {e}")
@session_queue_router.put(
@@ -118,7 +158,25 @@ async def cancel_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> CancelAllExceptCurrentResult:
"""Immediately cancels all queue items except in-processing items"""
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
try:
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling all except current: {e}")
@session_queue_router.put(
"/{queue_id}/delete_all_except_current",
operation_id="delete_all_except_current",
responses={200: {"model": DeleteAllExceptCurrentResult}},
)
async def delete_all_except_current(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> DeleteAllExceptCurrentResult:
"""Immediately deletes all queue items except in-processing items"""
try:
return ApiDependencies.invoker.services.session_queue.delete_all_except_current(queue_id=queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting all except current: {e}")
@session_queue_router.put(
@@ -131,7 +189,12 @@ async def cancel_by_batch_ids(
batch_ids: list[str] = Body(description="The list of batch_ids to cancel all queue items for", embed=True),
) -> CancelByBatchIDsResult:
"""Immediately cancels all queue items from the given batch ids"""
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
try:
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(
queue_id=queue_id, batch_ids=batch_ids
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by batch id: {e}")
@session_queue_router.put(
@@ -144,9 +207,12 @@ async def cancel_by_destination(
destination: str = Query(description="The destination to cancel all queue items for"),
) -> CancelByDestinationResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
queue_id=queue_id, destination=destination
)
try:
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by destination: {e}")
@session_queue_router.put(
@@ -159,7 +225,10 @@ async def retry_items_by_id(
item_ids: list[int] = Body(description="The queue item ids to retry"),
) -> RetryItemsResult:
"""Immediately cancels all queue items with the given origin"""
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
try:
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while retrying queue items: {e}")
@session_queue_router.put(
@@ -173,11 +242,14 @@ async def clear(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> ClearResult:
"""Clears the queue entirely, immediately canceling the currently-executing session"""
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
if queue_item is not None:
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
return clear_result
try:
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
if queue_item is not None:
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
return clear_result
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while clearing queue: {e}")
@session_queue_router.put(
@@ -191,7 +263,10 @@ async def prune(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> PruneResult:
"""Prunes all completed or errored queue items"""
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while pruning queue: {e}")
@session_queue_router.get(
@@ -205,7 +280,10 @@ async def get_current_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> Optional[SessionQueueItem]:
"""Gets the currently execution queue item"""
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting current queue item: {e}")
@session_queue_router.get(
@@ -219,7 +297,10 @@ async def get_next_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> Optional[SessionQueueItem]:
"""Gets the next queue item, without executing it"""
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
try:
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting next queue item: {e}")
@session_queue_router.get(
@@ -233,9 +314,12 @@ async def get_queue_status(
queue_id: str = Path(description="The queue id to perform this operation on"),
) -> SessionQueueAndProcessorStatus:
"""Gets the status of the session queue"""
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
processor = ApiDependencies.invoker.services.session_processor.get_status()
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
try:
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
processor = ApiDependencies.invoker.services.session_processor.get_status()
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting queue status: {e}")
@session_queue_router.get(
@@ -250,7 +334,10 @@ async def get_batch_status(
batch_id: str = Path(description="The batch to get the status of"),
) -> BatchStatus:
"""Gets the status of the session queue"""
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
try:
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while getting batch status: {e}")
@session_queue_router.get(
@@ -266,7 +353,27 @@ async def get_queue_item(
item_id: int = Path(description="The queue item to get"),
) -> SessionQueueItem:
"""Gets a queue item"""
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
try:
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
except SessionQueueItemNotFoundError:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching queue item: {e}")
@session_queue_router.delete(
"/{queue_id}/i/{item_id}",
operation_id="delete_queue_item",
)
async def delete_queue_item(
queue_id: str = Path(description="The queue id to perform this operation on"),
item_id: int = Path(description="The queue item to delete"),
) -> None:
"""Deletes a queue item"""
try:
ApiDependencies.invoker.services.session_queue.delete_queue_item(item_id)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting queue item: {e}")
@session_queue_router.put(
@@ -281,8 +388,12 @@ async def cancel_queue_item(
item_id: int = Path(description="The queue item to cancel"),
) -> SessionQueueItem:
"""Deletes a queue item"""
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
try:
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
except SessionQueueItemNotFoundError:
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling queue item: {e}")
@session_queue_router.get(
@@ -295,6 +406,27 @@ async def counts_by_destination(
destination: str = Query(description="The destination to query"),
) -> SessionQueueCountsByDestination:
"""Gets the counts of queue items by destination"""
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
queue_id=queue_id, destination=destination
)
try:
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching counts by destination: {e}")
@session_queue_router.delete(
"/{queue_id}/d/{destination}",
operation_id="delete_by_destination",
responses={200: {"model": DeleteByDestinationResult}},
)
async def delete_by_destination(
queue_id: str = Path(description="The queue id to query"),
destination: str = Path(description="The destination to query"),
) -> DeleteByDestinationResult:
"""Deletes all items with the given destination"""
try:
return ApiDependencies.invoker.services.session_queue.delete_by_destination(
queue_id=queue_id, destination=destination
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting by destination: {e}")

View File

@@ -582,6 +582,8 @@ def invocation(
fields: dict[str, tuple[Any, FieldInfo]] = {}
original_model_fields: dict[str, OriginalModelField] = {}
for field_name, field_info in cls.model_fields.items():
annotation = field_info.annotation
assert annotation is not None, f"{field_name} on invocation {invocation_type} has no type annotation."
@@ -589,7 +591,7 @@ def invocation(
f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
)
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
validate_field_default(cls.__name__, field_name, invocation_type, annotation, field_info)
@@ -676,6 +678,7 @@ def invocation(
docstring = cls.__doc__
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields) # type: ignore
new_class.__doc__ = docstring
new_class._original_model_fields = original_model_fields
InvocationRegistry.register_invocation(new_class)

View File

@@ -0,0 +1,158 @@
import cv2
import numpy as np
from PIL import Image
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
ImageField,
InputField,
OutputField,
UIType,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_aux.open_pose import Body, Face, Hand, OpenposeDetector
from invokeai.backend.bria.controlnet_bria import BRIA_CONTROL_MODES
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.invocation_api import Classification, ImageOutput
DEPTH_SMALL_V2_URL = "depth-anything/Depth-Anything-V2-Small-hf"
HF_LLLYASVIEL = "https://huggingface.co/lllyasviel/Annotators/resolve/main/"
class BriaControlNetField(BaseModel):
image: ImageField = Field(description="The control image")
model: ModelIdentifierField = Field(description="The ControlNet model to use")
mode: BRIA_CONTROL_MODES = Field(description="The mode of the ControlNet")
conditioning_scale: float = Field(description="The weight given to the ControlNet")
@invocation_output("bria_controlnet_output")
class BriaControlNetOutput(BaseInvocationOutput):
"""Bria ControlNet info"""
control: BriaControlNetField = OutputField(description=FieldDescriptions.control)
preprocessed_images: ImageField = OutputField(description="The preprocessed control image")
@invocation(
"bria_controlnet",
title="ControlNet - Bria",
tags=["controlnet", "bria"],
category="controlnet",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaControlNetInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Collect Bria ControlNet info to pass to denoiser node."""
control_image: ImageField = InputField(description="The control image")
control_model: ModelIdentifierField = InputField(
description=FieldDescriptions.controlnet_model, ui_type=UIType.BriaControlNetModel
)
control_mode: BRIA_CONTROL_MODES = InputField(default="depth", description="The mode of the ControlNet")
control_weight: float = InputField(default=1.0, ge=-1, le=2, description="The weight given to the ControlNet")
def invoke(self, context: InvocationContext) -> BriaControlNetOutput:
image_in = resize_img(context.images.get_pil(self.control_image.image_name))
if self.control_mode == "canny":
control_image = extract_canny(image_in)
elif self.control_mode == "depth":
control_image = extract_depth(image_in, context)
elif self.control_mode == "pose":
control_image = extract_openpose(image_in, context)
elif self.control_mode == "colorgrid":
control_image = tile(64, image_in)
elif self.control_mode == "recolor":
control_image = convert_to_grayscale(image_in)
elif self.control_mode == "tile":
control_image = tile(16, image_in)
control_image = resize_img(control_image)
image_dto = context.images.save(image=control_image)
image_output = ImageOutput.build(image_dto)
return BriaControlNetOutput(
preprocessed_images=image_output.image,
control=BriaControlNetField(
image=ImageField(image_name=image_dto.image_name),
model=self.control_model,
mode=self.control_mode,
conditioning_scale=self.control_weight,
),
)
RATIO_CONFIGS_1024 = {
0.6666666666666666: {"width": 832, "height": 1248},
0.7432432432432432: {"width": 880, "height": 1184},
0.8028169014084507: {"width": 912, "height": 1136},
1.0: {"width": 1024, "height": 1024},
1.2456140350877194: {"width": 1136, "height": 912},
1.3454545454545455: {"width": 1184, "height": 880},
1.4339622641509433: {"width": 1216, "height": 848},
1.5: {"width": 1248, "height": 832},
1.5490196078431373: {"width": 1264, "height": 816},
1.62: {"width": 1296, "height": 800},
1.7708333333333333: {"width": 1360, "height": 768},
}
def extract_depth(image: Image.Image, context: InvocationContext):
loaded_model = context.models.load_remote_model(DEPTH_SMALL_V2_URL, DepthAnythingPipeline.load_model)
with loaded_model as depth_anything_detector:
assert isinstance(depth_anything_detector, DepthAnythingPipeline)
depth_map = depth_anything_detector.generate_depth(image)
return depth_map
def extract_openpose(image: Image.Image, context: InvocationContext):
body_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}body_pose_model.pth", Body)
hand_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}hand_pose_model.pth", Hand)
face_model = context.models.load_remote_model(f"{HF_LLLYASVIEL}facenet.pth", Face)
with body_model as body_model, hand_model as hand_model, face_model as face_model:
open_pose_model = OpenposeDetector(body_model, hand_model, face_model)
processed_image_open_pose = open_pose_model(image, hand_and_face=True)
processed_image_open_pose = processed_image_open_pose.resize(image.size)
return processed_image_open_pose
def extract_canny(input_image):
image = np.array(input_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
return canny_image
def convert_to_grayscale(image):
gray_image = image.convert("L").convert("RGB")
return gray_image
def tile(downscale_factor, input_image):
control_image = input_image.resize(
(input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)
).resize(input_image.size, Image.Resampling.NEAREST)
return control_image
def resize_img(control_image):
image_ratio = control_image.width / control_image.height
ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
to_height = RATIO_CONFIGS_1024[ratio]["height"]
to_width = RATIO_CONFIGS_1024[ratio]["width"]
resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
return resized_image

View File

@@ -0,0 +1,46 @@
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from PIL import Image
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import FieldDescriptions, Input, InputField, LatentsField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.invocation_api import BaseInvocation, Classification, ImageOutput, invocation
@invocation(
"bria_decoder",
title="Decoder - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDecoderInvocation(BaseInvocation):
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
latents = latents.view(1, 64, 64, 4, 2, 2).permute(0, 3, 1, 4, 2, 5).reshape(1, 4, 128, 128)
with context.models.load(self.vae.vae) as vae:
assert isinstance(vae, AutoencoderKL)
latents = latents / vae.config.scaling_factor
latents = latents.to(device=vae.device, dtype=vae.dtype)
decoded_output = vae.decode(latents)
image = decoded_output.sample
# Convert to numpy with proper gradient handling
image = ((image.clamp(-1, 1) + 1) / 2 * 255).cpu().detach().permute(0, 2, 3, 1).numpy().astype("uint8")[0]
img = Image.fromarray(image)
image_dto = context.images.save(image=img)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,180 @@
from typing import List, Tuple
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from invokeai.app.invocations.bria_controlnet import BriaControlNetField
from invokeai.app.invocations.fields import Input, InputField, LatentsField, OutputField
from invokeai.app.invocations.model import SubModelType, T5EncoderField, TransformerField, VAEField
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.controlnet_bria import BriaControlModes, BriaMultiControlNetModel
from invokeai.backend.bria.controlnet_utils import prepare_control_images
from invokeai.backend.bria.pipeline_bria_controlnet import BriaControlNetPipeline
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
from invokeai.invocation_api import BaseInvocation, Classification, invocation, invocation_output
@invocation_output("bria_denoise_output")
class BriaDenoiseInvocationOutput(BaseInvocationOutput):
latents: LatentsField = OutputField(description=FieldDescriptions.latents)
@invocation(
"bria_denoise",
title="Denoise - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaDenoiseInvocation(BaseInvocation):
num_steps: int = InputField(
default=30, title="Number of Steps", description="The number of steps to use for the denoiser"
)
guidance_scale: float = InputField(
default=5.0, title="Guidance Scale", description="The guidance scale to use for the denoiser"
)
transformer: TransformerField = InputField(
description="Bria model (Transformer) to load",
input=Input.Connection,
title="Transformer",
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
title="VAE",
)
latents: LatentsField = InputField(
description="Latents to denoise",
input=Input.Connection,
title="Latents",
)
latent_image_ids: LatentsField = InputField(
description="Latent Image IDs to denoise",
input=Input.Connection,
title="Latent Image IDs",
)
pos_embeds: LatentsField = InputField(
description="Positive Prompt Embeds",
input=Input.Connection,
title="Positive Prompt Embeds",
)
neg_embeds: LatentsField = InputField(
description="Negative Prompt Embeds",
input=Input.Connection,
title="Negative Prompt Embeds",
)
text_ids: LatentsField = InputField(
description="Text IDs",
input=Input.Connection,
title="Text IDs",
)
control: BriaControlNetField | list[BriaControlNetField] | None = InputField(
description="ControlNet",
input=Input.Connection,
title="ControlNet",
default=None,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaDenoiseInvocationOutput:
latents = context.tensors.load(self.latents.latents_name)
pos_embeds = context.tensors.load(self.pos_embeds.latents_name)
neg_embeds = context.tensors.load(self.neg_embeds.latents_name)
text_ids = context.tensors.load(self.text_ids.latents_name)
latent_image_ids = context.tensors.load(self.latent_image_ids.latents_name)
scheduler_identifier = self.transformer.transformer.model_copy(update={"submodel_type": SubModelType.Scheduler})
device = None
dtype = None
with (
context.models.load(self.transformer.transformer) as transformer,
context.models.load(scheduler_identifier) as scheduler,
context.models.load(self.vae.vae) as vae,
context.models.load(self.t5_encoder.text_encoder) as t5_encoder,
context.models.load(self.t5_encoder.tokenizer) as t5_tokenizer,
):
assert isinstance(transformer, BriaTransformer2DModel)
assert isinstance(scheduler, FlowMatchEulerDiscreteScheduler)
assert isinstance(vae, AutoencoderKL)
dtype = transformer.dtype
device = transformer.device
latents, pos_embeds, neg_embeds = (x.to(device, dtype) for x in (latents, pos_embeds, neg_embeds))
control_model, control_images, control_modes, control_scales = None, None, None, None
if self.control is not None:
control_model, control_images, control_modes, control_scales = self._prepare_multi_control(
context=context,
vae=vae,
width=1024,
height=1024,
device=vae.device,
)
pipeline = BriaControlNetPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=t5_encoder,
tokenizer=t5_tokenizer,
controlnet=control_model,
)
pipeline.to(device=transformer.device, dtype=transformer.dtype)
latents = pipeline(
control_image=control_images,
control_mode=control_modes,
width=1024,
height=1024,
controlnet_conditioning_scale=control_scales,
num_inference_steps=self.num_steps,
max_sequence_length=128,
guidance_scale=self.guidance_scale,
latents=latents,
latent_image_ids=latent_image_ids,
text_ids=text_ids,
prompt_embeds=pos_embeds,
negative_prompt_embeds=neg_embeds,
output_type="latent",
)[0]
assert isinstance(latents, torch.Tensor)
saved_input_latents_tensor = context.tensors.save(latents)
latents_output = LatentsField(latents_name=saved_input_latents_tensor)
return BriaDenoiseInvocationOutput(latents=latents_output)
def _prepare_multi_control(
self, context: InvocationContext, vae: AutoencoderKL, width: int, height: int, device: torch.device
) -> Tuple[BriaMultiControlNetModel, List[torch.Tensor], List[torch.Tensor], List[float]]:
control = self.control if isinstance(self.control, list) else [self.control]
control_images, control_models, control_modes, control_scales = [], [], [], []
for controlnet in control:
if controlnet is not None:
control_models.append(context.models.load(controlnet.model).model)
control_modes.append(BriaControlModes[controlnet.mode].value)
control_scales.append(controlnet.conditioning_scale)
try:
control_images.append(context.images.get_pil(controlnet.image.image_name))
except Exception:
raise FileNotFoundError(
f"Control image {controlnet.image.image_name} not found. Make sure not to delete the preprocessed image before finishing the pipeline."
)
control_model = BriaMultiControlNetModel(control_models).to(device)
tensored_control_images, tensored_control_modes = prepare_control_images(
vae=vae,
control_images=control_images,
control_modes=control_modes,
width=width,
height=height,
device=device,
)
return control_model, tensored_control_images, tensored_control_modes, control_scales

View File

@@ -0,0 +1,76 @@
import torch
from invokeai.app.invocations.fields import Input, InputField, OutputField
from invokeai.app.invocations.model import TransformerField
from invokeai.app.invocations.primitives import (
BaseInvocationOutput,
FieldDescriptions,
LatentsField,
)
from invokeai.backend.bria.pipeline_bria_controlnet import prepare_latents
from invokeai.invocation_api import (
BaseInvocation,
Classification,
InvocationContext,
invocation,
invocation_output,
)
@invocation_output("bria_latent_sampler_output")
class BriaLatentSamplerInvocationOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
latents: LatentsField = OutputField(description=FieldDescriptions.cond)
latent_image_ids: LatentsField = OutputField(description=FieldDescriptions.cond)
@invocation(
"bria_latent_sampler",
title="Latent Sampler - Bria",
tags=["image", "bria"],
category="image",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaLatentSamplerInvocation(BaseInvocation):
seed: int = InputField(
default=42,
title="Seed",
description="The seed to use for the latent sampler",
)
transformer: TransformerField = InputField(
description="Bria model (Transformer) to load",
input=Input.Connection,
title="Transformer",
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaLatentSamplerInvocationOutput:
with context.models.load(self.transformer.transformer) as transformer:
device = transformer.device
dtype = transformer.dtype
height, width = 1024, 1024
generator = torch.Generator(device=device).manual_seed(self.seed)
num_channels_latents = 4
latents, latent_image_ids = prepare_latents(
batch_size=1,
num_channels_latents=num_channels_latents,
height=height,
width=width,
dtype=dtype,
device=device,
generator=generator,
)
saved_latents_tensor = context.tensors.save(latents)
saved_latent_image_ids_tensor = context.tensors.save(latent_image_ids)
latents_output = LatentsField(latents_name=saved_latents_tensor)
latent_image_ids_output = LatentsField(latents_name=saved_latent_image_ids_tensor)
return BriaLatentSamplerInvocationOutput(
latents=latents_output,
latent_image_ids=latent_image_ids_output,
)

View File

@@ -0,0 +1,58 @@
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.invocations.model import (
ModelIdentifierField,
SubModelType,
T5EncoderField,
TransformerField,
VAEField,
)
from invokeai.invocation_api import (
BaseInvocation,
BaseInvocationOutput,
Classification,
InvocationContext,
invocation,
invocation_output,
)
@invocation_output("bria_model_loader_output")
class BriaModelLoaderOutput(BaseInvocationOutput):
"""Bria base model loader output"""
transformer: TransformerField = OutputField(description=FieldDescriptions.transformer, title="Transformer")
t5_encoder: T5EncoderField = OutputField(description=FieldDescriptions.t5_encoder, title="T5 Encoder")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation(
"bria_model_loader",
title="Main Model - Bria",
tags=["model", "bria"],
version="1.0.0",
classification=Classification.Prototype,
)
class BriaModelLoaderInvocation(BaseInvocation):
"""Loads a bria base model, outputting its submodels."""
model: ModelIdentifierField = InputField(
description="Bria model (Transformer) to load",
ui_type=UIType.BriaMainModel,
input=Input.Direct,
)
def invoke(self, context: InvocationContext) -> BriaModelLoaderOutput:
for key in [self.model.key]:
if not context.models.exists(key):
raise ValueError(f"Unknown model: {key}")
transformer = self.model.model_copy(update={"submodel_type": SubModelType.Transformer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
return BriaModelLoaderOutput(
transformer=TransformerField(transformer=transformer, loras=[]),
t5_encoder=T5EncoderField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[]),
vae=VAEField(vae=vae),
)

View File

@@ -0,0 +1,93 @@
from typing import Optional
import torch
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.app.invocations.model import T5EncoderField
from invokeai.app.invocations.primitives import BaseInvocationOutput, FieldDescriptions, Input, OutputField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.bria.pipeline_bria_controlnet import encode_prompt
from invokeai.invocation_api import (
BaseInvocation,
Classification,
InputField,
LatentsField,
invocation,
invocation_output,
)
@invocation_output("bria_text_encoder_output")
class BriaTextEncoderInvocationOutput(BaseInvocationOutput):
"""Base class for nodes that output a CogView text conditioning tensor."""
pos_embeds: LatentsField = OutputField(description=FieldDescriptions.cond)
neg_embeds: LatentsField = OutputField(description=FieldDescriptions.cond)
text_ids: LatentsField = OutputField(description=FieldDescriptions.cond)
@invocation(
"bria_text_encoder",
title="Prompt - Bria",
tags=["prompt", "conditioning", "bria"],
category="conditioning",
version="1.0.0",
classification=Classification.Prototype,
)
class BriaTextEncoderInvocation(BaseInvocation):
prompt: str = InputField(
title="Prompt",
description="The prompt to encode",
)
negative_prompt: Optional[str] = InputField(
title="Negative Prompt",
description="The negative prompt to encode",
default="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate",
)
max_length: int = InputField(
default=128,
title="Max Length",
description="The maximum length of the prompt",
)
t5_encoder: T5EncoderField = InputField(
title="T5Encoder",
description=FieldDescriptions.t5_encoder,
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> BriaTextEncoderInvocationOutput:
t5_encoder_info = context.models.load(self.t5_encoder.text_encoder)
t5_tokenizer_info = context.models.load(self.t5_encoder.tokenizer)
with (
t5_encoder_info as text_encoder,
t5_tokenizer_info as tokenizer,
):
assert isinstance(tokenizer, T5TokenizerFast)
assert isinstance(text_encoder, T5EncoderModel)
(prompt_embeds, negative_prompt_embeds, text_ids) = encode_prompt(
prompt=self.prompt,
tokenizer=tokenizer,
text_encoder=text_encoder,
negative_prompt=self.negative_prompt,
device=text_encoder.device,
num_images_per_prompt=1,
max_sequence_length=self.max_length,
lora_scale=1.0,
)
saved_pos_tensor = context.tensors.save(prompt_embeds)
saved_neg_tensor = context.tensors.save(negative_prompt_embeds)
saved_text_ids_tensor = context.tensors.save(text_ids)
pos_embeds_output = LatentsField(latents_name=saved_pos_tensor)
neg_embeds_output = LatentsField(latents_name=saved_neg_tensor)
text_ids_output = LatentsField(latents_name=saved_text_ids_tensor)
return BriaTextEncoderInvocationOutput(
pos_embeds=pos_embeds_output,
neg_embeds=neg_embeds_output,
text_ids=text_ids_output,
)

View File

@@ -42,6 +42,8 @@ class UIType(str, Enum, metaclass=MetaEnum):
MainModel = "MainModelField"
CogView4MainModel = "CogView4MainModelField"
FluxMainModel = "FluxMainModelField"
BriaMainModel = "BriaMainModelField"
BriaControlNetModel = "BriaControlNetModelField"
SD3MainModel = "SD3MainModelField"
SDXLMainModel = "SDXLMainModelField"
SDXLRefinerModel = "SDXLRefinerModelField"
@@ -64,6 +66,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
Imagen3Model = "Imagen3ModelField"
Imagen4Model = "Imagen4ModelField"
ChatGPT4oModel = "ChatGPT4oModelField"
FluxKontextModel = "FluxKontextModelField"
# endregion
# region Misc Field Types
@@ -214,6 +217,7 @@ class FieldDescriptions:
flux_redux_conditioning = "FLUX Redux conditioning tensor"
vllm_model = "The VLLM model to use"
flux_fill_conditioning = "FLUX Fill conditioning tensor"
flux_kontext_conditioning = "FLUX Kontext conditioning (reference image)"
class ImageField(BaseModel):
@@ -290,6 +294,12 @@ class FluxFillConditioningField(BaseModel):
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
class FluxKontextConditioningField(BaseModel):
"""A conditioning field for FLUX Kontext (reference image)."""
image: ImageField = Field(description="The Kontext reference image.")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""

View File

@@ -16,13 +16,12 @@ from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxKontextConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
@@ -34,6 +33,7 @@ from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXCo
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.kontext_extension import KontextExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
@@ -63,9 +63,9 @@ from invokeai.backend.util.devices import TorchDevice
title="FLUX Denoise",
tags=["image", "flux"],
category="image",
version="3.3.0",
version="4.0.0",
)
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
class FluxDenoiseInvocation(BaseInvocation):
"""Run denoising process with a FLUX transformer model."""
# If latents is provided, this means we are doing image-to-image.
@@ -145,11 +145,20 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.vae,
input=Input.Connection,
)
# This node accepts a images for features like FLUX Fill, ControlNet, and Kontext, but needs to operate on them in
# latent space. We'll run the VAE to encode them in this node instead of requiring the user to run the VAE in
# upstream nodes.
ip_adapter: IPAdapterField | list[IPAdapterField] | None = InputField(
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
kontext_conditioning: Optional[FluxKontextConditioningField] = InputField(
default=None,
description="FLUX Kontext conditioning (reference image).",
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
@@ -376,6 +385,27 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
)
kontext_extension = None
if self.kontext_conditioning is not None:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning,
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
# Prepare Kontext conditioning if provided
img_cond_seq = None
img_cond_seq_ids = None
if kontext_extension is not None:
# Ensure batch sizes match
kontext_extension.ensure_batch_size(x.shape[0])
img_cond_seq, img_cond_seq_ids = kontext_extension.kontext_latents, kontext_extension.kontext_ids
x = denoise(
model=transformer,
img=x,
@@ -391,6 +421,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
img_cond_seq=img_cond_seq,
img_cond_seq_ids=img_cond_seq_ids,
)
x = unpack(x.float(), self.height, self.width)
@@ -865,7 +897,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
# The denoise function now handles Kontext conditioning correctly,
# so we don't need to slice the latents here
latents = state.latents.float()
state.latents = unpack(latents, self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback

View File

@@ -0,0 +1,40 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxKontextConditioningField,
InputField,
OutputField,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_kontext_output")
class FluxKontextOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Kontext invocation."""
kontext_cond: FluxKontextConditioningField = OutputField(
description=FieldDescriptions.flux_kontext_conditioning, title="Kontext Conditioning"
)
@invocation(
"flux_kontext",
title="Kontext Conditioning - FLUX",
tags=["conditioning", "kontext", "flux"],
category="conditioning",
version="1.0.0",
)
class FluxKontextInvocation(BaseInvocation):
"""Prepares a reference image for FLUX Kontext conditioning."""
image: ImageField = InputField(description="The Kontext reference image.")
def invoke(self, context: InvocationContext) -> FluxKontextOutput:
"""Packages the provided image into a Kontext conditioning field."""
return FluxKontextOutput(kontext_cond=FluxKontextConditioningField(image=self.image))

View File

@@ -1,5 +1,5 @@
from contextlib import ExitStack
from typing import Iterator, Literal, Optional, Tuple
from typing import Iterator, Literal, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
@@ -111,6 +111,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
if context.config.get().log_tokenization:
self._log_t5_tokenization(context, t5_tokenizer)
context.util.signal_progress("Running T5 encoder")
prompt_embeds = t5_encoder(prompt)
@@ -151,6 +154,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
if context.config.get().log_tokenization:
self._log_clip_tokenization(context, clip_tokenizer)
context.util.signal_progress("Running CLIP encoder")
pooled_prompt_embeds = clip_encoder(prompt)
@@ -170,3 +176,88 @@ class FluxTextEncoderInvocation(BaseInvocation):
assert isinstance(lora_info.model, ModelPatchRaw)
yield (lora_info.model, lora.weight)
del lora_info
def _log_t5_tokenization(
self,
context: InvocationContext,
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
) -> None:
"""Logs the tokenization of a prompt for a T5-based model like FLUX."""
# Tokenize the prompt using the same parameters as the model's text encoder.
# T5 tokenizers add an EOS token (</s>) and then pad to max_length.
tokenized_output = tokenizer(
self.prompt,
padding="max_length",
max_length=self.t5_max_seq_len,
truncation=True,
add_special_tokens=True, # This is important for T5 to add the EOS token.
return_tensors="pt",
)
input_ids = tokenized_output.input_ids[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)
# The T5 tokenizer uses a space-like character ' ' (U+2581) to denote spaces.
# We'll replace it with a regular space for readability.
tokens = [t.replace("\u2581", " ") for t in tokens]
tokenized_str = ""
used_tokens = 0
for token in tokens:
if token == tokenizer.eos_token:
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
used_tokens += 1
elif token == tokenizer.pad_token:
# tokenized_str += f"\x1b[0;34m{token}\x1b[0m" # Blue for PAD
continue
else:
color = (used_tokens % 6) + 1 # Cycle through 6 colors
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
used_tokens += 1
context.logger.info(f">> [T5 TOKENLOG] Tokens ({used_tokens}/{self.t5_max_seq_len}):")
context.logger.info(f"{tokenized_str}\x1b[0m")
def _log_clip_tokenization(
self,
context: InvocationContext,
tokenizer: CLIPTokenizer,
) -> None:
"""Logs the tokenization of a prompt for a CLIP-based model."""
max_length = tokenizer.model_max_length
tokenized_output = tokenizer(
self.prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
input_ids = tokenized_output.input_ids[0]
attention_mask = tokenized_output.attention_mask[0]
tokens = tokenizer.convert_ids_to_tokens(input_ids)
# The CLIP tokenizer uses '</w>' to denote spaces.
# We'll replace it with a regular space for readability.
tokens = [t.replace("</w>", " ") for t in tokens]
tokenized_str = ""
used_tokens = 0
for i, token in enumerate(tokens):
if attention_mask[i] == 0:
# Do not log padding tokens.
continue
if token == tokenizer.bos_token:
tokenized_str += f"\x1b[0;32m{token}\x1b[0m" # Green for BOS
elif token == tokenizer.eos_token:
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
else:
color = (used_tokens % 6) + 1 # Cycle through 6 colors
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
used_tokens += 1
context.logger.info(f">> [CLIP TOKENLOG] Tokens ({used_tokens}/{max_length}):")
context.logger.info(f"{tokenized_str}\x1b[0m")

View File

@@ -430,6 +430,15 @@ class FluxConditioningOutput(BaseInvocationOutput):
return cls(conditioning=FluxConditioningField(conditioning_name=conditioning_name))
@invocation_output("flux_conditioning_collection_output")
class FluxConditioningCollectionOutput(BaseInvocationOutput):
"""Base class for nodes that output a collection of conditioning tensors"""
collection: list[FluxConditioningField] = OutputField(
description="The output conditioning tensors",
)
@invocation_output("sd3_conditioning_output")
class SD3ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single SD3 conditioning tensor"""

View File

@@ -14,15 +14,14 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
INSERT INTO board_images (board_id, image_name)
@@ -31,17 +30,12 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
""",
(board_id, image_name, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def remove_image_from_board(
self,
image_name: str,
) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE FROM board_images
@@ -49,10 +43,6 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def get_images_for_board(
self,
@@ -60,27 +50,26 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
offset: int = 0,
limit: int = 10,
) -> OffsetPaginatedResults[ImageRecord]:
# TODO: this isn't paginated yet?
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT images.*
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE board_images.board_id = ?
ORDER BY board_images.updated_at DESC;
""",
(board_id,),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images WHERE 1=1;
"""
)
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
@@ -90,56 +79,55 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
categories: list[ImageCategory] | None,
is_intermediate: bool | None,
) -> list[str]:
params: list[str | bool] = []
with self._db.transaction() as cursor:
params: list[str | bool] = []
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
# Base query is a join between images and board_images
stmt = """
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
# Handle board_id filter
if board_id == "none":
stmt += """--sql
AND board_images.board_id IS NULL
"""
else:
stmt += """--sql
AND board_images.board_id = ?
"""
params.append(board_id)
# Handle board_id filter
if board_id == "none":
stmt += """--sql
AND board_images.board_id IS NULL
"""
else:
stmt += """--sql
AND board_images.board_id = ?
"""
params.append(board_id)
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Add the category filter
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
stmt += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Unpack the included categories into the query params
for c in category_strings:
params.append(c)
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Add the is_intermediate filter
if is_intermediate is not None:
stmt += """--sql
AND images.is_intermediate = ?
"""
params.append(is_intermediate)
# Put a ring on it
stmt += ";"
# Put a ring on it
stmt += ";"
# Execute the query
cursor = self._conn.cursor()
cursor.execute(stmt, params)
cursor.execute(stmt, params)
result = cast(list[sqlite3.Row], cursor.fetchall())
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
return image_names
@@ -147,31 +135,31 @@ class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
self,
image_name: str,
) -> Optional[str]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT board_id
FROM board_images
WHERE image_name = ?;
""",
(image_name,),
)
result = cursor.fetchone()
if result is None:
return None
return cast(str, result[0])
def get_image_count_for_board(self, board_id: str) -> int:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
AND board_images.board_id = ?;
""",
(board_id,),
)
count = cast(int, cursor.fetchone()[0])
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT COUNT(*)
FROM board_images
INNER JOIN images ON board_images.image_name = images.image_name
WHERE images.is_intermediate = FALSE
AND board_images.board_id = ?;
""",
(board_id,),
)
count = cast(int, cursor.fetchone()[0])
return count

View File

@@ -20,61 +20,57 @@ from invokeai.app.util.misc import uuid_string
class SqliteBoardRecordStorage(BoardRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def delete(self, board_id: str) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
self._conn.commit()
except Exception as e:
self._conn.rollback()
raise BoardRecordDeleteException from e
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
DELETE FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
except Exception as e:
raise BoardRecordDeleteException from e
def save(
self,
board_name: str,
) -> BoardRecord:
try:
board_id = uuid_string()
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
with self._db.transaction() as cursor:
try:
board_id = uuid_string()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO boards (board_id, board_name)
VALUES (?, ?);
""",
(board_id, board_name),
)
except sqlite3.Error as e:
raise BoardRecordSaveException from e
return self.get(board_id)
def get(
self,
board_id: str,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
SELECT *
FROM boards
WHERE board_id = ?;
""",
(board_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
except sqlite3.Error as e:
raise BoardRecordNotFoundException from e
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
except sqlite3.Error as e:
raise BoardRecordNotFoundException from e
if result is None:
raise BoardRecordNotFoundException
return BoardRecord(**dict(result))
@@ -84,45 +80,43 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
board_id: str,
changes: BoardChanges,
) -> BoardRecord:
try:
cursor = self._conn.cursor()
# Change the name of a board
if changes.board_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
with self._db.transaction() as cursor:
try:
# Change the name of a board
if changes.board_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET board_name = ?
WHERE board_id = ?;
""",
(changes.board_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
# Change the cover image of a board
if changes.cover_image_name is not None:
cursor.execute(
"""--sql
UPDATE boards
SET cover_image_name = ?
WHERE board_id = ?;
""",
(changes.cover_image_name, board_id),
)
# Change the archived status of a board
if changes.archived is not None:
cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
WHERE board_id = ?;
""",
(changes.archived, board_id),
)
# Change the archived status of a board
if changes.archived is not None:
cursor.execute(
"""--sql
UPDATE boards
SET archived = ?
WHERE board_id = ?;
""",
(changes.archived, board_id),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise BoardRecordSaveException from e
except sqlite3.Error as e:
raise BoardRecordSaveException from e
return self.get(board_id)
def get_many(
@@ -133,78 +127,77 @@ class SqliteBoardRecordStorage(BoardRecordStorageBase):
limit: int = 10,
include_archived: bool = False,
) -> OffsetPaginatedResults[BoardRecord]:
cursor = self._conn.cursor()
# Build base query
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
LIMIT ? OFFSET ?;
"""
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
with self._db.transaction() as cursor:
# Build base query
base_query = """
SELECT *
FROM boards
WHERE archived = 0;
{archived_filter}
ORDER BY {order_by} {direction}
LIMIT ? OFFSET ?;
"""
# Execute count query
cursor.execute(count_query)
# Determine archived filter condition
archived_filter = "" if include_archived else "WHERE archived = 0"
count = cast(int, cursor.fetchone()[0])
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
# Execute query to fetch boards
cursor.execute(final_query, (limit, offset))
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
# Determine count query
if include_archived:
count_query = """
SELECT COUNT(*)
FROM boards;
"""
else:
count_query = """
SELECT COUNT(*)
FROM boards
WHERE archived = 0;
"""
# Execute count query
cursor.execute(count_query)
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults[BoardRecord](items=boards, offset=offset, limit=limit, total=count)
def get_all(
self, order_by: BoardRecordOrderBy, direction: SQLiteDirection, include_archived: bool = False
) -> list[BoardRecord]:
cursor = self._conn.cursor()
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
with self._db.transaction() as cursor:
if order_by == BoardRecordOrderBy.Name:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY LOWER(board_name) {direction}
"""
else:
base_query = """
SELECT *
FROM boards
{archived_filter}
ORDER BY {order_by} {direction}
"""
archived_filter = "" if include_archived else "WHERE archived = 0"
archived_filter = "" if include_archived else "WHERE archived = 0"
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
final_query = base_query.format(
archived_filter=archived_filter, order_by=order_by.value, direction=direction.value
)
cursor.execute(final_query)
cursor.execute(final_query)
result = cast(list[sqlite3.Row], cursor.fetchall())
result = cast(list[sqlite3.Row], cursor.fetchall())
boards = [deserialize_board_record(dict(r)) for r in result]
return boards

View File

@@ -8,6 +8,7 @@ import time
import traceback
from pathlib import Path
from queue import Empty, PriorityQueue
from shutil import disk_usage
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Set
import requests
@@ -335,6 +336,14 @@ class DownloadQueueService(DownloadQueueServiceBase):
assert job.download_path
free_space = disk_usage(job.download_path.parent).free
GB = 2**30
self._logger.debug(f"Download is {job.total_bytes / GB:.2f} GB of {free_space / GB:.2f} GB free.")
if free_space < job.total_bytes:
raise RuntimeError(
f"Free disk space {free_space / GB:.2f} GB is not enough for download of {job.total_bytes / GB:.2f} GB."
)
# Don't clobber an existing file. See commit 82c2c85202f88c6d24ff84710f297cfc6ae174af
# for code that instead resumes an interrupted download.
if job.download_path.exists():

View File

@@ -5,6 +5,7 @@ from typing import Optional
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageNamesResult,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
@@ -97,3 +98,17 @@ class ImageRecordStorageBase(ABC):
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
"""Gets the most recent image for a board."""
pass
@abstractmethod
def get_image_names(
self,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> ImageNamesResult:
"""Gets ordered list of image names with metadata for optimistic updates."""
pass

View File

@@ -3,7 +3,7 @@ import datetime
from enum import Enum
from typing import Optional, Union
from pydantic import Field, StrictBool, StrictStr
from pydantic import BaseModel, Field, StrictBool, StrictStr
from invokeai.app.util.metaenum import MetaEnum
from invokeai.app.util.misc import get_iso_timestamp
@@ -207,3 +207,16 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
starred=starred,
has_workflow=has_workflow,
)
class ImageCollectionCounts(BaseModel):
starred_count: int = Field(description="The number of starred images in the collection.")
unstarred_count: int = Field(description="The number of unstarred images in the collection.")
class ImageNamesResult(BaseModel):
"""Response containing ordered image names with metadata for optimistic updates."""
image_names: list[str] = Field(description="Ordered list of image names")
starred_count: int = Field(description="Number of starred images (when starred_first=True)")
total_count: int = Field(description="Total number of images matching the query")

View File

@@ -7,6 +7,7 @@ from invokeai.app.services.image_records.image_records_base import ImageRecordSt
from invokeai.app.services.image_records.image_records_common import (
IMAGE_DTO_COLS,
ImageCategory,
ImageNamesResult,
ImageRecord,
ImageRecordChanges,
ImageRecordDeleteException,
@@ -23,22 +24,22 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteImageRecordStorage(ImageRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def get(self, image_name: str) -> ImageRecord:
try:
cursor = self._conn.cursor()
cursor.execute(
f"""--sql
SELECT {IMAGE_DTO_COLS} FROM images
WHERE image_name = ?;
""",
(image_name,),
)
with self._db.transaction() as cursor:
try:
cursor.execute(
f"""--sql
SELECT {IMAGE_DTO_COLS} FROM images
WHERE image_name = ?;
""",
(image_name,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
except sqlite3.Error as e:
raise ImageRecordNotFoundException from e
result = cast(Optional[sqlite3.Row], cursor.fetchone())
except sqlite3.Error as e:
raise ImageRecordNotFoundException from e
if not result:
raise ImageRecordNotFoundException
@@ -46,17 +47,20 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
return deserialize_image_record(dict(result))
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT metadata FROM images
WHERE image_name = ?;
""",
(image_name,),
)
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
SELECT metadata FROM images
WHERE image_name = ?;
""",
(image_name,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
result = cast(Optional[sqlite3.Row], cursor.fetchone())
except sqlite3.Error as e:
raise ImageRecordNotFoundException from e
if not result:
raise ImageRecordNotFoundException
@@ -64,64 +68,60 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
as_dict = dict(result)
metadata_raw = cast(Optional[str], as_dict.get("metadata", None))
return MetadataFieldValidator.validate_json(metadata_raw) if metadata_raw is not None else None
except sqlite3.Error as e:
raise ImageRecordNotFoundException from e
def update(
self,
image_name: str,
changes: ImageRecordChanges,
) -> None:
try:
cursor = self._conn.cursor()
# Change the category of the image
if changes.image_category is not None:
cursor.execute(
"""--sql
UPDATE images
SET image_category = ?
WHERE image_name = ?;
""",
(changes.image_category, image_name),
)
with self._db.transaction() as cursor:
try:
# Change the category of the image
if changes.image_category is not None:
cursor.execute(
"""--sql
UPDATE images
SET image_category = ?
WHERE image_name = ?;
""",
(changes.image_category, image_name),
)
# Change the session associated with the image
if changes.session_id is not None:
cursor.execute(
"""--sql
UPDATE images
SET session_id = ?
WHERE image_name = ?;
""",
(changes.session_id, image_name),
)
# Change the session associated with the image
if changes.session_id is not None:
cursor.execute(
"""--sql
UPDATE images
SET session_id = ?
WHERE image_name = ?;
""",
(changes.session_id, image_name),
)
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
cursor.execute(
"""--sql
UPDATE images
SET is_intermediate = ?
WHERE image_name = ?;
""",
(changes.is_intermediate, image_name),
)
# Change the image's `is_intermediate`` flag
if changes.is_intermediate is not None:
cursor.execute(
"""--sql
UPDATE images
SET is_intermediate = ?
WHERE image_name = ?;
""",
(changes.is_intermediate, image_name),
)
# Change the image's `starred`` state
if changes.starred is not None:
cursor.execute(
"""--sql
UPDATE images
SET starred = ?
WHERE image_name = ?;
""",
(changes.starred, image_name),
)
# Change the image's `starred`` state
if changes.starred is not None:
cursor.execute(
"""--sql
UPDATE images
SET starred = ?
WHERE image_name = ?;
""",
(changes.starred, image_name),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
except sqlite3.Error as e:
raise ImageRecordSaveException from e
def get_many(
self,
@@ -135,170 +135,162 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageRecord]:
cursor = self._conn.cursor()
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
images_query = f"""--sql
SELECT {IMAGE_DTO_COLS}
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_conditions = ""
query_params: list[Union[int, str, bool]] = []
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
with self._db.transaction() as cursor:
# Manually build two queries - one for the count, one for the records
count_query = """--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
images_query = f"""--sql
SELECT {IMAGE_DTO_COLS}
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1
"""
query_params.append(is_intermediate)
query_conditions = ""
query_params: list[Union[int, str, bool]] = []
# board_id of "none" is reserved for images without a board
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
# Search term condition
if search_term:
query_conditions += """--sql
AND (
images.metadata LIKE ?
OR images.created_at LIKE ?
)
"""
query_params.append(f"%{search_term.lower()}%")
query_params.append(f"%{search_term.lower()}%")
if categories is not None:
# Convert the enum values to unique list of strings
category_strings = [c.value for c in set(categories)]
# Create the correct length of placeholders
placeholders = ",".join("?" * len(category_strings))
if starred_first:
query_pagination = f"""--sql
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
else:
query_pagination = f"""--sql
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
# Add the pagination parameters
images_params.extend([limit, offset])
# Unpack the included categories into the query params
for c in category_strings:
query_params.append(c)
# Build the list of images, deserializing each row
cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
"""
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
cursor.execute(count_query, count_params)
count = cast(int, cursor.fetchone()[0])
query_params.append(is_intermediate)
# board_id of "none" is reserved for images without a board
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
# Search term condition
if search_term:
query_conditions += """--sql
AND (
images.metadata LIKE ?
OR images.created_at LIKE ?
)
"""
query_params.append(f"%{search_term.lower()}%")
query_params.append(f"%{search_term.lower()}%")
if starred_first:
query_pagination = f"""--sql
ORDER BY images.starred DESC, images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
else:
query_pagination = f"""--sql
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
"""
# Final images query with pagination
images_query += query_conditions + query_pagination + ";"
# Add all the parameters
images_params = query_params.copy()
# Add the pagination parameters
images_params.extend([limit, offset])
# Build the list of images, deserializing each row
cursor.execute(images_query, images_params)
result = cast(list[sqlite3.Row], cursor.fetchall())
images = [deserialize_image_record(dict(r)) for r in result]
# Set up and execute the count query, without pagination
count_query += query_conditions + ";"
count_params = query_params.copy()
cursor.execute(count_query, count_params)
count = cast(int, cursor.fetchone()[0])
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
def delete(self, image_name: str) -> None:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
DELETE FROM images
WHERE image_name = ?;
""",
(image_name,),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
DELETE FROM images
WHERE image_name = ?;
""",
(image_name,),
)
except sqlite3.Error as e:
raise ImageRecordDeleteException from e
def delete_many(self, image_names: list[str]) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
try:
placeholders = ",".join("?" for _ in image_names)
placeholders = ",".join("?" for _ in image_names)
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Construct the SQLite query with the placeholders
query = f"DELETE FROM images WHERE image_name IN ({placeholders})"
# Execute the query with the list of IDs as parameters
cursor.execute(query, image_names)
# Execute the query with the list of IDs as parameters
cursor.execute(query, image_names)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
except sqlite3.Error as e:
raise ImageRecordDeleteException from e
def get_intermediates_count(self) -> int:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images
WHERE is_intermediate = TRUE;
"""
)
count = cast(int, cursor.fetchone()[0])
self._conn.commit()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT COUNT(*) FROM images
WHERE is_intermediate = TRUE;
"""
)
count = cast(int, cursor.fetchone()[0])
return count
def delete_intermediates(self) -> list[str]:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT image_name FROM images
WHERE is_intermediate = TRUE;
"""
)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
cursor.execute(
"""--sql
DELETE FROM images
WHERE is_intermediate = TRUE;
"""
)
self._conn.commit()
return image_names
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordDeleteException from e
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
SELECT image_name FROM images
WHERE is_intermediate = TRUE;
"""
)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [r[0] for r in result]
cursor.execute(
"""--sql
DELETE FROM images
WHERE is_intermediate = TRUE;
"""
)
except sqlite3.Error as e:
raise ImageRecordDeleteException from e
return image_names
def save(
self,
@@ -314,75 +306,165 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
node_id: Optional[str] = None,
metadata: Optional[str] = None,
) -> datetime:
try:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO images (
image_name,
image_origin,
image_category,
width,
height,
node_id,
session_id,
metadata,
is_intermediate,
starred,
has_workflow
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
image_origin.value,
image_category.value,
width,
height,
node_id,
session_id,
metadata,
is_intermediate,
starred,
has_workflow,
),
)
self._conn.commit()
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
INSERT OR IGNORE INTO images (
image_name,
image_origin,
image_category,
width,
height,
node_id,
session_id,
metadata,
is_intermediate,
starred,
has_workflow
)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);
""",
(
image_name,
image_origin.value,
image_category.value,
width,
height,
node_id,
session_id,
metadata,
is_intermediate,
starred,
has_workflow,
),
)
cursor.execute(
"""--sql
SELECT created_at
FROM images
WHERE image_name = ?;
""",
(image_name,),
)
cursor.execute(
"""--sql
SELECT created_at
FROM images
WHERE image_name = ?;
""",
(image_name,),
)
created_at = datetime.fromisoformat(cursor.fetchone()[0])
created_at = datetime.fromisoformat(cursor.fetchone()[0])
return created_at
except sqlite3.Error as e:
self._conn.rollback()
raise ImageRecordSaveException from e
except sqlite3.Error as e:
raise ImageRecordSaveException from e
return created_at
def get_most_recent_image_for_board(self, board_id: str) -> Optional[ImageRecord]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
AND images.is_intermediate = FALSE
ORDER BY images.starred DESC, images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT images.*
FROM images
JOIN board_images ON images.image_name = board_images.image_name
WHERE board_images.board_id = ?
AND images.is_intermediate = FALSE
ORDER BY images.starred DESC, images.created_at DESC
LIMIT 1;
""",
(board_id,),
)
result = cast(Optional[sqlite3.Row], cursor.fetchone())
result = cast(Optional[sqlite3.Row], cursor.fetchone())
if result is None:
return None
return deserialize_image_record(dict(result))
def get_image_names(
self,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> ImageNamesResult:
with self._db.transaction() as cursor:
# Build query conditions (reused for both starred count and image names queries)
query_conditions = ""
query_params: list[Union[int, str, bool]] = []
if image_origin is not None:
query_conditions += """--sql
AND images.image_origin = ?
"""
query_params.append(image_origin.value)
if categories is not None:
category_strings = [c.value for c in set(categories)]
placeholders = ",".join("?" * len(category_strings))
query_conditions += f"""--sql
AND images.image_category IN ( {placeholders} )
"""
for c in category_strings:
query_params.append(c)
if is_intermediate is not None:
query_conditions += """--sql
AND images.is_intermediate = ?
"""
query_params.append(is_intermediate)
if board_id == "none":
query_conditions += """--sql
AND board_images.board_id IS NULL
"""
elif board_id is not None:
query_conditions += """--sql
AND board_images.board_id = ?
"""
query_params.append(board_id)
if search_term:
query_conditions += """--sql
AND (
images.metadata LIKE ?
OR images.created_at LIKE ?
)
"""
query_params.append(f"%{search_term.lower()}%")
query_params.append(f"%{search_term.lower()}%")
# Get starred count if starred_first is enabled
starred_count = 0
if starred_first:
starred_count_query = f"""--sql
SELECT COUNT(*)
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE images.starred = TRUE AND (1=1{query_conditions})
"""
cursor.execute(starred_count_query, query_params)
starred_count = cast(int, cursor.fetchone()[0])
# Get all image names with proper ordering
if starred_first:
names_query = f"""--sql
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1{query_conditions}
ORDER BY images.starred DESC, images.created_at {order_dir.value}
"""
else:
names_query = f"""--sql
SELECT images.image_name
FROM images
LEFT JOIN board_images ON board_images.image_name = images.image_name
WHERE 1=1{query_conditions}
ORDER BY images.created_at {order_dir.value}
"""
cursor.execute(names_query, query_params)
result = cast(list[sqlite3.Row], cursor.fetchall())
image_names = [row[0] for row in result]
return ImageNamesResult(image_names=image_names, starred_count=starred_count, total_count=len(image_names))

View File

@@ -6,6 +6,7 @@ from PIL.Image import Image as PILImageType
from invokeai.app.invocations.fields import MetadataField
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageNamesResult,
ImageRecord,
ImageRecordChanges,
ResourceOrigin,
@@ -125,7 +126,7 @@ class ImageServiceABC(ABC):
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> OffsetPaginatedResults[ImageDTO]:
"""Gets a paginated list of image DTOs."""
"""Gets a paginated list of image DTOs with starred images first when starred_first=True."""
pass
@abstractmethod
@@ -147,3 +148,17 @@ class ImageServiceABC(ABC):
def delete_images_on_board(self, board_id: str):
"""Deletes all images on a board."""
pass
@abstractmethod
def get_image_names(
self,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> ImageNamesResult:
"""Gets ordered list of image names with metadata for optimistic updates."""
pass

View File

@@ -1,6 +1,6 @@
from typing import Optional
from pydantic import Field
from pydantic import BaseModel, Field
from invokeai.app.services.image_records.image_records_common import ImageRecord
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
@@ -39,3 +39,27 @@ def image_record_to_dto(
thumbnail_url=thumbnail_url,
board_id=board_id,
)
class ResultWithAffectedBoards(BaseModel):
affected_boards: list[str] = Field(description="The ids of boards affected by the delete operation")
class DeleteImagesResult(ResultWithAffectedBoards):
deleted_images: list[str] = Field(description="The names of the images that were deleted")
class StarredImagesResult(ResultWithAffectedBoards):
starred_images: list[str] = Field(description="The names of the images that were starred")
class UnstarredImagesResult(ResultWithAffectedBoards):
unstarred_images: list[str] = Field(description="The names of the images that were unstarred")
class AddImagesToBoardResult(ResultWithAffectedBoards):
added_images: list[str] = Field(description="The image names that were added to the board")
class RemoveImagesFromBoardResult(ResultWithAffectedBoards):
removed_images: list[str] = Field(description="The image names that were removed from their board")

View File

@@ -10,6 +10,7 @@ from invokeai.app.services.image_files.image_files_common import (
)
from invokeai.app.services.image_records.image_records_common import (
ImageCategory,
ImageNamesResult,
ImageRecord,
ImageRecordChanges,
ImageRecordDeleteException,
@@ -309,3 +310,27 @@ class ImageService(ImageServiceABC):
except Exception as e:
self.__invoker.services.logger.error("Problem getting intermediates count")
raise e
def get_image_names(
self,
starred_first: bool = True,
order_dir: SQLiteDirection = SQLiteDirection.Descending,
image_origin: Optional[ResourceOrigin] = None,
categories: Optional[list[ImageCategory]] = None,
is_intermediate: Optional[bool] = None,
board_id: Optional[str] = None,
search_term: Optional[str] = None,
) -> ImageNamesResult:
try:
return self.__invoker.services.image_records.get_image_names(
starred_first=starred_first,
order_dir=order_dir,
image_origin=image_origin,
categories=categories,
is_intermediate=is_intermediate,
board_id=board_id,
search_term=search_term,
)
except Exception as e:
self.__invoker.services.logger.error("Problem getting image names")
raise e

View File

@@ -51,6 +51,7 @@ from invokeai.backend.model_manager.metadata import (
from invokeai.backend.model_manager.metadata.metadata_base import HuggingFaceMetadata
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.model_manager.taxonomy import ModelRepoVariant, ModelSourceType
from invokeai.backend.model_manager.util.lora_metadata_extractor import apply_lora_metadata
from invokeai.backend.util import InvokeAILogger
from invokeai.backend.util.catch_sigint import catch_sigint
from invokeai.backend.util.devices import TorchDevice
@@ -667,6 +668,10 @@ class ModelInstallService(ModelInstallServiceBase):
info = info or self._probe(model_path, config)
# Apply LoRA metadata if applicable
model_images_path = self.app_config.models_path / "model_images"
apply_lora_metadata(info, model_path.resolve(), model_images_path)
model_path = model_path.resolve()
# Models in the Invoke-managed models dir should use relative paths.

View File

@@ -78,11 +78,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
self._db = db
self._logger = logger
@property
def db(self) -> SqliteDatabase:
"""Return the underlying database."""
return self._db
def add_model(self, config: AnyModelConfig) -> AnyModelConfig:
"""
Add a model to the database.
@@ -93,38 +88,33 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise DuplicateModelException and InvalidModelConfigException exceptions.
"""
try:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
INSERT INTO models (
id,
config
)
VALUES (?,?);
""",
(
config.key,
config.model_dump_json(),
),
)
self._db.conn.commit()
with self._db.transaction() as cursor:
try:
cursor.execute(
"""--sql
INSERT INTO models (
id,
config
)
VALUES (?,?);
""",
(
config.key,
config.model_dump_json(),
),
)
except sqlite3.IntegrityError as e:
self._db.conn.rollback()
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
except sqlite3.IntegrityError as e:
if "UNIQUE constraint failed" in str(e):
if "models.path" in str(e):
msg = f"A model with path '{config.path}' is already installed"
elif "models.name" in str(e):
msg = f"A model with name='{config.name}', type='{config.type}', base='{config.base}' is already installed"
else:
msg = f"A model with key '{config.key}' is already installed"
raise DuplicateModelException(msg) from e
else:
msg = f"A model with key '{config.key}' is already installed"
raise DuplicateModelException(msg) from e
else:
raise e
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
raise e
return self.get_model(config.key)
@@ -136,8 +126,7 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Can raise an UnknownModelException
"""
try:
cursor = self._db.conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE FROM models
@@ -147,22 +136,17 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
)
if cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
def update_model(self, key: str, changes: ModelRecordChanges) -> AnyModelConfig:
record = self.get_model(key)
with self._db.transaction() as cursor:
record = self.get_model(key)
# Model configs use pydantic's `validate_assignment`, so each change is validated by pydantic.
for field_name in changes.model_fields_set:
setattr(record, field_name, getattr(changes, field_name))
# Model configs use pydantic's `validate_assignment`, so each change is validated by pydantic.
for field_name in changes.model_fields_set:
setattr(record, field_name, getattr(changes, field_name))
json_serialized = record.model_dump_json()
json_serialized = record.model_dump_json()
try:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
UPDATE models
@@ -174,10 +158,6 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
)
if cursor.rowcount == 0:
raise UnknownModelException("model not found")
self._db.conn.commit()
except sqlite3.Error as e:
self._db.conn.rollback()
raise e
return self.get_model(key)
@@ -189,30 +169,30 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
Exceptions: UnknownModelException
"""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE id=?;
""",
(key,),
)
rows = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE id=?;
""",
(key,),
)
rows = cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
return model
def get_model_by_hash(self, hash: str) -> AnyModelConfig:
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
rows = cursor.fetchone()
if not rows:
raise UnknownModelException("model not found")
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
@@ -224,15 +204,15 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
:param key: Unique key for the model to be deleted
"""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
select count(*) FROM models
WHERE id=?;
""",
(key,),
)
count = cursor.fetchone()[0]
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
select count(*) FROM models
WHERE id=?;
""",
(key,),
)
count = cursor.fetchone()[0]
return count > 0
def search_by_attr(
@@ -255,43 +235,42 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
If none of the optional filters are passed, will return all
models in the database.
"""
with self._db.transaction() as cursor:
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
where_clause: list[str] = []
bindings: list[str] = []
if model_name:
where_clause.append("name=?")
bindings.append(model_name)
if base_model:
where_clause.append("base=?")
bindings.append(base_model)
if model_type:
where_clause.append("type=?")
bindings.append(model_type)
if model_format:
where_clause.append("format=?")
bindings.append(model_format)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
where_clause: list[str] = []
bindings: list[str] = []
if model_name:
where_clause.append("name=?")
bindings.append(model_name)
if base_model:
where_clause.append("base=?")
bindings.append(base_model)
if model_type:
where_clause.append("type=?")
bindings.append(model_type)
if model_format:
where_clause.append("format=?")
bindings.append(model_format)
where = f"WHERE {' AND '.join(where_clause)}" if where_clause else ""
cursor = self._db.conn.cursor()
cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
""",
tuple(bindings),
)
result = cursor.fetchall()
cursor.execute(
f"""--sql
SELECT config, strftime('%s',updated_at)
FROM models
{where}
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason;
""",
tuple(bindings),
)
result = cursor.fetchall()
# Parse the model configs.
results: list[AnyModelConfig] = []
@@ -313,69 +292,68 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
def search_by_path(self, path: Union[str, Path]) -> List[AnyModelConfig]:
"""Return models with the indicated path."""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE path=?;
""",
(str(path),),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
return results
def search_by_hash(self, hash: str) -> List[AnyModelConfig]:
"""Return models with the indicated hash."""
cursor = self._db.conn.cursor()
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT config, strftime('%s',updated_at) FROM models
WHERE hash=?;
""",
(hash,),
)
results = [ModelConfigFactory.make_config(json.loads(x[0]), timestamp=x[1]) for x in cursor.fetchall()]
return results
def list_models(
self, page: int = 0, per_page: int = 10, order_by: ModelRecordOrderBy = ModelRecordOrderBy.Default
) -> PaginatedResults[ModelSummary]:
"""Return a paginated summary listing of each model in the database."""
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
with self._db.transaction() as cursor:
assert isinstance(order_by, ModelRecordOrderBy)
ordering = {
ModelRecordOrderBy.Default: "type, base, name, format",
ModelRecordOrderBy.Type: "type",
ModelRecordOrderBy.Base: "base",
ModelRecordOrderBy.Name: "name",
ModelRecordOrderBy.Format: "format",
}
cursor = self._db.conn.cursor()
# Lock so that the database isn't updated while we're doing the two queries.
# query1: get the total number of model configs
cursor.execute(
"""--sql
select count(*) from models;
""",
(),
)
total = int(cursor.fetchone()[0])
# Lock so that the database isn't updated while we're doing the two queries.
# query1: get the total number of model configs
cursor.execute(
"""--sql
select count(*) from models;
""",
(),
)
total = int(cursor.fetchone()[0])
# query2: fetch key fields
cursor.execute(
f"""--sql
SELECT config
FROM models
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
""",
(
per_page,
page * per_page,
),
)
rows = cursor.fetchall()
# query2: fetch key fields
cursor.execute(
f"""--sql
SELECT config
FROM models
ORDER BY {ordering[order_by]} -- using ? to bind doesn't work here for some reason
LIMIT ?
OFFSET ?;
""",
(
per_page,
page * per_page,
),
)
rows = cursor.fetchall()
items = [ModelSummary.model_validate(dict(x)) for x in rows]
return PaginatedResults(page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items)

View File

@@ -1,5 +1,3 @@
import sqlite3
from invokeai.app.services.model_relationship_records.model_relationship_records_base import (
ModelRelationshipRecordStorageBase,
)
@@ -9,58 +7,49 @@ from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
class SqliteModelRelationshipRecordStorage(ModelRelationshipRecordStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def add_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
if model_key_1 == model_key_2:
raise ValueError("Cannot relate a model to itself.")
a, b = sorted([model_key_1, model_key_2])
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
if model_key_1 == model_key_2:
raise ValueError("Cannot relate a model to itself.")
a, b = sorted([model_key_1, model_key_2])
cursor.execute(
"INSERT OR IGNORE INTO model_relationships (model_key_1, model_key_2) VALUES (?, ?)",
(a, b),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def remove_model_relationship(self, model_key_1: str, model_key_2: str) -> None:
a, b = sorted([model_key_1, model_key_2])
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
a, b = sorted([model_key_1, model_key_2])
cursor.execute(
"DELETE FROM model_relationships WHERE model_key_1 = ? AND model_key_2 = ?",
(a, b),
)
self._conn.commit()
except sqlite3.Error as e:
self._conn.rollback()
raise e
def get_related_model_keys(self, model_key: str) -> list[str]:
cursor = self._conn.cursor()
cursor.execute(
"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 = ?
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 = ?
""",
(model_key, model_key),
)
return [row[0] for row in cursor.fetchall()]
with self._db.transaction() as cursor:
cursor.execute(
"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 = ?
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 = ?
""",
(model_key, model_key),
)
result = [row[0] for row in cursor.fetchall()]
return result
def get_related_model_keys_batch(self, model_keys: list[str]) -> list[str]:
cursor = self._conn.cursor()
key_list = ",".join("?" for _ in model_keys)
cursor.execute(
f"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 IN ({key_list})
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 IN ({key_list})
""",
model_keys + model_keys,
)
return [row[0] for row in cursor.fetchall()]
with self._db.transaction() as cursor:
key_list = ",".join("?" for _ in model_keys)
cursor.execute(
f"""
SELECT model_key_2 FROM model_relationships WHERE model_key_1 IN ({key_list})
UNION
SELECT model_key_1 FROM model_relationships WHERE model_key_2 IN ({key_list})
""",
model_keys + model_keys,
)
result = [row[0] for row in cursor.fetchall()]
return result

View File

@@ -10,6 +10,8 @@ from invokeai.app.services.session_queue.session_queue_common import (
CancelByDestinationResult,
CancelByQueueIDResult,
ClearResult,
DeleteAllExceptCurrentResult,
DeleteByDestinationResult,
EnqueueBatchResult,
IsEmptyResult,
IsFullResult,
@@ -17,7 +19,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
SessionQueueStatus,
)
from invokeai.app.services.shared.graph import GraphExecutionState
@@ -92,6 +93,11 @@ class SessionQueueBase(ABC):
"""Cancels a session queue item"""
pass
@abstractmethod
def delete_queue_item(self, item_id: int) -> None:
"""Deletes a session queue item"""
pass
@abstractmethod
def fail_queue_item(
self, item_id: int, error_type: str, error_message: str, error_traceback: str
@@ -109,6 +115,11 @@ class SessionQueueBase(ABC):
"""Cancels all queue items with the given batch destination"""
pass
@abstractmethod
def delete_by_destination(self, queue_id: str, destination: str) -> DeleteByDestinationResult:
"""Deletes all queue items with the given batch destination"""
pass
@abstractmethod
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
"""Cancels all queue items with matching queue ID"""
@@ -119,6 +130,11 @@ class SessionQueueBase(ABC):
"""Cancels all queue items except in-progress items"""
pass
@abstractmethod
def delete_all_except_current(self, queue_id: str) -> DeleteAllExceptCurrentResult:
"""Deletes all queue items except in-progress items"""
pass
@abstractmethod
def list_queue_items(
self,
@@ -127,10 +143,20 @@ class SessionQueueBase(ABC):
priority: int,
cursor: Optional[int] = None,
status: Optional[QUEUE_ITEM_STATUS] = None,
) -> CursorPaginatedResults[SessionQueueItemDTO]:
destination: Optional[str] = None,
) -> CursorPaginatedResults[SessionQueueItem]:
"""Gets a page of session queue items"""
pass
@abstractmethod
def list_all_queue_items(
self,
queue_id: str,
destination: Optional[str] = None,
) -> list[SessionQueueItem]:
"""Gets all queue items that match the given parameters"""
pass
@abstractmethod
def get_queue_item(self, item_id: int) -> SessionQueueItem:
"""Gets a session queue item by ID"""

View File

@@ -205,9 +205,10 @@ class FieldIdentifier(BaseModel):
kind: Literal["input", "output"] = Field(description="The kind of field")
node_id: str = Field(description="The ID of the node")
field_name: str = Field(description="The name of the field")
user_label: str | None = Field(description="The user label of the field, if any")
class SessionQueueItemWithoutGraph(BaseModel):
class SessionQueueItem(BaseModel):
"""Session queue item without the full graph. Used for serialization."""
item_id: int = Field(description="The identifier of the session queue item")
@@ -251,42 +252,7 @@ class SessionQueueItemWithoutGraph(BaseModel):
default=None,
description="The ID of the published workflow associated with this queue item",
)
api_input_fields: Optional[list[FieldIdentifier]] = Field(
default=None, description="The fields that were used as input to the API"
)
api_output_fields: Optional[list[FieldIdentifier]] = Field(
default=None, description="The nodes that were used as output from the API"
)
credits: Optional[float] = Field(default=None, description="The total credits used for this queue item")
@classmethod
def queue_item_dto_from_dict(cls, queue_item_dict: dict) -> "SessionQueueItemDTO":
# must parse these manually
queue_item_dict["field_values"] = get_field_values(queue_item_dict)
return SessionQueueItemDTO(**queue_item_dict)
model_config = ConfigDict(
json_schema_extra={
"required": [
"item_id",
"status",
"batch_id",
"queue_id",
"session_id",
"priority",
"session_id",
"created_at",
"updated_at",
]
}
)
class SessionQueueItemDTO(SessionQueueItemWithoutGraph):
pass
class SessionQueueItem(SessionQueueItemWithoutGraph):
session: GraphExecutionState = Field(description="The fully-populated session to be executed")
workflow: Optional[WorkflowWithoutID] = Field(
default=None, description="The workflow associated with this queue item"
@@ -366,6 +332,7 @@ class EnqueueBatchResult(BaseModel):
requested: int = Field(description="The total number of queue items requested to be enqueued")
batch: Batch = Field(description="The batch that was enqueued")
priority: int = Field(description="The priority of the enqueued batch")
item_ids: list[int] = Field(description="The IDs of the queue items that were enqueued")
class RetryItemsResult(BaseModel):
@@ -397,6 +364,18 @@ class CancelByDestinationResult(CancelByBatchIDsResult):
pass
class DeleteByDestinationResult(BaseModel):
"""Result of deleting by a destination"""
deleted: int = Field(..., description="Number of queue items deleted")
class DeleteAllExceptCurrentResult(DeleteByDestinationResult):
"""Result of deleting all except current"""
pass
class CancelByQueueIDResult(CancelByBatchIDsResult):
"""Result of canceling by queue id"""

View File

@@ -17,6 +17,8 @@ from invokeai.app.services.session_queue.session_queue_common import (
CancelByDestinationResult,
CancelByQueueIDResult,
ClearResult,
DeleteAllExceptCurrentResult,
DeleteByDestinationResult,
EnqueueBatchResult,
IsEmptyResult,
IsFullResult,
@@ -24,7 +26,6 @@ from invokeai.app.services.session_queue.session_queue_common import (
RetryItemsResult,
SessionQueueCountsByDestination,
SessionQueueItem,
SessionQueueItemDTO,
SessionQueueItemNotFoundError,
SessionQueueStatus,
ValueToInsertTuple,
@@ -46,22 +47,17 @@ class SqliteSessionQueue(SessionQueueBase):
clear_result = self.clear(DEFAULT_QUEUE_ID)
if clear_result.deleted > 0:
self.__invoker.services.logger.info(f"Cleared all {clear_result.deleted} queue items")
else:
prune_result = self.prune(DEFAULT_QUEUE_ID)
if prune_result.deleted > 0:
self.__invoker.services.logger.info(f"Pruned {prune_result.deleted} finished queue items")
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def _set_in_progress_to_canceled(self) -> None:
"""
Sets all in_progress queue items to canceled. Run on app startup, not associated with any queue.
This is necessary because the invoker may have been killed while processing a queue item.
"""
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
UPDATE session_queue
@@ -69,99 +65,104 @@ class SqliteSessionQueue(SessionQueueBase):
WHERE status = 'in_progress';
"""
)
except Exception:
self._conn.rollback()
raise
def _get_current_queue_size(self, queue_id: str) -> int:
"""Gets the current number of pending queue items"""
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
""",
(queue_id,),
)
return cast(int, cursor.fetchone()[0])
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
""",
(queue_id,),
)
count = cast(int, cursor.fetchone()[0])
return count
def _get_highest_priority(self, queue_id: str) -> int:
"""Gets the highest priority value in the queue"""
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT MAX(priority)
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
""",
(queue_id,),
)
return cast(Union[int, None], cursor.fetchone()[0]) or 0
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT MAX(priority)
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
""",
(queue_id,),
)
priority = cast(Union[int, None], cursor.fetchone()[0]) or 0
return priority
async def enqueue_batch(self, queue_id: str, batch: Batch, prepend: bool) -> EnqueueBatchResult:
try:
# TODO: how does this work in a multi-user scenario?
current_queue_size = self._get_current_queue_size(queue_id)
max_queue_size = self.__invoker.services.configuration.max_queue_size
max_new_queue_items = max_queue_size - current_queue_size
current_queue_size = self._get_current_queue_size(queue_id)
max_queue_size = self.__invoker.services.configuration.max_queue_size
max_new_queue_items = max_queue_size - current_queue_size
priority = 0
if prepend:
priority = self._get_highest_priority(queue_id) + 1
priority = 0
if prepend:
priority = self._get_highest_priority(queue_id) + 1
requested_count = await asyncio.to_thread(
calc_session_count,
batch=batch,
)
values_to_insert = await asyncio.to_thread(
prepare_values_to_insert,
queue_id=queue_id,
batch=batch,
priority=priority,
max_new_queue_items=max_new_queue_items,
)
enqueued_count = len(values_to_insert)
requested_count = await asyncio.to_thread(
calc_session_count,
batch=batch,
)
values_to_insert = await asyncio.to_thread(
prepare_values_to_insert,
queue_id=queue_id,
batch=batch,
priority=priority,
max_new_queue_items=max_new_queue_items,
)
enqueued_count = len(values_to_insert)
with self._conn:
cursor = self._conn.cursor()
cursor.executemany(
"""--sql
with self._db.transaction() as cursor:
cursor.executemany(
"""--sql
INSERT INTO session_queue (queue_id, session, session_id, batch_id, field_values, priority, workflow, origin, destination, retried_from_item_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
values_to_insert,
)
except Exception:
raise
values_to_insert,
)
cursor.execute(
"""--sql
SELECT item_id
FROM session_queue
WHERE batch_id = ?
ORDER BY item_id DESC;
""",
(batch.batch_id,),
)
item_ids = [row[0] for row in cursor.fetchall()]
enqueue_result = EnqueueBatchResult(
queue_id=queue_id,
requested=requested_count,
enqueued=enqueued_count,
batch=batch,
priority=priority,
item_ids=item_ids,
)
self.__invoker.services.events.emit_batch_enqueued(enqueue_result)
return enqueue_result
def dequeue(self) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE status = 'pending'
ORDER BY
priority DESC,
item_id ASC
LIMIT 1
"""
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE status = 'pending'
ORDER BY
priority DESC,
item_id ASC
LIMIT 1
"""
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
if result is None:
return None
queue_item = SessionQueueItem.queue_item_from_dict(dict(result))
@@ -169,40 +170,40 @@ class SqliteSessionQueue(SessionQueueBase):
return queue_item
def get_next(self, queue_id: str) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
ORDER BY
priority DESC,
created_at ASC
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'pending'
ORDER BY
priority DESC,
created_at ASC
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
if result is None:
return None
return SessionQueueItem.queue_item_from_dict(dict(result))
def get_current(self, queue_id: str) -> Optional[SessionQueueItem]:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'in_progress'
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT *
FROM session_queue
WHERE
queue_id = ?
AND status = 'in_progress'
LIMIT 1
""",
(queue_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
if result is None:
return None
return SessionQueueItem.queue_item_from_dict(dict(result))
@@ -215,8 +216,23 @@ class SqliteSessionQueue(SessionQueueBase):
error_message: Optional[str] = None,
error_traceback: Optional[str] = None,
) -> SessionQueueItem:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT status FROM session_queue WHERE item_id = ?
""",
(item_id,),
)
row = cursor.fetchone()
if row is None:
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
current_status = row[0]
# Only update if not already finished (completed, failed or canceled)
if current_status in ("completed", "failed", "canceled"):
return self.get_queue_item(item_id)
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
UPDATE session_queue
@@ -225,10 +241,7 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(status, error_type, error_message, error_traceback, item_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
queue_item = self.get_queue_item(item_id)
batch_status = self.get_batch_status(queue_id=queue_item.queue_id, batch_id=queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_item.queue_id)
@@ -236,35 +249,34 @@ class SqliteSessionQueue(SessionQueueBase):
return queue_item
def is_empty(self, queue_id: str) -> IsEmptyResult:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
is_empty = cast(int, cursor.fetchone()[0]) == 0
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
is_empty = cast(int, cursor.fetchone()[0]) == 0
return IsEmptyResult(is_empty=is_empty)
def is_full(self, queue_id: str) -> IsFullResult:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
max_queue_size = self.__invoker.services.configuration.max_queue_size
is_full = cast(int, cursor.fetchone()[0]) >= max_queue_size
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT count(*)
FROM session_queue
WHERE queue_id = ?
""",
(queue_id,),
)
max_queue_size = self.__invoker.services.configuration.max_queue_size
is_full = cast(int, cursor.fetchone()[0]) >= max_queue_size
return IsFullResult(is_full=is_full)
def clear(self, queue_id: str) -> ClearResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT COUNT(*)
@@ -282,24 +294,19 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
self.__invoker.services.events.emit_queue_cleared(queue_id)
return ClearResult(deleted=count)
def prune(self, queue_id: str) -> PruneResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
where = """--sql
WHERE
queue_id = ?
AND (
queue_id = ?
AND (
status = 'completed'
OR status = 'failed'
OR status = 'canceled'
)
)
"""
cursor.execute(
f"""--sql
@@ -318,16 +325,28 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return PruneResult(deleted=count)
def cancel_queue_item(self, item_id: int) -> SessionQueueItem:
queue_item = self._set_queue_item_status(item_id=item_id, status="canceled")
return queue_item
def delete_queue_item(self, item_id: int) -> None:
"""Deletes a session queue item"""
try:
self.cancel_queue_item(item_id)
except SessionQueueItemNotFoundError:
pass
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE
FROM session_queue
WHERE item_id = ?
""",
(item_id,),
)
def complete_queue_item(self, item_id: int) -> SessionQueueItem:
queue_item = self._set_queue_item_status(item_id=item_id, status="completed")
return queue_item
@@ -349,8 +368,7 @@ class SqliteSessionQueue(SessionQueueBase):
return queue_item
def cancel_by_batch_ids(self, queue_id: str, batch_ids: list[str]) -> CancelByBatchIDsResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
current_queue_item = self.get_current(queue_id)
placeholders = ", ".join(["?" for _ in batch_ids])
where = f"""--sql
@@ -360,6 +378,8 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
-- We will cancel the current item separately below - skip it here
AND status != 'in_progress'
"""
params = [queue_id] + batch_ids
cursor.execute(
@@ -379,17 +399,14 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
self._conn.commit()
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self._conn.rollback()
raise
if current_queue_item is not None and current_queue_item.batch_id in batch_ids:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
return CancelByBatchIDsResult(canceled=count)
def cancel_by_destination(self, queue_id: str, destination: str) -> CancelByDestinationResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
current_queue_item = self.get_current(queue_id)
where = """--sql
WHERE
@@ -398,6 +415,8 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
-- We will cancel the current item separately below - skip it here
AND status != 'in_progress'
"""
params = (queue_id, destination)
cursor.execute(
@@ -417,17 +436,67 @@ class SqliteSessionQueue(SessionQueueBase):
""",
params,
)
self._conn.commit()
if current_queue_item is not None and current_queue_item.destination == destination:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
except Exception:
self._conn.rollback()
raise
if current_queue_item is not None and current_queue_item.destination == destination:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
return CancelByDestinationResult(canceled=count)
def delete_by_destination(self, queue_id: str, destination: str) -> DeleteByDestinationResult:
with self._db.transaction() as cursor:
current_queue_item = self.get_current(queue_id)
if current_queue_item is not None and current_queue_item.destination == destination:
self.cancel_queue_item(current_queue_item.item_id)
params = (queue_id, destination)
cursor.execute(
"""--sql
SELECT COUNT(*)
FROM session_queue
WHERE
queue_id = ?
AND destination = ?;
""",
params,
)
count = cursor.fetchone()[0]
cursor.execute(
"""--sql
DELETE
FROM session_queue
WHERE
queue_id = ?
AND destination = ?;
""",
params,
)
return DeleteByDestinationResult(deleted=count)
def delete_all_except_current(self, queue_id: str) -> DeleteAllExceptCurrentResult:
with self._db.transaction() as cursor:
where = """--sql
WHERE
queue_id == ?
AND status == 'pending'
"""
cursor.execute(
f"""--sql
SELECT COUNT(*)
FROM session_queue
{where};
""",
(queue_id,),
)
count = cursor.fetchone()[0]
cursor.execute(
f"""--sql
DELETE
FROM session_queue
{where};
""",
(queue_id,),
)
return DeleteAllExceptCurrentResult(deleted=count)
def cancel_by_queue_id(self, queue_id: str) -> CancelByQueueIDResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
current_queue_item = self.get_current(queue_id)
where = """--sql
WHERE
@@ -435,6 +504,8 @@ class SqliteSessionQueue(SessionQueueBase):
AND status != 'canceled'
AND status != 'completed'
AND status != 'failed'
-- We will cancel the current item separately below - skip it here
AND status != 'in_progress'
"""
params = [queue_id]
cursor.execute(
@@ -454,21 +525,13 @@ class SqliteSessionQueue(SessionQueueBase):
""",
tuple(params),
)
self._conn.commit()
if current_queue_item is not None and current_queue_item.queue_id == queue_id:
batch_status = self.get_batch_status(queue_id=queue_id, batch_id=current_queue_item.batch_id)
queue_status = self.get_queue_status(queue_id=queue_id)
self.__invoker.services.events.emit_queue_item_status_changed(
current_queue_item, batch_status, queue_status
)
except Exception:
self._conn.rollback()
raise
if current_queue_item is not None and current_queue_item.queue_id == queue_id:
self._set_queue_item_status(current_queue_item.item_id, "canceled")
return CancelByQueueIDResult(canceled=count)
def cancel_all_except_current(self, queue_id: str) -> CancelAllExceptCurrentResult:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
where = """--sql
WHERE
queue_id == ?
@@ -491,30 +554,25 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(queue_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return CancelAllExceptCurrentResult(canceled=count)
def get_queue_item(self, item_id: int) -> SessionQueueItem:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT * FROM session_queue
WHERE
item_id = ?
""",
(item_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT * FROM session_queue
WHERE
item_id = ?
""",
(item_id,),
)
result = cast(Union[sqlite3.Row, None], cursor.fetchone())
if result is None:
raise SessionQueueItemNotFoundError(f"No queue item with id {item_id}")
return SessionQueueItem.queue_item_from_dict(dict(result))
def set_queue_item_session(self, item_id: int, session: GraphExecutionState) -> SessionQueueItem:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
# Use exclude_none so we don't end up with a bunch of nulls in the graph - this can cause validation errors
# when the graph is loaded. Graph execution occurs purely in memory - the session saved here is not referenced
# during execution.
@@ -527,10 +585,6 @@ class SqliteSessionQueue(SessionQueueBase):
""",
(session_json, item_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return self.get_queue_item(item_id)
def list_queue_items(
@@ -540,53 +594,45 @@ class SqliteSessionQueue(SessionQueueBase):
priority: int,
cursor: Optional[int] = None,
status: Optional[QUEUE_ITEM_STATUS] = None,
) -> CursorPaginatedResults[SessionQueueItemDTO]:
cursor_ = self._conn.cursor()
item_id = cursor
query = """--sql
SELECT item_id,
status,
priority,
field_values,
error_type,
error_message,
error_traceback,
created_at,
updated_at,
completed_at,
started_at,
session_id,
batch_id,
queue_id,
origin,
destination
FROM session_queue
WHERE queue_id = ?
"""
params: list[Union[str, int]] = [queue_id]
if status is not None:
query += """--sql
AND status = ?
"""
params.append(status)
if item_id is not None:
query += """--sql
AND (priority < ?) OR (priority = ? AND item_id > ?)
"""
params.extend([priority, priority, item_id])
query += """--sql
ORDER BY
priority DESC,
item_id ASC
LIMIT ?
destination: Optional[str] = None,
) -> CursorPaginatedResults[SessionQueueItem]:
with self._db.transaction() as cursor_:
item_id = cursor
query = """--sql
SELECT *
FROM session_queue
WHERE queue_id = ?
"""
params.append(limit + 1)
cursor_.execute(query, params)
results = cast(list[sqlite3.Row], cursor_.fetchall())
items = [SessionQueueItemDTO.queue_item_dto_from_dict(dict(result)) for result in results]
params: list[Union[str, int]] = [queue_id]
if status is not None:
query += """--sql
AND status = ?
"""
params.append(status)
if destination is not None:
query += """---sql
AND destination = ?
"""
params.append(destination)
if item_id is not None:
query += """--sql
AND (priority < ?) OR (priority = ? AND item_id > ?)
"""
params.extend([priority, priority, item_id])
query += """--sql
ORDER BY
priority DESC,
item_id ASC
LIMIT ?
"""
params.append(limit + 1)
cursor_.execute(query, params)
results = cast(list[sqlite3.Row], cursor_.fetchall())
items = [SessionQueueItem.queue_item_from_dict(dict(result)) for result in results]
has_more = False
if len(items) > limit:
# remove the extra item
@@ -594,21 +640,52 @@ class SqliteSessionQueue(SessionQueueBase):
has_more = True
return CursorPaginatedResults(items=items, limit=limit, has_more=has_more)
def list_all_queue_items(
self,
queue_id: str,
destination: Optional[str] = None,
) -> list[SessionQueueItem]:
"""Gets all queue items that match the given parameters"""
with self._db.transaction() as cursor:
query = """--sql
SELECT *
FROM session_queue
WHERE queue_id = ?
"""
params: list[Union[str, int]] = [queue_id]
if destination is not None:
query += """---sql
AND destination = ?
"""
params.append(destination)
query += """--sql
ORDER BY
priority DESC,
item_id ASC
;
"""
cursor.execute(query, params)
results = cast(list[sqlite3.Row], cursor.fetchall())
items = [SessionQueueItem.queue_item_from_dict(dict(result)) for result in results]
return items
def get_queue_status(self, queue_id: str) -> SessionQueueStatus:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
GROUP BY status
""",
(queue_id,),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
GROUP BY status
""",
(queue_id,),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
current_item = self.get_current(queue_id=queue_id)
total = sum(row[1] for row in counts_result)
total = sum(row[1] or 0 for row in counts_result)
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
return SessionQueueStatus(
queue_id=queue_id,
@@ -624,20 +701,20 @@ class SqliteSessionQueue(SessionQueueBase):
)
def get_batch_status(self, queue_id: str, batch_id: str) -> BatchStatus:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
AND batch_id = ?
GROUP BY status
""",
(queue_id, batch_id),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
total = sum(row[1] for row in result)
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT status, count(*), origin, destination
FROM session_queue
WHERE
queue_id = ?
AND batch_id = ?
GROUP BY status
""",
(queue_id, batch_id),
)
result = cast(list[sqlite3.Row], cursor.fetchall())
total = sum(row[1] or 0 for row in result)
counts: dict[str, int] = {row[0]: row[1] for row in result}
origin = result[0]["origin"] if result else None
destination = result[0]["destination"] if result else None
@@ -656,20 +733,20 @@ class SqliteSessionQueue(SessionQueueBase):
)
def get_counts_by_destination(self, queue_id: str, destination: str) -> SessionQueueCountsByDestination:
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
AND destination = ?
GROUP BY status
""",
(queue_id, destination),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT status, count(*)
FROM session_queue
WHERE queue_id = ?
AND destination = ?
GROUP BY status
""",
(queue_id, destination),
)
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
total = sum(row[1] for row in counts_result)
total = sum(row[1] or 0 for row in counts_result)
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
return SessionQueueCountsByDestination(
@@ -685,8 +762,7 @@ class SqliteSessionQueue(SessionQueueBase):
def retry_items_by_id(self, queue_id: str, item_ids: list[int]) -> RetryItemsResult:
"""Retries the given queue items"""
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
values_to_insert: list[ValueToInsertTuple] = []
retried_item_ids: list[int] = []
@@ -737,10 +813,6 @@ class SqliteSessionQueue(SessionQueueBase):
values_to_insert,
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
retry_result = RetryItemsResult(
queue_id=queue_id,
retried_item_ids=retried_item_ids,

View File

@@ -2,11 +2,12 @@
import copy
import itertools
from typing import Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
from typing import Any, Optional, TypeVar, Union, get_args, get_origin
import networkx as nx
from pydantic import (
BaseModel,
ConfigDict,
GetCoreSchemaHandler,
GetJsonSchemaHandler,
ValidationError,
@@ -57,17 +58,32 @@ class Edge(BaseModel):
def get_output_field_type(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_outputs = get_type_hints(node_type.get_output_annotation())
node_output_field = node_outputs.get(field) or None
return node_output_field
# TODO(psyche): This is awkward - if field_info is None, it means the field is not defined in the output, which
# really should raise. The consumers of this utility expect it to never raise, and return None instead. Fixing this
# would require some fairly significant changes and I don't want risk breaking anything.
try:
invocation_class = type(node)
invocation_output_class = invocation_class.get_output_annotation()
field_info = invocation_output_class.model_fields.get(field)
assert field_info is not None, f"Output field '{field}' not found in {invocation_output_class.get_type()}"
output_field_type = field_info.annotation
return output_field_type
except Exception:
return None
def get_input_field_type(node: BaseInvocation, field: str) -> Any:
node_type = type(node)
node_inputs = get_type_hints(node_type)
node_input_field = node_inputs.get(field) or None
return node_input_field
# TODO(psyche): This is awkward - if field_info is None, it means the field is not defined in the output, which
# really should raise. The consumers of this utility expect it to never raise, and return None instead. Fixing this
# would require some fairly significant changes and I don't want risk breaking anything.
try:
invocation_class = type(node)
field_info = invocation_class.model_fields.get(field)
assert field_info is not None, f"Input field '{field}' not found in {invocation_class.get_type()}"
input_field_type = field_info.annotation
return input_field_type
except Exception:
return None
def is_union_subtype(t1, t2):
@@ -787,6 +803,22 @@ class GraphExecutionState(BaseModel):
default_factory=dict,
)
model_config = ConfigDict(
json_schema_extra={
"required": [
"id",
"graph",
"execution_graph",
"executed",
"executed_history",
"results",
"errors",
"prepared_source_mapping",
"source_prepared_mapping",
]
}
)
@field_validator("graph")
def graph_is_valid(cls, v: Graph):
"""Validates that the graph is valid"""
@@ -975,10 +1007,11 @@ class GraphExecutionState(BaseModel):
new_node_ids = []
if isinstance(next_node, CollectInvocation):
# Collapse all iterator input mappings and create a single execution node for the collect invocation
all_iteration_mappings = list(
itertools.chain(*(((s, p) for p in self.source_prepared_mapping[s]) for s in next_node_parents))
)
# all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings)))
all_iteration_mappings = []
for source_node_id in next_node_parents:
prepared_nodes = self.source_prepared_mapping[source_node_id]
all_iteration_mappings.extend([(source_node_id, p) for p in prepared_nodes])
create_results = self._create_execution_node(next_node_id, all_iteration_mappings)
if create_results is not None:
new_node_ids.extend(create_results)

View File

@@ -1,4 +1,7 @@
import sqlite3
import threading
from collections.abc import Generator
from contextlib import contextmanager
from logging import Logger
from pathlib import Path
@@ -26,46 +29,65 @@ class SqliteDatabase:
def __init__(self, db_path: Path | None, logger: Logger, verbose: bool = False) -> None:
"""Initializes the database. This is used internally by the class constructor."""
self.logger = logger
self.db_path = db_path
self.verbose = verbose
self._logger = logger
self._db_path = db_path
self._verbose = verbose
self._lock = threading.RLock()
if not self.db_path:
if not self._db_path:
logger.info("Initializing in-memory database")
else:
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self.logger.info(f"Initializing database at {self.db_path}")
self._db_path.parent.mkdir(parents=True, exist_ok=True)
self._logger.info(f"Initializing database at {self._db_path}")
self.conn = sqlite3.connect(database=self.db_path or sqlite_memory, check_same_thread=False)
self.conn.row_factory = sqlite3.Row
self._conn = sqlite3.connect(database=self._db_path or sqlite_memory, check_same_thread=False)
self._conn.row_factory = sqlite3.Row
if self.verbose:
self.conn.set_trace_callback(self.logger.debug)
if self._verbose:
self._conn.set_trace_callback(self._logger.debug)
# Enable foreign key constraints
self.conn.execute("PRAGMA foreign_keys = ON;")
self._conn.execute("PRAGMA foreign_keys = ON;")
# Enable Write-Ahead Logging (WAL) mode for better concurrency
self.conn.execute("PRAGMA journal_mode = WAL;")
self._conn.execute("PRAGMA journal_mode = WAL;")
# Set a busy timeout to prevent database lockups during writes
self.conn.execute("PRAGMA busy_timeout = 5000;") # 5 seconds
self._conn.execute("PRAGMA busy_timeout = 5000;") # 5 seconds
def clean(self) -> None:
"""
Cleans the database by running the VACUUM command, reporting on the freed space.
"""
# No need to clean in-memory database
if not self.db_path:
if not self._db_path:
return
try:
initial_db_size = Path(self.db_path).stat().st_size
self.conn.execute("VACUUM;")
self.conn.commit()
final_db_size = Path(self.db_path).stat().st_size
freed_space_in_mb = round((initial_db_size - final_db_size) / 1024 / 1024, 2)
if freed_space_in_mb > 0:
self.logger.info(f"Cleaned database (freed {freed_space_in_mb}MB)")
with self._conn as conn:
initial_db_size = Path(self._db_path).stat().st_size
conn.execute("VACUUM;")
conn.commit()
final_db_size = Path(self._db_path).stat().st_size
freed_space_in_mb = round((initial_db_size - final_db_size) / 1024 / 1024, 2)
if freed_space_in_mb > 0:
self._logger.info(f"Cleaned database (freed {freed_space_in_mb}MB)")
except Exception as e:
self.logger.error(f"Error cleaning database: {e}")
self._logger.error(f"Error cleaning database: {e}")
raise
@contextmanager
def transaction(self) -> Generator[sqlite3.Cursor, None, None]:
"""
Thread-safe context manager for DB work.
Acquires the RLock, yields a Cursor, then commits or rolls back.
"""
with self._lock:
cursor = self._conn.cursor()
try:
yield cursor
self._conn.commit()
except:
self._conn.rollback()
raise
finally:
cursor.close()

View File

@@ -32,7 +32,7 @@ class SqliteMigrator:
def __init__(self, db: SqliteDatabase) -> None:
self._db = db
self._logger = db.logger
self._logger = db._logger
self._migration_set = MigrationSet()
self._backup_path: Optional[Path] = None
@@ -45,7 +45,7 @@ class SqliteMigrator:
"""Migrates the database to the latest version."""
# This throws if there is a problem.
self._migration_set.validate_migration_chain()
cursor = self._db.conn.cursor()
cursor = self._db._conn.cursor()
self._create_migrations_table(cursor=cursor)
if self._migration_set.count == 0:
@@ -59,13 +59,13 @@ class SqliteMigrator:
self._logger.info("Database update needed")
# Make a backup of the db if it needs to be updated and is a file db
if self._db.db_path is not None:
if self._db._db_path is not None:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
self._backup_path = self._db.db_path.parent / f"{self._db.db_path.stem}_backup_{timestamp}.db"
self._backup_path = self._db._db_path.parent / f"{self._db._db_path.stem}_backup_{timestamp}.db"
self._logger.info(f"Backing up database to {str(self._backup_path)}")
# Use SQLite to do the backup
with closing(sqlite3.connect(self._backup_path)) as backup_conn:
self._db.conn.backup(backup_conn)
self._db._conn.backup(backup_conn)
else:
self._logger.info("Using in-memory database, no backup needed")
@@ -81,7 +81,7 @@ class SqliteMigrator:
try:
# Using sqlite3.Connection as a context manager commits a the transaction on exit, or rolls it back if an
# exception is raised.
with self._db.conn as conn:
with self._db._conn as conn:
cursor = conn.cursor()
if self._get_current_version(cursor) != migration.from_version:
raise MigrationError(

View File

@@ -17,7 +17,7 @@ from invokeai.app.util.misc import uuid_string
class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
@@ -25,24 +25,23 @@ class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
def get(self, style_preset_id: str) -> StylePresetRecordDTO:
"""Gets a style preset by ID."""
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT *
FROM style_presets
WHERE id = ?;
""",
(style_preset_id,),
)
row = cursor.fetchone()
if row is None:
raise StylePresetNotFoundError(f"Style preset with id {style_preset_id} not found")
return StylePresetRecordDTO.from_dict(dict(row))
def create(self, style_preset: StylePresetWithoutId) -> StylePresetRecordDTO:
style_preset_id = uuid_string()
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
INSERT OR IGNORE INTO style_presets (
@@ -60,16 +59,11 @@ class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return self.get(style_preset_id)
def create_many(self, style_presets: list[StylePresetWithoutId]) -> None:
style_preset_ids = []
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
for style_preset in style_presets:
style_preset_id = uuid_string()
style_preset_ids.append(style_preset_id)
@@ -90,16 +84,11 @@ class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
style_preset.type,
),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return None
def update(self, style_preset_id: str, changes: StylePresetChanges) -> StylePresetRecordDTO:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
# Change the name of a style preset
if changes.name is not None:
cursor.execute(
@@ -122,15 +111,10 @@ class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
(changes.preset_data.model_dump_json(), style_preset_id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return self.get(style_preset_id)
def delete(self, style_preset_id: str) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE from style_presets
@@ -138,51 +122,41 @@ class SqliteStylePresetRecordsStorage(StylePresetRecordsStorageBase):
""",
(style_preset_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return None
def get_many(self, type: PresetType | None = None) -> list[StylePresetRecordDTO]:
main_query = """
SELECT
*
FROM style_presets
"""
with self._db.transaction() as cursor:
main_query = """
SELECT
*
FROM style_presets
"""
if type is not None:
main_query += "WHERE type = ? "
if type is not None:
main_query += "WHERE type = ? "
main_query += "ORDER BY LOWER(name) ASC"
main_query += "ORDER BY LOWER(name) ASC"
cursor = self._conn.cursor()
if type is not None:
cursor.execute(main_query, (type,))
else:
cursor.execute(main_query)
if type is not None:
cursor.execute(main_query, (type,))
else:
cursor.execute(main_query)
rows = cursor.fetchall()
rows = cursor.fetchall()
style_presets = [StylePresetRecordDTO.from_dict(dict(row)) for row in rows]
return style_presets
def _sync_default_style_presets(self) -> None:
"""Syncs default style presets to the database. Internal use only."""
# First delete all existing default style presets
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
# First delete all existing default style presets
cursor.execute(
"""--sql
DELETE FROM style_presets
WHERE type = "default";
"""
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
# Next, parse and create the default style presets
with open(Path(__file__).parent / Path("default_style_presets.json"), "r") as file:
presets = json.load(file)

View File

@@ -25,7 +25,7 @@ SQL_TIME_FORMAT = "%Y-%m-%d %H:%M:%f"
class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
def __init__(self, db: SqliteDatabase) -> None:
super().__init__()
self._conn = db.conn
self._db = db
def start(self, invoker: Invoker) -> None:
self._invoker = invoker
@@ -33,16 +33,16 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
def get(self, workflow_id: str) -> WorkflowRecordDTO:
"""Gets a workflow by ID. Updates the opened_at column."""
cursor = self._conn.cursor()
cursor.execute(
"""--sql
SELECT workflow_id, workflow, name, created_at, updated_at, opened_at
FROM workflow_library
WHERE workflow_id = ?;
""",
(workflow_id,),
)
row = cursor.fetchone()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
SELECT workflow_id, workflow, name, created_at, updated_at, opened_at
FROM workflow_library
WHERE workflow_id = ?;
""",
(workflow_id,),
)
row = cursor.fetchone()
if row is None:
raise WorkflowNotFoundError(f"Workflow with id {workflow_id} not found")
return WorkflowRecordDTO.from_dict(dict(row))
@@ -51,9 +51,8 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
if workflow.meta.category is WorkflowCategory.Default:
raise ValueError("Default workflows cannot be created via this method")
try:
with self._db.transaction() as cursor:
workflow_with_id = Workflow(**workflow.model_dump(), id=uuid_string())
cursor = self._conn.cursor()
cursor.execute(
"""--sql
INSERT OR IGNORE INTO workflow_library (
@@ -64,18 +63,13 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
""",
(workflow_with_id.id, workflow_with_id.model_dump_json()),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return self.get(workflow_with_id.id)
def update(self, workflow: Workflow) -> WorkflowRecordDTO:
if workflow.meta.category is WorkflowCategory.Default:
raise ValueError("Default workflows cannot be updated")
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
UPDATE workflow_library
@@ -84,18 +78,13 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
""",
(workflow.model_dump_json(), workflow.id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return self.get(workflow.id)
def delete(self, workflow_id: str) -> None:
if self.get(workflow_id).workflow.meta.category is WorkflowCategory.Default:
raise ValueError("Default workflows cannot be deleted")
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
"""--sql
DELETE from workflow_library
@@ -103,10 +92,6 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
""",
(workflow_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
return None
def get_many(
@@ -121,108 +106,108 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
has_been_opened: Optional[bool] = None,
is_published: Optional[bool] = None,
) -> PaginatedResults[WorkflowRecordListItemDTO]:
# sanitize!
assert order_by in WorkflowRecordOrderBy
assert direction in SQLiteDirection
with self._db.transaction() as cursor:
# sanitize!
assert order_by in WorkflowRecordOrderBy
assert direction in SQLiteDirection
# We will construct the query dynamically based on the query params
# We will construct the query dynamically based on the query params
# The main query to get the workflows / counts
main_query = """
SELECT
workflow_id,
category,
name,
description,
created_at,
updated_at,
opened_at,
tags
FROM workflow_library
"""
count_query = "SELECT COUNT(*) FROM workflow_library"
# The main query to get the workflows / counts
main_query = """
SELECT
workflow_id,
category,
name,
description,
created_at,
updated_at,
opened_at,
tags
FROM workflow_library
"""
count_query = "SELECT COUNT(*) FROM workflow_library"
# Start with an empty list of conditions and params
conditions: list[str] = []
params: list[str | int] = []
# Start with an empty list of conditions and params
conditions: list[str] = []
params: list[str | int] = []
if categories:
# Categories is a list of WorkflowCategory enum values, and a single string in the DB
if categories:
# Categories is a list of WorkflowCategory enum values, and a single string in the DB
# Ensure all categories are valid (is this necessary?)
assert all(c in WorkflowCategory for c in categories)
# Ensure all categories are valid (is this necessary?)
assert all(c in WorkflowCategory for c in categories)
# Construct a placeholder string for the number of categories
placeholders = ", ".join("?" for _ in categories)
# Construct a placeholder string for the number of categories
placeholders = ", ".join("?" for _ in categories)
# Construct the condition string & params
category_condition = f"category IN ({placeholders})"
category_params = [category.value for category in categories]
# Construct the condition string & params
category_condition = f"category IN ({placeholders})"
category_params = [category.value for category in categories]
conditions.append(category_condition)
params.extend(category_params)
conditions.append(category_condition)
params.extend(category_params)
if tags:
# Tags is a list of strings, and a single string in the DB
# The string in the DB has no guaranteed format
if tags:
# Tags is a list of strings, and a single string in the DB
# The string in the DB has no guaranteed format
# Construct a list of conditions for each tag
tags_conditions = ["tags LIKE ?" for _ in tags]
tags_conditions_joined = " OR ".join(tags_conditions)
tags_condition = f"({tags_conditions_joined})"
# Construct a list of conditions for each tag
tags_conditions = ["tags LIKE ?" for _ in tags]
tags_conditions_joined = " OR ".join(tags_conditions)
tags_condition = f"({tags_conditions_joined})"
# And the params for the tags, case-insensitive
tags_params = [f"%{t.strip()}%" for t in tags]
# And the params for the tags, case-insensitive
tags_params = [f"%{t.strip()}%" for t in tags]
conditions.append(tags_condition)
params.extend(tags_params)
conditions.append(tags_condition)
params.extend(tags_params)
if has_been_opened:
conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
conditions.append("opened_at IS NULL")
if has_been_opened:
conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
conditions.append("opened_at IS NULL")
# Ignore whitespace in the query
stripped_query = query.strip() if query else None
if stripped_query:
# Construct a wildcard query for the name, description, and tags
wildcard_query = "%" + stripped_query + "%"
query_condition = "(name LIKE ? OR description LIKE ? OR tags LIKE ?)"
# Ignore whitespace in the query
stripped_query = query.strip() if query else None
if stripped_query:
# Construct a wildcard query for the name, description, and tags
wildcard_query = "%" + stripped_query + "%"
query_condition = "(name LIKE ? OR description LIKE ? OR tags LIKE ?)"
conditions.append(query_condition)
params.extend([wildcard_query, wildcard_query, wildcard_query])
conditions.append(query_condition)
params.extend([wildcard_query, wildcard_query, wildcard_query])
if conditions:
# If there are conditions, add a WHERE clause and then join the conditions
main_query += " WHERE "
count_query += " WHERE "
if conditions:
# If there are conditions, add a WHERE clause and then join the conditions
main_query += " WHERE "
count_query += " WHERE "
all_conditions = " AND ".join(conditions)
main_query += all_conditions
count_query += all_conditions
all_conditions = " AND ".join(conditions)
main_query += all_conditions
count_query += all_conditions
# After this point, the query and params differ for the main query and the count query
main_params = params.copy()
count_params = params.copy()
# After this point, the query and params differ for the main query and the count query
main_params = params.copy()
count_params = params.copy()
# Main query also gets ORDER BY and LIMIT/OFFSET
main_query += f" ORDER BY {order_by.value} {direction.value}"
# Main query also gets ORDER BY and LIMIT/OFFSET
main_query += f" ORDER BY {order_by.value} {direction.value}"
if per_page:
main_query += " LIMIT ? OFFSET ?"
main_params.extend([per_page, page * per_page])
if per_page:
main_query += " LIMIT ? OFFSET ?"
main_params.extend([per_page, page * per_page])
# Put a ring on it
main_query += ";"
count_query += ";"
# Put a ring on it
main_query += ";"
count_query += ";"
cursor = self._conn.cursor()
cursor.execute(main_query, main_params)
rows = cursor.fetchall()
workflows = [WorkflowRecordListItemDTOValidator.validate_python(dict(row)) for row in rows]
cursor.execute(main_query, main_params)
rows = cursor.fetchall()
workflows = [WorkflowRecordListItemDTOValidator.validate_python(dict(row)) for row in rows]
cursor.execute(count_query, count_params)
total = cursor.fetchone()[0]
cursor.execute(count_query, count_params)
total = cursor.fetchone()[0]
if per_page:
pages = total // per_page + (total % per_page > 0)
@@ -247,46 +232,46 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
if not tags:
return {}
cursor = self._conn.cursor()
result: dict[str, int] = {}
# Base conditions for categories and selected tags
base_conditions: list[str] = []
base_params: list[str | int] = []
with self._db.transaction() as cursor:
result: dict[str, int] = {}
# Base conditions for categories and selected tags
base_conditions: list[str] = []
base_params: list[str | int] = []
# Add category conditions
if categories:
assert all(c in WorkflowCategory for c in categories)
placeholders = ", ".join("?" for _ in categories)
base_conditions.append(f"category IN ({placeholders})")
base_params.extend([category.value for category in categories])
# Add category conditions
if categories:
assert all(c in WorkflowCategory for c in categories)
placeholders = ", ".join("?" for _ in categories)
base_conditions.append(f"category IN ({placeholders})")
base_params.extend([category.value for category in categories])
if has_been_opened:
base_conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
base_conditions.append("opened_at IS NULL")
if has_been_opened:
base_conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
base_conditions.append("opened_at IS NULL")
# For each tag to count, run a separate query
for tag in tags:
# Start with the base conditions
conditions = base_conditions.copy()
params = base_params.copy()
# For each tag to count, run a separate query
for tag in tags:
# Start with the base conditions
conditions = base_conditions.copy()
params = base_params.copy()
# Add this specific tag condition
conditions.append("tags LIKE ?")
params.append(f"%{tag.strip()}%")
# Add this specific tag condition
conditions.append("tags LIKE ?")
params.append(f"%{tag.strip()}%")
# Construct the full query
stmt = """--sql
SELECT COUNT(*)
FROM workflow_library
"""
# Construct the full query
stmt = """--sql
SELECT COUNT(*)
FROM workflow_library
"""
if conditions:
stmt += " WHERE " + " AND ".join(conditions)
if conditions:
stmt += " WHERE " + " AND ".join(conditions)
cursor.execute(stmt, params)
count = cursor.fetchone()[0]
result[tag] = count
cursor.execute(stmt, params)
count = cursor.fetchone()[0]
result[tag] = count
return result
@@ -296,52 +281,51 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
has_been_opened: Optional[bool] = None,
is_published: Optional[bool] = None,
) -> dict[str, int]:
cursor = self._conn.cursor()
result: dict[str, int] = {}
# Base conditions for categories
base_conditions: list[str] = []
base_params: list[str | int] = []
with self._db.transaction() as cursor:
result: dict[str, int] = {}
# Base conditions for categories
base_conditions: list[str] = []
base_params: list[str | int] = []
# Add category conditions
if categories:
assert all(c in WorkflowCategory for c in categories)
placeholders = ", ".join("?" for _ in categories)
base_conditions.append(f"category IN ({placeholders})")
base_params.extend([category.value for category in categories])
# Add category conditions
if categories:
assert all(c in WorkflowCategory for c in categories)
placeholders = ", ".join("?" for _ in categories)
base_conditions.append(f"category IN ({placeholders})")
base_params.extend([category.value for category in categories])
if has_been_opened:
base_conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
base_conditions.append("opened_at IS NULL")
if has_been_opened:
base_conditions.append("opened_at IS NOT NULL")
elif has_been_opened is False:
base_conditions.append("opened_at IS NULL")
# For each category to count, run a separate query
for category in categories:
# Start with the base conditions
conditions = base_conditions.copy()
params = base_params.copy()
# For each category to count, run a separate query
for category in categories:
# Start with the base conditions
conditions = base_conditions.copy()
params = base_params.copy()
# Add this specific category condition
conditions.append("category = ?")
params.append(category.value)
# Add this specific category condition
conditions.append("category = ?")
params.append(category.value)
# Construct the full query
stmt = """--sql
SELECT COUNT(*)
FROM workflow_library
"""
# Construct the full query
stmt = """--sql
SELECT COUNT(*)
FROM workflow_library
"""
if conditions:
stmt += " WHERE " + " AND ".join(conditions)
if conditions:
stmt += " WHERE " + " AND ".join(conditions)
cursor.execute(stmt, params)
count = cursor.fetchone()[0]
result[category.value] = count
cursor.execute(stmt, params)
count = cursor.fetchone()[0]
result[category.value] = count
return result
def update_opened_at(self, workflow_id: str) -> None:
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
cursor.execute(
f"""--sql
UPDATE workflow_library
@@ -350,10 +334,6 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
""",
(workflow_id,),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise
def _sync_default_workflows(self) -> None:
"""Syncs default workflows to the database. Internal use only."""
@@ -368,8 +348,7 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
meaningless, as they are overwritten every time the server starts.
"""
try:
cursor = self._conn.cursor()
with self._db.transaction() as cursor:
workflows_from_file: list[Workflow] = []
workflows_to_update: list[Workflow] = []
workflows_to_add: list[Workflow] = []
@@ -449,8 +428,3 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
""",
(w.model_dump_json(), w.id),
)
self._conn.commit()
except Exception:
self._conn.rollback()
raise

View File

@@ -123,7 +123,11 @@ def calc_percentage(intermediate_state: PipelineIntermediateState) -> float:
if total_steps == 0:
return 0.0
if order == 2:
return floor(step / 2) / floor(total_steps / 2)
# Prevent division by zero when total_steps is 1 or 2
denominator = floor(total_steps / 2)
if denominator == 0:
return 0.0
return floor(step / 2) / denominator
# order == 1
return step / total_steps

View File

View File

@@ -0,0 +1,314 @@
import math
import os
from typing import List, Optional, Union
import numpy as np
import torch
import torch.distributed as dist
from diffusers.utils import logging
from transformers import (
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_t5_prompt_embeds(
tokenizer: T5TokenizerFast,
text_encoder: T5EncoderModel,
prompt: Union[str, List[str], None] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 128,
device: Optional[torch.device] = None,
):
device = device or text_encoder.device
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
# padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
# Concat zeros to max_sequence
b, seq_len, dim = prompt_embeds.shape
if seq_len < max_sequence_length:
padding = torch.zeros(
(b, max_sequence_length - seq_len, dim), dtype=prompt_embeds.dtype, device=prompt_embeds.device
)
prompt_embeds = torch.concat([prompt_embeds, padding], dim=1)
prompt_embeds = prompt_embeds.to(device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
# in order the get the same sigmas as in training and sample from them
def get_original_sigmas(num_train_timesteps=1000, num_inference_steps=1000):
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
sigmas = timesteps / num_train_timesteps
inds = [int(ind) for ind in np.linspace(0, num_train_timesteps - 1, num_inference_steps)]
new_sigmas = sigmas[inds]
return new_sigmas
def is_ng_none(negative_prompt):
return (
negative_prompt is None
or negative_prompt == ""
or (isinstance(negative_prompt, list) and negative_prompt[0] is None)
or (isinstance(negative_prompt, list) and negative_prompt[0] == "")
)
class CudaTimerContext:
def __init__(self, times_arr):
self.times_arr = times_arr
def __enter__(self):
self.before_event = torch.cuda.Event(enable_timing=True)
self.after_event = torch.cuda.Event(enable_timing=True)
self.before_event.record()
def __exit__(self, type, value, traceback):
self.after_event.record()
torch.cuda.synchronize()
elapsed_time = self.before_event.elapsed_time(self.after_event) / 1000
self.times_arr.append(elapsed_time)
def get_env_prefix():
env = os.environ.get("CLOUD_PROVIDER", "AWS").upper()
if env == "AWS":
return "SM_CHANNEL"
elif env == "AZURE":
return "AZUREML_DATAREFERENCE"
raise Exception(f"Env {env} not supported")
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
return weighting
def initialize_distributed():
# Initialize the process group for distributed training
dist.init_process_group("nccl")
# Get the current process's rank (ID) and the total number of processes (world size)
rank = dist.get_rank()
world_size = dist.get_world_size()
print(f"Initialized distributed training: Rank {rank}/{world_size}")
def get_clip_prompt_embeds(
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 77,
device: Optional[torch.device] = None,
):
device = device or text_encoder.device
assert max_sequence_length == tokenizer.model_max_length
prompt = [prompt] if isinstance(prompt, str) else prompt
# Define tokenizers and text encoders
tokenizers = [tokenizer, tokenizer_2]
text_encoders = [text_encoder, text_encoder_2]
# textual inversion: process multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders, strict=False):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, pooled_prompt_embeds
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[np.ndarray, int],
theta: float = 10000.0,
use_real=False,
linear_factor=1.0,
ntk_factor=1.0,
repeat_interleave_real=True,
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
linear_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the context extrapolation. Defaults to 1.0.
ntk_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
Otherwise, they are concateanted with themselves.
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
the dtype of the frequency tensor.
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real and repeat_interleave_real:
# flux, hunyuan-dit, cogvideox
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
elif use_real:
# stable audio, allegro
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
return freqs_cos, freqs_sin
else:
# lumina
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
class FluxPosEmbed(torch.nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
freqs_dtype = torch.float32 if is_mps else torch.float64
for i in range(n_axes):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin

View File

@@ -0,0 +1,6 @@
__version__ = "0.0.9"
from invokeai.backend.bria.controlnet_aux.canny import CannyDetector as CannyDetector
from invokeai.backend.bria.controlnet_aux.open_pose import OpenposeDetector as OpenposeDetector
__all__ = ["CannyDetector", "OpenposeDetector"]

View File

@@ -0,0 +1,48 @@
import warnings
import cv2
import numpy as np
from PIL import Image
from invokeai.backend.bria.controlnet_aux.util import HWC3, resize_image
class CannyDetector:
def __call__(
self,
input_image=None,
low_threshold=100,
high_threshold=200,
detect_resolution=512,
image_resolution=512,
output_type=None,
**kwargs,
):
if "img" in kwargs:
warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning, stacklevel=2)
input_image = kwargs.pop("img")
if input_image is None:
raise ValueError("input_image must be defined.")
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
output_type = output_type or "pil"
else:
output_type = output_type or "np"
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
detected_map = cv2.Canny(input_image, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map

View File

@@ -0,0 +1,108 @@
OPENPOSE: MULTIPERSON KEYPOINT DETECTION
SOFTWARE LICENSE AGREEMENT
ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
This is a license agreement ("Agreement") between your academic institution or non-profit organization or self (called "Licensee" or "You" in this Agreement) and Carnegie Mellon University (called "Licensor" in this Agreement). All rights not specifically granted to you in this Agreement are reserved for Licensor.
RESERVATION OF OWNERSHIP AND GRANT OF LICENSE:
Licensor retains exclusive ownership of any copy of the Software (as defined below) licensed under this Agreement and hereby grants to Licensee a personal, non-exclusive,
non-transferable license to use the Software for noncommercial research purposes, without the right to sublicense, pursuant to the terms and conditions of this Agreement. As used in this Agreement, the term "Software" means (i) the actual copy of all or any portion of code for program routines made accessible to Licensee by Licensor pursuant to this Agreement, inclusive of backups, updates, and/or merged copies permitted hereunder or subsequently supplied by Licensor, including all or any file structures, programming instructions, user interfaces and screen formats and sequences as well as any and all documentation and instructions related to it, and (ii) all or any derivatives and/or modifications created or made by You to any of the items specified in (i).
CONFIDENTIALITY: Licensee acknowledges that the Software is proprietary to Licensor, and as such, Licensee agrees to receive all such materials in confidence and use the Software only in accordance with the terms of this Agreement. Licensee agrees to use reasonable effort to protect the Software from unauthorized use, reproduction, distribution, or publication.
COPYRIGHT: The Software is owned by Licensor and is protected by United
States copyright laws and applicable international treaties and/or conventions.
PERMITTED USES: The Software may be used for your own noncommercial internal research purposes. You understand and agree that Licensor is not obligated to implement any suggestions and/or feedback you might provide regarding the Software, but to the extent Licensor does so, you are not entitled to any compensation related thereto.
DERIVATIVES: You may create derivatives of or make modifications to the Software, however, You agree that all and any such derivatives and modifications will be owned by Licensor and become a part of the Software licensed to You under this Agreement. You may only use such derivatives and modifications for your own noncommercial internal research purposes, and you may not otherwise use, distribute or copy such derivatives and modifications in violation of this Agreement.
BACKUPS: If Licensee is an organization, it may make that number of copies of the Software necessary for internal noncommercial use at a single site within its organization provided that all information appearing in or on the original labels, including the copyright and trademark notices are copied onto the labels of the copies.
USES NOT PERMITTED: You may not distribute, copy or use the Software except as explicitly permitted herein. Licensee has not been granted any trademark license as part of this Agreement and may not use the name or mark “OpenPose", "Carnegie Mellon" or any renditions thereof without the prior written permission of Licensor.
You may not sell, rent, lease, sublicense, lend, time-share or transfer, in whole or in part, or provide third parties access to prior or present versions (or any parts thereof) of the Software.
ASSIGNMENT: You may not assign this Agreement or your rights hereunder without the prior written consent of Licensor. Any attempted assignment without such consent shall be null and void.
TERM: The term of the license granted by this Agreement is from Licensee's acceptance of this Agreement by downloading the Software or by using the Software until terminated as provided below.
The Agreement automatically terminates without notice if you fail to comply with any provision of this Agreement. Licensee may terminate this Agreement by ceasing using the Software. Upon any termination of this Agreement, Licensee will delete any and all copies of the Software. You agree that all provisions which operate to protect the proprietary rights of Licensor shall remain in force should breach occur and that the obligation of confidentiality described in this Agreement is binding in perpetuity and, as such, survives the term of the Agreement.
FEE: Provided Licensee abides completely by the terms and conditions of this Agreement, there is no fee due to Licensor for Licensee's use of the Software in accordance with this Agreement.
DISCLAIMER OF WARRANTIES: THE SOFTWARE IS PROVIDED "AS-IS" WITHOUT WARRANTY OF ANY KIND INCLUDING ANY WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE OR OF NON-INFRINGEMENT. LICENSEE BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE SOFTWARE AND RELATED MATERIALS.
SUPPORT AND MAINTENANCE: No Software support or training by the Licensor is provided as part of this Agreement.
EXCLUSIVE REMEDY AND LIMITATION OF LIABILITY: To the maximum extent permitted under applicable law, Licensor shall not be liable for direct, indirect, special, incidental, or consequential damages or lost profits related to Licensee's use of and/or inability to use the Software, even if Licensor is advised of the possibility of such damage.
EXPORT REGULATION: Licensee agrees to comply with any and all applicable
U.S. export control laws, regulations, and/or other laws related to embargoes and sanction programs administered by the Office of Foreign Assets Control.
SEVERABILITY: If any provision(s) of this Agreement shall be held to be invalid, illegal, or unenforceable by a court or other tribunal of competent jurisdiction, the validity, legality and enforceability of the remaining provisions shall not in any way be affected or impaired thereby.
NO IMPLIED WAIVERS: No failure or delay by Licensor in enforcing any right or remedy under this Agreement shall be construed as a waiver of any future or other exercise of such right or remedy by Licensor.
GOVERNING LAW: This Agreement shall be construed and enforced in accordance with the laws of the Commonwealth of Pennsylvania without reference to conflict of laws principles. You consent to the personal jurisdiction of the courts of this County and waive their rights to venue outside of Allegheny County, Pennsylvania.
ENTIRE AGREEMENT AND AMENDMENTS: This Agreement constitutes the sole and entire agreement between Licensee and Licensor as to the matter set forth herein and supersedes any previous agreements, understandings, and arrangements between the parties relating hereto.
************************************************************************
THIRD-PARTY SOFTWARE NOTICES AND INFORMATION
This project incorporates material from the project(s) listed below (collectively, "Third Party Code"). This Third Party Code is licensed to you under their original license terms set forth below. We reserves all other rights not expressly granted, whether by implication, estoppel or otherwise.
1. Caffe, version 1.0.0, (https://github.com/BVLC/caffe/)
COPYRIGHT
All contributions by the University of California:
Copyright (c) 2014-2017 The Regents of the University of California (Regents)
All rights reserved.
All other contributions:
Copyright (c) 2014-2017, the respective contributors
All rights reserved.
Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.
LICENSE
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
CONTRIBUTION AGREEMENT
By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.
************END OF THIRD-PARTY SOFTWARE NOTICES AND INFORMATION**********

View File

@@ -0,0 +1,267 @@
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)
# 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs)
# This preprocessor is licensed by CMU for non-commercial use only.
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import warnings
from typing import List, NamedTuple, Tuple, Union
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.body import Body, BodyResult, Keypoint
from invokeai.backend.bria.controlnet_aux.open_pose.face import Face
from invokeai.backend.bria.controlnet_aux.open_pose.hand import Hand
from invokeai.backend.bria.controlnet_aux.util import HWC3, resize_image
HandResult = List[Keypoint]
FaceResult = List[Keypoint]
class PoseResult(NamedTuple):
body: BodyResult
left_hand: Union[HandResult, None]
right_hand: Union[HandResult, None]
face: Union[FaceResult, None]
def draw_poses(poses: List[PoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True):
"""
Draw the detected poses on an empty canvas.
Args:
poses (List[PoseResult]): A list of PoseResult objects containing the detected poses.
H (int): The height of the canvas.
W (int): The width of the canvas.
draw_body (bool, optional): Whether to draw body keypoints. Defaults to True.
draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True.
draw_face (bool, optional): Whether to draw face keypoints. Defaults to True.
Returns:
numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses.
"""
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
for pose in poses:
if draw_body:
canvas = util.draw_bodypose(canvas, pose.body.keypoints)
if draw_hand:
canvas = util.draw_handpose(canvas, pose.left_hand)
canvas = util.draw_handpose(canvas, pose.right_hand)
if draw_face:
canvas = util.draw_facepose(canvas, pose.face)
return canvas
class OpenposeDetector:
"""
A class for detecting human poses in images using the Openpose model.
Attributes:
model_dir (str): Path to the directory where the pose models are stored.
"""
def __init__(self, body_estimation, hand_estimation=None, face_estimation=None):
self.body_estimation = body_estimation
self.hand_estimation = hand_estimation
self.face_estimation = face_estimation
@classmethod
def from_pretrained(
cls,
pretrained_model_or_path,
filename=None,
hand_filename=None,
face_filename=None,
cache_dir=None,
local_files_only=False,
):
if pretrained_model_or_path == "lllyasviel/ControlNet":
filename = filename or "annotator/ckpts/body_pose_model.pth"
hand_filename = hand_filename or "annotator/ckpts/hand_pose_model.pth"
face_filename = face_filename or "facenet.pth"
face_pretrained_model_or_path = "lllyasviel/Annotators"
else:
filename = filename or "body_pose_model.pth"
hand_filename = hand_filename or "hand_pose_model.pth"
face_filename = face_filename or "facenet.pth"
face_pretrained_model_or_path = pretrained_model_or_path
if os.path.isdir(pretrained_model_or_path):
body_model_path = os.path.join(pretrained_model_or_path, filename)
hand_model_path = os.path.join(pretrained_model_or_path, hand_filename)
face_model_path = os.path.join(face_pretrained_model_or_path, face_filename)
else:
body_model_path = hf_hub_download(
pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only
)
hand_model_path = hf_hub_download(
pretrained_model_or_path, hand_filename, cache_dir=cache_dir, local_files_only=local_files_only
)
face_model_path = hf_hub_download(
face_pretrained_model_or_path, face_filename, cache_dir=cache_dir, local_files_only=local_files_only
)
body_estimation = Body(body_model_path)
hand_estimation = Hand(hand_model_path)
face_estimation = Face(face_model_path)
return cls(body_estimation, hand_estimation, face_estimation)
def to(self, device):
self.body_estimation.to(device)
self.hand_estimation.to(device)
self.face_estimation.to(device)
return self
def detect_hands(self, body: BodyResult, oriImg) -> Tuple[Union[HandResult, None], Union[HandResult, None]]:
left_hand = None
right_hand = None
H, W, _ = oriImg.shape
for x, y, w, is_left in util.handDetect(body, oriImg):
peaks = self.hand_estimation(oriImg[y : y + w, x : x + w, :]).astype(np.float32)
if peaks.ndim == 2 and peaks.shape[1] == 2:
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
hand_result = [Keypoint(x=peak[0], y=peak[1]) for peak in peaks]
if is_left:
left_hand = hand_result
else:
right_hand = hand_result
return left_hand, right_hand
def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]:
face = util.faceDetect(body, oriImg)
if face is None:
return None
x, y, w = face
H, W, _ = oriImg.shape
heatmaps = self.face_estimation(oriImg[y : y + w, x : x + w, :])
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32)
if peaks.ndim == 2 and peaks.shape[1] == 2:
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W)
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H)
return [Keypoint(x=peak[0], y=peak[1]) for peak in peaks]
return None
def detect_poses(self, oriImg, include_hand=False, include_face=False) -> List[PoseResult]:
"""
Detect poses in the given image.
Args:
oriImg (numpy.ndarray): The input image for pose detection.
include_hand (bool, optional): Whether to include hand detection. Defaults to False.
include_face (bool, optional): Whether to include face detection. Defaults to False.
Returns:
List[PoseResult]: A list of PoseResult objects containing the detected poses.
"""
oriImg = oriImg[:, :, ::-1].copy()
H, W, C = oriImg.shape
with torch.no_grad():
candidate, subset = self.body_estimation(oriImg)
bodies = self.body_estimation.format_body_result(candidate, subset)
results = []
for body in bodies:
left_hand, right_hand, face = (None,) * 3
if include_hand:
left_hand, right_hand = self.detect_hands(body, oriImg)
if include_face:
face = self.detect_face(body, oriImg)
results.append(
PoseResult(
BodyResult(
keypoints=[
Keypoint(x=keypoint.x / float(W), y=keypoint.y / float(H))
if keypoint is not None
else None
for keypoint in body.keypoints
],
total_score=body.total_score,
total_parts=body.total_parts,
),
left_hand,
right_hand,
face,
)
)
return results
def __call__(
self,
input_image,
detect_resolution=512,
image_resolution=512,
include_body=True,
include_hand=False,
include_face=False,
hand_and_face=None,
output_type="pil",
**kwargs,
):
if hand_and_face is not None:
warnings.warn(
"hand_and_face is deprecated. Use include_hand and include_face instead.",
DeprecationWarning,
stacklevel=2,
)
include_hand = hand_and_face
include_face = hand_and_face
if "return_pil" in kwargs:
warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning, stacklevel=2)
output_type = "pil" if kwargs["return_pil"] else "np"
if type(output_type) is bool:
warnings.warn(
"Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions",
stacklevel=2,
)
if output_type:
output_type = "pil"
if not isinstance(input_image, np.ndarray):
input_image = np.array(input_image, dtype=np.uint8)
input_image = HWC3(input_image)
input_image = resize_image(input_image, detect_resolution)
H, W, C = input_image.shape
poses = self.detect_poses(input_image, include_hand, include_face)
canvas = draw_poses(poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face)
detected_map = canvas
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
if output_type == "pil":
detected_map = Image.fromarray(detected_map)
return detected_map

View File

@@ -0,0 +1,319 @@
import math
from typing import List, NamedTuple, Union
import numpy as np
import torch
from scipy.ndimage.filters import gaussian_filter
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.model import bodypose_model
class Keypoint(NamedTuple):
x: float
y: float
score: float = 1.0
id: int = -1
class BodyResult(NamedTuple):
# Note: Using `Union` instead of `|` operator as the ladder is a Python
# 3.10 feature.
# Annotator code should be Python 3.8 Compatible, as controlnet repo uses
# Python 3.8 environment.
# https://github.com/lllyasviel/ControlNet/blob/d3284fcd0972c510635a4f5abe2eeb71dc0de524/environment.yaml#L6
keypoints: List[Union[Keypoint, None]]
total_score: float
total_parts: int
class Body(object):
def __init__(self, model_path):
self.model = bodypose_model()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, oriImg):
device = next(iter(self.model.parameters())).device
# scale_search = [0.5, 1.0, 1.5, 2.0]
scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre1 = 0.1
thre2 = 0.05
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = util.smart_resize_k(oriImg, fx=scale, fy=scale)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
data = data.to(device)
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
with torch.no_grad():
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
# extract outputs, resize, and remove padding
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride)
heatmap = heatmap[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
heatmap = util.smart_resize(heatmap, (oriImg.shape[0], oriImg.shape[1]))
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
paf = util.smart_resize_k(paf, fx=stride, fy=stride)
paf = paf[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
paf = util.smart_resize(paf, (oriImg.shape[0], oriImg.shape[1]))
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
paf_avg += +paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(one_heatmap.shape)
map_left[1:, :] = one_heatmap[:-1, :]
map_right = np.zeros(one_heatmap.shape)
map_right[:-1, :] = one_heatmap[1:, :]
map_up = np.zeros(one_heatmap.shape)
map_up[:, 1:] = one_heatmap[:, :-1]
map_down = np.zeros(one_heatmap.shape)
map_down[:, :-1] = one_heatmap[:, 1:]
peaks_binary = np.logical_and.reduce(
(
one_heatmap >= map_left,
one_heatmap >= map_right,
one_heatmap >= map_up,
one_heatmap >= map_down,
one_heatmap > thre1,
)
)
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0], strict=False)) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
peak_id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
[3, 17],
[6, 18],
]
# the middle joints heatmap correpondence
mapIdx = [
[31, 32],
[39, 40],
[33, 34],
[35, 36],
[41, 42],
[43, 44],
[19, 20],
[21, 22],
[23, 24],
[25, 26],
[27, 28],
[29, 30],
[47, 48],
[49, 50],
[53, 54],
[51, 52],
[55, 56],
[37, 38],
[45, 46],
]
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if nA != 0 and nB != 0:
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
norm = max(0.001, norm)
vec = np.divide(vec, norm)
startend = list(
zip(
np.linspace(candA[i][0], candB[j][0], num=mid_num),
np.linspace(candA[i][1], candB[j][1], num=mid_num),
strict=False,
)
)
vec_x = np.array(
[
score_mid[int(round(startend[i][1])), int(round(startend[i][0])), 0]
for i in range(len(startend))
]
)
vec_y = np.array(
[
score_mid[int(round(startend[i][1])), int(round(startend[i][0])), 1]
for i in range(len(startend))
]
)
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0
)
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append(
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]
)
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if i not in connection[:, 3] and j not in connection[:, 4]:
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if len(connection) >= min(nA, nB):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if subset[j][indexB] != partBs[i]:
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += subset[j2][:-2] + 1
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
# candidate: x, y, score, id
return candidate, subset
@staticmethod
def format_body_result(candidate: np.ndarray, subset: np.ndarray) -> List[BodyResult]:
"""
Format the body results from the candidate and subset arrays into a list of BodyResult objects.
Args:
candidate (np.ndarray): An array of candidates containing the x, y coordinates, score, and id
for each body part.
subset (np.ndarray): An array of subsets containing indices to the candidate array for each
person detected. The last two columns of each row hold the total score and total parts
of the person.
Returns:
List[BodyResult]: A list of BodyResult objects, where each object represents a person with
detected keypoints, total score, and total parts.
"""
return [
BodyResult(
keypoints=[
Keypoint(
x=candidate[candidate_index][0],
y=candidate[candidate_index][1],
score=candidate[candidate_index][2],
id=candidate[candidate_index][3],
)
if candidate_index != -1
else None
for candidate_index in person[:18].astype(int)
],
total_score=person[18],
total_parts=person[19],
)
for person in subset
]

View File

@@ -0,0 +1,307 @@
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn import Conv2d, MaxPool2d, Module, ReLU, init
from torchvision.transforms import ToPILImage, ToTensor
from invokeai.backend.bria.controlnet_aux.open_pose import util
class FaceNet(Module):
"""Model the cascading heatmaps."""
def __init__(self):
super(FaceNet, self).__init__()
# cnn to make feature map
self.relu = ReLU()
self.max_pooling_2d = MaxPool2d(kernel_size=2, stride=2)
self.conv1_1 = Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_3 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv3_4 = Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_3 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv4_4 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1)
self.conv5_3_CPM = Conv2d(in_channels=512, out_channels=128, kernel_size=3, stride=1, padding=1)
# stage1
self.conv6_1_CPM = Conv2d(in_channels=128, out_channels=512, kernel_size=1, stride=1, padding=0)
self.conv6_2_CPM = Conv2d(in_channels=512, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage2
self.Mconv1_stage2 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage2 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage2 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage3
self.Mconv1_stage3 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage3 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage3 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage4
self.Mconv1_stage4 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage4 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage4 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage5
self.Mconv1_stage5 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage5 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage5 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
# stage6
self.Mconv1_stage6 = Conv2d(in_channels=199, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv2_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv3_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv4_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv5_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=7, stride=1, padding=3)
self.Mconv6_stage6 = Conv2d(in_channels=128, out_channels=128, kernel_size=1, stride=1, padding=0)
self.Mconv7_stage6 = Conv2d(in_channels=128, out_channels=71, kernel_size=1, stride=1, padding=0)
for m in self.modules():
if isinstance(m, Conv2d):
init.constant_(m.bias, 0)
def forward(self, x):
"""Return a list of heatmaps."""
heatmaps = []
h = self.relu(self.conv1_1(x))
h = self.relu(self.conv1_2(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv2_1(h))
h = self.relu(self.conv2_2(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv3_1(h))
h = self.relu(self.conv3_2(h))
h = self.relu(self.conv3_3(h))
h = self.relu(self.conv3_4(h))
h = self.max_pooling_2d(h)
h = self.relu(self.conv4_1(h))
h = self.relu(self.conv4_2(h))
h = self.relu(self.conv4_3(h))
h = self.relu(self.conv4_4(h))
h = self.relu(self.conv5_1(h))
h = self.relu(self.conv5_2(h))
h = self.relu(self.conv5_3_CPM(h))
feature_map = h
# stage1
h = self.relu(self.conv6_1_CPM(h))
h = self.conv6_2_CPM(h)
heatmaps.append(h)
# stage2
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage2(h))
h = self.relu(self.Mconv2_stage2(h))
h = self.relu(self.Mconv3_stage2(h))
h = self.relu(self.Mconv4_stage2(h))
h = self.relu(self.Mconv5_stage2(h))
h = self.relu(self.Mconv6_stage2(h))
h = self.Mconv7_stage2(h)
heatmaps.append(h)
# stage3
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage3(h))
h = self.relu(self.Mconv2_stage3(h))
h = self.relu(self.Mconv3_stage3(h))
h = self.relu(self.Mconv4_stage3(h))
h = self.relu(self.Mconv5_stage3(h))
h = self.relu(self.Mconv6_stage3(h))
h = self.Mconv7_stage3(h)
heatmaps.append(h)
# stage4
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage4(h))
h = self.relu(self.Mconv2_stage4(h))
h = self.relu(self.Mconv3_stage4(h))
h = self.relu(self.Mconv4_stage4(h))
h = self.relu(self.Mconv5_stage4(h))
h = self.relu(self.Mconv6_stage4(h))
h = self.Mconv7_stage4(h)
heatmaps.append(h)
# stage5
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage5(h))
h = self.relu(self.Mconv2_stage5(h))
h = self.relu(self.Mconv3_stage5(h))
h = self.relu(self.Mconv4_stage5(h))
h = self.relu(self.Mconv5_stage5(h))
h = self.relu(self.Mconv6_stage5(h))
h = self.Mconv7_stage5(h)
heatmaps.append(h)
# stage6
h = torch.cat([h, feature_map], dim=1) # channel concat
h = self.relu(self.Mconv1_stage6(h))
h = self.relu(self.Mconv2_stage6(h))
h = self.relu(self.Mconv3_stage6(h))
h = self.relu(self.Mconv4_stage6(h))
h = self.relu(self.Mconv5_stage6(h))
h = self.relu(self.Mconv6_stage6(h))
h = self.Mconv7_stage6(h)
heatmaps.append(h)
return heatmaps
LOG = logging.getLogger(__name__)
TOTEN = ToTensor()
TOPIL = ToPILImage()
params = {
"gaussian_sigma": 2.5,
"inference_img_size": 736, # 368, 736, 1312
"heatmap_peak_thresh": 0.1,
"crop_scale": 1.5,
"line_indices": [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10],
[10, 11],
[11, 12],
[12, 13],
[13, 14],
[14, 15],
[15, 16],
[17, 18],
[18, 19],
[19, 20],
[20, 21],
[22, 23],
[23, 24],
[24, 25],
[25, 26],
[27, 28],
[28, 29],
[29, 30],
[31, 32],
[32, 33],
[33, 34],
[34, 35],
[36, 37],
[37, 38],
[38, 39],
[39, 40],
[40, 41],
[41, 36],
[42, 43],
[43, 44],
[44, 45],
[45, 46],
[46, 47],
[47, 42],
[48, 49],
[49, 50],
[50, 51],
[51, 52],
[52, 53],
[53, 54],
[54, 55],
[55, 56],
[56, 57],
[57, 58],
[58, 59],
[59, 48],
[60, 61],
[61, 62],
[62, 63],
[63, 64],
[64, 65],
[65, 66],
[66, 67],
[67, 60],
],
}
class Face(object):
"""
The OpenPose face landmark detector model.
Args:
inference_size: set the size of the inference image size, suggested:
368, 736, 1312, default 736
gaussian_sigma: blur the heatmaps, default 2.5
heatmap_peak_thresh: return landmark if over threshold, default 0.1
"""
def __init__(self, face_model_path, inference_size=None, gaussian_sigma=None, heatmap_peak_thresh=None):
self.inference_size = inference_size or params["inference_img_size"]
self.sigma = gaussian_sigma or params["gaussian_sigma"]
self.threshold = heatmap_peak_thresh or params["heatmap_peak_thresh"]
self.model = FaceNet()
self.model.load_state_dict(torch.load(face_model_path))
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, face_img):
device = next(iter(self.model.parameters())).device
H, W, C = face_img.shape
w_size = 384
x_data = torch.from_numpy(util.smart_resize(face_img, (w_size, w_size))).permute([2, 0, 1]) / 256.0 - 0.5
x_data = x_data.to(device)
with torch.no_grad():
hs = self.model(x_data[None, ...])
heatmaps = F.interpolate(hs[-1], (H, W), mode="bilinear", align_corners=True).cpu().numpy()[0]
return heatmaps
def compute_peaks_from_heatmaps(self, heatmaps):
all_peaks = []
for part in range(heatmaps.shape[0]):
map_ori = heatmaps[part].copy()
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8)
if np.sum(binary) == 0:
continue
positions = np.where(binary > 0.5)
intensities = map_ori[positions]
mi = np.argmax(intensities)
y, x = positions[0][mi], positions[1][mi]
all_peaks.append([x, y])
return np.array(all_peaks)

View File

@@ -0,0 +1,91 @@
import cv2
import numpy as np
import torch
from scipy.ndimage.filters import gaussian_filter
from skimage.measure import label
from invokeai.backend.bria.controlnet_aux.open_pose import util
from invokeai.backend.bria.controlnet_aux.open_pose.model import handpose_model
class Hand(object):
def __init__(self, model_path):
self.model = handpose_model()
model_dict = util.transfer(self.model, torch.load(model_path))
self.model.load_state_dict(model_dict)
self.model.eval()
def to(self, device):
self.model.to(device)
return self
def __call__(self, oriImgRaw):
device = next(iter(self.model.parameters())).device
scale_search = [0.5, 1.0, 1.5, 2.0]
# scale_search = [0.5]
boxsize = 368
stride = 8
padValue = 128
thre = 0.05
multiplier = [x * boxsize for x in scale_search]
wsize = 128
heatmap_avg = np.zeros((wsize, wsize, 22))
Hr, Wr, Cr = oriImgRaw.shape
oriImg = cv2.GaussianBlur(oriImgRaw, (0, 0), 0.8)
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = util.smart_resize(oriImg, (scale, scale))
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
im = np.ascontiguousarray(im)
data = torch.from_numpy(im).float()
data = data.to(device)
with torch.no_grad():
output = self.model(data).cpu().numpy()
# extract outputs, resize, and remove padding
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride)
heatmap = heatmap[: imageToTest_padded.shape[0] - pad[2], : imageToTest_padded.shape[1] - pad[3], :]
heatmap = util.smart_resize(heatmap, (wsize, wsize))
heatmap_avg += heatmap / len(multiplier)
all_peaks = []
for part in range(21):
map_ori = heatmap_avg[:, :, part]
one_heatmap = gaussian_filter(map_ori, sigma=3)
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
if np.sum(binary) == 0:
all_peaks.append([0, 0])
continue
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
label_img[label_img != max_index] = 0
map_ori[label_img == 0] = 0
y, x = util.npmax(map_ori)
y = int(float(y) * float(Hr) / float(wsize))
x = int(float(x) * float(Wr) / float(wsize))
all_peaks.append([x, y])
return np.array(all_peaks)
if __name__ == "__main__":
hand_estimation = Hand("../model/hand_pose_model.pth")
# test_image = '../images/hand.jpg'
test_image = "../images/hand.jpg"
oriImg = cv2.imread(test_image) # B,G,R order
peaks = hand_estimation(oriImg)
canvas = util.draw_handpose(oriImg, peaks, True)
cv2.imshow("", canvas)
cv2.waitKey(0)

View File

@@ -0,0 +1,240 @@
from collections import OrderedDict
import torch
import torch.nn as nn
def make_layers(block, no_relu_layers):
layers = []
for layer_name, v in block.items():
if "pool" in layer_name:
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2])
layers.append((layer_name, layer))
else:
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4])
layers.append((layer_name, conv2d))
if layer_name not in no_relu_layers:
layers.append(("relu_" + layer_name, nn.ReLU(inplace=True)))
return nn.Sequential(OrderedDict(layers))
class bodypose_model(nn.Module):
def __init__(self):
super(bodypose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv5_5_CPM_L1",
"conv5_5_CPM_L2",
"Mconv7_stage2_L1",
"Mconv7_stage2_L2",
"Mconv7_stage3_L1",
"Mconv7_stage3_L2",
"Mconv7_stage4_L1",
"Mconv7_stage4_L2",
"Mconv7_stage5_L1",
"Mconv7_stage5_L2",
"Mconv7_stage6_L1",
"Mconv7_stage6_L1",
]
blocks = {}
block0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3_CPM", [512, 256, 3, 1, 1]),
("conv4_4_CPM", [256, 128, 3, 1, 1]),
]
)
# Stage 1
block1_1 = OrderedDict(
[
("conv5_1_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L1", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L1", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L1", [512, 38, 1, 1, 0]),
]
)
block1_2 = OrderedDict(
[
("conv5_1_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_2_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_3_CPM_L2", [128, 128, 3, 1, 1]),
("conv5_4_CPM_L2", [128, 512, 1, 1, 0]),
("conv5_5_CPM_L2", [512, 19, 1, 1, 0]),
]
)
blocks["block1_1"] = block1_1
blocks["block1_2"] = block1_2
self.model0 = make_layers(block0, no_relu_layers)
# Stages 2 - 6
for i in range(2, 7):
blocks["block%d_1" % i] = OrderedDict(
[
("Mconv1_stage%d_L1" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L1" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L1" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L1" % i, [128, 38, 1, 1, 0]),
]
)
blocks["block%d_2" % i] = OrderedDict(
[
("Mconv1_stage%d_L2" % i, [185, 128, 7, 1, 3]),
("Mconv2_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d_L2" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d_L2" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d_L2" % i, [128, 19, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_1 = blocks["block1_1"]
self.model2_1 = blocks["block2_1"]
self.model3_1 = blocks["block3_1"]
self.model4_1 = blocks["block4_1"]
self.model5_1 = blocks["block5_1"]
self.model6_1 = blocks["block6_1"]
self.model1_2 = blocks["block1_2"]
self.model2_2 = blocks["block2_2"]
self.model3_2 = blocks["block3_2"]
self.model4_2 = blocks["block4_2"]
self.model5_2 = blocks["block5_2"]
self.model6_2 = blocks["block6_2"]
def forward(self, x):
out1 = self.model0(x)
out1_1 = self.model1_1(out1)
out1_2 = self.model1_2(out1)
out2 = torch.cat([out1_1, out1_2, out1], 1)
out2_1 = self.model2_1(out2)
out2_2 = self.model2_2(out2)
out3 = torch.cat([out2_1, out2_2, out1], 1)
out3_1 = self.model3_1(out3)
out3_2 = self.model3_2(out3)
out4 = torch.cat([out3_1, out3_2, out1], 1)
out4_1 = self.model4_1(out4)
out4_2 = self.model4_2(out4)
out5 = torch.cat([out4_1, out4_2, out1], 1)
out5_1 = self.model5_1(out5)
out5_2 = self.model5_2(out5)
out6 = torch.cat([out5_1, out5_2, out1], 1)
out6_1 = self.model6_1(out6)
out6_2 = self.model6_2(out6)
return out6_1, out6_2
class handpose_model(nn.Module):
def __init__(self):
super(handpose_model, self).__init__()
# these layers have no relu layer
no_relu_layers = [
"conv6_2_CPM",
"Mconv7_stage2",
"Mconv7_stage3",
"Mconv7_stage4",
"Mconv7_stage5",
"Mconv7_stage6",
]
# stage 1
block1_0 = OrderedDict(
[
("conv1_1", [3, 64, 3, 1, 1]),
("conv1_2", [64, 64, 3, 1, 1]),
("pool1_stage1", [2, 2, 0]),
("conv2_1", [64, 128, 3, 1, 1]),
("conv2_2", [128, 128, 3, 1, 1]),
("pool2_stage1", [2, 2, 0]),
("conv3_1", [128, 256, 3, 1, 1]),
("conv3_2", [256, 256, 3, 1, 1]),
("conv3_3", [256, 256, 3, 1, 1]),
("conv3_4", [256, 256, 3, 1, 1]),
("pool3_stage1", [2, 2, 0]),
("conv4_1", [256, 512, 3, 1, 1]),
("conv4_2", [512, 512, 3, 1, 1]),
("conv4_3", [512, 512, 3, 1, 1]),
("conv4_4", [512, 512, 3, 1, 1]),
("conv5_1", [512, 512, 3, 1, 1]),
("conv5_2", [512, 512, 3, 1, 1]),
("conv5_3_CPM", [512, 128, 3, 1, 1]),
]
)
block1_1 = OrderedDict([("conv6_1_CPM", [128, 512, 1, 1, 0]), ("conv6_2_CPM", [512, 22, 1, 1, 0])])
blocks = {}
blocks["block1_0"] = block1_0
blocks["block1_1"] = block1_1
# stage 2-6
for i in range(2, 7):
blocks["block%d" % i] = OrderedDict(
[
("Mconv1_stage%d" % i, [150, 128, 7, 1, 3]),
("Mconv2_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv3_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv4_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv5_stage%d" % i, [128, 128, 7, 1, 3]),
("Mconv6_stage%d" % i, [128, 128, 1, 1, 0]),
("Mconv7_stage%d" % i, [128, 22, 1, 1, 0]),
]
)
for k in blocks.keys():
blocks[k] = make_layers(blocks[k], no_relu_layers)
self.model1_0 = blocks["block1_0"]
self.model1_1 = blocks["block1_1"]
self.model2 = blocks["block2"]
self.model3 = blocks["block3"]
self.model4 = blocks["block4"]
self.model5 = blocks["block5"]
self.model6 = blocks["block6"]
def forward(self, x):
out1_0 = self.model1_0(x)
out1_1 = self.model1_1(out1_0)
concat_stage2 = torch.cat([out1_1, out1_0], 1)
out_stage2 = self.model2(concat_stage2)
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
out_stage3 = self.model3(concat_stage3)
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
out_stage4 = self.model4(concat_stage4)
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
out_stage5 = self.model5(concat_stage5)
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
out_stage6 = self.model6(concat_stage6)
return out_stage6

View File

@@ -0,0 +1,436 @@
import math
from typing import List, Tuple, Union
import cv2
import numpy as np
from invokeai.backend.bria.controlnet_aux.open_pose.body import BodyResult, Keypoint
eps = 0.01
def smart_resize(x, s):
Ht, Wt = s
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
def smart_resize_k(x, fx, fy):
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
Ht, Wt = Ho * fy, Wo * fx
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights[".".join(weights_name.split(".")[1:])]
return transfered_model_weights
def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray:
"""
Draw keypoints and limbs representing body pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose.
keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
H, W, C = canvas.shape
stickwidth = 4
limbSeq = [
[2, 3],
[2, 6],
[3, 4],
[4, 5],
[6, 7],
[7, 8],
[2, 9],
[9, 10],
[10, 11],
[2, 12],
[12, 13],
[13, 14],
[2, 1],
[1, 15],
[15, 17],
[1, 16],
[16, 18],
]
colors = [
[255, 0, 0],
[255, 85, 0],
[255, 170, 0],
[255, 255, 0],
[170, 255, 0],
[85, 255, 0],
[0, 255, 0],
[0, 255, 85],
[0, 255, 170],
[0, 255, 255],
[0, 170, 255],
[0, 85, 255],
[0, 0, 255],
[85, 0, 255],
[170, 0, 255],
[255, 0, 255],
[255, 0, 170],
[255, 0, 85],
]
for (k1_index, k2_index), color in zip(limbSeq, colors, strict=False):
keypoint1 = keypoints[k1_index - 1]
keypoint2 = keypoints[k2_index - 1]
if keypoint1 is None or keypoint2 is None:
continue
Y = np.array([keypoint1.x, keypoint2.x]) * float(W)
X = np.array([keypoint1.y, keypoint2.y]) * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])
for keypoint, color in zip(keypoints, colors, strict=False):
if keypoint is None:
continue
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1)
return canvas
def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
import matplotlib
"""
Draw keypoints and connections representing hand pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
edges = [
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 5],
[5, 6],
[6, 7],
[7, 8],
[0, 9],
[9, 10],
[10, 11],
[11, 12],
[0, 13],
[13, 14],
[14, 15],
[15, 16],
[0, 17],
[17, 18],
[18, 19],
[19, 20],
]
for ie, (e1, e2) in enumerate(edges):
k1 = keypoints[e1]
k2 = keypoints[e2]
if k1 is None or k2 is None:
continue
x1 = int(k1.x * W)
y1 = int(k1.y * H)
x2 = int(k2.x * W)
y2 = int(k2.y * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(
canvas,
(x1, y1),
(x2, y2),
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255,
thickness=2,
)
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
"""
Draw keypoints representing face pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]:
"""
Detect hands in the input body pose keypoints and calculate the bounding box for each hand.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left
corner of the bounding box, the width (height) of the bounding box, and
a boolean flag indicating whether the hand is a left hand (True) or a
right hand (False).
Notes:
- The width and height of the bounding boxes are equal since the network requires squared input.
- The minimum bounding box size is 20 pixels.
"""
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
left_shoulder = keypoints[5]
left_elbow = keypoints[6]
left_wrist = keypoints[7]
right_shoulder = keypoints[2]
right_elbow = keypoints[3]
right_wrist = keypoints[4]
# if any of three not detected
has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist))
has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist))
if not (has_left or has_right):
return []
hands = []
# left hand
if has_left:
hands.append([left_shoulder.x, left_shoulder.y, left_elbow.x, left_elbow.y, left_wrist.x, left_wrist.y, True])
# right hand
if has_right:
hands.append(
[right_shoulder.x, right_shoulder.y, right_elbow.x, right_elbow.y, right_wrist.x, right_wrist.y, False]
)
for x1, y1, x2, y2, x3, y3, is_left in hands:
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
# handRectangle.x -= handRectangle.width / 2.f;
# handRectangle.y -= handRectangle.height / 2.f;
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width
width2 = width
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append((int(x), int(y), int(width), is_left))
"""
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left.
"""
return detect_result
# Written by Lvmin
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]:
"""
Detect the face in the input body pose keypoints and calculate the bounding box for the face.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the
bounding box and the width (height) of the bounding box, or None if the
face is not detected or the bounding box width is less than 20 pixels.
Notes:
- The width and height of the bounding box are equal.
- The minimum bounding box size is 20 pixels.
"""
# left right eye ear 14 15 16 17
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
head = keypoints[0]
left_eye = keypoints[14]
right_eye = keypoints[15]
left_ear = keypoints[16]
right_ear = keypoints[17]
if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)):
return None
width = 0.0
x0, y0 = head.x, head.y
if left_eye is not None:
x1, y1 = left_eye.x, left_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if right_eye is not None:
x1, y1 = right_eye.x, right_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if left_ear is not None:
x1, y1 = left_ear.x, left_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
if right_ear is not None:
x1, y1 = right_ear.x, right_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
x, y = x0, y0
x -= width
y -= width
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width * 2
width2 = width * 2
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
if width >= 20:
return int(x), int(y), int(width)
else:
return None
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return i, j

View File

@@ -0,0 +1,260 @@
import os
import random
import cv2
import numpy as np
import torch
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), "ckpts")
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def make_noise_disk(H, W, C, F):
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
noise = noise[F : F + H, F : F + W]
noise -= np.min(noise)
noise /= np.max(noise)
if C == 1:
noise = noise[:, :, None]
return noise
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def min_max_norm(x):
x -= np.min(x)
x /= np.maximum(np.max(x), 1e-5)
return x
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def img2mask(img, H, W, low=10, high=90):
assert img.ndim == 3 or img.ndim == 2
assert img.dtype == np.uint8
if img.ndim == 3:
y = img[:, :, random.randrange(0, img.shape[2])]
else:
y = img
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
if random.uniform(0, 1) < 0.5:
y = 255 - y
return y < np.percentile(y, random.randrange(low, high))
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[120, 120, 120],
[180, 120, 120],
[6, 230, 230],
[80, 50, 50],
[4, 200, 3],
[120, 120, 80],
[140, 140, 140],
[204, 5, 255],
[230, 230, 230],
[4, 250, 7],
[224, 5, 255],
[235, 255, 7],
[150, 5, 61],
[120, 120, 70],
[8, 255, 51],
[255, 6, 82],
[143, 255, 140],
[204, 255, 4],
[255, 51, 7],
[204, 70, 3],
[0, 102, 200],
[61, 230, 250],
[255, 6, 51],
[11, 102, 255],
[255, 7, 71],
[255, 9, 224],
[9, 7, 230],
[220, 220, 220],
[255, 9, 92],
[112, 9, 255],
[8, 255, 214],
[7, 255, 224],
[255, 184, 6],
[10, 255, 71],
[255, 41, 10],
[7, 255, 255],
[224, 255, 8],
[102, 8, 255],
[255, 61, 6],
[255, 194, 7],
[255, 122, 8],
[0, 255, 20],
[255, 8, 41],
[255, 5, 153],
[6, 51, 255],
[235, 12, 255],
[160, 150, 20],
[0, 163, 255],
[140, 140, 140],
[250, 10, 15],
[20, 255, 0],
[31, 255, 0],
[255, 31, 0],
[255, 224, 0],
[153, 255, 0],
[0, 0, 255],
[255, 71, 0],
[0, 235, 255],
[0, 173, 255],
[31, 0, 255],
[11, 200, 200],
[255, 82, 0],
[0, 255, 245],
[0, 61, 255],
[0, 255, 112],
[0, 255, 133],
[255, 0, 0],
[255, 163, 0],
[255, 102, 0],
[194, 255, 0],
[0, 143, 255],
[51, 255, 0],
[0, 82, 255],
[0, 255, 41],
[0, 255, 173],
[10, 0, 255],
[173, 255, 0],
[0, 255, 153],
[255, 92, 0],
[255, 0, 255],
[255, 0, 245],
[255, 0, 102],
[255, 173, 0],
[255, 0, 20],
[255, 184, 184],
[0, 31, 255],
[0, 255, 61],
[0, 71, 255],
[255, 0, 204],
[0, 255, 194],
[0, 255, 82],
[0, 10, 255],
[0, 112, 255],
[51, 0, 255],
[0, 194, 255],
[0, 122, 255],
[0, 255, 163],
[255, 153, 0],
[0, 255, 10],
[255, 112, 0],
[143, 255, 0],
[82, 0, 255],
[163, 255, 0],
[255, 235, 0],
[8, 184, 170],
[133, 0, 255],
[0, 255, 92],
[184, 0, 255],
[255, 0, 31],
[0, 184, 255],
[0, 214, 255],
[255, 0, 112],
[92, 255, 0],
[0, 224, 255],
[112, 224, 255],
[70, 184, 160],
[163, 0, 255],
[153, 0, 255],
[71, 255, 0],
[255, 0, 163],
[255, 204, 0],
[255, 0, 143],
[0, 255, 235],
[133, 255, 0],
[255, 0, 235],
[245, 0, 255],
[255, 0, 122],
[255, 245, 0],
[10, 190, 212],
[214, 255, 0],
[0, 204, 255],
[20, 0, 255],
[255, 255, 0],
[0, 153, 255],
[0, 41, 255],
[0, 255, 204],
[41, 0, 255],
[41, 255, 0],
[173, 0, 255],
[0, 245, 255],
[71, 0, 255],
[122, 0, 255],
[0, 255, 184],
[0, 92, 255],
[184, 255, 0],
[0, 133, 255],
[255, 214, 0],
[25, 194, 194],
[102, 255, 0],
[92, 0, 255],
]

View File

@@ -0,0 +1,559 @@
# type: ignore
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.controlnet import zero_module
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.outputs import BaseOutput
from invokeai.backend.bria.transformer_bria import (
EmbedND,
FluxSingleTransformerBlock,
FluxTransformerBlock,
TimestepProjEmbeddings,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
BRIA_CONTROL_MODES = Literal["depth", "canny", "colorgrid", "recolor", "tile", "pose"]
class BriaControlModes(Enum):
depth = 0
canny = 1
colorgrid = 2
recolor = 3
tile = 4
pose = 5
@dataclass
class BriaControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
controlnet_single_block_samples: Tuple[torch.Tensor]
class BriaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Optional[List[int]] = None,
num_mode: int = None,
rope_theta: int = 10000,
time_theta: int = 10000,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
# self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
axes_dims_rope = [16, 56, 56] if axes_dims_rope is None else axes_dims_rope
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
# text_time_guidance_cls = (
# CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
# )
# self.time_text_embed = text_time_guidance_cls(
# embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
# )
self.time_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim, time_theta=time_theta)
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
)
for i in range(num_single_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.controlnet_single_blocks = nn.ModuleList([])
for _ in range(len(self.single_transformer_blocks)):
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
self.union = num_mode is not None and num_mode > 0
if self.union:
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
self.gradient_checkpointing = False
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self):
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(
cls,
transformer,
num_layers: int = 4,
num_single_layers: int = 10,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
load_weights_from_transformer=True,
):
config = transformer.config
config["num_layers"] = num_layers
config["num_single_layers"] = num_single_layers
config["attention_head_dim"] = attention_head_dim
config["num_attention_heads"] = num_attention_heads
controlnet = cls(**config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
controlnet.single_transformer_blocks.load_state_dict(
transformer.single_transformer_blocks.state_dict(), strict=False
)
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
return controlnet
def forward(
self,
hidden_states: torch.Tensor,
controlnet_cond: torch.Tensor,
controlnet_mode: torch.Tensor = None,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
controlnet_cond (`torch.Tensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
controlnet_mode (`torch.Tensor`):
The mode tensor of shape `(batch_size, 1)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if guidance is not None:
print("guidance is not supported in BriaControlNetModel")
if pooled_projections is not None:
print("pooled_projections is not supported in BriaControlNetModel")
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
# Convert controlnet_cond to the same dtype as the model weights
controlnet_cond = controlnet_cond.to(dtype=self.controlnet_x_embedder.weight.dtype)
# add
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
timestep = timestep.to(hidden_states.dtype) # Original code was * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) # Original code was * 1000
else:
guidance = None
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
if self.union:
# union mode
if controlnet_mode is None:
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
# Validate controlnet_mode values are within the valid range
if torch.any(controlnet_mode < 0) or torch.any(controlnet_mode >= self.num_mode):
raise ValueError(
f"`controlnet_mode` values must be in range [0, {self.num_mode - 1}], but got values outside this range"
)
# union mode emb
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
if controlnet_mode_emb.shape[0] < encoder_hidden_states.shape[0]: # duplicate mode emb for each batch
controlnet_mode_emb = controlnet_mode_emb.expand(
encoder_hidden_states.shape[0], 1, encoder_hidden_states.shape[2]
)
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
txt_ids = torch.cat((txt_ids[0:1, :], txt_ids), dim=0)
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
block_samples = ()
for _, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
block_samples = block_samples + (hidden_states,)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
single_block_samples = ()
for _, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
# controlnet block
controlnet_block_samples = ()
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks, strict=False):
block_sample = controlnet_block(block_sample)
controlnet_block_samples = controlnet_block_samples + (block_sample,)
controlnet_single_block_samples = ()
for single_block_sample, controlnet_block in zip(
single_block_samples, self.controlnet_single_blocks, strict=False
):
single_block_sample = controlnet_block(single_block_sample)
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
# scaling
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
controlnet_single_block_samples = (
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_samples, controlnet_single_block_samples)
return BriaControlNetOutput(
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)
class BriaMultiControlNetModel(ModelMixin):
r"""
`BriaMultiControlNetModel` wrapper class for Multi-BriaControlNetModel
This module is a wrapper for multiple instances of the `BriaControlNetModel`. The `forward()` API is designed to be
compatible with `BriaControlNetModel`.
Args:
controlnets (`List[BriaControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. You must set multiple
`BriaControlNetModel` as a list.
"""
def __init__(self, controlnets):
super().__init__()
self.nets = nn.ModuleList(controlnets)
def forward(
self,
hidden_states: torch.FloatTensor,
controlnet_cond: List[torch.tensor],
controlnet_mode: List[torch.tensor],
conditioning_scale: List[float],
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[BriaControlNetOutput, Tuple]:
# ControlNet-Union with multiple conditions
# only load one ControlNet for saving memories
if len(self.nets) == 1 and self.nets[0].union:
controlnet = self.nets[0]
for i, (image, mode, scale) in enumerate(
zip(controlnet_cond, controlnet_mode, conditioning_scale, strict=False)
):
block_samples, single_block_samples = controlnet(
hidden_states=hidden_states,
controlnet_cond=image,
controlnet_mode=mode[:, None],
conditioning_scale=scale,
timestep=timestep,
guidance=guidance,
pooled_projections=pooled_projections,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=img_ids,
joint_attention_kwargs=joint_attention_kwargs,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
control_single_block_samples = single_block_samples
else:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(
control_block_samples, block_samples, strict=False
)
]
control_single_block_samples = [
control_single_block_sample + block_sample
for control_single_block_sample, block_sample in zip(
control_single_block_samples, single_block_samples, strict=False
)
]
# Regular Multi-ControlNets
# load all ControlNets into memories
else:
for i, (image, mode, scale, controlnet) in enumerate(
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets, strict=False)
):
block_samples, single_block_samples = controlnet(
hidden_states=hidden_states,
controlnet_cond=image,
controlnet_mode=mode[:, None],
conditioning_scale=scale,
timestep=timestep,
guidance=guidance,
pooled_projections=pooled_projections,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=img_ids,
joint_attention_kwargs=joint_attention_kwargs,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
control_single_block_samples = single_block_samples
else:
if block_samples is not None and control_block_samples is not None:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(
control_block_samples, block_samples, strict=False
)
]
if single_block_samples is not None and control_single_block_samples is not None:
control_single_block_samples = [
control_single_block_sample + block_sample
for control_single_block_sample, block_sample in zip(
control_single_block_samples, single_block_samples, strict=False
)
]
return control_block_samples, control_single_block_samples

View File

@@ -0,0 +1,68 @@
from typing import List, Tuple
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from PIL import Image
@torch.no_grad()
def prepare_control_images(
vae: AutoencoderKL,
control_images: list[Image.Image],
control_modes: list[int],
width: int,
height: int,
device: torch.device,
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
tensored_control_images = []
tensored_control_modes = []
for idx, control_image_ in enumerate(control_images):
tensored_control_image = _prepare_image(
image=control_image_,
width=width,
height=height,
device=device,
dtype=vae.dtype,
)
height, width = tensored_control_image.shape[-2:]
# vae encode
tensored_control_image = vae.encode(tensored_control_image).latent_dist.sample()
tensored_control_image = (tensored_control_image) * vae.config.scaling_factor
# pack
height_control_image, width_control_image = tensored_control_image.shape[2:]
tensored_control_image = _pack_latents(
tensored_control_image,
height_control_image,
width_control_image,
)
tensored_control_images.append(tensored_control_image)
tensored_control_modes.append(
torch.tensor(control_modes[idx]).expand(tensored_control_image.shape[0]).to(device, dtype=torch.long)
)
return tensored_control_images, tensored_control_modes
def _prepare_image(
image: Image.Image,
width: int,
height: int,
device: torch.device,
dtype: torch.dtype,
) -> torch.Tensor:
image = image.convert("RGB")
image = VaeImageProcessor(vae_scale_factor=16).preprocess(image, height=height, width=width)
image = image.repeat_interleave(1, dim=0)
image = image.to(device=device, dtype=dtype)
return image
def _pack_latents(latents, height, width):
latents = latents.view(1, 4, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(1, (height // 2) * (width // 2), 16)
return latents

View File

@@ -0,0 +1,636 @@
from typing import Any, Callable, Dict, List, Optional, Union
import diffusers
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.backend.bria.bria_utils import get_original_sigmas, get_t5_prompt_embeds, is_ng_none
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusion3Pipeline
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> image = pipe(prompt).images[0]
>>> image.save("sd3.png")
```
"""
T5_PRECISION = torch.float16
"""
Based on FluxPipeline with several changes:
- no pooled embeddings
- We use zero padding for prompts
- No guidance embedding since this is not a distilled version
"""
class BriaPipeline(FluxPipeline):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. Stable Diffusion 3 uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
"""
def __init__(
self,
transformer: BriaTransformer2DModel,
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: T5TokenizerFast,
):
self.register_modules(
vae=vae,
transformer=transformer,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
# TODO - why different than offical flux (-1)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = 64 # due to patchify=> 128,128 => res of 1k,1k
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
if self.vae.config.shift_factor is None:
self.vae.config.shift_factor = 0
self.vae.to(dtype=torch.float32)
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 128,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = get_t5_prompt_embeds(
self.tokenizer,
self.text_encoder,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=self.transformer.dtype)
if do_classifier_free_guidance and negative_prompt_embeds is None:
if not is_ng_none(negative_prompt):
negative_prompt = (
batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
)
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = get_t5_prompt_embeds(
self.tokenizer,
self.text_encoder,
prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=self.transformer.dtype)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
if self.text_encoder is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, negative_prompt_embeds, text_ids
@property
def guidance_scale(self):
return self._guidance_scale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 30,
timesteps: List[int] = None,
guidance_scale: float = 5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
max_sequence_length: int = 128,
clip_value: Union[None, float] = None,
normalize: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
callback_on_step_end_tensor_inputs = (
["latents"] if callback_on_step_end_tensor_inputs is None else callback_on_step_end_tensor_inputs
)
self.check_inputs(
prompt=prompt,
height=height,
width=width,
prompt_embeds=prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
(prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if (
isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler)
and self.scheduler.config["use_dynamic_shifting"]
):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1] # Shift by height - Why just height?
print(f"Using dynamic shift in pipeline with sequence length {image_seq_len}")
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
else:
# 4. Prepare timesteps
# Sample from training sigmas
if isinstance(self.scheduler, DDIMScheduler) or isinstance(self.scheduler, EulerAncestralDiscreteScheduler):
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, None, None
)
else:
sigmas = get_original_sigmas(
num_train_timesteps=self.scheduler.config.num_train_timesteps,
num_inference_steps=num_inference_steps,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# Supprot different diffusers versions
if diffusers.__version__ >= "0.32.0":
latent_image_ids = latent_image_ids[0]
text_ids = text_ids[0]
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# This is predicts "v" from flow-matching or eps from diffusion
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
txt_ids=text_ids,
img_ids=latent_image_ids,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
cfg_noise_pred_text = noise_pred_text.std()
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if normalize:
noise_pred = noise_pred * (0.7 * (cfg_noise_pred_text / noise_pred.std())) + 0.3 * noise_pred
if clip_value:
assert clip_value > 0
noise_pred = noise_pred.clip(-clip_value, clip_value)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents.to(dtype=torch.float32) / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
def to(self, *args, **kwargs):
DiffusionPipeline.to(self, *args, **kwargs)
# T5 is senstive to precision so we use the precision used for precompute and cast as needed
self.text_encoder = self.text_encoder.to(dtype=T5_PRECISION)
for block in self.text_encoder.encoder.block:
block.layer[-1].DenseReluDense.wo.to(dtype=torch.float32)
if self.vae.config.shift_factor == 0 and self.vae.dtype != torch.float32:
self.vae.to(dtype=torch.float32)
return self
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
@staticmethod
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
@staticmethod
def _unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
height = height // vae_scale_factor
width = width // vae_scale_factor
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
return latents
@staticmethod
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)

View File

@@ -0,0 +1,671 @@
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Union
import diffusers
import numpy as np
import torch
from diffusers import AutoencoderKL # Waiting for diffusers udpdate
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import USE_PEFT_BACKEND, logging
from diffusers.utils.peft_utils import scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import randn_tensor
from transformers import (
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.backend.bria.bria_utils import get_original_sigmas, get_t5_prompt_embeds, is_ng_none
from invokeai.backend.bria.controlnet_bria import BriaControlNetModel
from invokeai.backend.bria.pipeline_bria import BriaPipeline
from invokeai.backend.bria.transformer_bria import BriaTransformer2DModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class BriaControlNetPipeline(BriaPipeline):
r"""
Args:
transformer ([`SD3Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. Stable Diffusion 3 uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`T5TokenizerFast`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
def __init__( # EYAL - removed clip text encoder + tokenizer
self,
transformer: BriaTransformer2DModel,
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
vae: AutoencoderKL,
text_encoder: T5EncoderModel,
tokenizer: T5TokenizerFast,
controlnet: BriaControlNetModel,
):
super().__init__(
transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
)
self.register_modules(controlnet=controlnet)
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if isinstance(image, torch.Tensor):
pass
else:
image = self.image_processor.preprocess(image, height=height, width=width)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
num_channels_latents = self.transformer.config.in_channels // 4
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
)
height, width = control_image.shape[-2:]
# vae encode
control_image = self.vae.encode(control_image).latent_dist.sample()
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# pack
height_control_image, width_control_image = control_image.shape[2:]
control_image = self._pack_latents(
control_image,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
# Here we ensure that `control_mode` has the same length as the control_image.
if control_mode is not None:
if not isinstance(control_mode, int):
raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`")
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
return control_image, control_mode
def prepare_multi_control(
self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode
):
num_channels_latents = self.transformer.config.in_channels // 4
control_images = []
for _, control_image_ in enumerate(control_image):
control_image_ = self.prepare_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.vae.dtype,
)
height, width = control_image_.shape[-2:]
# vae encode
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# pack
height_control_image, width_control_image = control_image_.shape[2:]
control_image_ = self._pack_latents(
control_image_,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
control_images.append(control_image_)
control_image = control_images
# Here we ensure that `control_mode` has the same length as the control_image.
if isinstance(control_mode, list) and len(control_mode) != len(control_image):
raise ValueError(
"For Multi-ControlNet, `control_mode` must be a list of the same "
+ " length as the number of controlnets (control images) specified"
)
if not isinstance(control_mode, list):
control_mode = [control_mode] * len(control_image)
# set control mode
control_modes = []
for cmode in control_mode:
if cmode is None:
cmode = -1
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
control_modes.append(control_mode)
control_mode = control_modes
return control_image, control_mode
def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end, strict=False)
]
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps)
return controlnet_keep
def get_control_start_end(self, control_guidance_start, control_guidance_end):
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = 1 # TODO - why is this 1?
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
return control_guidance_start, control_guidance_end
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 30,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
control_image: Optional[PipelineImageInput] = None,
control_mode: Optional[Union[int, List[int]]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
latent_image_ids: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
text_ids: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: Optional[List[str]] = None,
max_sequence_length: int = 128,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
control_guidance_start, control_guidance_end = self.get_control_start_end(
control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
)
# 1. Check inputs. Raise error if not correct
callback_on_step_end_tensor_inputs = (
["latents"] if callback_on_step_end_tensor_inputs is None else callback_on_step_end_tensor_inputs
)
self.check_inputs(
prompt,
height,
width,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
device = self._execution_device
# 4. Prepare timesteps
if (
isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler)
and self.scheduler.config["use_dynamic_shifting"]
):
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
# Determine image sequence length
if control_image is not None:
if isinstance(control_image, list):
image_seq_len = control_image[0].shape[1]
else:
image_seq_len = control_image.shape[1]
else:
# Use latents sequence length when no control image is provided
image_seq_len = latents.shape[1]
print(f"Using dynamic shift in pipeline with sequence length {image_seq_len}")
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps=None,
sigmas=sigmas,
mu=mu,
)
else:
# 5. Prepare timesteps
sigmas = get_original_sigmas(
num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 6. Create tensor stating which controlnets to keep
if control_image is not None:
controlnet_keep = self.get_controlnet_keep(
timesteps=timesteps,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
)
if diffusers.__version__ >= "0.32.0":
latent_image_ids = latent_image_ids[0]
text_ids = text_ids[0]
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# EYAL - added the CFG loop
# 7. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# Handling ControlNet
if control_image is not None:
if isinstance(controlnet_keep[i], list):
if isinstance(controlnet_conditioning_scale, list):
cond_scale = controlnet_conditioning_scale
else:
cond_scale = [
c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i], strict=False)
]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
hidden_states=latents,
controlnet_cond=control_image,
controlnet_mode=control_mode,
conditioning_scale=cond_scale,
timestep=timestep,
# guidance=guidance,
# pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)
else:
controlnet_block_samples, controlnet_single_block_samples = None, None
# This is predicts "v" from flow-matching
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
txt_ids=text_ids,
img_ids=latent_image_ids,
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def encode_prompt(
prompt: Union[str, List[str]],
tokenizer: T5TokenizerFast,
text_encoder: T5EncoderModel,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 128,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
device = device or torch.device("cuda")
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
# dynamically adjust the LoRA scale
if text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(text_encoder, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
dtype = text_encoder.dtype if text_encoder is not None else torch.float32
if prompt_embeds is None:
prompt_embeds = get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=dtype)
if negative_prompt_embeds is None:
if not is_ng_none(negative_prompt):
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = get_t5_prompt_embeds(
tokenizer,
text_encoder,
prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
).to(dtype=dtype)
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
if text_encoder is not None:
if USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(text_encoder, lora_scale)
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, negative_prompt_embeds, text_ids
def prepare_latents(
batch_size: int,
num_channels_latents: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
generator: torch.Generator,
latents: Optional[torch.FloatTensor] = None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
vae_scale_factor = 16
height = 2 * (int(height) // vae_scale_factor)
width = 2 * (int(width) // vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents

View File

@@ -0,0 +1,322 @@
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from invokeai.backend.bria.bria_utils import FluxPosEmbed as EmbedND
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Timesteps(nn.Module):
def __init__(
self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1, time_theta=10000
):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
self.time_theta = time_theta
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
max_period=self.time_theta,
)
return t_emb
class TimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, time_theta):
super().__init__()
self.time_proj = Timesteps(
num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, time_theta=time_theta
)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D)
return timesteps_emb
"""
Based on FluxPipeline with several changes:
- no pooled embeddings
- We use zero padding for prompts
- No guidance embedding since this is not a distilled version
"""
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Parameters:
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 128,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = None,
guidance_embeds: bool = False,
axes_dims_rope: Optional[List[int]] = None,
rope_theta=10000,
time_theta=10000,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
axes_dims_rope = [16, 56, 56] if axes_dims_rope is None else axes_dims_rope
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
self.time_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim, time_theta=time_theta)
# if pooled_projection_dim:
# self.pooled_text_embed = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim=self.inner_dim, act_fn="silu")
if guidance_embeds:
self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
)
for i in range(self.config.num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
hidden_states = self.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype)
if guidance is not None:
guidance = guidance.to(hidden_states.dtype)
else:
guidance = None
# temb = (
# self.time_text_embed(timestep, pooled_projections)
# if guidance is None
# else self.time_text_embed(timestep, guidance, pooled_projections)
# )
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
# if pooled_projections:
# temb+=self.pooled_text_embed(pooled_projections)
if guidance:
temb += self.guidance_embed(guidance, dtype=hidden_states.dtype)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if len(txt_ids.shape) == 2:
ids = torch.cat((txt_ids, img_ids), dim=0)
else:
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pos_embed(ids)
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -30,8 +30,11 @@ def denoise(
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
# extra img tokens
# extra img tokens (channel-wise)
img_cond: torch.Tensor | None,
# extra img tokens (sequence-wise) - for Kontext conditioning
img_cond_seq: torch.Tensor | None = None,
img_cond_seq_ids: torch.Tensor | None = None,
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -46,6 +49,10 @@ def denoise(
)
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
# Store original sequence length for slicing predictions
original_seq_len = img.shape[1]
for step_index, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
@@ -71,10 +78,26 @@ def denoise(
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
# Prepare input for model - concatenate fresh each step
img_input = img
img_input_ids = img_ids
# Add channel-wise conditioning (for ControlNet, FLUX Fill, etc.)
if img_cond is not None:
img_input = torch.cat((img_input, img_cond), dim=-1)
# Add sequence-wise conditioning (for Kontext)
if img_cond_seq is not None:
assert img_cond_seq_ids is not None, (
"You need to provide either both or neither of the sequence conditioning"
)
img_input = torch.cat((img_input, img_cond_seq), dim=1)
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
pred = model(
img=pred_img,
img_ids=img_ids,
img=img_input,
img_ids=img_input_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
@@ -88,6 +111,10 @@ def denoise(
regional_prompting_extension=pos_regional_prompting_extension,
)
# Slice prediction to only include the main image tokens
if img_input_ids is not None:
pred = pred[:, :original_seq_len]
step_cfg_scale = cfg_scale[step_index]
# If step_cfg_scale, is 1.0, then we don't need to run the negative prediction.

View File

@@ -0,0 +1,149 @@
import einops
import numpy as np
import torch
from einops import repeat
from PIL import Image
from invokeai.app.invocations.fields import FluxKontextConditioningField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import pack
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
def generate_img_ids_with_offset(
latent_height: int,
latent_width: int,
batch_size: int,
device: torch.device,
dtype: torch.dtype,
idx_offset: int = 0,
) -> torch.Tensor:
"""Generate tensor of image position ids with an optional offset.
Args:
latent_height (int): Height of image in latent space (after packing, this becomes h//2).
latent_width (int): Width of image in latent space (after packing, this becomes w//2).
batch_size (int): Number of images in the batch.
device (torch.device): Device to create tensors on.
dtype (torch.dtype): Data type for the tensors.
idx_offset (int): Offset to add to the first dimension of the image ids.
Returns:
torch.Tensor: Image position ids with shape [batch_size, (latent_height//2 * latent_width//2), 3].
"""
if device.type == "mps":
orig_dtype = dtype
dtype = torch.float16
# After packing, the spatial dimensions are halved due to the 2x2 patch structure
packed_height = latent_height // 2
packed_width = latent_width // 2
# Create base tensor for position IDs with shape [packed_height, packed_width, 3]
# The 3 channels represent: [batch_offset, y_position, x_position]
img_ids = torch.zeros(packed_height, packed_width, 3, device=device, dtype=dtype)
# Set the batch offset for all positions
img_ids[..., 0] = idx_offset
# Create y-coordinate indices (vertical positions)
y_indices = torch.arange(packed_height, device=device, dtype=dtype)
# Broadcast y_indices to match the spatial dimensions [packed_height, 1]
img_ids[..., 1] = y_indices[:, None]
# Create x-coordinate indices (horizontal positions)
x_indices = torch.arange(packed_width, device=device, dtype=dtype)
# Broadcast x_indices to match the spatial dimensions [1, packed_width]
img_ids[..., 2] = x_indices[None, :]
# Expand to include batch dimension: [batch_size, (packed_height * packed_width), 3]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
if device.type == "mps":
img_ids = img_ids.to(orig_dtype)
return img_ids
class KontextExtension:
"""Applies FLUX Kontext (reference image) conditioning."""
def __init__(
self,
kontext_conditioning: FluxKontextConditioningField,
context: InvocationContext,
vae_field: VAEField,
device: torch.device,
dtype: torch.dtype,
):
"""
Initializes the KontextExtension, pre-processing the reference image
into latents and positional IDs.
"""
self._context = context
self._device = device
self._dtype = dtype
self._vae_field = vae_field
self.kontext_conditioning = kontext_conditioning
# Pre-process and cache the kontext latents and ids upon initialization.
self.kontext_latents, self.kontext_ids = self._prepare_kontext()
def _prepare_kontext(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Encodes the reference image and prepares its latents and IDs."""
image = self._context.images.get_pil(self.kontext_conditioning.image.image_name)
# Calculate aspect ratio of input image
width, height = image.size
aspect_ratio = width / height
# Find the closest preferred resolution by aspect ratio
_, target_width, target_height = min(
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS), key=lambda x: x[0]
)
# Apply BFL's scaling formula
# This ensures compatibility with the model's training
scaled_width = 2 * int(target_width / 16)
scaled_height = 2 * int(target_height / 16)
# Resize to the exact resolution used during training
image = image.convert("RGB")
final_width = 8 * scaled_width
final_height = 8 * scaled_height
image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
# Convert to tensor with same normalization as BFL
image_np = np.array(image)
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0
image_tensor = einops.rearrange(image_tensor, "h w c -> 1 c h w")
image_tensor = image_tensor.to(self._device)
# Continue with VAE encoding
vae_info = self._context.models.load(self._vae_field.vae)
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
# Extract tensor dimensions
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
# Pack the latents and generate IDs
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
kontext_ids = generate_img_ids_with_offset(
latent_height=latent_height,
latent_width=latent_width,
batch_size=batch_size,
device=self._device,
dtype=self._dtype,
idx_offset=1,
)
return kontext_latents_packed, kontext_ids
def ensure_batch_size(self, target_batch_size: int) -> None:
"""Ensures the kontext latents and IDs match the target batch size by repeating if necessary."""
if self.kontext_latents.shape[0] != target_batch_size:
self.kontext_latents = self.kontext_latents.repeat(target_batch_size, 1, 1)
self.kontext_ids = self.kontext_ids.repeat(target_batch_size, 1, 1)

View File

@@ -174,11 +174,13 @@ def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtyp
dtype = torch.float16
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
# Set batch offset to 0 for main image tokens
img_ids[..., 0] = 0
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
if device.type == "mps":
img_ids.to(orig_dtype)
img_ids = img_ids.to(orig_dtype)
return img_ids

View File

@@ -18,6 +18,29 @@ class ModelSpec:
repo_ae: str | None
# Preferred resolutions for Kontext models to avoid tiling artifacts
# These are the specific resolutions the model was trained on
PREFERED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
max_seq_lengths: Dict[str, Literal[256, 512]] = {
"flux-dev": 512,
"flux-dev-fill": 512,

View File

@@ -37,6 +37,7 @@ from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.hash_validator import validate_hash
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
from invokeai.backend.model_manager.omi import flux_dev_1_lora, stable_diffusion_xl_1_lora
from invokeai.backend.model_manager.taxonomy import (
AnyVariant,
BaseModelType,
@@ -186,7 +187,7 @@ class ModelConfigBase(ABC, BaseModel):
else:
return config_cls.from_model_on_disk(mod, **overrides)
raise InvalidModelConfigException("No valid config found")
raise InvalidModelConfigException("Unable to determine model type")
@classmethod
def get_tag(cls) -> Tag:
@@ -334,6 +335,36 @@ class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase, LegacyProbeMixin,
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
class LoRAOmiConfig(LoRAConfigBase, ModelConfigBase):
format: Literal[ModelFormat.OMI] = ModelFormat.OMI
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
if mod.path.is_dir():
return False
metadata = mod.metadata()
return (
metadata.get("modelspec.sai_model_spec")
and metadata.get("ot_branch") == "omi_format"
and metadata["modelspec.architecture"].split("/")[1].lower() == "lora"
)
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
metadata = mod.metadata()
architecture = metadata["modelspec.architecture"]
if architecture == stable_diffusion_xl_1_lora:
base = BaseModelType.StableDiffusionXL
elif architecture == flux_dev_1_lora:
base = BaseModelType.Flux
else:
raise InvalidModelConfigException(f"Unrecognised/unsupported architecture for OMI LoRA: {architecture}")
return {"base": base}
class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
@@ -350,7 +381,7 @@ class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
state_dict = mod.load_state_dict()
for key in state_dict.keys():
if type(key) is int:
if isinstance(key, int):
continue
if key.startswith(("lora_te_", "lora_unet_", "lora_te1_", "lora_te2_", "lora_transformer_")):
@@ -668,6 +699,7 @@ AnyModelConfig = Annotated[
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
Annotated[LoRAOmiConfig, LoRAOmiConfig.get_tag()],
Annotated[ControlLoRALyCORISConfig, ControlLoRALyCORISConfig.get_tag()],
Annotated[ControlLoRADiffusersConfig, ControlLoRADiffusersConfig.get_tag()],
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],

View File

@@ -125,6 +125,8 @@ class ModelProbe(object):
}
CLASS2TYPE = {
"BriaPipeline": ModelType.Main,
"BriaTransformer2DModel": ModelType.ControlNet,
"FluxPipeline": ModelType.Main,
"StableDiffusionPipeline": ModelType.Main,
"StableDiffusionInpaintPipeline": ModelType.Main,
@@ -861,6 +863,8 @@ class PipelineFolderProbe(FolderProbeBase):
return BaseModelType.StableDiffusion3
elif transformer_conf["_class_name"] == "CogView4Transformer2DModel":
return BaseModelType.CogView4
elif transformer_conf["_class_name"] == "BriaTransformer2DModel":
return BaseModelType.Bria
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
@@ -1010,6 +1014,9 @@ class ControlNetFolderProbe(FolderProbeBase):
if config.get("_class_name", None) == "FluxControlNetModel":
return BaseModelType.Flux
if config.get("_class_name", None) == "BriaTransformer2DModel":
return BaseModelType.Bria
# no obvious way to distinguish between sd2-base and sd2-768
dimension = config["cross_attention_dim"]
if dimension == 768:

View File

@@ -0,0 +1,96 @@
from pathlib import Path
from typing import Optional
from invokeai.backend.model_manager.config import (
AnyModelConfig,
CheckpointConfigBase,
ControlNetCheckpointConfig,
ControlNetDiffusersConfig,
DiffusersConfigBase,
)
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.load.model_loaders.generic_diffusers import GenericDiffusersLoader
from invokeai.backend.model_manager.taxonomy import (
AnyModel,
BaseModelType,
ModelFormat,
ModelType,
SubModelType,
)
@ModelLoaderRegistry.register(base=BaseModelType.Bria, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
class BriaControlNetDiffusersModel(GenericDiffusersLoader):
"""Class to load Bria control net models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if isinstance(config, ControlNetCheckpointConfig):
raise NotImplementedError("CheckpointConfigBase is not implemented for Bria models.")
model_path = Path(config.path)
load_class = self.get_hf_load_class(model_path)
repo_variant = config.repo_variant if isinstance(config, ControlNetDiffusersConfig) else None
variant = repo_variant.value if repo_variant else None
model_path = model_path
dtype = self._torch_dtype
try:
result: AnyModel = load_class.from_pretrained(
model_path,
torch_dtype=dtype,
variant=variant,
use_safetensors=False,
)
except OSError as e:
if variant and "no file named" in str(
e
): # try without the variant, just in case user's preferences changed
result = load_class.from_pretrained(model_path, torch_dtype=dtype)
else:
raise e
return result
@ModelLoaderRegistry.register(base=BaseModelType.Bria, type=ModelType.Main, format=ModelFormat.Diffusers)
class BriaDiffusersModel(GenericDiffusersLoader):
"""Class to load Bria main models."""
def _load_model(
self,
config: AnyModelConfig,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if isinstance(config, CheckpointConfigBase):
raise NotImplementedError("CheckpointConfigBase is not implemented for Bria models.")
if submodel_type is None:
raise Exception("A submodel type must be provided when loading main pipelines.")
model_path = Path(config.path)
load_class = self.get_hf_load_class(model_path, submodel_type)
repo_variant = config.repo_variant if isinstance(config, DiffusersConfigBase) else None
variant = repo_variant.value if repo_variant else None
model_path = model_path / submodel_type.value
dtype = self._torch_dtype
try:
result: AnyModel = load_class.from_pretrained(
model_path,
torch_dtype=dtype,
variant=variant,
)
except OSError as e:
if variant and "no file named" in str(
e
): # try without the variant, just in case user's preferences changed
result = load_class.from_pretrained(model_path, torch_dtype=dtype)
else:
raise e
return result

View File

@@ -7,7 +7,14 @@ from typing import Optional
import accelerate
import torch
from safetensors.torch import load_file
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from transformers import (
AutoConfig,
AutoModelForTextEncoding,
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
@@ -139,7 +146,7 @@ class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
)
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
return T5TokenizerFast.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
te2_model_path = Path(config.path) / "text_encoder_2"
model_config = AutoConfig.from_pretrained(te2_model_path)
@@ -183,7 +190,7 @@ class T5EncoderCheckpointModel(ModelLoader):
match submodel_type:
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
return T5TokenizerFast.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
return T5EncoderModel.from_pretrained(
Path(config.path) / "text_encoder_2", torch_dtype="auto", low_cpu_mem_usage=True

View File

@@ -80,7 +80,13 @@ class GenericDiffusersLoader(ModelLoader):
"transformers",
"invokeai.backend.quantization.fast_quantized_transformers_model",
"invokeai.backend.quantization.fast_quantized_diffusion_model",
"transformer_bria",
]:
if module == "transformer_bria":
module = "invokeai.backend.bria.transformer_bria"
elif class_name == "BriaTransformer2DModel":
class_name = "BriaControlNetModel"
module = "invokeai.backend.bria.controlnet_bria"
res_type = sys.modules[module]
else:
res_type = sys.modules["diffusers"].pipelines

View File

@@ -13,6 +13,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig
from invokeai.backend.model_manager.load.load_default import ModelLoader
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
from invokeai.backend.model_manager.omi.omi import convert_from_omi
from invokeai.backend.model_manager.taxonomy import (
AnyModel,
BaseModelType,
@@ -43,6 +44,8 @@ from invokeai.backend.patches.lora_conversions.sd_lora_conversion_utils import l
from invokeai.backend.patches.lora_conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.LoRA, format=ModelFormat.OMI)
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.LoRA, format=ModelFormat.OMI)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.ControlLoRa, format=ModelFormat.LyCORIS)
@@ -77,12 +80,23 @@ class LoRALoader(ModelLoader):
else:
state_dict = torch.load(model_path, map_location="cpu")
# Strip 'bundle_emb' keys - these are unused and currently cause downstream errors.
# To revisit later to determine if they're needed/useful.
state_dict = {k: v for k, v in state_dict.items() if not k.startswith("bundle_emb")}
# At the time of writing, we support the OMI standard for base models Flux and SDXL
if config.format == ModelFormat.OMI and self._model_base in [
BaseModelType.StableDiffusionXL,
BaseModelType.Flux,
]:
state_dict = convert_from_omi(state_dict, config.base) # type: ignore
# Apply state_dict key conversions, if necessary.
if self._model_base == BaseModelType.StableDiffusionXL:
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
model = lora_model_from_sd_state_dict(state_dict=state_dict)
elif self._model_base == BaseModelType.Flux:
if config.format == ModelFormat.Diffusers:
if config.format in [ModelFormat.Diffusers, ModelFormat.OMI]:
# HACK(ryand): We set alpha=None for diffusers PEFT format models. These models are typically
# distributed as a single file without the associated metadata containing the alpha value. We chose
# alpha=None, because this is treated as alpha=rank internally in `LoRALayerBase.scale()`. alpha=rank
@@ -99,7 +113,7 @@ class LoRALoader(ModelLoader):
elif is_state_dict_likely_in_flux_aitoolkit_format(state_dict=state_dict):
model = lora_model_from_flux_aitoolkit_state_dict(state_dict=state_dict)
else:
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
raise ValueError("LoRA model is in unsupported FLUX format")
else:
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:

View File

@@ -12,6 +12,9 @@ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from transformers import CLIPTokenizer, T5Tokenizer, T5TokenizerFast
from invokeai.backend.bria.controlnet_aux.open_pose.body import Body
from invokeai.backend.bria.controlnet_aux.open_pose.face import Face
from invokeai.backend.bria.controlnet_aux.open_pose.hand import Hand
from invokeai.backend.image_util.depth_anything.depth_anything_pipeline import DepthAnythingPipeline
from invokeai.backend.image_util.grounding_dino.grounding_dino_pipeline import GroundingDinoPipeline
from invokeai.backend.image_util.segment_anything.segment_anything_pipeline import SegmentAnythingPipeline
@@ -62,6 +65,8 @@ def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int:
else:
# If neither is available, return 0
return 0
elif isinstance(model, (Body, Hand, Face)):
return calc_module_size(model.model)
elif isinstance(
model,
(

View File

@@ -0,0 +1,7 @@
from invokeai.backend.model_manager.omi.omi import convert_from_omi
from invokeai.backend.model_manager.omi.vendor.model_spec.architecture import (
flux_dev_1_lora,
stable_diffusion_xl_1_lora,
)
__all__ = ["flux_dev_1_lora", "stable_diffusion_xl_1_lora", "convert_from_omi"]

View File

@@ -0,0 +1,21 @@
from invokeai.backend.model_manager.model_on_disk import StateDict
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
convert_flux_lora as omi_flux,
)
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
convert_lora_util as lora_util,
)
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
convert_sdxl_lora as omi_sdxl,
)
from invokeai.backend.model_manager.taxonomy import BaseModelType
def convert_from_omi(weights_sd: StateDict, base: BaseModelType):
keyset = {
BaseModelType.Flux: omi_flux.convert_flux_lora_key_sets(),
BaseModelType.StableDiffusionXL: omi_sdxl.convert_sdxl_lora_key_sets(),
}[base]
source = "omi"
target = "legacy_diffusers"
return lora_util.__convert(weights_sd, keyset, source, target) # type: ignore

View File

View File

@@ -0,0 +1,20 @@
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
LoraConversionKeySet,
map_prefix_range,
)
def map_clip(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("text_projection", "text_projection", parent=key_prefix)]
for k in map_prefix_range("text_model.encoder.layers", "text_model.encoder.layers", parent=key_prefix):
keys += [LoraConversionKeySet("mlp.fc1", "mlp.fc1", parent=k)]
keys += [LoraConversionKeySet("mlp.fc2", "mlp.fc2", parent=k)]
keys += [LoraConversionKeySet("self_attn.k_proj", "self_attn.k_proj", parent=k)]
keys += [LoraConversionKeySet("self_attn.out_proj", "self_attn.out_proj", parent=k)]
keys += [LoraConversionKeySet("self_attn.q_proj", "self_attn.q_proj", parent=k)]
keys += [LoraConversionKeySet("self_attn.v_proj", "self_attn.v_proj", parent=k)]
return keys

View File

@@ -0,0 +1,84 @@
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_clip import map_clip
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
LoraConversionKeySet,
map_prefix_range,
)
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_t5 import map_t5
def __map_double_transformer_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("img_attn.qkv.0", "attn.to_q", parent=key_prefix)]
keys += [LoraConversionKeySet("img_attn.qkv.1", "attn.to_k", parent=key_prefix)]
keys += [LoraConversionKeySet("img_attn.qkv.2", "attn.to_v", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_attn.qkv.0", "attn.add_q_proj", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_attn.qkv.1", "attn.add_k_proj", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_attn.qkv.2", "attn.add_v_proj", parent=key_prefix)]
keys += [LoraConversionKeySet("img_attn.proj", "attn.to_out.0", parent=key_prefix)]
keys += [LoraConversionKeySet("img_mlp.0", "ff.net.0.proj", parent=key_prefix)]
keys += [LoraConversionKeySet("img_mlp.2", "ff.net.2", parent=key_prefix)]
keys += [LoraConversionKeySet("img_mod.lin", "norm1.linear", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_attn.proj", "attn.to_add_out", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_mlp.0", "ff_context.net.0.proj", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_mlp.2", "ff_context.net.2", parent=key_prefix)]
keys += [LoraConversionKeySet("txt_mod.lin", "norm1_context.linear", parent=key_prefix)]
return keys
def __map_single_transformer_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("linear1.0", "attn.to_q", parent=key_prefix)]
keys += [LoraConversionKeySet("linear1.1", "attn.to_k", parent=key_prefix)]
keys += [LoraConversionKeySet("linear1.2", "attn.to_v", parent=key_prefix)]
keys += [LoraConversionKeySet("linear1.3", "proj_mlp", parent=key_prefix)]
keys += [LoraConversionKeySet("linear2", "proj_out", parent=key_prefix)]
keys += [LoraConversionKeySet("modulation.lin", "norm.linear", parent=key_prefix)]
return keys
def __map_transformer(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("txt_in", "context_embedder", parent=key_prefix)]
keys += [
LoraConversionKeySet("final_layer.adaLN_modulation.1", "norm_out.linear", parent=key_prefix, swap_chunks=True)
]
keys += [LoraConversionKeySet("final_layer.linear", "proj_out", parent=key_prefix)]
keys += [
LoraConversionKeySet("guidance_in.in_layer", "time_text_embed.guidance_embedder.linear_1", parent=key_prefix)
]
keys += [
LoraConversionKeySet("guidance_in.out_layer", "time_text_embed.guidance_embedder.linear_2", parent=key_prefix)
]
keys += [LoraConversionKeySet("vector_in.in_layer", "time_text_embed.text_embedder.linear_1", parent=key_prefix)]
keys += [LoraConversionKeySet("vector_in.out_layer", "time_text_embed.text_embedder.linear_2", parent=key_prefix)]
keys += [LoraConversionKeySet("time_in.in_layer", "time_text_embed.timestep_embedder.linear_1", parent=key_prefix)]
keys += [LoraConversionKeySet("time_in.out_layer", "time_text_embed.timestep_embedder.linear_2", parent=key_prefix)]
keys += [LoraConversionKeySet("img_in.proj", "x_embedder", parent=key_prefix)]
for k in map_prefix_range("double_blocks", "transformer_blocks", parent=key_prefix):
keys += __map_double_transformer_block(k)
for k in map_prefix_range("single_blocks", "single_transformer_blocks", parent=key_prefix):
keys += __map_single_transformer_block(k)
return keys
def convert_flux_lora_key_sets() -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("bundle_emb", "bundle_emb")]
keys += __map_transformer(LoraConversionKeySet("transformer", "lora_transformer"))
keys += map_clip(LoraConversionKeySet("clip_l", "lora_te1"))
keys += map_t5(LoraConversionKeySet("t5", "lora_te2"))
return keys

View File

@@ -0,0 +1,217 @@
import torch
from torch import Tensor
from typing_extensions import Self
class LoraConversionKeySet:
def __init__(
self,
omi_prefix: str,
diffusers_prefix: str,
legacy_diffusers_prefix: str | None = None,
parent: Self | None = None,
swap_chunks: bool = False,
filter_is_last: bool | None = None,
next_omi_prefix: str | None = None,
next_diffusers_prefix: str | None = None,
):
if parent is not None:
self.omi_prefix = combine(parent.omi_prefix, omi_prefix)
self.diffusers_prefix = combine(parent.diffusers_prefix, diffusers_prefix)
else:
self.omi_prefix = omi_prefix
self.diffusers_prefix = diffusers_prefix
if legacy_diffusers_prefix is None:
self.legacy_diffusers_prefix = self.diffusers_prefix.replace(".", "_")
elif parent is not None:
self.legacy_diffusers_prefix = combine(parent.legacy_diffusers_prefix, legacy_diffusers_prefix).replace(
".", "_"
)
else:
self.legacy_diffusers_prefix = legacy_diffusers_prefix
self.parent = parent
self.swap_chunks = swap_chunks
self.filter_is_last = filter_is_last
self.prefix = parent
if next_omi_prefix is None and parent is not None:
self.next_omi_prefix = parent.next_omi_prefix
self.next_diffusers_prefix = parent.next_diffusers_prefix
self.next_legacy_diffusers_prefix = parent.next_legacy_diffusers_prefix
elif next_omi_prefix is not None and parent is not None:
self.next_omi_prefix = combine(parent.omi_prefix, next_omi_prefix)
self.next_diffusers_prefix = combine(parent.diffusers_prefix, next_diffusers_prefix)
self.next_legacy_diffusers_prefix = combine(parent.legacy_diffusers_prefix, next_diffusers_prefix).replace(
".", "_"
)
elif next_omi_prefix is not None and parent is None:
self.next_omi_prefix = next_omi_prefix
self.next_diffusers_prefix = next_diffusers_prefix
self.next_legacy_diffusers_prefix = next_diffusers_prefix.replace(".", "_")
else:
self.next_omi_prefix = None
self.next_diffusers_prefix = None
self.next_legacy_diffusers_prefix = None
def __get_omi(self, in_prefix: str, key: str) -> str:
return self.omi_prefix + key.removeprefix(in_prefix)
def __get_diffusers(self, in_prefix: str, key: str) -> str:
return self.diffusers_prefix + key.removeprefix(in_prefix)
def __get_legacy_diffusers(self, in_prefix: str, key: str) -> str:
key = self.legacy_diffusers_prefix + key.removeprefix(in_prefix)
suffix = key[key.rfind(".") :]
if suffix not in [".alpha", ".dora_scale"]: # some keys only have a single . in the suffix
suffix = key[key.removesuffix(suffix).rfind(".") :]
key = key.removesuffix(suffix)
return key.replace(".", "_") + suffix
def get_key(self, in_prefix: str, key: str, target: str) -> str:
if target == "omi":
return self.__get_omi(in_prefix, key)
elif target == "diffusers":
return self.__get_diffusers(in_prefix, key)
elif target == "legacy_diffusers":
return self.__get_legacy_diffusers(in_prefix, key)
return key
def __str__(self) -> str:
return f"omi: {self.omi_prefix}, diffusers: {self.diffusers_prefix}, legacy: {self.legacy_diffusers_prefix}"
def combine(left: str, right: str) -> str:
left = left.rstrip(".")
right = right.lstrip(".")
if left == "" or left is None:
return right
elif right == "" or right is None:
return left
else:
return left + "." + right
def map_prefix_range(
omi_prefix: str,
diffusers_prefix: str,
parent: LoraConversionKeySet,
) -> list[LoraConversionKeySet]:
# 100 should be a safe upper bound. increase if it's not enough in the future
return [
LoraConversionKeySet(
omi_prefix=f"{omi_prefix}.{i}",
diffusers_prefix=f"{diffusers_prefix}.{i}",
parent=parent,
next_omi_prefix=f"{omi_prefix}.{i + 1}",
next_diffusers_prefix=f"{diffusers_prefix}.{i + 1}",
)
for i in range(100)
]
def __convert(
state_dict: dict[str, Tensor],
key_sets: list[LoraConversionKeySet],
source: str,
target: str,
) -> dict[str, Tensor]:
out_states = {}
if source == target:
return dict(state_dict)
# TODO: maybe replace with a non O(n^2) algorithm
for key, tensor in state_dict.items():
for key_set in key_sets:
in_prefix = ""
if source == "omi":
in_prefix = key_set.omi_prefix
elif source == "diffusers":
in_prefix = key_set.diffusers_prefix
elif source == "legacy_diffusers":
in_prefix = key_set.legacy_diffusers_prefix
if not key.startswith(in_prefix):
continue
if key_set.filter_is_last is not None:
next_prefix = None
if source == "omi":
next_prefix = key_set.next_omi_prefix
elif source == "diffusers":
next_prefix = key_set.next_diffusers_prefix
elif source == "legacy_diffusers":
next_prefix = key_set.next_legacy_diffusers_prefix
is_last = not any(k.startswith(next_prefix) for k in state_dict)
if key_set.filter_is_last != is_last:
continue
name = key_set.get_key(in_prefix, key, target)
can_swap_chunks = target == "omi" or source == "omi"
if key_set.swap_chunks and name.endswith(".lora_up.weight") and can_swap_chunks:
chunk_0, chunk_1 = tensor.chunk(2, dim=0)
tensor = torch.cat([chunk_1, chunk_0], dim=0)
out_states[name] = tensor
break # only map the first matching key set
return out_states
def __detect_source(
state_dict: dict[str, Tensor],
key_sets: list[LoraConversionKeySet],
) -> str:
omi_count = 0
diffusers_count = 0
legacy_diffusers_count = 0
for key in state_dict:
for key_set in key_sets:
if key.startswith(key_set.omi_prefix):
omi_count += 1
if key.startswith(key_set.diffusers_prefix):
diffusers_count += 1
if key.startswith(key_set.legacy_diffusers_prefix):
legacy_diffusers_count += 1
if omi_count > diffusers_count and omi_count > legacy_diffusers_count:
return "omi"
if diffusers_count > omi_count and diffusers_count > legacy_diffusers_count:
return "diffusers"
if legacy_diffusers_count > omi_count and legacy_diffusers_count > diffusers_count:
return "legacy_diffusers"
return ""
def convert_to_omi(
state_dict: dict[str, Tensor],
key_sets: list[LoraConversionKeySet],
) -> dict[str, Tensor]:
source = __detect_source(state_dict, key_sets)
return __convert(state_dict, key_sets, source, "omi")
def convert_to_diffusers(
state_dict: dict[str, Tensor],
key_sets: list[LoraConversionKeySet],
) -> dict[str, Tensor]:
source = __detect_source(state_dict, key_sets)
return __convert(state_dict, key_sets, source, "diffusers")
def convert_to_legacy_diffusers(
state_dict: dict[str, Tensor],
key_sets: list[LoraConversionKeySet],
) -> dict[str, Tensor]:
source = __detect_source(state_dict, key_sets)
return __convert(state_dict, key_sets, source, "legacy_diffusers")

View File

@@ -0,0 +1,125 @@
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_clip import map_clip
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
LoraConversionKeySet,
map_prefix_range,
)
def __map_unet_resnet_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("emb_layers.1", "time_emb_proj", parent=key_prefix)]
keys += [LoraConversionKeySet("in_layers.2", "conv1", parent=key_prefix)]
keys += [LoraConversionKeySet("out_layers.3", "conv2", parent=key_prefix)]
keys += [LoraConversionKeySet("skip_connection", "conv_shortcut", parent=key_prefix)]
return keys
def __map_unet_attention_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("proj_in", "proj_in", parent=key_prefix)]
keys += [LoraConversionKeySet("proj_out", "proj_out", parent=key_prefix)]
for k in map_prefix_range("transformer_blocks", "transformer_blocks", parent=key_prefix):
keys += [LoraConversionKeySet("attn1.to_q", "attn1.to_q", parent=k)]
keys += [LoraConversionKeySet("attn1.to_k", "attn1.to_k", parent=k)]
keys += [LoraConversionKeySet("attn1.to_v", "attn1.to_v", parent=k)]
keys += [LoraConversionKeySet("attn1.to_out.0", "attn1.to_out.0", parent=k)]
keys += [LoraConversionKeySet("attn2.to_q", "attn2.to_q", parent=k)]
keys += [LoraConversionKeySet("attn2.to_k", "attn2.to_k", parent=k)]
keys += [LoraConversionKeySet("attn2.to_v", "attn2.to_v", parent=k)]
keys += [LoraConversionKeySet("attn2.to_out.0", "attn2.to_out.0", parent=k)]
keys += [LoraConversionKeySet("ff.net.0.proj", "ff.net.0.proj", parent=k)]
keys += [LoraConversionKeySet("ff.net.2", "ff.net.2", parent=k)]
return keys
def __map_unet_down_blocks(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += __map_unet_resnet_block(LoraConversionKeySet("1.0", "0.resnets.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("2.0", "0.resnets.1", parent=key_prefix))
keys += [LoraConversionKeySet("3.0.op", "0.downsamplers.0.conv", parent=key_prefix)]
keys += __map_unet_resnet_block(LoraConversionKeySet("4.0", "1.resnets.0", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("4.1", "1.attentions.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("5.0", "1.resnets.1", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("5.1", "1.attentions.1", parent=key_prefix))
keys += [LoraConversionKeySet("6.0.op", "1.downsamplers.0.conv", parent=key_prefix)]
keys += __map_unet_resnet_block(LoraConversionKeySet("7.0", "2.resnets.0", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("7.1", "2.attentions.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("8.0", "2.resnets.1", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("8.1", "2.attentions.1", parent=key_prefix))
return keys
def __map_unet_mid_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += __map_unet_resnet_block(LoraConversionKeySet("0", "resnets.0", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("1", "attentions.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("2", "resnets.1", parent=key_prefix))
return keys
def __map_unet_up_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += __map_unet_resnet_block(LoraConversionKeySet("0.0", "0.resnets.0", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("0.1", "0.attentions.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("1.0", "0.resnets.1", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("1.1", "0.attentions.1", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("2.0", "0.resnets.2", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("2.1", "0.attentions.2", parent=key_prefix))
keys += [LoraConversionKeySet("2.2.conv", "0.upsamplers.0.conv", parent=key_prefix)]
keys += __map_unet_resnet_block(LoraConversionKeySet("3.0", "1.resnets.0", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("3.1", "1.attentions.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("4.0", "1.resnets.1", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("4.1", "1.attentions.1", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("5.0", "1.resnets.2", parent=key_prefix))
keys += __map_unet_attention_block(LoraConversionKeySet("5.1", "1.attentions.2", parent=key_prefix))
keys += [LoraConversionKeySet("5.2.conv", "1.upsamplers.0.conv", parent=key_prefix)]
keys += __map_unet_resnet_block(LoraConversionKeySet("6.0", "2.resnets.0", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("7.0", "2.resnets.1", parent=key_prefix))
keys += __map_unet_resnet_block(LoraConversionKeySet("8.0", "2.resnets.2", parent=key_prefix))
return keys
def __map_unet(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("input_blocks.0.0", "conv_in", parent=key_prefix)]
keys += [LoraConversionKeySet("time_embed.0", "time_embedding.linear_1", parent=key_prefix)]
keys += [LoraConversionKeySet("time_embed.2", "time_embedding.linear_2", parent=key_prefix)]
keys += [LoraConversionKeySet("label_emb.0.0", "add_embedding.linear_1", parent=key_prefix)]
keys += [LoraConversionKeySet("label_emb.0.2", "add_embedding.linear_2", parent=key_prefix)]
keys += __map_unet_down_blocks(LoraConversionKeySet("input_blocks", "down_blocks", parent=key_prefix))
keys += __map_unet_mid_block(LoraConversionKeySet("middle_block", "mid_block", parent=key_prefix))
keys += __map_unet_up_block(LoraConversionKeySet("output_blocks", "up_blocks", parent=key_prefix))
keys += [LoraConversionKeySet("out.0", "conv_norm_out", parent=key_prefix)]
keys += [LoraConversionKeySet("out.2", "conv_out", parent=key_prefix)]
return keys
def convert_sdxl_lora_key_sets() -> list[LoraConversionKeySet]:
keys = []
keys += [LoraConversionKeySet("bundle_emb", "bundle_emb")]
keys += __map_unet(LoraConversionKeySet("unet", "lora_unet"))
keys += map_clip(LoraConversionKeySet("clip_l", "lora_te1"))
keys += map_clip(LoraConversionKeySet("clip_g", "lora_te2"))
return keys

View File

@@ -0,0 +1,19 @@
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
LoraConversionKeySet,
map_prefix_range,
)
def map_t5(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
keys = []
for k in map_prefix_range("encoder.block", "encoder.block", parent=key_prefix):
keys += [LoraConversionKeySet("layer.0.SelfAttention.k", "layer.0.SelfAttention.k", parent=k)]
keys += [LoraConversionKeySet("layer.0.SelfAttention.o", "layer.0.SelfAttention.o", parent=k)]
keys += [LoraConversionKeySet("layer.0.SelfAttention.q", "layer.0.SelfAttention.q", parent=k)]
keys += [LoraConversionKeySet("layer.0.SelfAttention.v", "layer.0.SelfAttention.v", parent=k)]
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wi_0", "layer.1.DenseReluDense.wi_0", parent=k)]
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wi_1", "layer.1.DenseReluDense.wi_1", parent=k)]
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wo", "layer.1.DenseReluDense.wo", parent=k)]
return keys

View File

@@ -0,0 +1,31 @@
stable_diffusion_1_lora = "stable-diffusion-v1/lora"
stable_diffusion_1_inpainting_lora = "stable-diffusion-v1-inpainting/lora"
stable_diffusion_2_512_lora = "stable-diffusion-v2-512/lora"
stable_diffusion_2_768_v_lora = "stable-diffusion-v2-768-v/lora"
stable_diffusion_2_depth_lora = "stable-diffusion-v2-depth/lora"
stable_diffusion_2_inpainting_lora = "stable-diffusion-v2-inpainting/lora"
stable_diffusion_3_medium_lora = "stable-diffusion-v3-medium/lora"
stable_diffusion_35_medium_lora = "stable-diffusion-v3.5-medium/lora"
stable_diffusion_35_large_lora = "stable-diffusion-v3.5-large/lora"
stable_diffusion_xl_1_lora = "stable-diffusion-xl-v1-base/lora"
stable_diffusion_xl_1_inpainting_lora = "stable-diffusion-xl-v1-base-inpainting/lora"
wuerstchen_2_lora = "wuerstchen-v2-prior/lora"
stable_cascade_1_stage_a_lora = "stable-cascade-v1-stage-a/lora"
stable_cascade_1_stage_b_lora = "stable-cascade-v1-stage-b/lora"
stable_cascade_1_stage_c_lora = "stable-cascade-v1-stage-c/lora"
pixart_alpha_lora = "pixart-alpha/lora"
pixart_sigma_lora = "pixart-sigma/lora"
flux_dev_1_lora = "Flux.1-dev/lora"
flux_fill_dev_1_lora = "Flux.1-fill-dev/lora"
sana_lora = "sana/lora"
hunyuan_video_lora = "hunyuan-video/lora"
hi_dream_i1_lora = "hidream-i1/lora"

View File

@@ -23,7 +23,7 @@ class StarterModel(StarterModelWithoutDependencies):
dependencies: Optional[list[StarterModelWithoutDependencies]] = None
class StarterModelBundles(BaseModel):
class StarterModelBundle(BaseModel):
name: str
models: list[StarterModel]
@@ -109,7 +109,7 @@ flux_vae = StarterModel(
# region: Main
flux_schnell_quantized = StarterModel(
name="FLUX Schnell (Quantized)",
name="FLUX.1 schnell (quantized)",
base=BaseModelType.Flux,
source="InvokeAI/flux_schnell::transformer/bnb_nf4/flux1-schnell-bnb_nf4.safetensors",
description="FLUX schnell transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
@@ -117,7 +117,7 @@ flux_schnell_quantized = StarterModel(
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
)
flux_dev_quantized = StarterModel(
name="FLUX Dev (Quantized)",
name="FLUX.1 dev (quantized)",
base=BaseModelType.Flux,
source="InvokeAI/flux_dev::transformer/bnb_nf4/flux1-dev-bnb_nf4.safetensors",
description="FLUX dev transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
@@ -125,7 +125,7 @@ flux_dev_quantized = StarterModel(
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
)
flux_schnell = StarterModel(
name="FLUX Schnell",
name="FLUX.1 schnell",
base=BaseModelType.Flux,
source="InvokeAI/flux_schnell::transformer/base/flux1-schnell.safetensors",
description="FLUX schnell transformer in bfloat16. Total size with dependencies: ~33GB",
@@ -133,13 +133,29 @@ flux_schnell = StarterModel(
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
)
flux_dev = StarterModel(
name="FLUX Dev",
name="FLUX.1 dev",
base=BaseModelType.Flux,
source="InvokeAI/flux_dev::transformer/base/flux1-dev.safetensors",
description="FLUX dev transformer in bfloat16. Total size with dependencies: ~33GB",
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
)
flux_kontext = StarterModel(
name="FLUX.1 Kontext dev",
base=BaseModelType.Flux,
source="https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev/resolve/main/flux1-kontext-dev.safetensors",
description="FLUX.1 Kontext dev transformer in bfloat16. Total size with dependencies: ~33GB",
type=ModelType.Main,
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
)
flux_kontext_quantized = StarterModel(
name="FLUX.1 Kontext dev (Quantized)",
base=BaseModelType.Flux,
source="https://huggingface.co/unsloth/FLUX.1-Kontext-dev-GGUF/resolve/main/flux1-kontext-dev-Q4_K_M.gguf",
description="FLUX.1 Kontext dev quantized (q4_k_m). Total size with dependencies: ~14GB",
type=ModelType.Main,
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
)
sd35_medium = StarterModel(
name="SD3.5 Medium",
base=BaseModelType.StableDiffusion3,
@@ -656,6 +672,7 @@ flux_fill = StarterModel(
# List of starter models, displayed on the frontend.
# The order/sort of this list is not changed by the frontend - set it how you want it here.
STARTER_MODELS: list[StarterModel] = [
flux_kontext_quantized,
flux_schnell_quantized,
flux_dev_quantized,
flux_schnell,
@@ -776,12 +793,13 @@ flux_bundle: list[StarterModel] = [
flux_depth_control_lora,
flux_redux,
flux_fill,
flux_kontext_quantized,
]
STARTER_BUNDLES: dict[str, list[StarterModel]] = {
BaseModelType.StableDiffusion1: sd1_bundle,
BaseModelType.StableDiffusionXL: sdxl_bundle,
BaseModelType.Flux: flux_bundle,
STARTER_BUNDLES: dict[str, StarterModelBundle] = {
BaseModelType.StableDiffusion1: StarterModelBundle(name="Stable Diffusion 1.5", models=sd1_bundle),
BaseModelType.StableDiffusionXL: StarterModelBundle(name="SDXL", models=sdxl_bundle),
BaseModelType.Flux: StarterModelBundle(name="FLUX.1 dev", models=flux_bundle),
}
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"

View File

@@ -29,6 +29,8 @@ class BaseModelType(str, Enum):
Imagen3 = "imagen3"
Imagen4 = "imagen4"
ChatGPT4o = "chatgpt-4o"
FluxKontext = "flux-kontext"
Bria = "bria"
class ModelType(str, Enum):
@@ -88,6 +90,7 @@ class ModelVariantType(str, Enum):
class ModelFormat(str, Enum):
"""Storage format of model."""
OMI = "omi"
Diffusers = "diffusers"
Checkpoint = "checkpoint"
LyCORIS = "lycoris"

View File

@@ -0,0 +1,145 @@
"""Utility functions for extracting metadata from LoRA model files."""
import json
import logging
from pathlib import Path
from typing import Any, Dict, Optional, Set, Tuple
from PIL import Image
from invokeai.app.util.thumbnails import make_thumbnail
from invokeai.backend.model_manager.config import AnyModelConfig, ModelType
logger = logging.getLogger(__name__)
def extract_lora_metadata(
model_path: Path, model_key: str, model_images_path: Path
) -> Tuple[Optional[str], Optional[Set[str]]]:
"""
Extract metadata for a LoRA model from associated JSON and image files.
Args:
model_path: Path to the LoRA model file
model_key: Unique key for the model
model_images_path: Path to the model images directory
Returns:
Tuple of (description, trigger_phrases)
"""
model_stem = model_path.stem
model_dir = model_path.parent
# Find and process preview image
_process_preview_image(model_stem, model_dir, model_key, model_images_path)
# Extract metadata from JSON
description, trigger_phrases = _extract_json_metadata(model_stem, model_dir)
return description, trigger_phrases
def _process_preview_image(model_stem: str, model_dir: Path, model_key: str, model_images_path: Path) -> bool:
"""Find and process a preview image for the model, saving it to the model images store."""
image_extensions = [".png", ".jpg", ".jpeg", ".webp"]
for ext in image_extensions:
image_path = model_dir / f"{model_stem}{ext}"
if image_path.exists():
try:
# Open the image
with Image.open(image_path) as img:
# Create thumbnail and save to model images directory
thumbnail = make_thumbnail(img, 256)
thumbnail_path = model_images_path / f"{model_key}.webp"
thumbnail.save(thumbnail_path, format="webp")
logger.info(f"Processed preview image {image_path.name} for model {model_key}")
return True
except Exception as e:
logger.warning(f"Failed to process preview image {image_path.name}: {e}")
return False
return False
def _extract_json_metadata(model_stem: str, model_dir: Path) -> Tuple[Optional[str], Optional[Set[str]]]:
"""Extract metadata from a JSON file with the same name as the model."""
json_path = model_dir / f"{model_stem}.json"
if not json_path.exists():
return None, None
try:
with open(json_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
# Extract description
description = _build_description(metadata)
# Extract trigger phrases
trigger_phrases = _extract_trigger_phrases(metadata)
if description or trigger_phrases:
logger.info(f"Applied metadata from {json_path.name}")
return description, trigger_phrases
except (json.JSONDecodeError, IOError, Exception) as e:
logger.warning(f"Failed to read metadata from {json_path}: {e}")
return None, None
def _build_description(metadata: Dict[str, Any]) -> Optional[str]:
"""Build a description from metadata fields."""
description_parts = []
if description := metadata.get("description"):
description_parts.append(str(description).strip())
if notes := metadata.get("notes"):
description_parts.append(str(notes).strip())
return " | ".join(description_parts) if description_parts else None
def _extract_trigger_phrases(metadata: Dict[str, Any]) -> Optional[Set[str]]:
"""Extract trigger phrases from metadata."""
if not (activation_text := metadata.get("activation text")):
return None
activation_text = str(activation_text).strip()
if not activation_text:
return None
# Split on commas and clean up each phrase
phrases = [phrase.strip() for phrase in activation_text.split(",") if phrase.strip()]
return set(phrases) if phrases else None
def apply_lora_metadata(info: AnyModelConfig, model_path: Path, model_images_path: Path) -> None:
"""
Apply extracted metadata to a LoRA model configuration.
Args:
info: The model configuration to update
model_path: Path to the LoRA model file
model_images_path: Path to the model images directory
"""
# Only process LoRA models
if info.type != ModelType.LoRA:
return
# Extract and apply metadata
description, trigger_phrases = extract_lora_metadata(model_path, info.key, model_images_path)
# We don't set cover_image path in the config anymore since images are stored
# separately in the model images store by model key
if description:
info.description = description
if trigger_phrases:
info.trigger_phrases = trigger_phrases

View File

@@ -1,10 +0,0 @@
dist/
static/
.husky/
node_modules/
patches/
stats.html
index.html
.yarn/
*.scss
src/services/api/schema.ts

View File

@@ -1,46 +0,0 @@
module.exports = {
extends: ['@invoke-ai/eslint-config-react'],
plugins: ['path', 'i18next'],
rules: {
// TODO(psyche): Enable this rule. Requires no default exports in components - many changes.
'react-refresh/only-export-components': 'off',
// TODO(psyche): Enable this rule. Requires a lot of eslint-disable-next-line comments.
'@typescript-eslint/consistent-type-assertions': 'off',
// https://github.com/qdanik/eslint-plugin-path
'path/no-relative-imports': ['error', { maxDepth: 0 }],
// https://github.com/edvardchen/eslint-plugin-i18next/blob/HEAD/docs/rules/no-literal-string.md
'i18next/no-literal-string': 'error',
// https://eslint.org/docs/latest/rules/no-console
'no-console': 'error',
// https://eslint.org/docs/latest/rules/no-promise-executor-return
'no-promise-executor-return': 'error',
// https://eslint.org/docs/latest/rules/require-await
'require-await': 'error',
'no-restricted-properties': [
'error',
{
object: 'crypto',
property: 'randomUUID',
message: 'Use of crypto.randomUUID is not allowed as it is not available in all browsers.',
},
{
object: 'navigator',
property: 'clipboard',
message:
'The Clipboard API is not available by default in Firefox. Use the `useClipboard` hook instead, which wraps clipboard access to prevent errors.',
},
],
},
overrides: [
/**
* Overrides for stories
*/
{
files: ['*.stories.tsx'],
rules: {
// We may not have i18n available in stories.
'i18next/no-literal-string': 'off',
},
},
],
};

View File

@@ -14,3 +14,4 @@ static/
src/theme/css/overlayscrollbars.css
src/theme_/css/overlayscrollbars.css
pnpm-lock.yaml
.claude

View File

@@ -1,11 +0,0 @@
module.exports = {
...require('@invoke-ai/prettier-config-react'),
overrides: [
{
files: ['public/locales/*.json'],
options: {
tabWidth: 4,
},
},
],
};

View File

@@ -0,0 +1,17 @@
{
"$schema": "http://json.schemastore.org/prettierrc",
"trailingComma": "es5",
"printWidth": 120,
"tabWidth": 2,
"semi": true,
"singleQuote": true,
"endOfLine": "auto",
"overrides": [
{
"files": ["public/locales/*.json"],
"options": {
"tabWidth": 4
}
}
]
}

View File

@@ -1,21 +1,23 @@
import { PropsWithChildren, memo, useEffect } from 'react';
import { modelChanged } from '../src/features/controlLayers/store/paramsSlice';
import { useAppDispatch } from '../src/app/store/storeHooks';
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
import type { PropsWithChildren } from 'react';
import { memo, useEffect } from 'react';
import { useAppDispatch } from '../src/app/store/storeHooks';
import { modelChanged } from '../src/features/controlLayers/store/paramsSlice';
/**
* Initializes some state for storybook. Must be in a different component
* so that it is run inside the redux context.
*/
export const ReduxInit = memo((props: PropsWithChildren) => {
export const ReduxInit = memo(({ children }: PropsWithChildren) => {
const dispatch = useAppDispatch();
useGlobalModifiersInit();
useEffect(() => {
dispatch(
modelChanged({ model: { key: 'test_model', hash: 'some_hash', name: 'some name', base: 'sd-1', type: 'main' } })
);
}, []);
}, [dispatch]);
return props.children;
return children;
});
ReduxInit.displayName = 'ReduxInit';

View File

@@ -2,19 +2,13 @@ import type { StorybookConfig } from '@storybook/react-vite';
const config: StorybookConfig = {
stories: ['../src/**/*.mdx', '../src/**/*.stories.@(js|jsx|mjs|ts|tsx)'],
addons: [
'@storybook/addon-links',
'@storybook/addon-essentials',
'@storybook/addon-interactions',
'@storybook/addon-storysource',
],
addons: ['@storybook/addon-links', '@storybook/addon-docs'],
framework: {
name: '@storybook/react-vite',
options: {},
},
docs: {
autodocs: 'tag',
},
core: {
disableTelemetry: true,
},

View File

@@ -1,5 +1,5 @@
import { addons } from '@storybook/manager-api';
import { themes } from '@storybook/theming';
import { addons } from 'storybook/manager-api';
import { themes } from 'storybook/theming';
addons.setConfig({
theme: themes.dark,

View File

@@ -1,17 +1,18 @@
import { Preview } from '@storybook/react';
import { themes } from '@storybook/theming';
import type { Preview } from '@storybook/react-vite';
import { themes } from 'storybook/theming';
import { $store } from 'app/store/nanostores/store';
import i18n from 'i18next';
import { initReactI18next } from 'react-i18next';
import { Provider } from 'react-redux';
import ThemeLocaleProvider from '../src/app/components/ThemeLocaleProvider';
import { $baseUrl } from '../src/app/store/nanostores/baseUrl';
import { createStore } from '../src/app/store/store';
// TODO: Disabled for IDE performance issues with our translation JSON
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
// @ts-ignore
import translationEN from '../public/locales/en.json';
import ThemeLocaleProvider from '../src/app/components/ThemeLocaleProvider';
import { $baseUrl } from '../src/app/store/nanostores/baseUrl';
import { createStore } from '../src/app/store/store';
import { ReduxInit } from './ReduxInit';
import { $store } from 'app/store/nanostores/store';
i18n.use(initReactI18next).init({
lng: 'en',
@@ -46,6 +47,7 @@ const preview: Preview = {
parameters: {
docs: {
theme: themes.dark,
codePanel: true,
},
},
};

View File

@@ -0,0 +1,242 @@
import js from '@eslint/js';
import typescriptEslint from '@typescript-eslint/eslint-plugin';
import typescriptParser from '@typescript-eslint/parser';
import pluginI18Next from 'eslint-plugin-i18next';
import pluginImport from 'eslint-plugin-import';
import pluginPath from 'eslint-plugin-path';
import pluginReact from 'eslint-plugin-react';
import pluginReactHooks from 'eslint-plugin-react-hooks';
import pluginReactRefresh from 'eslint-plugin-react-refresh';
import pluginSimpleImportSort from 'eslint-plugin-simple-import-sort';
import pluginStorybook from 'eslint-plugin-storybook';
import pluginUnusedImports from 'eslint-plugin-unused-imports';
import globals from 'globals';
export default [
js.configs.recommended,
{
languageOptions: {
parser: typescriptParser,
parserOptions: {
ecmaFeatures: {
jsx: true,
},
},
globals: {
...globals.browser,
...globals.node,
GlobalCompositeOperation: 'readonly',
RequestInit: 'readonly',
},
},
files: ['**/*.ts', '**/*.tsx', '**/*.js', '**/*.jsx'],
plugins: {
react: pluginReact,
'@typescript-eslint': typescriptEslint,
'react-hooks': pluginReactHooks,
import: pluginImport,
'unused-imports': pluginUnusedImports,
'simple-import-sort': pluginSimpleImportSort,
'react-refresh': pluginReactRefresh.configs.vite,
path: pluginPath,
i18next: pluginI18Next,
storybook: pluginStorybook,
},
rules: {
...typescriptEslint.configs.recommended.rules,
...pluginReact.configs.recommended.rules,
...pluginReact.configs['jsx-runtime'].rules,
...pluginReactHooks.configs.recommended.rules,
...pluginStorybook.configs.recommended.rules,
'react/jsx-no-bind': [
'error',
{
allowBind: true,
},
],
'react/jsx-curly-brace-presence': [
'error',
{
props: 'never',
children: 'never',
},
],
'react-hooks/exhaustive-deps': 'error',
curly: 'error',
'no-var': 'error',
'brace-style': 'error',
'prefer-template': 'error',
radix: 'error',
'space-before-blocks': 'error',
eqeqeq: 'error',
'one-var': ['error', 'never'],
'no-eval': 'error',
'no-extend-native': 'error',
'no-implied-eval': 'error',
'no-label-var': 'error',
'no-return-assign': 'error',
'no-sequences': 'error',
'no-template-curly-in-string': 'error',
'no-throw-literal': 'error',
'no-unmodified-loop-condition': 'error',
'import/no-duplicates': 'error',
'import/prefer-default-export': 'off',
'unused-imports/no-unused-imports': 'error',
'unused-imports/no-unused-vars': [
'error',
{
vars: 'all',
varsIgnorePattern: '^_',
args: 'after-used',
argsIgnorePattern: '^_',
},
],
'simple-import-sort/imports': 'error',
'simple-import-sort/exports': 'error',
'@typescript-eslint/no-unused-vars': 'off',
'@typescript-eslint/ban-ts-comment': [
'error',
{
'ts-expect-error': 'allow-with-description',
'ts-ignore': true,
'ts-nocheck': true,
'ts-check': false,
minimumDescriptionLength: 10,
},
],
'@typescript-eslint/no-empty-interface': [
'error',
{
allowSingleExtends: true,
},
],
'@typescript-eslint/consistent-type-imports': [
'error',
{
prefer: 'type-imports',
fixStyle: 'separate-type-imports',
disallowTypeAnnotations: true,
},
],
'@typescript-eslint/no-import-type-side-effects': 'error',
'@typescript-eslint/consistent-type-assertions': [
'error',
{
assertionStyle: 'as',
},
],
'path/no-relative-imports': [
'error',
{
maxDepth: 0,
},
],
'no-console': 'warn',
'no-promise-executor-return': 'error',
'require-await': 'error',
'no-restricted-syntax': [
'error',
{
selector: 'CallExpression[callee.name="setActiveTab"]',
message:
'setActiveTab() can only be called from use-navigation-api.tsx. Use navigationApi.switchToTab() instead.',
},
],
'no-restricted-properties': [
'error',
{
object: 'crypto',
property: 'randomUUID',
message: 'Use of crypto.randomUUID is not allowed as it is not available in all browsers.',
},
{
object: 'navigator',
property: 'clipboard',
message:
'The Clipboard API is not available by default in Firefox. Use the `useClipboard` hook instead, which wraps clipboard access to prevent errors.',
},
],
// Typescript handles this for us: https://eslint.org/docs/latest/rules/no-redeclare#handled_by_typescript
'no-redeclare': 'off',
'no-restricted-imports': [
'error',
{
paths: [
{
name: 'lodash-es',
importNames: ['isEqual'],
message: 'Please use objectEquals from @observ33r/object-equals instead.',
},
{
name: 'lodash-es',
message: 'Please use es-toolkit instead.',
},
{
name: 'es-toolkit',
importNames: ['isEqual'],
message: 'Please use objectEquals from @observ33r/object-equals instead.',
},
],
},
],
},
settings: {
react: {
version: 'detect',
},
},
},
{
files: ['**/use-navigation-api.tsx'],
rules: {
'no-restricted-syntax': 'off',
},
},
{
files: ['**/*.stories.tsx'],
rules: {
'i18next/no-literal-string': 'off',
},
},
{
ignores: [
'**/dist/',
'**/static/',
'**/.husky/',
'**/node_modules/',
'**/patches/',
'**/stats.html',
'**/index.html',
'**/.yarn/',
'**/*.scss',
'src/services/api/schema.ts',
'.prettierrc.js',
'.storybook',
],
},
];

View File

@@ -12,10 +12,9 @@ const config: KnipConfig = {
'src/features/parameters/types/parameterSchemas.ts',
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
'src/features/controlLayers/konva/util.ts',
// TODO(psyche): restore HRF functionality?
'src/features/hrf/**',
// This feature is (temprarily?) disabled
'src/features/controlLayers/components/InpaintMask/InpaintMaskAddButtons.tsx',
// Will be using this
'src/common/hooks/useAsyncState.ts',
'src/app/store/use-debounced-app-selector.ts',
],
ignoreBinaries: ['only-allow'],
paths: {

View File

@@ -38,70 +38,60 @@
"test:ui": "vitest --coverage --ui",
"test:no-watch": "vitest --no-watch"
},
"madge": {
"excludeRegExp": [
"^index.ts$"
],
"detectiveOptions": {
"ts": {
"skipTypeImports": true
},
"tsx": {
"skipTypeImports": true
}
}
},
"dependencies": {
"@atlaskit/pragmatic-drag-and-drop": "^1.5.3",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^2.1.0",
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.0.3",
"@dagrejs/dagre": "^1.1.4",
"@atlaskit/pragmatic-drag-and-drop": "^1.7.4",
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^2.1.1",
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.1.0",
"@dagrejs/dagre": "^1.1.5",
"@dagrejs/graphlib": "^2.2.4",
"@fontsource-variable/inter": "^5.2.5",
"@fontsource-variable/inter": "^5.2.6",
"@invoke-ai/ui-library": "^0.0.46",
"@nanostores/react": "^1.0.0",
"@reduxjs/toolkit": "2.7.0",
"@observ33r/object-equals": "^1.1.5",
"@reduxjs/toolkit": "2.8.2",
"@roarr/browser-log-writer": "^1.3.0",
"@xyflow/react": "^12.6.0",
"@xyflow/react": "^12.8.2",
"ag-psd": "^28.2.2",
"async-mutex": "^0.5.0",
"chakra-react-select": "^4.9.2",
"cmdk": "^1.1.1",
"compare-versions": "^6.1.1",
"dockview": "^4.4.1",
"es-toolkit": "^1.39.7",
"filesize": "^10.1.6",
"fracturedjsonjs": "^4.1.0",
"framer-motion": "^11.10.0",
"i18next": "^25.0.1",
"i18next": "^25.3.2",
"i18next-http-backend": "^3.0.2",
"idb-keyval": "^6.2.1",
"idb-keyval": "6.2.2",
"jsondiffpatch": "^0.7.3",
"konva": "^9.3.20",
"linkify-react": "^4.2.0",
"linkifyjs": "^4.2.0",
"lodash-es": "^4.17.21",
"konva": "^9.3.22",
"linkify-react": "^4.3.1",
"linkifyjs": "^4.3.1",
"lru-cache": "^11.1.0",
"mtwist": "^1.0.2",
"nanoid": "^5.1.5",
"nanostores": "^1.0.1",
"new-github-issue-url": "^1.1.0",
"overlayscrollbars": "^2.11.1",
"overlayscrollbars": "^2.11.4",
"overlayscrollbars-react": "^0.5.6",
"perfect-freehand": "^1.2.2",
"query-string": "^9.1.1",
"query-string": "^9.2.1",
"raf-throttle": "^2.0.6",
"react": "^18.3.1",
"react-colorful": "^5.6.1",
"react-dom": "^18.3.1",
"react-dropzone": "^14.3.8",
"react-error-boundary": "^5.0.0",
"react-hook-form": "^7.56.1",
"react-hook-form": "^7.60.0",
"react-hotkeys-hook": "4.5.0",
"react-i18next": "^15.5.1",
"react-i18next": "^15.5.3",
"react-icons": "^5.5.0",
"react-redux": "9.2.0",
"react-resizable-panels": "^2.1.8",
"react-resizable-panels": "^3.0.3",
"react-textarea-autosize": "^8.5.9",
"react-use": "^17.6.0",
"react-virtuoso": "^4.12.6",
"react-virtuoso": "^4.13.0",
"redux-dynamic-middlewares": "^2.2.0",
"redux-remember": "^5.2.0",
"redux-undo": "^1.1.0",
@@ -109,52 +99,55 @@
"roarr": "^7.21.1",
"serialize-error": "^12.0.0",
"socket.io-client": "^4.8.1",
"stable-hash": "^0.0.5",
"use-debounce": "^10.0.4",
"stable-hash": "^0.0.6",
"use-debounce": "^10.0.5",
"use-device-pixel-ratio": "^1.1.2",
"uuid": "^11.1.0",
"zod": "^3.24.3",
"zod-validation-error": "^3.4.0"
"zod": "^4.0.5",
"zod-validation-error": "^3.5.2"
},
"peerDependencies": {
"react": "^18.2.0",
"react-dom": "^18.2.0"
},
"devDependencies": {
"@invoke-ai/eslint-config-react": "^0.0.14",
"@invoke-ai/prettier-config-react": "^0.0.7",
"@storybook/addon-essentials": "^8.6.12",
"@storybook/addon-interactions": "^8.6.12",
"@storybook/addon-links": "^8.6.12",
"@storybook/addon-storysource": "^8.6.12",
"@storybook/manager-api": "^8.6.12",
"@storybook/react": "^8.6.12",
"@storybook/react-vite": "^8.6.12",
"@storybook/theming": "^8.6.12",
"@types/lodash-es": "^4.17.12",
"@eslint/js": "^9.31.0",
"@storybook/addon-docs": "^9.0.17",
"@storybook/addon-links": "^9.0.17",
"@storybook/react-vite": "^9.0.17",
"@types/node": "^22.15.1",
"@types/react": "^18.3.11",
"@types/react-dom": "^18.3.0",
"@types/uuid": "^10.0.0",
"@typescript-eslint/eslint-plugin": "^8.37.0",
"@typescript-eslint/parser": "^8.37.0",
"@vitejs/plugin-react-swc": "^3.9.0",
"@vitest/coverage-v8": "^3.1.2",
"@vitest/ui": "^3.1.2",
"concurrently": "^9.1.2",
"csstype": "^3.1.3",
"dpdm": "^3.14.0",
"eslint": "^8.57.1",
"eslint-plugin-i18next": "^6.1.1",
"eslint-plugin-path": "^1.3.0",
"knip": "^5.50.5",
"eslint": "^9.31.0",
"eslint-plugin-i18next": "^6.1.2",
"eslint-plugin-import": "^2.29.1",
"eslint-plugin-path": "^2.0.3",
"eslint-plugin-react": "^7.33.2",
"eslint-plugin-react-hooks": "^5.2.0",
"eslint-plugin-react-refresh": "^0.4.5",
"eslint-plugin-simple-import-sort": "^12.0.0",
"eslint-plugin-storybook": "^9.0.17",
"eslint-plugin-unused-imports": "^4.1.4",
"globals": "^16.3.0",
"knip": "^5.61.3",
"openapi-types": "^12.1.3",
"openapi-typescript": "^7.6.1",
"prettier": "^3.5.3",
"rollup-plugin-visualizer": "^5.14.0",
"storybook": "^8.6.12",
"rollup-plugin-visualizer": "^6.0.3",
"storybook": "^9.0.17",
"tsafe": "^1.8.5",
"type-fest": "^4.40.0",
"typescript": "^5.8.3",
"vite": "^6.3.3",
"vite": "^7.0.5",
"vite-plugin-css-injected-by-js": "^3.5.2",
"vite-plugin-dts": "^4.5.3",
"vite-plugin-eslint": "^1.8.1",
@@ -162,7 +155,7 @@
"vitest": "^3.1.2"
},
"engines": {
"pnpm": "8"
"pnpm": "10"
},
"packageManager": "pnpm@8.15.9+sha512.499434c9d8fdd1a2794ebf4552b3b25c0a633abcee5bb15e7b5de90f32f47b513aca98cd5cfd001c31f0db454bc3804edccd578501e4ca293a6816166bbd9f81"
"packageManager": "pnpm@10.12.4"
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,3 @@
onlyBuiltDependencies:
- '@swc/core'
- esbuild

Some files were not shown because too many files have changed in this diff Show More