mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-20 07:18:05 -05:00
Compare commits
523 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ea182c234b | ||
|
|
f2eee4a82d | ||
|
|
e129525306 | ||
|
|
ecedfce758 | ||
|
|
702cb2cb1e | ||
|
|
2e8db3cce3 | ||
|
|
7845623fa5 | ||
|
|
e6a25ca7a2 | ||
|
|
71e12bcebe | ||
|
|
863c7eb9e2 | ||
|
|
9945c20d02 | ||
|
|
e3c1334b1f | ||
|
|
c143f63ef0 | ||
|
|
067026a0d0 | ||
|
|
66991334fc | ||
|
|
b771c3b164 | ||
|
|
4925694dc1 | ||
|
|
0a737ced44 | ||
|
|
8d83caaae0 | ||
|
|
16c8017f1a | ||
|
|
61a35f1396 | ||
|
|
6bd004d868 | ||
|
|
b6a6d406c7 | ||
|
|
8e287c32ee | ||
|
|
2d8b5e26c2 | ||
|
|
50914b74ee | ||
|
|
0fc1c33536 | ||
|
|
3b08c35f72 | ||
|
|
607b2561fd | ||
|
|
d68f922efb | ||
|
|
2bbd74d418 | ||
|
|
3a5392a9ee | ||
|
|
6f80efe71d | ||
|
|
7fac833813 | ||
|
|
b67eb4134d | ||
|
|
522eeda2e2 | ||
|
|
76233241f0 | ||
|
|
54be9989c5 | ||
|
|
0d3af08d27 | ||
|
|
767ac91f2c | ||
|
|
68571ece8f | ||
|
|
01100a2b9a | ||
|
|
ce2e6d8ab6 | ||
|
|
4887424ca3 | ||
|
|
28f6a20e71 | ||
|
|
c4142e75b2 | ||
|
|
fefe563127 | ||
|
|
1c72f1ff9f | ||
|
|
605cc7369d | ||
|
|
e7ce08cffa | ||
|
|
983cb5ebd2 | ||
|
|
52dbdb7118 | ||
|
|
71e6f00e10 | ||
|
|
e73150c3e6 | ||
|
|
f2426c3ab2 | ||
|
|
9d9c4c0f1a | ||
|
|
acb930f6b9 | ||
|
|
585b54dc7d | ||
|
|
f65affc0ec | ||
|
|
22d574c92a | ||
|
|
f23be119fc | ||
|
|
2d06949e80 | ||
|
|
67804313e1 | ||
|
|
dc23be117a | ||
|
|
350de058fc | ||
|
|
fd5cd707a3 | ||
|
|
98ecefdce0 | ||
|
|
42688a0993 | ||
|
|
d94aa4abf7 | ||
|
|
69a56aafed | ||
|
|
56873f6936 | ||
|
|
6bc6a680cf | ||
|
|
9a49682f60 | ||
|
|
ff84b0a495 | ||
|
|
bcced8a5e8 | ||
|
|
4a18e9eaea | ||
|
|
dde5bf61be | ||
|
|
987e401709 | ||
|
|
5c5ac570e3 | ||
|
|
309903fe0f | ||
|
|
f16ea43e9a | ||
|
|
d794aedb43 | ||
|
|
9930440f33 | ||
|
|
f0a6c4aa1f | ||
|
|
f36d22f13c | ||
|
|
e0d7fab524 | ||
|
|
f20c230f4a | ||
|
|
05c9bc730e | ||
|
|
f17ac06591 | ||
|
|
b35f93d919 | ||
|
|
289d8076d8 | ||
|
|
604763d20f | ||
|
|
7b452f098d | ||
|
|
b41c18d35f | ||
|
|
8328081333 | ||
|
|
07517cf2c2 | ||
|
|
6b98ad9095 | ||
|
|
0de3967e7e | ||
|
|
1335377fb1 | ||
|
|
adbcc191d9 | ||
|
|
11fc7af1c8 | ||
|
|
6f12fd22b9 | ||
|
|
324b6e2af4 | ||
|
|
038010a1ca | ||
|
|
2dd1bc54c9 | ||
|
|
8b69842678 | ||
|
|
9821f7c4fc | ||
|
|
2290ff4ad6 | ||
|
|
8d82ad6d0b | ||
|
|
8ed9f652e8 | ||
|
|
ee8ed344bd | ||
|
|
6d16cfdbe2 | ||
|
|
3ef2872dda | ||
|
|
b52ba149b4 | ||
|
|
c6126c6875 | ||
|
|
3f78ac9295 | ||
|
|
79fea1ac40 | ||
|
|
6eade5781d | ||
|
|
3d8f865fb0 | ||
|
|
dc9cd22d9d | ||
|
|
fe115ff8f9 | ||
|
|
1d35aad213 | ||
|
|
195d6ce893 | ||
|
|
f13ced7ed4 | ||
|
|
735fc276e5 | ||
|
|
cd3caf8c30 | ||
|
|
e9012280ab | ||
|
|
fa72a97794 | ||
|
|
e817631ba3 | ||
|
|
d0619c033f | ||
|
|
6f4850f34f | ||
|
|
072cd9dee7 | ||
|
|
19b6dc1c1f | ||
|
|
7566d0d6c6 | ||
|
|
f123888b46 | ||
|
|
aeab7d0cab | ||
|
|
3f1b2c39ab | ||
|
|
72e3a4b4be | ||
|
|
58e0f80138 | ||
|
|
8b8e29d22d | ||
|
|
90201be670 | ||
|
|
46a5619100 | ||
|
|
d608a7469e | ||
|
|
a7d413d372 | ||
|
|
f5c9e68dbf | ||
|
|
1ded459f03 | ||
|
|
d9024dc230 | ||
|
|
40528692c3 | ||
|
|
f35b05be43 | ||
|
|
29e87fc615 | ||
|
|
ca26b2718e | ||
|
|
5fa6c0b413 | ||
|
|
c37c8c50cd | ||
|
|
f0a4de245d | ||
|
|
5db62f8643 | ||
|
|
e1c478f94c | ||
|
|
11fe3b6332 | ||
|
|
e4aae1a591 | ||
|
|
4d83d1c56d | ||
|
|
34def323e8 | ||
|
|
854956316b | ||
|
|
91afe7884a | ||
|
|
8417ee8a7b | ||
|
|
a035645ed3 | ||
|
|
e00ccba7d3 | ||
|
|
fb883d63aa | ||
|
|
b113c57fc4 | ||
|
|
7636007349 | ||
|
|
fda86ae981 | ||
|
|
c02be4bdf4 | ||
|
|
ed7772d993 | ||
|
|
baae998b5b | ||
|
|
4077ffe595 | ||
|
|
c1937b1379 | ||
|
|
5c66dfed8e | ||
|
|
126dcc96c0 | ||
|
|
cb9c7b4a28 | ||
|
|
e8c4f49a14 | ||
|
|
30fffae637 | ||
|
|
4558a292b6 | ||
|
|
825d17441c | ||
|
|
9b16504af9 | ||
|
|
46c92fadff | ||
|
|
c0467b82ac | ||
|
|
6dafa67286 | ||
|
|
eb406aa07e | ||
|
|
d9422ffebd | ||
|
|
d5c033be4d | ||
|
|
4662cd6f15 | ||
|
|
a740a22613 | ||
|
|
bf4016b4bc | ||
|
|
6fa7c8c2ee | ||
|
|
ea40f582da | ||
|
|
01caf56251 | ||
|
|
42d577e65a | ||
|
|
38d80c9ce5 | ||
|
|
6acaa8abbf | ||
|
|
4b84e34599 | ||
|
|
bbd21b1eb2 | ||
|
|
4fa83a6228 | ||
|
|
051876dcff | ||
|
|
8dc6d0b5ae | ||
|
|
40e9624954 | ||
|
|
ae27c83dc4 | ||
|
|
161059551b | ||
|
|
c196f8a5d5 | ||
|
|
2c6d22664e | ||
|
|
b9ce5389ef | ||
|
|
d1cbf56695 | ||
|
|
e379ac12c3 | ||
|
|
aa10373292 | ||
|
|
780f3692a0 | ||
|
|
3604dcfdd1 | ||
|
|
2b1cffde5e | ||
|
|
83d642ed15 | ||
|
|
455c73235e | ||
|
|
8efef8da41 | ||
|
|
060a9e57b9 | ||
|
|
099d75ca1e | ||
|
|
bbb5d68146 | ||
|
|
9066dc1839 | ||
|
|
075345bffd | ||
|
|
74d1239c87 | ||
|
|
51e1c56636 | ||
|
|
ca1df60e54 | ||
|
|
7549c1250d | ||
|
|
df8751b5a1 | ||
|
|
651b80b997 | ||
|
|
5d236ae4e7 | ||
|
|
e5dc606f5e | ||
|
|
dc6b8e13bd | ||
|
|
c1b34e1f11 | ||
|
|
89f1684072 | ||
|
|
14fbee17a3 | ||
|
|
5dbc32e06e | ||
|
|
23baf61e51 | ||
|
|
5e55f6074b | ||
|
|
f7c555e501 | ||
|
|
6aa605e811 | ||
|
|
f51014e108 | ||
|
|
9862ba9210 | ||
|
|
920aea08cc | ||
|
|
39e584297e | ||
|
|
62a14bb935 | ||
|
|
d7ae2cdf75 | ||
|
|
6172c859ac | ||
|
|
b26fb1f617 | ||
|
|
05167dfd7a | ||
|
|
c090ea7387 | ||
|
|
7ba6c67049 | ||
|
|
3de186061d | ||
|
|
a716381733 | ||
|
|
fb5df06835 | ||
|
|
33c597c224 | ||
|
|
19d882d038 | ||
|
|
ee4bc49bd4 | ||
|
|
188cf37f48 | ||
|
|
15a0a7134c | ||
|
|
22cea0de8b | ||
|
|
cd21816d12 | ||
|
|
605b912ba4 | ||
|
|
52e31112f9 | ||
|
|
a4c9346cd7 | ||
|
|
a1647e4c6e | ||
|
|
8c9ca088a7 | ||
|
|
7a7a2e147c | ||
|
|
adf4cc750a | ||
|
|
9f1ea9d1c7 | ||
|
|
571d286506 | ||
|
|
1320a2c5f8 | ||
|
|
26a9b3131d | ||
|
|
d48140b35d | ||
|
|
9757bb0325 | ||
|
|
38ccd8e09c | ||
|
|
7759b166a9 | ||
|
|
9fc51c7a6e | ||
|
|
62fa4f42f5 | ||
|
|
418ad0de38 | ||
|
|
f4a411326e | ||
|
|
6358f39ebb | ||
|
|
ea8da0bfbf | ||
|
|
5385282325 | ||
|
|
0bf84ab803 | ||
|
|
82f31f2258 | ||
|
|
966dd8857d | ||
|
|
1c778bd719 | ||
|
|
394a14cf61 | ||
|
|
0e843823d1 | ||
|
|
29462e62d2 | ||
|
|
175c0147f8 | ||
|
|
df6e67c982 | ||
|
|
4612f0ac50 | ||
|
|
386a932f2a | ||
|
|
32438532b0 | ||
|
|
ab5cb2c264 | ||
|
|
504daa0ae5 | ||
|
|
14f7c98e8a | ||
|
|
ab39305223 | ||
|
|
7948bca864 | ||
|
|
1a39d22b6c | ||
|
|
9424271d12 | ||
|
|
b5acc204a8 | ||
|
|
7aefa8f36b | ||
|
|
242da9e888 | ||
|
|
1aedc26041 | ||
|
|
2c7fa90892 | ||
|
|
6c8cf99ad2 | ||
|
|
a92ba2542c | ||
|
|
2367b9f945 | ||
|
|
a928ed0204 | ||
|
|
e164451dfe | ||
|
|
d74d079356 | ||
|
|
0eb4360c01 | ||
|
|
937c03f2ec | ||
|
|
f7b249252d | ||
|
|
b2b42be51c | ||
|
|
98368b0665 | ||
|
|
b5eb3d9798 | ||
|
|
1218f49e20 | ||
|
|
89c609fd61 | ||
|
|
b204fb6a91 | ||
|
|
6e3e316416 | ||
|
|
bf5fc9512d | ||
|
|
7080889ed4 | ||
|
|
adea983bfc | ||
|
|
f68d8ed36a | ||
|
|
d45197e0af | ||
|
|
434d8a2b12 | ||
|
|
f55c593705 | ||
|
|
8327d86774 | ||
|
|
c8254710e6 | ||
|
|
0a8f647260 | ||
|
|
32a5e9652a | ||
|
|
87909a06a8 | ||
|
|
2c8ce6f2f4 | ||
|
|
bee4cf41b4 | ||
|
|
049a8d8144 | ||
|
|
ac81ec41c3 | ||
|
|
a294e8e0fd | ||
|
|
4665f0df40 | ||
|
|
70382294f5 | ||
|
|
4028cadfaf | ||
|
|
d23cdfd0ad | ||
|
|
f0ba693922 | ||
|
|
214005d795 | ||
|
|
34aa131115 | ||
|
|
5d8061bea9 | ||
|
|
36ec1015d6 | ||
|
|
7208373576 | ||
|
|
e10afe3026 | ||
|
|
399d6e7bce | ||
|
|
8d0fe5522b | ||
|
|
81341deb46 | ||
|
|
a30933b09c | ||
|
|
3264188ffd | ||
|
|
3984b341e1 | ||
|
|
041023df53 | ||
|
|
b06f76cdb6 | ||
|
|
852badc90b | ||
|
|
01953cf057 | ||
|
|
241844bdef | ||
|
|
33a28ad4f9 | ||
|
|
7c4550cbd5 | ||
|
|
553d1a6ac6 | ||
|
|
f4794e409b | ||
|
|
df87800d61 | ||
|
|
16993cd216 | ||
|
|
7f222ffb9d | ||
|
|
e0ed56ff8d | ||
|
|
e7e1142c77 | ||
|
|
fcaeba290e | ||
|
|
6eecdca56c | ||
|
|
7f44da4902 | ||
|
|
abaa33e22c | ||
|
|
d5c238e7c2 | ||
|
|
18775e8b67 | ||
|
|
903776bfbc | ||
|
|
a5baf0c102 | ||
|
|
a7e45731ec | ||
|
|
32aa3e6d48 | ||
|
|
2f9ea91896 | ||
|
|
5ac5115269 | ||
|
|
161624c722 | ||
|
|
c31cb0b106 | ||
|
|
893f7a8744 | ||
|
|
2e0824a799 | ||
|
|
ed05bf2df3 | ||
|
|
0f1a69a0c3 | ||
|
|
450a0bf142 | ||
|
|
a28c15d545 | ||
|
|
1b1e1983d9 | ||
|
|
d08e2fbd82 | ||
|
|
45b1ef6231 | ||
|
|
3bb446c08f | ||
|
|
8d1ab0a2e5 | ||
|
|
48e2e7e4a1 | ||
|
|
5a2f5c105d | ||
|
|
aa93e95a94 | ||
|
|
a5e5cbd7c3 | ||
|
|
baa9141be3 | ||
|
|
c7ed351bab | ||
|
|
8c17bde4ea | ||
|
|
ba082ccc2f | ||
|
|
01784fb3bf | ||
|
|
a71a0e143c | ||
|
|
94afc13813 | ||
|
|
d640a9001b | ||
|
|
711fe91b24 | ||
|
|
2f26657c17 | ||
|
|
6754fde935 | ||
|
|
ac206f4767 | ||
|
|
c316f07fb2 | ||
|
|
e81dde0933 | ||
|
|
9f392c8c3c | ||
|
|
2531366386 | ||
|
|
9df69496e4 | ||
|
|
2ddcde13ff | ||
|
|
cc5083599d | ||
|
|
2431060a7e | ||
|
|
592c842632 | ||
|
|
bc3550f238 | ||
|
|
23511d68db | ||
|
|
cd0668dd0b | ||
|
|
bf5ed61b84 | ||
|
|
3038a797a6 | ||
|
|
9bbc31b2d9 | ||
|
|
526e6335a1 | ||
|
|
1412c079ad | ||
|
|
6570c0c3b9 | ||
|
|
3a08ea799a | ||
|
|
e3fc244126 | ||
|
|
56938ca0a1 | ||
|
|
5d80642ea4 | ||
|
|
da4b084a8b | ||
|
|
86e1a37a00 | ||
|
|
ea34690709 | ||
|
|
c8df7cd2c0 | ||
|
|
628367b97b | ||
|
|
002816653e | ||
|
|
b05de8634d | ||
|
|
5088e700ad | ||
|
|
d2155e98ef | ||
|
|
7ec511da01 | ||
|
|
985cd8272b | ||
|
|
cd136194ad | ||
|
|
2e2ac71278 | ||
|
|
db4220fb20 | ||
|
|
84f70942e7 | ||
|
|
0af20b03e5 | ||
|
|
e16414b452 | ||
|
|
5dbc2a74a2 | ||
|
|
ad736bc190 | ||
|
|
0e9b71801a | ||
|
|
e80f0b2b43 | ||
|
|
c9042e52d4 | ||
|
|
8a78e37634 | ||
|
|
5e93f58530 | ||
|
|
a3851e0b08 | ||
|
|
eb45a457e9 | ||
|
|
1446d3490b | ||
|
|
579318af70 | ||
|
|
57bfae6774 | ||
|
|
2a92524546 | ||
|
|
7a5fa25b48 | ||
|
|
b3f3020793 | ||
|
|
650809e50d | ||
|
|
7308428f32 | ||
|
|
4dc3f1bcee | ||
|
|
faeb5f0c3b | ||
|
|
d985dfe821 | ||
|
|
ce5ae83689 | ||
|
|
c0428ee7ef | ||
|
|
aa3b2106d4 | ||
|
|
cf2d67ef3d | ||
|
|
c4d1e78f59 | ||
|
|
02e4a3aa82 | ||
|
|
a0b0c30be9 | ||
|
|
5c4cbc7fa2 | ||
|
|
5f2f12f803 | ||
|
|
c9cd0a87be | ||
|
|
668c475271 | ||
|
|
341910739e | ||
|
|
53a3dc52bc | ||
|
|
23b0a4a7f4 | ||
|
|
6afbf31750 | ||
|
|
3cd4306eec | ||
|
|
827191d2fc | ||
|
|
aaa34f717d | ||
|
|
fe83c2f81f | ||
|
|
17dead3309 | ||
|
|
979bd33dfb | ||
|
|
5128f072a8 | ||
|
|
2ad5b5cc2e | ||
|
|
24d8a96071 | ||
|
|
f1e4665aa2 | ||
|
|
1cbfea3a21 | ||
|
|
981e8e217d | ||
|
|
e7ca30f406 | ||
|
|
2832ca300f | ||
|
|
de5f413440 | ||
|
|
fbc14c61ea | ||
|
|
77e029a49f | ||
|
|
61b049ad35 | ||
|
|
b88f4a24d0 | ||
|
|
8c632f0d32 | ||
|
|
150a876c73 | ||
|
|
62c3b01e4f | ||
|
|
e1157f343b | ||
|
|
4ee54eac1d | ||
|
|
5851c46c81 | ||
|
|
a296559e79 | ||
|
|
1fd83f5e68 | ||
|
|
637487c573 | ||
|
|
4e98e7d0a2 | ||
|
|
12f65d800d | ||
|
|
45d09f8f51 | ||
|
|
2876c72fa9 | ||
|
|
9b4fdb493e | ||
|
|
47e21d6e04 | ||
|
|
84ab4a1c30 | ||
|
|
85c4304efd | ||
|
|
8f152f162b | ||
|
|
63b49f045a |
@@ -3,15 +3,15 @@ description: Installs frontend dependencies with pnpm, with caching
|
||||
runs:
|
||||
using: 'composite'
|
||||
steps:
|
||||
- name: setup node 18
|
||||
- name: setup node 20
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '18'
|
||||
node-version: '20'
|
||||
|
||||
- name: setup pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
version: 8.15.6
|
||||
version: 10
|
||||
run_install: false
|
||||
|
||||
- name: get pnpm store directory
|
||||
|
||||
@@ -297,7 +297,7 @@ Migration logic is in [migrations.ts].
|
||||
<!-- links -->
|
||||
|
||||
[pydantic]: https://github.com/pydantic/pydantic 'pydantic'
|
||||
[zod]: https://github.com/colinhacks/zod 'zod'
|
||||
[zod]: https://github.com/colinhacks/zod 'zod/v4'
|
||||
[openapi-types]: https://github.com/kogosoftwarellc/open-api/tree/main/packages/openapi-types 'openapi-types'
|
||||
[reactflow]: https://github.com/xyflow/xyflow 'reactflow'
|
||||
[reactflow-concepts]: https://reactflow.dev/learn/concepts/terms-and-definitions
|
||||
|
||||
@@ -35,7 +35,7 @@ More detail on system requirements can be found [here](./requirements.md).
|
||||
|
||||
## Step 2: Download
|
||||
|
||||
Download the most launcher for your operating system:
|
||||
Download the most recent launcher for your operating system:
|
||||
|
||||
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
|
||||
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import io
|
||||
import json
|
||||
import traceback
|
||||
from typing import ClassVar, Literal, Optional
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
from fastapi import BackgroundTasks, Body, HTTPException, Path, Query, Request, Response, UploadFile
|
||||
from fastapi.responses import FileResponse
|
||||
@@ -14,7 +14,7 @@ from invokeai.app.api.extract_metadata_from_image import extract_metadata_from_i
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageCollectionCounts,
|
||||
ImageNamesResult,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
)
|
||||
@@ -565,67 +565,6 @@ async def get_bulk_download_item(
|
||||
raise HTTPException(status_code=404)
|
||||
|
||||
|
||||
@images_router.get(
|
||||
"/collections/counts", operation_id="get_image_collection_counts", response_model=ImageCollectionCounts
|
||||
)
|
||||
async def get_image_collection_counts(
|
||||
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to count."),
|
||||
categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
|
||||
is_intermediate: Optional[bool] = Query(default=None, description="Whether to include intermediate images."),
|
||||
board_id: Optional[str] = Query(
|
||||
default=None,
|
||||
description="The board id to filter by. Use 'none' to find images without a board.",
|
||||
),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> ImageCollectionCounts:
|
||||
"""Gets counts for starred and unstarred image collections"""
|
||||
|
||||
try:
|
||||
return ApiDependencies.invoker.services.images.get_collection_counts(
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
is_intermediate=is_intermediate,
|
||||
board_id=board_id,
|
||||
search_term=search_term,
|
||||
)
|
||||
except Exception:
|
||||
raise HTTPException(status_code=500, detail="Failed to get collection counts")
|
||||
|
||||
|
||||
@images_router.get("/collections/{collection}", operation_id="get_image_collection")
|
||||
async def get_image_collection(
|
||||
collection: Literal["starred", "unstarred"] = Path(..., description="The collection to retrieve from"),
|
||||
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
|
||||
categories: Optional[list[ImageCategory]] = Query(default=None, description="The categories of image to include."),
|
||||
is_intermediate: Optional[bool] = Query(default=None, description="Whether to list intermediate images."),
|
||||
board_id: Optional[str] = Query(
|
||||
default=None,
|
||||
description="The board id to filter by. Use 'none' to find images without a board.",
|
||||
),
|
||||
offset: int = Query(default=0, description="The offset within the collection"),
|
||||
limit: int = Query(default=50, description="The number of images to return"),
|
||||
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets images from a specific collection (starred or unstarred)"""
|
||||
|
||||
try:
|
||||
image_dtos = ApiDependencies.invoker.services.images.get_collection_images(
|
||||
collection=collection,
|
||||
offset=offset,
|
||||
limit=limit,
|
||||
order_dir=order_dir,
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
is_intermediate=is_intermediate,
|
||||
board_id=board_id,
|
||||
search_term=search_term,
|
||||
)
|
||||
return image_dtos
|
||||
except Exception:
|
||||
raise HTTPException(status_code=500, detail="Failed to get collection images")
|
||||
|
||||
|
||||
@images_router.get("/names", operation_id="get_image_names")
|
||||
async def get_image_names(
|
||||
image_origin: Optional[ResourceOrigin] = Query(default=None, description="The origin of images to list."),
|
||||
@@ -636,12 +575,14 @@ async def get_image_names(
|
||||
description="The board id to filter by. Use 'none' to find images without a board.",
|
||||
),
|
||||
order_dir: SQLiteDirection = Query(default=SQLiteDirection.Descending, description="The order of sort"),
|
||||
starred_first: bool = Query(default=True, description="Whether to sort by starred images first"),
|
||||
search_term: Optional[str] = Query(default=None, description="The term to search for"),
|
||||
) -> list[str]:
|
||||
"""Gets ordered list of all image names (starred first, then unstarred)"""
|
||||
) -> ImageNamesResult:
|
||||
"""Gets ordered list of image names with metadata for optimistic updates"""
|
||||
|
||||
try:
|
||||
image_names = ApiDependencies.invoker.services.images.get_image_names(
|
||||
result = ApiDependencies.invoker.services.images.get_image_names(
|
||||
starred_first=starred_first,
|
||||
order_dir=order_dir,
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
@@ -649,6 +590,34 @@ async def get_image_names(
|
||||
board_id=board_id,
|
||||
search_term=search_term,
|
||||
)
|
||||
return image_names
|
||||
return result
|
||||
except Exception:
|
||||
raise HTTPException(status_code=500, detail="Failed to get image names")
|
||||
|
||||
|
||||
@images_router.post(
|
||||
"/images_by_names",
|
||||
operation_id="get_images_by_names",
|
||||
responses={200: {"model": list[ImageDTO]}},
|
||||
)
|
||||
async def get_images_by_names(
|
||||
image_names: list[str] = Body(embed=True, description="Object containing list of image names to fetch DTOs for"),
|
||||
) -> list[ImageDTO]:
|
||||
"""Gets image DTOs for the specified image names. Maintains order of input names."""
|
||||
|
||||
try:
|
||||
image_service = ApiDependencies.invoker.services.images
|
||||
|
||||
# Fetch DTOs preserving the order of requested names
|
||||
image_dtos: list[ImageDTO] = []
|
||||
for name in image_names:
|
||||
try:
|
||||
dto = image_service.get_dto(name)
|
||||
image_dtos.append(dto)
|
||||
except Exception:
|
||||
# Skip missing images - they may have been deleted between name fetch and DTO fetch
|
||||
continue
|
||||
|
||||
return image_dtos
|
||||
except Exception:
|
||||
raise HTTPException(status_code=500, detail="Failed to get image DTOs")
|
||||
|
||||
@@ -41,6 +41,7 @@ from invokeai.backend.model_manager.starter_models import (
|
||||
STARTER_BUNDLES,
|
||||
STARTER_MODELS,
|
||||
StarterModel,
|
||||
StarterModelBundle,
|
||||
StarterModelWithoutDependencies,
|
||||
)
|
||||
|
||||
@@ -799,7 +800,7 @@ async def convert_model(
|
||||
|
||||
class StarterModelResponse(BaseModel):
|
||||
starter_models: list[StarterModel]
|
||||
starter_bundles: dict[str, list[StarterModel]]
|
||||
starter_bundles: dict[str, StarterModelBundle]
|
||||
|
||||
|
||||
def get_is_installed(
|
||||
@@ -833,7 +834,7 @@ async def get_starter_models() -> StarterModelResponse:
|
||||
model.dependencies = missing_deps
|
||||
|
||||
for bundle in starter_bundles.values():
|
||||
for model in bundle:
|
||||
for model in bundle.models:
|
||||
model.is_installed = get_is_installed(model, installed_models)
|
||||
# Remove already-installed dependencies
|
||||
missing_deps: list[StarterModelWithoutDependencies] = []
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import Body, Path, Query
|
||||
from fastapi import Body, HTTPException, Path, Query
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -22,6 +22,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
RetryItemsResult,
|
||||
SessionQueueCountsByDestination,
|
||||
SessionQueueItem,
|
||||
SessionQueueItemNotFoundError,
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.services.shared.pagination import CursorPaginatedResults
|
||||
@@ -59,10 +60,12 @@ async def enqueue_batch(
|
||||
),
|
||||
) -> EnqueueBatchResult:
|
||||
"""Processes a batch and enqueues the output graphs for execution."""
|
||||
|
||||
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
|
||||
queue_id=queue_id, batch=batch, prepend=prepend
|
||||
)
|
||||
try:
|
||||
return await ApiDependencies.invoker.services.session_queue.enqueue_batch(
|
||||
queue_id=queue_id, batch=batch, prepend=prepend
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while enqueuing batch: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -82,14 +85,17 @@ async def list_queue_items(
|
||||
) -> CursorPaginatedResults[SessionQueueItem]:
|
||||
"""Gets cursor-paginated queue items"""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.list_queue_items(
|
||||
queue_id=queue_id,
|
||||
limit=limit,
|
||||
status=status,
|
||||
cursor=cursor,
|
||||
priority=priority,
|
||||
destination=destination,
|
||||
)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.list_queue_items(
|
||||
queue_id=queue_id,
|
||||
limit=limit,
|
||||
status=status,
|
||||
cursor=cursor,
|
||||
priority=priority,
|
||||
destination=destination,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all items: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -104,11 +110,13 @@ async def list_all_queue_items(
|
||||
destination: Optional[str] = Query(default=None, description="The destination of queue items to fetch"),
|
||||
) -> list[SessionQueueItem]:
|
||||
"""Gets all queue items"""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.list_all_queue_items(
|
||||
queue_id=queue_id,
|
||||
destination=destination,
|
||||
)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.list_all_queue_items(
|
||||
queue_id=queue_id,
|
||||
destination=destination,
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while listing all queue items: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -120,7 +128,10 @@ async def resume(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionProcessorStatus:
|
||||
"""Resumes session processor"""
|
||||
return ApiDependencies.invoker.services.session_processor.resume()
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_processor.resume()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while resuming queue: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -132,7 +143,10 @@ async def Pause(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionProcessorStatus:
|
||||
"""Pauses session processor"""
|
||||
return ApiDependencies.invoker.services.session_processor.pause()
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_processor.pause()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while pausing queue: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -144,7 +158,10 @@ async def cancel_all_except_current(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> CancelAllExceptCurrentResult:
|
||||
"""Immediately cancels all queue items except in-processing items"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_all_except_current(queue_id=queue_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling all except current: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -156,7 +173,10 @@ async def delete_all_except_current(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> DeleteAllExceptCurrentResult:
|
||||
"""Immediately deletes all queue items except in-processing items"""
|
||||
return ApiDependencies.invoker.services.session_queue.delete_all_except_current(queue_id=queue_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.delete_all_except_current(queue_id=queue_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting all except current: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -169,7 +189,12 @@ async def cancel_by_batch_ids(
|
||||
batch_ids: list[str] = Body(description="The list of batch_ids to cancel all queue items for", embed=True),
|
||||
) -> CancelByBatchIDsResult:
|
||||
"""Immediately cancels all queue items from the given batch ids"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(queue_id=queue_id, batch_ids=batch_ids)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_batch_ids(
|
||||
queue_id=queue_id, batch_ids=batch_ids
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by batch id: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -182,9 +207,12 @@ async def cancel_by_destination(
|
||||
destination: str = Query(description="The destination to cancel all queue items for"),
|
||||
) -> CancelByDestinationResult:
|
||||
"""Immediately cancels all queue items with the given origin"""
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling by destination: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -197,7 +225,10 @@ async def retry_items_by_id(
|
||||
item_ids: list[int] = Body(description="The queue item ids to retry"),
|
||||
) -> RetryItemsResult:
|
||||
"""Immediately cancels all queue items with the given origin"""
|
||||
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.retry_items_by_id(queue_id=queue_id, item_ids=item_ids)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while retrying queue items: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -211,11 +242,14 @@ async def clear(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> ClearResult:
|
||||
"""Clears the queue entirely, immediately canceling the currently-executing session"""
|
||||
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
if queue_item is not None:
|
||||
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
|
||||
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
|
||||
return clear_result
|
||||
try:
|
||||
queue_item = ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
if queue_item is not None:
|
||||
ApiDependencies.invoker.services.session_queue.cancel_queue_item(queue_item.item_id)
|
||||
clear_result = ApiDependencies.invoker.services.session_queue.clear(queue_id)
|
||||
return clear_result
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while clearing queue: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -229,7 +263,10 @@ async def prune(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> PruneResult:
|
||||
"""Prunes all completed or errored queue items"""
|
||||
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.prune(queue_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while pruning queue: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -243,7 +280,10 @@ async def get_current_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> Optional[SessionQueueItem]:
|
||||
"""Gets the currently execution queue item"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.get_current(queue_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while getting current queue item: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -257,7 +297,10 @@ async def get_next_queue_item(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> Optional[SessionQueueItem]:
|
||||
"""Gets the next queue item, without executing it"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.get_next(queue_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while getting next queue item: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -271,9 +314,12 @@ async def get_queue_status(
|
||||
queue_id: str = Path(description="The queue id to perform this operation on"),
|
||||
) -> SessionQueueAndProcessorStatus:
|
||||
"""Gets the status of the session queue"""
|
||||
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
|
||||
processor = ApiDependencies.invoker.services.session_processor.get_status()
|
||||
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
|
||||
try:
|
||||
queue = ApiDependencies.invoker.services.session_queue.get_queue_status(queue_id)
|
||||
processor = ApiDependencies.invoker.services.session_processor.get_status()
|
||||
return SessionQueueAndProcessorStatus(queue=queue, processor=processor)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while getting queue status: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -288,7 +334,10 @@ async def get_batch_status(
|
||||
batch_id: str = Path(description="The batch to get the status of"),
|
||||
) -> BatchStatus:
|
||||
"""Gets the status of the session queue"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.get_batch_status(queue_id=queue_id, batch_id=batch_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while getting batch status: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -304,7 +353,12 @@ async def get_queue_item(
|
||||
item_id: int = Path(description="The queue item to get"),
|
||||
) -> SessionQueueItem:
|
||||
"""Gets a queue item"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.get_queue_item(item_id)
|
||||
except SessionQueueItemNotFoundError:
|
||||
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching queue item: {e}")
|
||||
|
||||
|
||||
@session_queue_router.delete(
|
||||
@@ -316,7 +370,10 @@ async def delete_queue_item(
|
||||
item_id: int = Path(description="The queue item to delete"),
|
||||
) -> None:
|
||||
"""Deletes a queue item"""
|
||||
ApiDependencies.invoker.services.session_queue.delete_queue_item(item_id)
|
||||
try:
|
||||
ApiDependencies.invoker.services.session_queue.delete_queue_item(item_id)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting queue item: {e}")
|
||||
|
||||
|
||||
@session_queue_router.put(
|
||||
@@ -331,8 +388,12 @@ async def cancel_queue_item(
|
||||
item_id: int = Path(description="The queue item to cancel"),
|
||||
) -> SessionQueueItem:
|
||||
"""Deletes a queue item"""
|
||||
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.cancel_queue_item(item_id)
|
||||
except SessionQueueItemNotFoundError:
|
||||
raise HTTPException(status_code=404, detail=f"Queue item with id {item_id} not found in queue {queue_id}")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while canceling queue item: {e}")
|
||||
|
||||
|
||||
@session_queue_router.get(
|
||||
@@ -345,9 +406,12 @@ async def counts_by_destination(
|
||||
destination: str = Query(description="The destination to query"),
|
||||
) -> SessionQueueCountsByDestination:
|
||||
"""Gets the counts of queue items by destination"""
|
||||
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.get_counts_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while fetching counts by destination: {e}")
|
||||
|
||||
|
||||
@session_queue_router.delete(
|
||||
@@ -360,6 +424,9 @@ async def delete_by_destination(
|
||||
destination: str = Path(description="The destination to query"),
|
||||
) -> DeleteByDestinationResult:
|
||||
"""Deletes all items with the given destination"""
|
||||
return ApiDependencies.invoker.services.session_queue.delete_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
try:
|
||||
return ApiDependencies.invoker.services.session_queue.delete_by_destination(
|
||||
queue_id=queue_id, destination=destination
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Unexpected error while deleting by destination: {e}")
|
||||
|
||||
@@ -64,6 +64,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
Imagen3Model = "Imagen3ModelField"
|
||||
Imagen4Model = "Imagen4ModelField"
|
||||
ChatGPT4oModel = "ChatGPT4oModelField"
|
||||
FluxKontextModel = "FluxKontextModelField"
|
||||
# endregion
|
||||
|
||||
# region Misc Field Types
|
||||
@@ -214,6 +215,7 @@ class FieldDescriptions:
|
||||
flux_redux_conditioning = "FLUX Redux conditioning tensor"
|
||||
vllm_model = "The VLLM model to use"
|
||||
flux_fill_conditioning = "FLUX Fill conditioning tensor"
|
||||
flux_kontext_conditioning = "FLUX Kontext conditioning (reference image)"
|
||||
|
||||
|
||||
class ImageField(BaseModel):
|
||||
@@ -290,6 +292,12 @@ class FluxFillConditioningField(BaseModel):
|
||||
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
|
||||
|
||||
|
||||
class FluxKontextConditioningField(BaseModel):
|
||||
"""A conditioning field for FLUX Kontext (reference image)."""
|
||||
|
||||
image: ImageField = Field(description="The Kontext reference image.")
|
||||
|
||||
|
||||
class SD3ConditioningField(BaseModel):
|
||||
"""A conditioning tensor primitive value"""
|
||||
|
||||
|
||||
@@ -16,13 +16,12 @@ from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
FluxConditioningField,
|
||||
FluxFillConditioningField,
|
||||
FluxKontextConditioningField,
|
||||
FluxReduxConditioningField,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
LatentsField,
|
||||
WithBoard,
|
||||
WithMetadata,
|
||||
)
|
||||
from invokeai.app.invocations.flux_controlnet import FluxControlNetField
|
||||
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
|
||||
@@ -34,6 +33,7 @@ from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXCo
|
||||
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
|
||||
from invokeai.backend.flux.denoise import denoise
|
||||
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
|
||||
from invokeai.backend.flux.extensions.kontext_extension import KontextExtension
|
||||
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
|
||||
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
|
||||
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
|
||||
@@ -63,9 +63,9 @@ from invokeai.backend.util.devices import TorchDevice
|
||||
title="FLUX Denoise",
|
||||
tags=["image", "flux"],
|
||||
category="image",
|
||||
version="3.3.0",
|
||||
version="4.0.0",
|
||||
)
|
||||
class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
class FluxDenoiseInvocation(BaseInvocation):
|
||||
"""Run denoising process with a FLUX transformer model."""
|
||||
|
||||
# If latents is provided, this means we are doing image-to-image.
|
||||
@@ -145,11 +145,20 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
# This node accepts a images for features like FLUX Fill, ControlNet, and Kontext, but needs to operate on them in
|
||||
# latent space. We'll run the VAE to encode them in this node instead of requiring the user to run the VAE in
|
||||
# upstream nodes.
|
||||
|
||||
ip_adapter: IPAdapterField | list[IPAdapterField] | None = InputField(
|
||||
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
|
||||
)
|
||||
|
||||
kontext_conditioning: Optional[FluxKontextConditioningField] = InputField(
|
||||
default=None,
|
||||
description="FLUX Kontext conditioning (reference image).",
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
latents = self._run_diffusion(context)
|
||||
@@ -376,6 +385,27 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
dtype=inference_dtype,
|
||||
)
|
||||
|
||||
kontext_extension = None
|
||||
if self.kontext_conditioning is not None:
|
||||
if not self.controlnet_vae:
|
||||
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
|
||||
|
||||
kontext_extension = KontextExtension(
|
||||
context=context,
|
||||
kontext_conditioning=self.kontext_conditioning,
|
||||
vae_field=self.controlnet_vae,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
)
|
||||
|
||||
# Prepare Kontext conditioning if provided
|
||||
img_cond_seq = None
|
||||
img_cond_seq_ids = None
|
||||
if kontext_extension is not None:
|
||||
# Ensure batch sizes match
|
||||
kontext_extension.ensure_batch_size(x.shape[0])
|
||||
img_cond_seq, img_cond_seq_ids = kontext_extension.kontext_latents, kontext_extension.kontext_ids
|
||||
|
||||
x = denoise(
|
||||
model=transformer,
|
||||
img=x,
|
||||
@@ -391,6 +421,8 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
|
||||
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
|
||||
img_cond=img_cond,
|
||||
img_cond_seq=img_cond_seq,
|
||||
img_cond_seq_ids=img_cond_seq_ids,
|
||||
)
|
||||
|
||||
x = unpack(x.float(), self.height, self.width)
|
||||
@@ -865,7 +897,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
|
||||
def step_callback(state: PipelineIntermediateState) -> None:
|
||||
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
|
||||
# The denoise function now handles Kontext conditioning correctly,
|
||||
# so we don't need to slice the latents here
|
||||
latents = state.latents.float()
|
||||
state.latents = unpack(latents, self.height, self.width).squeeze()
|
||||
context.util.flux_step_callback(state)
|
||||
|
||||
return step_callback
|
||||
|
||||
40
invokeai/app/invocations/flux_kontext.py
Normal file
40
invokeai/app/invocations/flux_kontext.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
invocation,
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
FluxKontextConditioningField,
|
||||
InputField,
|
||||
OutputField,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
|
||||
|
||||
@invocation_output("flux_kontext_output")
|
||||
class FluxKontextOutput(BaseInvocationOutput):
|
||||
"""The conditioning output of a FLUX Kontext invocation."""
|
||||
|
||||
kontext_cond: FluxKontextConditioningField = OutputField(
|
||||
description=FieldDescriptions.flux_kontext_conditioning, title="Kontext Conditioning"
|
||||
)
|
||||
|
||||
|
||||
@invocation(
|
||||
"flux_kontext",
|
||||
title="Kontext Conditioning - FLUX",
|
||||
tags=["conditioning", "kontext", "flux"],
|
||||
category="conditioning",
|
||||
version="1.0.0",
|
||||
)
|
||||
class FluxKontextInvocation(BaseInvocation):
|
||||
"""Prepares a reference image for FLUX Kontext conditioning."""
|
||||
|
||||
image: ImageField = InputField(description="The Kontext reference image.")
|
||||
|
||||
def invoke(self, context: InvocationContext) -> FluxKontextOutput:
|
||||
"""Packages the provided image into a Kontext conditioning field."""
|
||||
return FluxKontextOutput(kontext_cond=FluxKontextConditioningField(image=self.image))
|
||||
@@ -1,5 +1,5 @@
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Literal, Optional, Tuple
|
||||
from typing import Iterator, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer, T5TokenizerFast
|
||||
@@ -111,6 +111,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
|
||||
t5_encoder = HFEncoder(t5_text_encoder, t5_tokenizer, False, self.t5_max_seq_len)
|
||||
|
||||
if context.config.get().log_tokenization:
|
||||
self._log_t5_tokenization(context, t5_tokenizer)
|
||||
|
||||
context.util.signal_progress("Running T5 encoder")
|
||||
prompt_embeds = t5_encoder(prompt)
|
||||
|
||||
@@ -151,6 +154,9 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
|
||||
clip_encoder = HFEncoder(clip_text_encoder, clip_tokenizer, True, 77)
|
||||
|
||||
if context.config.get().log_tokenization:
|
||||
self._log_clip_tokenization(context, clip_tokenizer)
|
||||
|
||||
context.util.signal_progress("Running CLIP encoder")
|
||||
pooled_prompt_embeds = clip_encoder(prompt)
|
||||
|
||||
@@ -170,3 +176,88 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
assert isinstance(lora_info.model, ModelPatchRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
def _log_t5_tokenization(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
||||
) -> None:
|
||||
"""Logs the tokenization of a prompt for a T5-based model like FLUX."""
|
||||
|
||||
# Tokenize the prompt using the same parameters as the model's text encoder.
|
||||
# T5 tokenizers add an EOS token (</s>) and then pad to max_length.
|
||||
tokenized_output = tokenizer(
|
||||
self.prompt,
|
||||
padding="max_length",
|
||||
max_length=self.t5_max_seq_len,
|
||||
truncation=True,
|
||||
add_special_tokens=True, # This is important for T5 to add the EOS token.
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
input_ids = tokenized_output.input_ids[0]
|
||||
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
||||
|
||||
# The T5 tokenizer uses a space-like character ' ' (U+2581) to denote spaces.
|
||||
# We'll replace it with a regular space for readability.
|
||||
tokens = [t.replace("\u2581", " ") for t in tokens]
|
||||
|
||||
tokenized_str = ""
|
||||
used_tokens = 0
|
||||
for token in tokens:
|
||||
if token == tokenizer.eos_token:
|
||||
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
|
||||
used_tokens += 1
|
||||
elif token == tokenizer.pad_token:
|
||||
# tokenized_str += f"\x1b[0;34m{token}\x1b[0m" # Blue for PAD
|
||||
continue
|
||||
else:
|
||||
color = (used_tokens % 6) + 1 # Cycle through 6 colors
|
||||
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
|
||||
used_tokens += 1
|
||||
|
||||
context.logger.info(f">> [T5 TOKENLOG] Tokens ({used_tokens}/{self.t5_max_seq_len}):")
|
||||
context.logger.info(f"{tokenized_str}\x1b[0m")
|
||||
|
||||
def _log_clip_tokenization(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
tokenizer: CLIPTokenizer,
|
||||
) -> None:
|
||||
"""Logs the tokenization of a prompt for a CLIP-based model."""
|
||||
max_length = tokenizer.model_max_length
|
||||
|
||||
tokenized_output = tokenizer(
|
||||
self.prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
input_ids = tokenized_output.input_ids[0]
|
||||
attention_mask = tokenized_output.attention_mask[0]
|
||||
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
||||
|
||||
# The CLIP tokenizer uses '</w>' to denote spaces.
|
||||
# We'll replace it with a regular space for readability.
|
||||
tokens = [t.replace("</w>", " ") for t in tokens]
|
||||
|
||||
tokenized_str = ""
|
||||
used_tokens = 0
|
||||
for i, token in enumerate(tokens):
|
||||
if attention_mask[i] == 0:
|
||||
# Do not log padding tokens.
|
||||
continue
|
||||
|
||||
if token == tokenizer.bos_token:
|
||||
tokenized_str += f"\x1b[0;32m{token}\x1b[0m" # Green for BOS
|
||||
elif token == tokenizer.eos_token:
|
||||
tokenized_str += f"\x1b[0;31m{token}\x1b[0m" # Red for EOS
|
||||
else:
|
||||
color = (used_tokens % 6) + 1 # Cycle through 6 colors
|
||||
tokenized_str += f"\x1b[0;3{color}m{token}\x1b[0m"
|
||||
used_tokens += 1
|
||||
|
||||
context.logger.info(f">> [CLIP TOKENLOG] Tokens ({used_tokens}/{max_length}):")
|
||||
context.logger.info(f"{tokenized_str}\x1b[0m")
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageCollectionCounts,
|
||||
ImageNamesResult,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
@@ -99,43 +99,16 @@ class ImageRecordStorageBase(ABC):
|
||||
"""Gets the most recent image for a board."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_collection_counts(
|
||||
self,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> ImageCollectionCounts:
|
||||
"""Gets counts for starred and unstarred image collections."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_collection_images(
|
||||
self,
|
||||
collection: Literal["starred", "unstarred"],
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
"""Gets images from a specific collection (starred or unstarred)."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_image_names(
|
||||
self,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
"""Gets ordered list of all image names (starred first, then unstarred)."""
|
||||
) -> ImageNamesResult:
|
||||
"""Gets ordered list of image names with metadata for optimistic updates."""
|
||||
pass
|
||||
|
||||
@@ -212,3 +212,11 @@ def deserialize_image_record(image_dict: dict) -> ImageRecord:
|
||||
class ImageCollectionCounts(BaseModel):
|
||||
starred_count: int = Field(description="The number of starred images in the collection.")
|
||||
unstarred_count: int = Field(description="The number of unstarred images in the collection.")
|
||||
|
||||
|
||||
class ImageNamesResult(BaseModel):
|
||||
"""Response containing ordered image names with metadata for optimistic updates."""
|
||||
|
||||
image_names: list[str] = Field(description="Ordered list of image names")
|
||||
starred_count: int = Field(description="Number of starred images (when starred_first=True)")
|
||||
total_count: int = Field(description="Total number of images matching the query")
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import sqlite3
|
||||
from datetime import datetime
|
||||
from typing import Literal, Optional, Union, cast
|
||||
from typing import Optional, Union, cast
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField, MetadataFieldValidator
|
||||
from invokeai.app.services.image_records.image_records_base import ImageRecordStorageBase
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
IMAGE_DTO_COLS,
|
||||
ImageCategory,
|
||||
ImageCollectionCounts,
|
||||
ImageNamesResult,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ImageRecordDeleteException,
|
||||
@@ -388,199 +388,19 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
|
||||
return deserialize_image_record(dict(result))
|
||||
|
||||
def get_collection_counts(
|
||||
self,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> ImageCollectionCounts:
|
||||
cursor = self._conn.cursor()
|
||||
|
||||
# Build the base query conditions (same as get_many)
|
||||
base_query = """--sql
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1
|
||||
"""
|
||||
|
||||
query_conditions = ""
|
||||
query_params: list[Union[int, str, bool]] = []
|
||||
|
||||
if image_origin is not None:
|
||||
query_conditions += """--sql
|
||||
AND images.image_origin = ?
|
||||
"""
|
||||
query_params.append(image_origin.value)
|
||||
|
||||
if categories is not None:
|
||||
category_strings = [c.value for c in set(categories)]
|
||||
placeholders = ",".join("?" * len(category_strings))
|
||||
query_conditions += f"""--sql
|
||||
AND images.image_category IN ( {placeholders} )
|
||||
"""
|
||||
for c in category_strings:
|
||||
query_params.append(c)
|
||||
|
||||
if is_intermediate is not None:
|
||||
query_conditions += """--sql
|
||||
AND images.is_intermediate = ?
|
||||
"""
|
||||
query_params.append(is_intermediate)
|
||||
|
||||
if board_id == "none":
|
||||
query_conditions += """--sql
|
||||
AND board_images.board_id IS NULL
|
||||
"""
|
||||
elif board_id is not None:
|
||||
query_conditions += """--sql
|
||||
AND board_images.board_id = ?
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND (
|
||||
images.metadata LIKE ?
|
||||
OR images.created_at LIKE ?
|
||||
)
|
||||
"""
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
# Get starred count
|
||||
starred_query = f"SELECT COUNT(*) {base_query} {query_conditions} AND images.starred = TRUE;"
|
||||
cursor.execute(starred_query, query_params)
|
||||
starred_count = cast(int, cursor.fetchone()[0])
|
||||
|
||||
# Get unstarred count
|
||||
unstarred_query = f"SELECT COUNT(*) {base_query} {query_conditions} AND images.starred = FALSE;"
|
||||
cursor.execute(unstarred_query, query_params)
|
||||
unstarred_count = cast(int, cursor.fetchone()[0])
|
||||
|
||||
return ImageCollectionCounts(starred_count=starred_count, unstarred_count=unstarred_count)
|
||||
|
||||
def get_collection_images(
|
||||
self,
|
||||
collection: Literal["starred", "unstarred"],
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageRecord]:
|
||||
cursor = self._conn.cursor()
|
||||
|
||||
# Base queries
|
||||
count_query = """--sql
|
||||
SELECT COUNT(*)
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1
|
||||
"""
|
||||
|
||||
images_query = f"""--sql
|
||||
SELECT {IMAGE_DTO_COLS}
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1
|
||||
"""
|
||||
|
||||
query_conditions = ""
|
||||
query_params: list[Union[int, str, bool]] = []
|
||||
|
||||
# Add starred/unstarred filter
|
||||
is_starred = collection == "starred"
|
||||
query_conditions += """--sql
|
||||
AND images.starred = ?
|
||||
"""
|
||||
query_params.append(is_starred)
|
||||
|
||||
if image_origin is not None:
|
||||
query_conditions += """--sql
|
||||
AND images.image_origin = ?
|
||||
"""
|
||||
query_params.append(image_origin.value)
|
||||
|
||||
if categories is not None:
|
||||
category_strings = [c.value for c in set(categories)]
|
||||
placeholders = ",".join("?" * len(category_strings))
|
||||
query_conditions += f"""--sql
|
||||
AND images.image_category IN ( {placeholders} )
|
||||
"""
|
||||
for c in category_strings:
|
||||
query_params.append(c)
|
||||
|
||||
if is_intermediate is not None:
|
||||
query_conditions += """--sql
|
||||
AND images.is_intermediate = ?
|
||||
"""
|
||||
query_params.append(is_intermediate)
|
||||
|
||||
if board_id == "none":
|
||||
query_conditions += """--sql
|
||||
AND board_images.board_id IS NULL
|
||||
"""
|
||||
elif board_id is not None:
|
||||
query_conditions += """--sql
|
||||
AND board_images.board_id = ?
|
||||
"""
|
||||
query_params.append(board_id)
|
||||
|
||||
if search_term:
|
||||
query_conditions += """--sql
|
||||
AND (
|
||||
images.metadata LIKE ?
|
||||
OR images.created_at LIKE ?
|
||||
)
|
||||
"""
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
# Add ordering and pagination
|
||||
query_pagination = f"""--sql
|
||||
ORDER BY images.created_at {order_dir.value} LIMIT ? OFFSET ?
|
||||
"""
|
||||
|
||||
# Execute images query
|
||||
images_query += query_conditions + query_pagination + ";"
|
||||
images_params = query_params.copy()
|
||||
images_params.extend([limit, offset])
|
||||
|
||||
cursor.execute(images_query, images_params)
|
||||
result = cast(list[sqlite3.Row], cursor.fetchall())
|
||||
images = [deserialize_image_record(dict(r)) for r in result]
|
||||
|
||||
# Execute count query
|
||||
count_query += query_conditions + ";"
|
||||
cursor.execute(count_query, query_params)
|
||||
count = cast(int, cursor.fetchone()[0])
|
||||
|
||||
return OffsetPaginatedResults(items=images, offset=offset, limit=limit, total=count)
|
||||
|
||||
def get_image_names(
|
||||
self,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
) -> ImageNamesResult:
|
||||
cursor = self._conn.cursor()
|
||||
|
||||
# Base query to get image names in order (starred first, then unstarred)
|
||||
query = """--sql
|
||||
SELECT images.image_name
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1
|
||||
"""
|
||||
|
||||
# Build query conditions (reused for both starred count and image names queries)
|
||||
query_conditions = ""
|
||||
query_params: list[Union[int, str, bool]] = []
|
||||
|
||||
@@ -625,15 +445,38 @@ class SqliteImageRecordStorage(ImageRecordStorageBase):
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
query_params.append(f"%{search_term.lower()}%")
|
||||
|
||||
# Order by starred first, then by created_at
|
||||
query += (
|
||||
query_conditions
|
||||
+ f"""--sql
|
||||
ORDER BY images.starred DESC, images.created_at {order_dir.value}
|
||||
"""
|
||||
)
|
||||
# Get starred count if starred_first is enabled
|
||||
starred_count = 0
|
||||
if starred_first:
|
||||
starred_count_query = f"""--sql
|
||||
SELECT COUNT(*)
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE images.starred = TRUE AND (1=1{query_conditions})
|
||||
"""
|
||||
cursor.execute(starred_count_query, query_params)
|
||||
starred_count = cast(int, cursor.fetchone()[0])
|
||||
|
||||
cursor.execute(query, query_params)
|
||||
# Get all image names with proper ordering
|
||||
if starred_first:
|
||||
names_query = f"""--sql
|
||||
SELECT images.image_name
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1{query_conditions}
|
||||
ORDER BY images.starred DESC, images.created_at {order_dir.value}
|
||||
"""
|
||||
else:
|
||||
names_query = f"""--sql
|
||||
SELECT images.image_name
|
||||
FROM images
|
||||
LEFT JOIN board_images ON board_images.image_name = images.image_name
|
||||
WHERE 1=1{query_conditions}
|
||||
ORDER BY images.created_at {order_dir.value}
|
||||
"""
|
||||
|
||||
cursor.execute(names_query, query_params)
|
||||
result = cast(list[sqlite3.Row], cursor.fetchall())
|
||||
image_names = [row[0] for row in result]
|
||||
|
||||
return [row[0] for row in result]
|
||||
return ImageNamesResult(image_names=image_names, starred_count=starred_count, total_count=len(image_names))
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Callable, Literal, Optional
|
||||
from typing import Callable, Optional
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
from invokeai.app.invocations.fields import MetadataField
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageCollectionCounts,
|
||||
ImageNamesResult,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ResourceOrigin,
|
||||
@@ -149,43 +149,16 @@ class ImageServiceABC(ABC):
|
||||
"""Deletes all images on a board."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_collection_counts(
|
||||
self,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> ImageCollectionCounts:
|
||||
"""Gets counts for starred and unstarred image collections."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_collection_images(
|
||||
self,
|
||||
collection: Literal["starred", "unstarred"],
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
"""Gets images from a specific collection (starred or unstarred)."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_image_names(
|
||||
self,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
"""Gets ordered list of all image names (starred first, then unstarred)."""
|
||||
) -> ImageNamesResult:
|
||||
"""Gets ordered list of image names with metadata for optimistic updates."""
|
||||
pass
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Literal, Optional
|
||||
from typing import Optional
|
||||
|
||||
from PIL.Image import Image as PILImageType
|
||||
|
||||
@@ -10,7 +10,7 @@ from invokeai.app.services.image_files.image_files_common import (
|
||||
)
|
||||
from invokeai.app.services.image_records.image_records_common import (
|
||||
ImageCategory,
|
||||
ImageCollectionCounts,
|
||||
ImageNamesResult,
|
||||
ImageRecord,
|
||||
ImageRecordChanges,
|
||||
ImageRecordDeleteException,
|
||||
@@ -311,82 +311,19 @@ class ImageService(ImageServiceABC):
|
||||
self.__invoker.services.logger.error("Problem getting intermediates count")
|
||||
raise e
|
||||
|
||||
def get_collection_counts(
|
||||
self,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> ImageCollectionCounts:
|
||||
try:
|
||||
return self.__invoker.services.image_records.get_collection_counts(
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
is_intermediate=is_intermediate,
|
||||
board_id=board_id,
|
||||
search_term=search_term,
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Problem getting collection counts")
|
||||
raise e
|
||||
|
||||
def get_collection_images(
|
||||
self,
|
||||
collection: Literal["starred", "unstarred"],
|
||||
offset: int = 0,
|
||||
limit: int = 10,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> OffsetPaginatedResults[ImageDTO]:
|
||||
try:
|
||||
results = self.__invoker.services.image_records.get_collection_images(
|
||||
collection=collection,
|
||||
offset=offset,
|
||||
limit=limit,
|
||||
order_dir=order_dir,
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
is_intermediate=is_intermediate,
|
||||
board_id=board_id,
|
||||
search_term=search_term,
|
||||
)
|
||||
|
||||
image_dtos = [
|
||||
image_record_to_dto(
|
||||
image_record=r,
|
||||
image_url=self.__invoker.services.urls.get_image_url(r.image_name),
|
||||
thumbnail_url=self.__invoker.services.urls.get_image_url(r.image_name, True),
|
||||
board_id=self.__invoker.services.board_image_records.get_board_for_image(r.image_name),
|
||||
)
|
||||
for r in results.items
|
||||
]
|
||||
|
||||
return OffsetPaginatedResults[ImageDTO](
|
||||
items=image_dtos,
|
||||
offset=results.offset,
|
||||
limit=results.limit,
|
||||
total=results.total,
|
||||
)
|
||||
except Exception as e:
|
||||
self.__invoker.services.logger.error("Problem getting collection images")
|
||||
raise e
|
||||
|
||||
def get_image_names(
|
||||
self,
|
||||
starred_first: bool = True,
|
||||
order_dir: SQLiteDirection = SQLiteDirection.Descending,
|
||||
image_origin: Optional[ResourceOrigin] = None,
|
||||
categories: Optional[list[ImageCategory]] = None,
|
||||
is_intermediate: Optional[bool] = None,
|
||||
board_id: Optional[str] = None,
|
||||
search_term: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
) -> ImageNamesResult:
|
||||
try:
|
||||
return self.__invoker.services.image_records.get_image_names(
|
||||
starred_first=starred_first,
|
||||
order_dir=order_dir,
|
||||
image_origin=image_origin,
|
||||
categories=categories,
|
||||
|
||||
@@ -205,6 +205,7 @@ class FieldIdentifier(BaseModel):
|
||||
kind: Literal["input", "output"] = Field(description="The kind of field")
|
||||
node_id: str = Field(description="The ID of the node")
|
||||
field_name: str = Field(description="The name of the field")
|
||||
user_label: str | None = Field(description="The user label of the field, if any")
|
||||
|
||||
|
||||
class SessionQueueItem(BaseModel):
|
||||
@@ -331,6 +332,7 @@ class EnqueueBatchResult(BaseModel):
|
||||
requested: int = Field(description="The total number of queue items requested to be enqueued")
|
||||
batch: Batch = Field(description="The batch that was enqueued")
|
||||
priority: int = Field(description="The priority of the enqueued batch")
|
||||
item_ids: list[int] = Field(description="The IDs of the queue items that were enqueued")
|
||||
|
||||
|
||||
class RetryItemsResult(BaseModel):
|
||||
|
||||
@@ -133,6 +133,18 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
""",
|
||||
values_to_insert,
|
||||
)
|
||||
with self._conn:
|
||||
cursor = self._conn.cursor()
|
||||
cursor.execute(
|
||||
"""--sql
|
||||
SELECT item_id
|
||||
FROM session_queue
|
||||
WHERE batch_id = ?
|
||||
ORDER BY item_id DESC;
|
||||
""",
|
||||
(batch.batch_id,),
|
||||
)
|
||||
item_ids = [row[0] for row in cursor.fetchall()]
|
||||
except Exception:
|
||||
raise
|
||||
enqueue_result = EnqueueBatchResult(
|
||||
@@ -141,6 +153,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
enqueued=enqueued_count,
|
||||
batch=batch,
|
||||
priority=priority,
|
||||
item_ids=item_ids,
|
||||
)
|
||||
self.__invoker.services.events.emit_batch_enqueued(enqueue_result)
|
||||
return enqueue_result
|
||||
@@ -727,7 +740,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
|
||||
|
||||
current_item = self.get_current(queue_id=queue_id)
|
||||
total = sum(row[1] for row in counts_result)
|
||||
total = sum(row[1] or 0 for row in counts_result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
|
||||
return SessionQueueStatus(
|
||||
queue_id=queue_id,
|
||||
@@ -756,7 +769,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
(queue_id, batch_id),
|
||||
)
|
||||
result = cast(list[sqlite3.Row], cursor.fetchall())
|
||||
total = sum(row[1] for row in result)
|
||||
total = sum(row[1] or 0 for row in result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in result}
|
||||
origin = result[0]["origin"] if result else None
|
||||
destination = result[0]["destination"] if result else None
|
||||
@@ -788,7 +801,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
)
|
||||
counts_result = cast(list[sqlite3.Row], cursor.fetchall())
|
||||
|
||||
total = sum(row[1] for row in counts_result)
|
||||
total = sum(row[1] or 0 for row in counts_result)
|
||||
counts: dict[str, int] = {row[0]: row[1] for row in counts_result}
|
||||
|
||||
return SessionQueueCountsByDestination(
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
from typing import Any, Optional, TypeVar, Union, get_args, get_origin, get_type_hints
|
||||
from typing import Any, Optional, TypeVar, Union, get_args, get_origin
|
||||
|
||||
import networkx as nx
|
||||
from pydantic import (
|
||||
@@ -58,17 +58,32 @@ class Edge(BaseModel):
|
||||
|
||||
|
||||
def get_output_field_type(node: BaseInvocation, field: str) -> Any:
|
||||
node_type = type(node)
|
||||
node_outputs = get_type_hints(node_type.get_output_annotation())
|
||||
node_output_field = node_outputs.get(field) or None
|
||||
return node_output_field
|
||||
# TODO(psyche): This is awkward - if field_info is None, it means the field is not defined in the output, which
|
||||
# really should raise. The consumers of this utility expect it to never raise, and return None instead. Fixing this
|
||||
# would require some fairly significant changes and I don't want risk breaking anything.
|
||||
try:
|
||||
invocation_class = type(node)
|
||||
invocation_output_class = invocation_class.get_output_annotation()
|
||||
field_info = invocation_output_class.model_fields.get(field)
|
||||
assert field_info is not None, f"Output field '{field}' not found in {invocation_output_class.get_type()}"
|
||||
output_field_type = field_info.annotation
|
||||
return output_field_type
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def get_input_field_type(node: BaseInvocation, field: str) -> Any:
|
||||
node_type = type(node)
|
||||
node_inputs = get_type_hints(node_type)
|
||||
node_input_field = node_inputs.get(field) or None
|
||||
return node_input_field
|
||||
# TODO(psyche): This is awkward - if field_info is None, it means the field is not defined in the output, which
|
||||
# really should raise. The consumers of this utility expect it to never raise, and return None instead. Fixing this
|
||||
# would require some fairly significant changes and I don't want risk breaking anything.
|
||||
try:
|
||||
invocation_class = type(node)
|
||||
field_info = invocation_class.model_fields.get(field)
|
||||
assert field_info is not None, f"Input field '{field}' not found in {invocation_class.get_type()}"
|
||||
input_field_type = field_info.annotation
|
||||
return input_field_type
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
|
||||
def is_union_subtype(t1, t2):
|
||||
@@ -992,10 +1007,11 @@ class GraphExecutionState(BaseModel):
|
||||
new_node_ids = []
|
||||
if isinstance(next_node, CollectInvocation):
|
||||
# Collapse all iterator input mappings and create a single execution node for the collect invocation
|
||||
all_iteration_mappings = list(
|
||||
itertools.chain(*(((s, p) for p in self.source_prepared_mapping[s]) for s in next_node_parents))
|
||||
)
|
||||
# all_iteration_mappings = list(set(itertools.chain(*prepared_parent_mappings)))
|
||||
all_iteration_mappings = []
|
||||
for source_node_id in next_node_parents:
|
||||
prepared_nodes = self.source_prepared_mapping[source_node_id]
|
||||
all_iteration_mappings.extend([(source_node_id, p) for p in prepared_nodes])
|
||||
|
||||
create_results = self._create_execution_node(next_node_id, all_iteration_mappings)
|
||||
if create_results is not None:
|
||||
new_node_ids.extend(create_results)
|
||||
|
||||
@@ -123,7 +123,11 @@ def calc_percentage(intermediate_state: PipelineIntermediateState) -> float:
|
||||
if total_steps == 0:
|
||||
return 0.0
|
||||
if order == 2:
|
||||
return floor(step / 2) / floor(total_steps / 2)
|
||||
# Prevent division by zero when total_steps is 1 or 2
|
||||
denominator = floor(total_steps / 2)
|
||||
if denominator == 0:
|
||||
return 0.0
|
||||
return floor(step / 2) / denominator
|
||||
# order == 1
|
||||
return step / total_steps
|
||||
|
||||
|
||||
@@ -30,8 +30,11 @@ def denoise(
|
||||
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
|
||||
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
|
||||
# extra img tokens
|
||||
# extra img tokens (channel-wise)
|
||||
img_cond: torch.Tensor | None,
|
||||
# extra img tokens (sequence-wise) - for Kontext conditioning
|
||||
img_cond_seq: torch.Tensor | None = None,
|
||||
img_cond_seq_ids: torch.Tensor | None = None,
|
||||
):
|
||||
# step 0 is the initial state
|
||||
total_steps = len(timesteps) - 1
|
||||
@@ -46,6 +49,10 @@ def denoise(
|
||||
)
|
||||
# guidance_vec is ignored for schnell.
|
||||
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
||||
|
||||
# Store original sequence length for slicing predictions
|
||||
original_seq_len = img.shape[1]
|
||||
|
||||
for step_index, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
|
||||
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
||||
|
||||
@@ -71,10 +78,26 @@ def denoise(
|
||||
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
|
||||
# tensors. Calculating the sum materializes each tensor into its own instance.
|
||||
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
|
||||
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
|
||||
|
||||
# Prepare input for model - concatenate fresh each step
|
||||
img_input = img
|
||||
img_input_ids = img_ids
|
||||
|
||||
# Add channel-wise conditioning (for ControlNet, FLUX Fill, etc.)
|
||||
if img_cond is not None:
|
||||
img_input = torch.cat((img_input, img_cond), dim=-1)
|
||||
|
||||
# Add sequence-wise conditioning (for Kontext)
|
||||
if img_cond_seq is not None:
|
||||
assert img_cond_seq_ids is not None, (
|
||||
"You need to provide either both or neither of the sequence conditioning"
|
||||
)
|
||||
img_input = torch.cat((img_input, img_cond_seq), dim=1)
|
||||
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
|
||||
|
||||
pred = model(
|
||||
img=pred_img,
|
||||
img_ids=img_ids,
|
||||
img=img_input,
|
||||
img_ids=img_input_ids,
|
||||
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
|
||||
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
|
||||
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
|
||||
@@ -88,6 +111,10 @@ def denoise(
|
||||
regional_prompting_extension=pos_regional_prompting_extension,
|
||||
)
|
||||
|
||||
# Slice prediction to only include the main image tokens
|
||||
if img_input_ids is not None:
|
||||
pred = pred[:, :original_seq_len]
|
||||
|
||||
step_cfg_scale = cfg_scale[step_index]
|
||||
|
||||
# If step_cfg_scale, is 1.0, then we don't need to run the negative prediction.
|
||||
|
||||
149
invokeai/backend/flux/extensions/kontext_extension.py
Normal file
149
invokeai/backend/flux/extensions/kontext_extension.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from einops import repeat
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.fields import FluxKontextConditioningField
|
||||
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
|
||||
from invokeai.app.invocations.model import VAEField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.sampling_utils import pack
|
||||
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
|
||||
|
||||
|
||||
def generate_img_ids_with_offset(
|
||||
latent_height: int,
|
||||
latent_width: int,
|
||||
batch_size: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
idx_offset: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""Generate tensor of image position ids with an optional offset.
|
||||
|
||||
Args:
|
||||
latent_height (int): Height of image in latent space (after packing, this becomes h//2).
|
||||
latent_width (int): Width of image in latent space (after packing, this becomes w//2).
|
||||
batch_size (int): Number of images in the batch.
|
||||
device (torch.device): Device to create tensors on.
|
||||
dtype (torch.dtype): Data type for the tensors.
|
||||
idx_offset (int): Offset to add to the first dimension of the image ids.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Image position ids with shape [batch_size, (latent_height//2 * latent_width//2), 3].
|
||||
"""
|
||||
|
||||
if device.type == "mps":
|
||||
orig_dtype = dtype
|
||||
dtype = torch.float16
|
||||
|
||||
# After packing, the spatial dimensions are halved due to the 2x2 patch structure
|
||||
packed_height = latent_height // 2
|
||||
packed_width = latent_width // 2
|
||||
|
||||
# Create base tensor for position IDs with shape [packed_height, packed_width, 3]
|
||||
# The 3 channels represent: [batch_offset, y_position, x_position]
|
||||
img_ids = torch.zeros(packed_height, packed_width, 3, device=device, dtype=dtype)
|
||||
|
||||
# Set the batch offset for all positions
|
||||
img_ids[..., 0] = idx_offset
|
||||
|
||||
# Create y-coordinate indices (vertical positions)
|
||||
y_indices = torch.arange(packed_height, device=device, dtype=dtype)
|
||||
# Broadcast y_indices to match the spatial dimensions [packed_height, 1]
|
||||
img_ids[..., 1] = y_indices[:, None]
|
||||
|
||||
# Create x-coordinate indices (horizontal positions)
|
||||
x_indices = torch.arange(packed_width, device=device, dtype=dtype)
|
||||
# Broadcast x_indices to match the spatial dimensions [1, packed_width]
|
||||
img_ids[..., 2] = x_indices[None, :]
|
||||
|
||||
# Expand to include batch dimension: [batch_size, (packed_height * packed_width), 3]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
|
||||
if device.type == "mps":
|
||||
img_ids = img_ids.to(orig_dtype)
|
||||
|
||||
return img_ids
|
||||
|
||||
|
||||
class KontextExtension:
|
||||
"""Applies FLUX Kontext (reference image) conditioning."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kontext_conditioning: FluxKontextConditioningField,
|
||||
context: InvocationContext,
|
||||
vae_field: VAEField,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
"""
|
||||
Initializes the KontextExtension, pre-processing the reference image
|
||||
into latents and positional IDs.
|
||||
"""
|
||||
self._context = context
|
||||
self._device = device
|
||||
self._dtype = dtype
|
||||
self._vae_field = vae_field
|
||||
self.kontext_conditioning = kontext_conditioning
|
||||
|
||||
# Pre-process and cache the kontext latents and ids upon initialization.
|
||||
self.kontext_latents, self.kontext_ids = self._prepare_kontext()
|
||||
|
||||
def _prepare_kontext(self) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Encodes the reference image and prepares its latents and IDs."""
|
||||
image = self._context.images.get_pil(self.kontext_conditioning.image.image_name)
|
||||
|
||||
# Calculate aspect ratio of input image
|
||||
width, height = image.size
|
||||
aspect_ratio = width / height
|
||||
|
||||
# Find the closest preferred resolution by aspect ratio
|
||||
_, target_width, target_height = min(
|
||||
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS), key=lambda x: x[0]
|
||||
)
|
||||
|
||||
# Apply BFL's scaling formula
|
||||
# This ensures compatibility with the model's training
|
||||
scaled_width = 2 * int(target_width / 16)
|
||||
scaled_height = 2 * int(target_height / 16)
|
||||
|
||||
# Resize to the exact resolution used during training
|
||||
image = image.convert("RGB")
|
||||
final_width = 8 * scaled_width
|
||||
final_height = 8 * scaled_height
|
||||
image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
|
||||
|
||||
# Convert to tensor with same normalization as BFL
|
||||
image_np = np.array(image)
|
||||
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0
|
||||
image_tensor = einops.rearrange(image_tensor, "h w c -> 1 c h w")
|
||||
image_tensor = image_tensor.to(self._device)
|
||||
|
||||
# Continue with VAE encoding
|
||||
vae_info = self._context.models.load(self._vae_field.vae)
|
||||
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||||
|
||||
# Extract tensor dimensions
|
||||
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
|
||||
|
||||
# Pack the latents and generate IDs
|
||||
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
|
||||
kontext_ids = generate_img_ids_with_offset(
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
batch_size=batch_size,
|
||||
device=self._device,
|
||||
dtype=self._dtype,
|
||||
idx_offset=1,
|
||||
)
|
||||
|
||||
return kontext_latents_packed, kontext_ids
|
||||
|
||||
def ensure_batch_size(self, target_batch_size: int) -> None:
|
||||
"""Ensures the kontext latents and IDs match the target batch size by repeating if necessary."""
|
||||
if self.kontext_latents.shape[0] != target_batch_size:
|
||||
self.kontext_latents = self.kontext_latents.repeat(target_batch_size, 1, 1)
|
||||
self.kontext_ids = self.kontext_ids.repeat(target_batch_size, 1, 1)
|
||||
@@ -174,11 +174,13 @@ def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtyp
|
||||
dtype = torch.float16
|
||||
|
||||
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
|
||||
# Set batch offset to 0 for main image tokens
|
||||
img_ids[..., 0] = 0
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
|
||||
if device.type == "mps":
|
||||
img_ids.to(orig_dtype)
|
||||
img_ids = img_ids.to(orig_dtype)
|
||||
|
||||
return img_ids
|
||||
|
||||
@@ -18,6 +18,29 @@ class ModelSpec:
|
||||
repo_ae: str | None
|
||||
|
||||
|
||||
# Preferred resolutions for Kontext models to avoid tiling artifacts
|
||||
# These are the specific resolutions the model was trained on
|
||||
PREFERED_KONTEXT_RESOLUTIONS = [
|
||||
(672, 1568),
|
||||
(688, 1504),
|
||||
(720, 1456),
|
||||
(752, 1392),
|
||||
(800, 1328),
|
||||
(832, 1248),
|
||||
(880, 1184),
|
||||
(944, 1104),
|
||||
(1024, 1024),
|
||||
(1104, 944),
|
||||
(1184, 880),
|
||||
(1248, 832),
|
||||
(1328, 800),
|
||||
(1392, 752),
|
||||
(1456, 720),
|
||||
(1504, 688),
|
||||
(1568, 672),
|
||||
]
|
||||
|
||||
|
||||
max_seq_lengths: Dict[str, Literal[256, 512]] = {
|
||||
"flux-dev": 512,
|
||||
"flux-dev-fill": 512,
|
||||
|
||||
@@ -37,6 +37,7 @@ from invokeai.app.util.misc import uuid_string
|
||||
from invokeai.backend.model_hash.hash_validator import validate_hash
|
||||
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
|
||||
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
|
||||
from invokeai.backend.model_manager.omi import flux_dev_1_lora, stable_diffusion_xl_1_lora
|
||||
from invokeai.backend.model_manager.taxonomy import (
|
||||
AnyVariant,
|
||||
BaseModelType,
|
||||
@@ -334,6 +335,36 @@ class T5EncoderBnbQuantizedLlmInt8bConfig(T5EncoderConfigBase, LegacyProbeMixin,
|
||||
format: Literal[ModelFormat.BnbQuantizedLlmInt8b] = ModelFormat.BnbQuantizedLlmInt8b
|
||||
|
||||
|
||||
class LoRAOmiConfig(LoRAConfigBase, ModelConfigBase):
|
||||
format: Literal[ModelFormat.OMI] = ModelFormat.OMI
|
||||
|
||||
@classmethod
|
||||
def matches(cls, mod: ModelOnDisk) -> bool:
|
||||
if mod.path.is_dir():
|
||||
return False
|
||||
|
||||
metadata = mod.metadata()
|
||||
return (
|
||||
metadata.get("modelspec.sai_model_spec")
|
||||
and metadata.get("ot_branch") == "omi_format"
|
||||
and metadata["modelspec.architecture"].split("/")[1].lower() == "lora"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
|
||||
metadata = mod.metadata()
|
||||
architecture = metadata["modelspec.architecture"]
|
||||
|
||||
if architecture == stable_diffusion_xl_1_lora:
|
||||
base = BaseModelType.StableDiffusionXL
|
||||
elif architecture == flux_dev_1_lora:
|
||||
base = BaseModelType.Flux
|
||||
else:
|
||||
raise InvalidModelConfigException(f"Unrecognised/unsupported architecture for OMI LoRA: {architecture}")
|
||||
|
||||
return {"base": base}
|
||||
|
||||
|
||||
class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
|
||||
"""Model config for LoRA/Lycoris models."""
|
||||
|
||||
@@ -350,7 +381,7 @@ class LoRALyCORISConfig(LoRAConfigBase, ModelConfigBase):
|
||||
|
||||
state_dict = mod.load_state_dict()
|
||||
for key in state_dict.keys():
|
||||
if type(key) is int:
|
||||
if isinstance(key, int):
|
||||
continue
|
||||
|
||||
if key.startswith(("lora_te_", "lora_unet_", "lora_te1_", "lora_te2_", "lora_transformer_")):
|
||||
@@ -668,6 +699,7 @@ AnyModelConfig = Annotated[
|
||||
Annotated[ControlNetDiffusersConfig, ControlNetDiffusersConfig.get_tag()],
|
||||
Annotated[ControlNetCheckpointConfig, ControlNetCheckpointConfig.get_tag()],
|
||||
Annotated[LoRALyCORISConfig, LoRALyCORISConfig.get_tag()],
|
||||
Annotated[LoRAOmiConfig, LoRAOmiConfig.get_tag()],
|
||||
Annotated[ControlLoRALyCORISConfig, ControlLoRALyCORISConfig.get_tag()],
|
||||
Annotated[ControlLoRADiffusersConfig, ControlLoRADiffusersConfig.get_tag()],
|
||||
Annotated[LoRADiffusersConfig, LoRADiffusersConfig.get_tag()],
|
||||
|
||||
@@ -7,7 +7,14 @@ from typing import Optional
|
||||
import accelerate
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from transformers import AutoConfig, AutoModelForTextEncoding, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForTextEncoding,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
T5TokenizerFast,
|
||||
)
|
||||
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXControlNetFlux
|
||||
@@ -139,7 +146,7 @@ class BnbQuantizedLlmInt8bCheckpointModel(ModelLoader):
|
||||
)
|
||||
match submodel_type:
|
||||
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
|
||||
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
return T5TokenizerFast.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
|
||||
te2_model_path = Path(config.path) / "text_encoder_2"
|
||||
model_config = AutoConfig.from_pretrained(te2_model_path)
|
||||
@@ -183,7 +190,7 @@ class T5EncoderCheckpointModel(ModelLoader):
|
||||
|
||||
match submodel_type:
|
||||
case SubModelType.Tokenizer2 | SubModelType.Tokenizer3:
|
||||
return T5Tokenizer.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
return T5TokenizerFast.from_pretrained(Path(config.path) / "tokenizer_2", max_length=512)
|
||||
case SubModelType.TextEncoder2 | SubModelType.TextEncoder3:
|
||||
return T5EncoderModel.from_pretrained(
|
||||
Path(config.path) / "text_encoder_2", torch_dtype="auto", low_cpu_mem_usage=True
|
||||
|
||||
@@ -13,6 +13,7 @@ from invokeai.backend.model_manager.config import AnyModelConfig
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache import ModelCache
|
||||
from invokeai.backend.model_manager.load.model_loader_registry import ModelLoaderRegistry
|
||||
from invokeai.backend.model_manager.omi.omi import convert_from_omi
|
||||
from invokeai.backend.model_manager.taxonomy import (
|
||||
AnyModel,
|
||||
BaseModelType,
|
||||
@@ -43,6 +44,8 @@ from invokeai.backend.patches.lora_conversions.sd_lora_conversion_utils import l
|
||||
from invokeai.backend.patches.lora_conversions.sdxl_lora_conversion_utils import convert_sdxl_keys_to_diffusers_format
|
||||
|
||||
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.LoRA, format=ModelFormat.OMI)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.StableDiffusionXL, type=ModelType.LoRA, format=ModelFormat.OMI)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.Diffusers)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.LoRA, format=ModelFormat.LyCORIS)
|
||||
@ModelLoaderRegistry.register(base=BaseModelType.Flux, type=ModelType.ControlLoRa, format=ModelFormat.LyCORIS)
|
||||
@@ -77,12 +80,23 @@ class LoRALoader(ModelLoader):
|
||||
else:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
|
||||
# Strip 'bundle_emb' keys - these are unused and currently cause downstream errors.
|
||||
# To revisit later to determine if they're needed/useful.
|
||||
state_dict = {k: v for k, v in state_dict.items() if not k.startswith("bundle_emb")}
|
||||
|
||||
# At the time of writing, we support the OMI standard for base models Flux and SDXL
|
||||
if config.format == ModelFormat.OMI and self._model_base in [
|
||||
BaseModelType.StableDiffusionXL,
|
||||
BaseModelType.Flux,
|
||||
]:
|
||||
state_dict = convert_from_omi(state_dict, config.base) # type: ignore
|
||||
|
||||
# Apply state_dict key conversions, if necessary.
|
||||
if self._model_base == BaseModelType.StableDiffusionXL:
|
||||
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
model = lora_model_from_sd_state_dict(state_dict=state_dict)
|
||||
elif self._model_base == BaseModelType.Flux:
|
||||
if config.format == ModelFormat.Diffusers:
|
||||
if config.format in [ModelFormat.Diffusers, ModelFormat.OMI]:
|
||||
# HACK(ryand): We set alpha=None for diffusers PEFT format models. These models are typically
|
||||
# distributed as a single file without the associated metadata containing the alpha value. We chose
|
||||
# alpha=None, because this is treated as alpha=rank internally in `LoRALayerBase.scale()`. alpha=rank
|
||||
@@ -99,7 +113,7 @@ class LoRALoader(ModelLoader):
|
||||
elif is_state_dict_likely_in_flux_aitoolkit_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_aitoolkit_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
raise ValueError("LoRA model is in unsupported FLUX format")
|
||||
else:
|
||||
raise ValueError(f"LoRA model is in unsupported FLUX format: {config.format}")
|
||||
elif self._model_base in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
|
||||
|
||||
7
invokeai/backend/model_manager/omi/__init__.py
Normal file
7
invokeai/backend/model_manager/omi/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from invokeai.backend.model_manager.omi.omi import convert_from_omi
|
||||
from invokeai.backend.model_manager.omi.vendor.model_spec.architecture import (
|
||||
flux_dev_1_lora,
|
||||
stable_diffusion_xl_1_lora,
|
||||
)
|
||||
|
||||
__all__ = ["flux_dev_1_lora", "stable_diffusion_xl_1_lora", "convert_from_omi"]
|
||||
21
invokeai/backend/model_manager/omi/omi.py
Normal file
21
invokeai/backend/model_manager/omi/omi.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from invokeai.backend.model_manager.model_on_disk import StateDict
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
|
||||
convert_flux_lora as omi_flux,
|
||||
)
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
|
||||
convert_lora_util as lora_util,
|
||||
)
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora import (
|
||||
convert_sdxl_lora as omi_sdxl,
|
||||
)
|
||||
from invokeai.backend.model_manager.taxonomy import BaseModelType
|
||||
|
||||
|
||||
def convert_from_omi(weights_sd: StateDict, base: BaseModelType):
|
||||
keyset = {
|
||||
BaseModelType.Flux: omi_flux.convert_flux_lora_key_sets(),
|
||||
BaseModelType.StableDiffusionXL: omi_sdxl.convert_sdxl_lora_key_sets(),
|
||||
}[base]
|
||||
source = "omi"
|
||||
target = "legacy_diffusers"
|
||||
return lora_util.__convert(weights_sd, keyset, source, target) # type: ignore
|
||||
0
invokeai/backend/model_manager/omi/vendor/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/convert/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/convert/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/convert/lora/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/convert/lora/__init__.py
vendored
Normal file
20
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_clip.py
vendored
Normal file
20
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_clip.py
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
|
||||
LoraConversionKeySet,
|
||||
map_prefix_range,
|
||||
)
|
||||
|
||||
|
||||
def map_clip(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("text_projection", "text_projection", parent=key_prefix)]
|
||||
|
||||
for k in map_prefix_range("text_model.encoder.layers", "text_model.encoder.layers", parent=key_prefix):
|
||||
keys += [LoraConversionKeySet("mlp.fc1", "mlp.fc1", parent=k)]
|
||||
keys += [LoraConversionKeySet("mlp.fc2", "mlp.fc2", parent=k)]
|
||||
keys += [LoraConversionKeySet("self_attn.k_proj", "self_attn.k_proj", parent=k)]
|
||||
keys += [LoraConversionKeySet("self_attn.out_proj", "self_attn.out_proj", parent=k)]
|
||||
keys += [LoraConversionKeySet("self_attn.q_proj", "self_attn.q_proj", parent=k)]
|
||||
keys += [LoraConversionKeySet("self_attn.v_proj", "self_attn.v_proj", parent=k)]
|
||||
|
||||
return keys
|
||||
84
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_flux_lora.py
vendored
Normal file
84
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_flux_lora.py
vendored
Normal file
@@ -0,0 +1,84 @@
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_clip import map_clip
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
|
||||
LoraConversionKeySet,
|
||||
map_prefix_range,
|
||||
)
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_t5 import map_t5
|
||||
|
||||
|
||||
def __map_double_transformer_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("img_attn.qkv.0", "attn.to_q", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_attn.qkv.1", "attn.to_k", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_attn.qkv.2", "attn.to_v", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("txt_attn.qkv.0", "attn.add_q_proj", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("txt_attn.qkv.1", "attn.add_k_proj", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("txt_attn.qkv.2", "attn.add_v_proj", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("img_attn.proj", "attn.to_out.0", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_mlp.0", "ff.net.0.proj", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_mlp.2", "ff.net.2", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_mod.lin", "norm1.linear", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("txt_attn.proj", "attn.to_add_out", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("txt_mlp.0", "ff_context.net.0.proj", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("txt_mlp.2", "ff_context.net.2", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("txt_mod.lin", "norm1_context.linear", parent=key_prefix)]
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_single_transformer_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("linear1.0", "attn.to_q", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("linear1.1", "attn.to_k", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("linear1.2", "attn.to_v", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("linear1.3", "proj_mlp", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("linear2", "proj_out", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("modulation.lin", "norm.linear", parent=key_prefix)]
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_transformer(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("txt_in", "context_embedder", parent=key_prefix)]
|
||||
keys += [
|
||||
LoraConversionKeySet("final_layer.adaLN_modulation.1", "norm_out.linear", parent=key_prefix, swap_chunks=True)
|
||||
]
|
||||
keys += [LoraConversionKeySet("final_layer.linear", "proj_out", parent=key_prefix)]
|
||||
keys += [
|
||||
LoraConversionKeySet("guidance_in.in_layer", "time_text_embed.guidance_embedder.linear_1", parent=key_prefix)
|
||||
]
|
||||
keys += [
|
||||
LoraConversionKeySet("guidance_in.out_layer", "time_text_embed.guidance_embedder.linear_2", parent=key_prefix)
|
||||
]
|
||||
keys += [LoraConversionKeySet("vector_in.in_layer", "time_text_embed.text_embedder.linear_1", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("vector_in.out_layer", "time_text_embed.text_embedder.linear_2", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("time_in.in_layer", "time_text_embed.timestep_embedder.linear_1", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("time_in.out_layer", "time_text_embed.timestep_embedder.linear_2", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("img_in.proj", "x_embedder", parent=key_prefix)]
|
||||
|
||||
for k in map_prefix_range("double_blocks", "transformer_blocks", parent=key_prefix):
|
||||
keys += __map_double_transformer_block(k)
|
||||
|
||||
for k in map_prefix_range("single_blocks", "single_transformer_blocks", parent=key_prefix):
|
||||
keys += __map_single_transformer_block(k)
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def convert_flux_lora_key_sets() -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("bundle_emb", "bundle_emb")]
|
||||
keys += __map_transformer(LoraConversionKeySet("transformer", "lora_transformer"))
|
||||
keys += map_clip(LoraConversionKeySet("clip_l", "lora_te1"))
|
||||
keys += map_t5(LoraConversionKeySet("t5", "lora_te2"))
|
||||
|
||||
return keys
|
||||
217
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_lora_util.py
vendored
Normal file
217
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_lora_util.py
vendored
Normal file
@@ -0,0 +1,217 @@
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
class LoraConversionKeySet:
|
||||
def __init__(
|
||||
self,
|
||||
omi_prefix: str,
|
||||
diffusers_prefix: str,
|
||||
legacy_diffusers_prefix: str | None = None,
|
||||
parent: Self | None = None,
|
||||
swap_chunks: bool = False,
|
||||
filter_is_last: bool | None = None,
|
||||
next_omi_prefix: str | None = None,
|
||||
next_diffusers_prefix: str | None = None,
|
||||
):
|
||||
if parent is not None:
|
||||
self.omi_prefix = combine(parent.omi_prefix, omi_prefix)
|
||||
self.diffusers_prefix = combine(parent.diffusers_prefix, diffusers_prefix)
|
||||
else:
|
||||
self.omi_prefix = omi_prefix
|
||||
self.diffusers_prefix = diffusers_prefix
|
||||
|
||||
if legacy_diffusers_prefix is None:
|
||||
self.legacy_diffusers_prefix = self.diffusers_prefix.replace(".", "_")
|
||||
elif parent is not None:
|
||||
self.legacy_diffusers_prefix = combine(parent.legacy_diffusers_prefix, legacy_diffusers_prefix).replace(
|
||||
".", "_"
|
||||
)
|
||||
else:
|
||||
self.legacy_diffusers_prefix = legacy_diffusers_prefix
|
||||
|
||||
self.parent = parent
|
||||
self.swap_chunks = swap_chunks
|
||||
self.filter_is_last = filter_is_last
|
||||
self.prefix = parent
|
||||
|
||||
if next_omi_prefix is None and parent is not None:
|
||||
self.next_omi_prefix = parent.next_omi_prefix
|
||||
self.next_diffusers_prefix = parent.next_diffusers_prefix
|
||||
self.next_legacy_diffusers_prefix = parent.next_legacy_diffusers_prefix
|
||||
elif next_omi_prefix is not None and parent is not None:
|
||||
self.next_omi_prefix = combine(parent.omi_prefix, next_omi_prefix)
|
||||
self.next_diffusers_prefix = combine(parent.diffusers_prefix, next_diffusers_prefix)
|
||||
self.next_legacy_diffusers_prefix = combine(parent.legacy_diffusers_prefix, next_diffusers_prefix).replace(
|
||||
".", "_"
|
||||
)
|
||||
elif next_omi_prefix is not None and parent is None:
|
||||
self.next_omi_prefix = next_omi_prefix
|
||||
self.next_diffusers_prefix = next_diffusers_prefix
|
||||
self.next_legacy_diffusers_prefix = next_diffusers_prefix.replace(".", "_")
|
||||
else:
|
||||
self.next_omi_prefix = None
|
||||
self.next_diffusers_prefix = None
|
||||
self.next_legacy_diffusers_prefix = None
|
||||
|
||||
def __get_omi(self, in_prefix: str, key: str) -> str:
|
||||
return self.omi_prefix + key.removeprefix(in_prefix)
|
||||
|
||||
def __get_diffusers(self, in_prefix: str, key: str) -> str:
|
||||
return self.diffusers_prefix + key.removeprefix(in_prefix)
|
||||
|
||||
def __get_legacy_diffusers(self, in_prefix: str, key: str) -> str:
|
||||
key = self.legacy_diffusers_prefix + key.removeprefix(in_prefix)
|
||||
|
||||
suffix = key[key.rfind(".") :]
|
||||
if suffix not in [".alpha", ".dora_scale"]: # some keys only have a single . in the suffix
|
||||
suffix = key[key.removesuffix(suffix).rfind(".") :]
|
||||
key = key.removesuffix(suffix)
|
||||
|
||||
return key.replace(".", "_") + suffix
|
||||
|
||||
def get_key(self, in_prefix: str, key: str, target: str) -> str:
|
||||
if target == "omi":
|
||||
return self.__get_omi(in_prefix, key)
|
||||
elif target == "diffusers":
|
||||
return self.__get_diffusers(in_prefix, key)
|
||||
elif target == "legacy_diffusers":
|
||||
return self.__get_legacy_diffusers(in_prefix, key)
|
||||
return key
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"omi: {self.omi_prefix}, diffusers: {self.diffusers_prefix}, legacy: {self.legacy_diffusers_prefix}"
|
||||
|
||||
|
||||
def combine(left: str, right: str) -> str:
|
||||
left = left.rstrip(".")
|
||||
right = right.lstrip(".")
|
||||
if left == "" or left is None:
|
||||
return right
|
||||
elif right == "" or right is None:
|
||||
return left
|
||||
else:
|
||||
return left + "." + right
|
||||
|
||||
|
||||
def map_prefix_range(
|
||||
omi_prefix: str,
|
||||
diffusers_prefix: str,
|
||||
parent: LoraConversionKeySet,
|
||||
) -> list[LoraConversionKeySet]:
|
||||
# 100 should be a safe upper bound. increase if it's not enough in the future
|
||||
return [
|
||||
LoraConversionKeySet(
|
||||
omi_prefix=f"{omi_prefix}.{i}",
|
||||
diffusers_prefix=f"{diffusers_prefix}.{i}",
|
||||
parent=parent,
|
||||
next_omi_prefix=f"{omi_prefix}.{i + 1}",
|
||||
next_diffusers_prefix=f"{diffusers_prefix}.{i + 1}",
|
||||
)
|
||||
for i in range(100)
|
||||
]
|
||||
|
||||
|
||||
def __convert(
|
||||
state_dict: dict[str, Tensor],
|
||||
key_sets: list[LoraConversionKeySet],
|
||||
source: str,
|
||||
target: str,
|
||||
) -> dict[str, Tensor]:
|
||||
out_states = {}
|
||||
|
||||
if source == target:
|
||||
return dict(state_dict)
|
||||
|
||||
# TODO: maybe replace with a non O(n^2) algorithm
|
||||
for key, tensor in state_dict.items():
|
||||
for key_set in key_sets:
|
||||
in_prefix = ""
|
||||
|
||||
if source == "omi":
|
||||
in_prefix = key_set.omi_prefix
|
||||
elif source == "diffusers":
|
||||
in_prefix = key_set.diffusers_prefix
|
||||
elif source == "legacy_diffusers":
|
||||
in_prefix = key_set.legacy_diffusers_prefix
|
||||
|
||||
if not key.startswith(in_prefix):
|
||||
continue
|
||||
|
||||
if key_set.filter_is_last is not None:
|
||||
next_prefix = None
|
||||
if source == "omi":
|
||||
next_prefix = key_set.next_omi_prefix
|
||||
elif source == "diffusers":
|
||||
next_prefix = key_set.next_diffusers_prefix
|
||||
elif source == "legacy_diffusers":
|
||||
next_prefix = key_set.next_legacy_diffusers_prefix
|
||||
|
||||
is_last = not any(k.startswith(next_prefix) for k in state_dict)
|
||||
if key_set.filter_is_last != is_last:
|
||||
continue
|
||||
|
||||
name = key_set.get_key(in_prefix, key, target)
|
||||
|
||||
can_swap_chunks = target == "omi" or source == "omi"
|
||||
if key_set.swap_chunks and name.endswith(".lora_up.weight") and can_swap_chunks:
|
||||
chunk_0, chunk_1 = tensor.chunk(2, dim=0)
|
||||
tensor = torch.cat([chunk_1, chunk_0], dim=0)
|
||||
|
||||
out_states[name] = tensor
|
||||
|
||||
break # only map the first matching key set
|
||||
|
||||
return out_states
|
||||
|
||||
|
||||
def __detect_source(
|
||||
state_dict: dict[str, Tensor],
|
||||
key_sets: list[LoraConversionKeySet],
|
||||
) -> str:
|
||||
omi_count = 0
|
||||
diffusers_count = 0
|
||||
legacy_diffusers_count = 0
|
||||
|
||||
for key in state_dict:
|
||||
for key_set in key_sets:
|
||||
if key.startswith(key_set.omi_prefix):
|
||||
omi_count += 1
|
||||
if key.startswith(key_set.diffusers_prefix):
|
||||
diffusers_count += 1
|
||||
if key.startswith(key_set.legacy_diffusers_prefix):
|
||||
legacy_diffusers_count += 1
|
||||
|
||||
if omi_count > diffusers_count and omi_count > legacy_diffusers_count:
|
||||
return "omi"
|
||||
if diffusers_count > omi_count and diffusers_count > legacy_diffusers_count:
|
||||
return "diffusers"
|
||||
if legacy_diffusers_count > omi_count and legacy_diffusers_count > diffusers_count:
|
||||
return "legacy_diffusers"
|
||||
|
||||
return ""
|
||||
|
||||
|
||||
def convert_to_omi(
|
||||
state_dict: dict[str, Tensor],
|
||||
key_sets: list[LoraConversionKeySet],
|
||||
) -> dict[str, Tensor]:
|
||||
source = __detect_source(state_dict, key_sets)
|
||||
return __convert(state_dict, key_sets, source, "omi")
|
||||
|
||||
|
||||
def convert_to_diffusers(
|
||||
state_dict: dict[str, Tensor],
|
||||
key_sets: list[LoraConversionKeySet],
|
||||
) -> dict[str, Tensor]:
|
||||
source = __detect_source(state_dict, key_sets)
|
||||
return __convert(state_dict, key_sets, source, "diffusers")
|
||||
|
||||
|
||||
def convert_to_legacy_diffusers(
|
||||
state_dict: dict[str, Tensor],
|
||||
key_sets: list[LoraConversionKeySet],
|
||||
) -> dict[str, Tensor]:
|
||||
source = __detect_source(state_dict, key_sets)
|
||||
return __convert(state_dict, key_sets, source, "legacy_diffusers")
|
||||
125
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_sdxl_lora.py
vendored
Normal file
125
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_sdxl_lora.py
vendored
Normal file
@@ -0,0 +1,125 @@
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_clip import map_clip
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
|
||||
LoraConversionKeySet,
|
||||
map_prefix_range,
|
||||
)
|
||||
|
||||
|
||||
def __map_unet_resnet_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("emb_layers.1", "time_emb_proj", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("in_layers.2", "conv1", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("out_layers.3", "conv2", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("skip_connection", "conv_shortcut", parent=key_prefix)]
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_unet_attention_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("proj_in", "proj_in", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("proj_out", "proj_out", parent=key_prefix)]
|
||||
for k in map_prefix_range("transformer_blocks", "transformer_blocks", parent=key_prefix):
|
||||
keys += [LoraConversionKeySet("attn1.to_q", "attn1.to_q", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn1.to_k", "attn1.to_k", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn1.to_v", "attn1.to_v", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn1.to_out.0", "attn1.to_out.0", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn2.to_q", "attn2.to_q", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn2.to_k", "attn2.to_k", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn2.to_v", "attn2.to_v", parent=k)]
|
||||
keys += [LoraConversionKeySet("attn2.to_out.0", "attn2.to_out.0", parent=k)]
|
||||
keys += [LoraConversionKeySet("ff.net.0.proj", "ff.net.0.proj", parent=k)]
|
||||
keys += [LoraConversionKeySet("ff.net.2", "ff.net.2", parent=k)]
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_unet_down_blocks(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("1.0", "0.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("2.0", "0.resnets.1", parent=key_prefix))
|
||||
keys += [LoraConversionKeySet("3.0.op", "0.downsamplers.0.conv", parent=key_prefix)]
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("4.0", "1.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("4.1", "1.attentions.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("5.0", "1.resnets.1", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("5.1", "1.attentions.1", parent=key_prefix))
|
||||
keys += [LoraConversionKeySet("6.0.op", "1.downsamplers.0.conv", parent=key_prefix)]
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("7.0", "2.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("7.1", "2.attentions.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("8.0", "2.resnets.1", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("8.1", "2.attentions.1", parent=key_prefix))
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_unet_mid_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("0", "resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("1", "attentions.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("2", "resnets.1", parent=key_prefix))
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_unet_up_block(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("0.0", "0.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("0.1", "0.attentions.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("1.0", "0.resnets.1", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("1.1", "0.attentions.1", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("2.0", "0.resnets.2", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("2.1", "0.attentions.2", parent=key_prefix))
|
||||
keys += [LoraConversionKeySet("2.2.conv", "0.upsamplers.0.conv", parent=key_prefix)]
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("3.0", "1.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("3.1", "1.attentions.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("4.0", "1.resnets.1", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("4.1", "1.attentions.1", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("5.0", "1.resnets.2", parent=key_prefix))
|
||||
keys += __map_unet_attention_block(LoraConversionKeySet("5.1", "1.attentions.2", parent=key_prefix))
|
||||
keys += [LoraConversionKeySet("5.2.conv", "1.upsamplers.0.conv", parent=key_prefix)]
|
||||
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("6.0", "2.resnets.0", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("7.0", "2.resnets.1", parent=key_prefix))
|
||||
keys += __map_unet_resnet_block(LoraConversionKeySet("8.0", "2.resnets.2", parent=key_prefix))
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def __map_unet(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("input_blocks.0.0", "conv_in", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("time_embed.0", "time_embedding.linear_1", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("time_embed.2", "time_embedding.linear_2", parent=key_prefix)]
|
||||
|
||||
keys += [LoraConversionKeySet("label_emb.0.0", "add_embedding.linear_1", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("label_emb.0.2", "add_embedding.linear_2", parent=key_prefix)]
|
||||
|
||||
keys += __map_unet_down_blocks(LoraConversionKeySet("input_blocks", "down_blocks", parent=key_prefix))
|
||||
keys += __map_unet_mid_block(LoraConversionKeySet("middle_block", "mid_block", parent=key_prefix))
|
||||
keys += __map_unet_up_block(LoraConversionKeySet("output_blocks", "up_blocks", parent=key_prefix))
|
||||
|
||||
keys += [LoraConversionKeySet("out.0", "conv_norm_out", parent=key_prefix)]
|
||||
keys += [LoraConversionKeySet("out.2", "conv_out", parent=key_prefix)]
|
||||
|
||||
return keys
|
||||
|
||||
|
||||
def convert_sdxl_lora_key_sets() -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
keys += [LoraConversionKeySet("bundle_emb", "bundle_emb")]
|
||||
keys += __map_unet(LoraConversionKeySet("unet", "lora_unet"))
|
||||
keys += map_clip(LoraConversionKeySet("clip_l", "lora_te1"))
|
||||
keys += map_clip(LoraConversionKeySet("clip_g", "lora_te2"))
|
||||
|
||||
return keys
|
||||
19
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_t5.py
vendored
Normal file
19
invokeai/backend/model_manager/omi/vendor/convert/lora/convert_t5.py
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
from invokeai.backend.model_manager.omi.vendor.convert.lora.convert_lora_util import (
|
||||
LoraConversionKeySet,
|
||||
map_prefix_range,
|
||||
)
|
||||
|
||||
|
||||
def map_t5(key_prefix: LoraConversionKeySet) -> list[LoraConversionKeySet]:
|
||||
keys = []
|
||||
|
||||
for k in map_prefix_range("encoder.block", "encoder.block", parent=key_prefix):
|
||||
keys += [LoraConversionKeySet("layer.0.SelfAttention.k", "layer.0.SelfAttention.k", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.0.SelfAttention.o", "layer.0.SelfAttention.o", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.0.SelfAttention.q", "layer.0.SelfAttention.q", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.0.SelfAttention.v", "layer.0.SelfAttention.v", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wi_0", "layer.1.DenseReluDense.wi_0", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wi_1", "layer.1.DenseReluDense.wi_1", parent=k)]
|
||||
keys += [LoraConversionKeySet("layer.1.DenseReluDense.wo", "layer.1.DenseReluDense.wo", parent=k)]
|
||||
|
||||
return keys
|
||||
0
invokeai/backend/model_manager/omi/vendor/model_spec/__init__.py
vendored
Normal file
0
invokeai/backend/model_manager/omi/vendor/model_spec/__init__.py
vendored
Normal file
31
invokeai/backend/model_manager/omi/vendor/model_spec/architecture.py
vendored
Normal file
31
invokeai/backend/model_manager/omi/vendor/model_spec/architecture.py
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
stable_diffusion_1_lora = "stable-diffusion-v1/lora"
|
||||
stable_diffusion_1_inpainting_lora = "stable-diffusion-v1-inpainting/lora"
|
||||
|
||||
stable_diffusion_2_512_lora = "stable-diffusion-v2-512/lora"
|
||||
stable_diffusion_2_768_v_lora = "stable-diffusion-v2-768-v/lora"
|
||||
stable_diffusion_2_depth_lora = "stable-diffusion-v2-depth/lora"
|
||||
stable_diffusion_2_inpainting_lora = "stable-diffusion-v2-inpainting/lora"
|
||||
|
||||
stable_diffusion_3_medium_lora = "stable-diffusion-v3-medium/lora"
|
||||
stable_diffusion_35_medium_lora = "stable-diffusion-v3.5-medium/lora"
|
||||
stable_diffusion_35_large_lora = "stable-diffusion-v3.5-large/lora"
|
||||
|
||||
stable_diffusion_xl_1_lora = "stable-diffusion-xl-v1-base/lora"
|
||||
stable_diffusion_xl_1_inpainting_lora = "stable-diffusion-xl-v1-base-inpainting/lora"
|
||||
|
||||
wuerstchen_2_lora = "wuerstchen-v2-prior/lora"
|
||||
stable_cascade_1_stage_a_lora = "stable-cascade-v1-stage-a/lora"
|
||||
stable_cascade_1_stage_b_lora = "stable-cascade-v1-stage-b/lora"
|
||||
stable_cascade_1_stage_c_lora = "stable-cascade-v1-stage-c/lora"
|
||||
|
||||
pixart_alpha_lora = "pixart-alpha/lora"
|
||||
pixart_sigma_lora = "pixart-sigma/lora"
|
||||
|
||||
flux_dev_1_lora = "Flux.1-dev/lora"
|
||||
flux_fill_dev_1_lora = "Flux.1-fill-dev/lora"
|
||||
|
||||
sana_lora = "sana/lora"
|
||||
|
||||
hunyuan_video_lora = "hunyuan-video/lora"
|
||||
|
||||
hi_dream_i1_lora = "hidream-i1/lora"
|
||||
@@ -23,7 +23,7 @@ class StarterModel(StarterModelWithoutDependencies):
|
||||
dependencies: Optional[list[StarterModelWithoutDependencies]] = None
|
||||
|
||||
|
||||
class StarterModelBundles(BaseModel):
|
||||
class StarterModelBundle(BaseModel):
|
||||
name: str
|
||||
models: list[StarterModel]
|
||||
|
||||
@@ -109,7 +109,7 @@ flux_vae = StarterModel(
|
||||
|
||||
# region: Main
|
||||
flux_schnell_quantized = StarterModel(
|
||||
name="FLUX Schnell (Quantized)",
|
||||
name="FLUX.1 schnell (quantized)",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_schnell::transformer/bnb_nf4/flux1-schnell-bnb_nf4.safetensors",
|
||||
description="FLUX schnell transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
|
||||
@@ -117,7 +117,7 @@ flux_schnell_quantized = StarterModel(
|
||||
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
|
||||
)
|
||||
flux_dev_quantized = StarterModel(
|
||||
name="FLUX Dev (Quantized)",
|
||||
name="FLUX.1 dev (quantized)",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_dev::transformer/bnb_nf4/flux1-dev-bnb_nf4.safetensors",
|
||||
description="FLUX dev transformer quantized to bitsandbytes NF4 format. Total size with dependencies: ~12GB",
|
||||
@@ -125,7 +125,7 @@ flux_dev_quantized = StarterModel(
|
||||
dependencies=[t5_8b_quantized_encoder, flux_vae, clip_l_encoder],
|
||||
)
|
||||
flux_schnell = StarterModel(
|
||||
name="FLUX Schnell",
|
||||
name="FLUX.1 schnell",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_schnell::transformer/base/flux1-schnell.safetensors",
|
||||
description="FLUX schnell transformer in bfloat16. Total size with dependencies: ~33GB",
|
||||
@@ -133,13 +133,21 @@ flux_schnell = StarterModel(
|
||||
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
|
||||
)
|
||||
flux_dev = StarterModel(
|
||||
name="FLUX Dev",
|
||||
name="FLUX.1 dev",
|
||||
base=BaseModelType.Flux,
|
||||
source="InvokeAI/flux_dev::transformer/base/flux1-dev.safetensors",
|
||||
description="FLUX dev transformer in bfloat16. Total size with dependencies: ~33GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
|
||||
)
|
||||
flux_kontext = StarterModel(
|
||||
name="FLUX.1 Kontext dev",
|
||||
base=BaseModelType.Flux,
|
||||
source="black-forest-labs/FLUX.1-Kontext-dev::flux1-kontext-dev.safetensors",
|
||||
description="FLUX.1 Kontext dev transformer in bfloat16. Total size with dependencies: ~33GB",
|
||||
type=ModelType.Main,
|
||||
dependencies=[t5_base_encoder, flux_vae, clip_l_encoder],
|
||||
)
|
||||
sd35_medium = StarterModel(
|
||||
name="SD3.5 Medium",
|
||||
base=BaseModelType.StableDiffusion3,
|
||||
@@ -656,6 +664,7 @@ flux_fill = StarterModel(
|
||||
# List of starter models, displayed on the frontend.
|
||||
# The order/sort of this list is not changed by the frontend - set it how you want it here.
|
||||
STARTER_MODELS: list[StarterModel] = [
|
||||
flux_kontext,
|
||||
flux_schnell_quantized,
|
||||
flux_dev_quantized,
|
||||
flux_schnell,
|
||||
@@ -776,12 +785,13 @@ flux_bundle: list[StarterModel] = [
|
||||
flux_depth_control_lora,
|
||||
flux_redux,
|
||||
flux_fill,
|
||||
flux_kontext,
|
||||
]
|
||||
|
||||
STARTER_BUNDLES: dict[str, list[StarterModel]] = {
|
||||
BaseModelType.StableDiffusion1: sd1_bundle,
|
||||
BaseModelType.StableDiffusionXL: sdxl_bundle,
|
||||
BaseModelType.Flux: flux_bundle,
|
||||
STARTER_BUNDLES: dict[str, StarterModelBundle] = {
|
||||
BaseModelType.StableDiffusion1: StarterModelBundle(name="Stable Diffusion 1.5", models=sd1_bundle),
|
||||
BaseModelType.StableDiffusionXL: StarterModelBundle(name="SDXL", models=sdxl_bundle),
|
||||
BaseModelType.Flux: StarterModelBundle(name="FLUX.1 dev", models=flux_bundle),
|
||||
}
|
||||
|
||||
assert len(STARTER_MODELS) == len({m.source for m in STARTER_MODELS}), "Duplicate starter models"
|
||||
|
||||
@@ -29,6 +29,7 @@ class BaseModelType(str, Enum):
|
||||
Imagen3 = "imagen3"
|
||||
Imagen4 = "imagen4"
|
||||
ChatGPT4o = "chatgpt-4o"
|
||||
FluxKontext = "flux-kontext"
|
||||
|
||||
|
||||
class ModelType(str, Enum):
|
||||
@@ -88,6 +89,7 @@ class ModelVariantType(str, Enum):
|
||||
class ModelFormat(str, Enum):
|
||||
"""Storage format of model."""
|
||||
|
||||
OMI = "omi"
|
||||
Diffusers = "diffusers"
|
||||
Checkpoint = "checkpoint"
|
||||
LyCORIS = "lycoris"
|
||||
|
||||
@@ -17,6 +17,15 @@ module.exports = {
|
||||
'no-promise-executor-return': 'error',
|
||||
// https://eslint.org/docs/latest/rules/require-await
|
||||
'require-await': 'error',
|
||||
// Restrict setActiveTab calls to only use-navigation-api.tsx
|
||||
'no-restricted-syntax': [
|
||||
'error',
|
||||
{
|
||||
selector: 'CallExpression[callee.name="setActiveTab"]',
|
||||
message:
|
||||
'setActiveTab() can only be called from use-navigation-api.tsx. Use navigationApi.switchToTab() instead.',
|
||||
},
|
||||
],
|
||||
// TODO: ENABLE THIS RULE BEFORE v6.0.0
|
||||
'react/display-name': 'off',
|
||||
'no-restricted-properties': [
|
||||
@@ -33,8 +42,38 @@ module.exports = {
|
||||
'The Clipboard API is not available by default in Firefox. Use the `useClipboard` hook instead, which wraps clipboard access to prevent errors.',
|
||||
},
|
||||
],
|
||||
'no-restricted-imports': [
|
||||
'error',
|
||||
{
|
||||
paths: [
|
||||
{
|
||||
name: 'lodash-es',
|
||||
importNames: ['isEqual'],
|
||||
message: 'Please use objectEquals from @observ33r/object-equals instead.',
|
||||
},
|
||||
{
|
||||
name: 'lodash-es',
|
||||
message: 'Please use es-toolkit instead.',
|
||||
},
|
||||
{
|
||||
name: 'es-toolkit',
|
||||
importNames: ['isEqual'],
|
||||
message: 'Please use objectEquals from @observ33r/object-equals instead.',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
overrides: [
|
||||
/**
|
||||
* Allow setActiveTab calls only in use-navigation-api.tsx
|
||||
*/
|
||||
{
|
||||
files: ['**/use-navigation-api.tsx'],
|
||||
rules: {
|
||||
'no-restricted-syntax': 'off',
|
||||
},
|
||||
},
|
||||
/**
|
||||
* Overrides for stories
|
||||
*/
|
||||
|
||||
@@ -3,8 +3,6 @@ import type { KnipConfig } from 'knip';
|
||||
const config: KnipConfig = {
|
||||
project: ['src/**/*.{ts,tsx}!'],
|
||||
ignore: [
|
||||
// TODO(psyche): temporarily ignored all files for test build purposes
|
||||
'src/**',
|
||||
// This file is only used during debugging
|
||||
'src/app/store/middleware/debugLoggerMiddleware.ts',
|
||||
// Autogenerated types - shouldn't ever touch these
|
||||
@@ -14,10 +12,6 @@ const config: KnipConfig = {
|
||||
'src/features/parameters/types/parameterSchemas.ts',
|
||||
// TODO(psyche): maybe we can clean up these utils after canvas v2 release
|
||||
'src/features/controlLayers/konva/util.ts',
|
||||
// TODO(psyche): restore HRF functionality?
|
||||
'src/features/hrf/**',
|
||||
// This feature is (temprarily?) disabled
|
||||
'src/features/controlLayers/components/InpaintMask/InpaintMaskAddButtons.tsx',
|
||||
],
|
||||
ignoreBinaries: ['only-allow'],
|
||||
paths: {
|
||||
|
||||
@@ -38,71 +38,60 @@
|
||||
"test:ui": "vitest --coverage --ui",
|
||||
"test:no-watch": "vitest --no-watch"
|
||||
},
|
||||
"madge": {
|
||||
"excludeRegExp": [
|
||||
"^index.ts$"
|
||||
],
|
||||
"detectiveOptions": {
|
||||
"ts": {
|
||||
"skipTypeImports": true
|
||||
},
|
||||
"tsx": {
|
||||
"skipTypeImports": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"dependencies": {
|
||||
"@atlaskit/pragmatic-drag-and-drop": "^1.5.3",
|
||||
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^2.1.0",
|
||||
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.0.3",
|
||||
"@dagrejs/dagre": "^1.1.4",
|
||||
"@atlaskit/pragmatic-drag-and-drop": "^1.7.4",
|
||||
"@atlaskit/pragmatic-drag-and-drop-auto-scroll": "^2.1.1",
|
||||
"@atlaskit/pragmatic-drag-and-drop-hitbox": "^1.1.0",
|
||||
"@dagrejs/dagre": "^1.1.5",
|
||||
"@dagrejs/graphlib": "^2.2.4",
|
||||
"@fontsource-variable/inter": "^5.2.5",
|
||||
"@fontsource-variable/inter": "^5.2.6",
|
||||
"@invoke-ai/ui-library": "^0.0.46",
|
||||
"@nanostores/react": "^1.0.0",
|
||||
"@observ33r/object-equals": "^1.1.4",
|
||||
"@reduxjs/toolkit": "2.8.2",
|
||||
"@roarr/browser-log-writer": "^1.3.0",
|
||||
"@xyflow/react": "^12.6.0",
|
||||
"@xyflow/react": "^12.7.1",
|
||||
"ag-psd": "^28.2.1",
|
||||
"async-mutex": "^0.5.0",
|
||||
"chakra-react-select": "^4.9.2",
|
||||
"cmdk": "^1.1.1",
|
||||
"compare-versions": "^6.1.1",
|
||||
"dockview": "^4.3.1",
|
||||
"dockview": "^4.4.0",
|
||||
"es-toolkit": "^1.39.5",
|
||||
"filesize": "^10.1.6",
|
||||
"fracturedjsonjs": "^4.1.0",
|
||||
"framer-motion": "^11.10.0",
|
||||
"i18next": "^25.0.1",
|
||||
"i18next": "^25.2.1",
|
||||
"i18next-http-backend": "^3.0.2",
|
||||
"idb-keyval": "^6.2.1",
|
||||
"idb-keyval": "^6.2.2",
|
||||
"jsondiffpatch": "^0.7.3",
|
||||
"konva": "^9.3.20",
|
||||
"linkify-react": "^4.2.0",
|
||||
"linkifyjs": "^4.2.0",
|
||||
"lodash-es": "^4.17.21",
|
||||
"linkify-react": "^4.3.1",
|
||||
"linkifyjs": "^4.3.1",
|
||||
"lru-cache": "^11.1.0",
|
||||
"mtwist": "^1.0.2",
|
||||
"nanoid": "^5.1.5",
|
||||
"nanostores": "^1.0.1",
|
||||
"new-github-issue-url": "^1.1.0",
|
||||
"overlayscrollbars": "^2.11.1",
|
||||
"overlayscrollbars": "^2.11.4",
|
||||
"overlayscrollbars-react": "^0.5.6",
|
||||
"perfect-freehand": "^1.2.2",
|
||||
"query-string": "^9.1.1",
|
||||
"query-string": "^9.2.1",
|
||||
"raf-throttle": "^2.0.6",
|
||||
"react": "^18.3.1",
|
||||
"react-colorful": "^5.6.1",
|
||||
"react-dom": "^18.3.1",
|
||||
"react-dropzone": "^14.3.8",
|
||||
"react-error-boundary": "^5.0.0",
|
||||
"react-hook-form": "^7.56.1",
|
||||
"react-hook-form": "^7.58.1",
|
||||
"react-hotkeys-hook": "4.5.0",
|
||||
"react-i18next": "^15.5.1",
|
||||
"react-i18next": "^15.5.3",
|
||||
"react-icons": "^5.5.0",
|
||||
"react-redux": "9.2.0",
|
||||
"react-resizable-panels": "^2.1.8",
|
||||
"react-resizable-panels": "^3.0.3",
|
||||
"react-textarea-autosize": "^8.5.9",
|
||||
"react-use": "^17.6.0",
|
||||
"react-virtuoso": "^4.12.6",
|
||||
"react-virtuoso": "^4.13.0",
|
||||
"redux-dynamic-middlewares": "^2.2.0",
|
||||
"redux-remember": "^5.2.0",
|
||||
"redux-undo": "^1.1.0",
|
||||
@@ -110,12 +99,12 @@
|
||||
"roarr": "^7.21.1",
|
||||
"serialize-error": "^12.0.0",
|
||||
"socket.io-client": "^4.8.1",
|
||||
"stable-hash": "^0.0.5",
|
||||
"use-debounce": "^10.0.4",
|
||||
"stable-hash": "^0.0.6",
|
||||
"use-debounce": "^10.0.5",
|
||||
"use-device-pixel-ratio": "^1.1.2",
|
||||
"uuid": "^11.1.0",
|
||||
"zod": "^3.24.3",
|
||||
"zod-validation-error": "^3.4.0"
|
||||
"zod": "^3.25.67",
|
||||
"zod-validation-error": "^3.5.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"react": "^18.2.0",
|
||||
@@ -132,7 +121,6 @@
|
||||
"@storybook/react": "^8.6.12",
|
||||
"@storybook/react-vite": "^8.6.12",
|
||||
"@storybook/theming": "^8.6.12",
|
||||
"@types/lodash-es": "^4.17.12",
|
||||
"@types/node": "^22.15.1",
|
||||
"@types/react": "^18.3.11",
|
||||
"@types/react-dom": "^18.3.0",
|
||||
@@ -146,7 +134,7 @@
|
||||
"eslint": "^8.57.1",
|
||||
"eslint-plugin-i18next": "^6.1.1",
|
||||
"eslint-plugin-path": "^1.3.0",
|
||||
"knip": "^5.50.5",
|
||||
"knip": "^5.61.3",
|
||||
"openapi-types": "^12.1.3",
|
||||
"openapi-typescript": "^7.6.1",
|
||||
"prettier": "^3.5.3",
|
||||
@@ -155,7 +143,7 @@
|
||||
"tsafe": "^1.8.5",
|
||||
"type-fest": "^4.40.0",
|
||||
"typescript": "^5.8.3",
|
||||
"vite": "^6.3.3",
|
||||
"vite": "^7.0.2",
|
||||
"vite-plugin-css-injected-by-js": "^3.5.2",
|
||||
"vite-plugin-dts": "^4.5.3",
|
||||
"vite-plugin-eslint": "^1.8.1",
|
||||
@@ -163,7 +151,7 @@
|
||||
"vitest": "^3.1.2"
|
||||
},
|
||||
"engines": {
|
||||
"pnpm": "8"
|
||||
"pnpm": "10"
|
||||
},
|
||||
"packageManager": "pnpm@8.15.9+sha512.499434c9d8fdd1a2794ebf4552b3b25c0a633abcee5bb15e7b5de90f32f47b513aca98cd5cfd001c31f0db454bc3804edccd578501e4ca293a6816166bbd9f81"
|
||||
"packageManager": "pnpm@10.12.4"
|
||||
}
|
||||
|
||||
12926
invokeai/frontend/web/pnpm-lock.yaml
generated
12926
invokeai/frontend/web/pnpm-lock.yaml
generated
File diff suppressed because it is too large
Load Diff
3
invokeai/frontend/web/pnpm-workspace.yaml
Normal file
3
invokeai/frontend/web/pnpm-workspace.yaml
Normal file
@@ -0,0 +1,3 @@
|
||||
onlyBuiltDependencies:
|
||||
- '@swc/core'
|
||||
- esbuild
|
||||
@@ -225,7 +225,16 @@
|
||||
"prompt": {
|
||||
"addPromptTrigger": "Add Prompt Trigger",
|
||||
"compatibleEmbeddings": "Compatible Embeddings",
|
||||
"noMatchingTriggers": "No matching triggers"
|
||||
"noMatchingTriggers": "No matching triggers",
|
||||
"generateFromImage": "Generate prompt from image",
|
||||
"expandCurrentPrompt": "Expand Current Prompt",
|
||||
"uploadImageForPromptGeneration": "Upload Image for Prompt Generation",
|
||||
"expandingPrompt": "Expanding prompt...",
|
||||
"resultTitle": "Prompt Expansion Complete",
|
||||
"resultSubtitle": "Choose how to handle the expanded prompt:",
|
||||
"replace": "Replace",
|
||||
"insert": "Insert",
|
||||
"discard": "Discard"
|
||||
},
|
||||
"queue": {
|
||||
"queue": "Queue",
|
||||
@@ -335,14 +344,14 @@
|
||||
"images": "Images",
|
||||
"assets": "Assets",
|
||||
"alwaysShowImageSizeBadge": "Always Show Image Size Badge",
|
||||
"assetsTab": "Files you’ve uploaded for use in your projects.",
|
||||
"assetsTab": "Files you've uploaded for use in your projects.",
|
||||
"autoAssignBoardOnClick": "Auto-Assign Board on Click",
|
||||
"autoSwitchNewImages": "Auto-Switch to New Images",
|
||||
"boardsSettings": "Boards Settings",
|
||||
"copy": "Copy",
|
||||
"currentlyInUse": "This image is currently in use in the following features:",
|
||||
"drop": "Drop",
|
||||
"dropOrUpload": "$t(gallery.drop) or Upload",
|
||||
"dropOrUpload": "Drop or Upload",
|
||||
"dropToUpload": "$t(gallery.drop) to Upload",
|
||||
"deleteImage_one": "Delete Image",
|
||||
"deleteImage_other": "Delete {{count}} Images",
|
||||
@@ -357,7 +366,7 @@
|
||||
"gallerySettings": "Gallery Settings",
|
||||
"go": "Go",
|
||||
"image": "image",
|
||||
"imagesTab": "Images you’ve created and saved within Invoke.",
|
||||
"imagesTab": "Images you've created and saved within Invoke.",
|
||||
"imagesSettings": "Gallery Images Settings",
|
||||
"jump": "Jump",
|
||||
"loading": "Loading",
|
||||
@@ -396,7 +405,8 @@
|
||||
"compareHelp4": "Press <Kbd>Z</Kbd> or <Kbd>Esc</Kbd> to exit.",
|
||||
"openViewer": "Open Viewer",
|
||||
"closeViewer": "Close Viewer",
|
||||
"move": "Move"
|
||||
"move": "Move",
|
||||
"useForPromptGeneration": "Use for Prompt Generation"
|
||||
},
|
||||
"hotkeys": {
|
||||
"hotkeys": "Hotkeys",
|
||||
@@ -579,6 +589,16 @@
|
||||
"cancelTransform": {
|
||||
"title": "Cancel Transform",
|
||||
"desc": "Cancel the pending transform."
|
||||
},
|
||||
"settings": {
|
||||
"behavior": "Behavior",
|
||||
"display": "Display",
|
||||
"grid": "Grid",
|
||||
"debug": "Debug"
|
||||
},
|
||||
"toggleNonRasterLayers": {
|
||||
"title": "Toggle Non-Raster Layers",
|
||||
"desc": "Show or hide all non-raster layer categories (Control Layers, Inpaint Masks, Regional Guidance)."
|
||||
}
|
||||
},
|
||||
"workflows": {
|
||||
@@ -742,7 +762,7 @@
|
||||
"vae": "VAE",
|
||||
"width": "Width",
|
||||
"workflow": "Workflow",
|
||||
"canvasV2Metadata": "Canvas"
|
||||
"canvasV2Metadata": "Canvas Layers"
|
||||
},
|
||||
"modelManager": {
|
||||
"active": "active",
|
||||
@@ -763,7 +783,7 @@
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on disk WILL be deleted if it is in InvokeAI root folder. If it is in a custom location, then it WILL NOT be deleted.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on disk WILL be deleted if it is in the InvokeAI root folder. If it is in a custom location, then it WILL NOT be deleted.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 2GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
@@ -806,7 +826,11 @@
|
||||
"urlUnauthorizedErrorMessage": "You may need to configure an API token to access this model.",
|
||||
"urlUnauthorizedErrorMessage2": "Learn how here.",
|
||||
"imageEncoderModelId": "Image Encoder Model ID",
|
||||
"includesNModels": "Includes {{n}} models and their dependencies",
|
||||
"installedModelsCount": "{{installed}} of {{total}} models installed.",
|
||||
"includesNModels": "Includes {{n}} models and their dependencies.",
|
||||
"allNModelsInstalled": "All {{count}} models installed",
|
||||
"nToInstall": "{{count}} to install",
|
||||
"nAlreadyInstalled": "{{count}} already installed",
|
||||
"installQueue": "Install Queue",
|
||||
"inplaceInstall": "In-place install",
|
||||
"inplaceInstallDesc": "Install models without copying the files. When using the model, it will be loaded from its this location. If disabled, the model file(s) will be copied into the Invoke-managed models directory during installation.",
|
||||
@@ -869,6 +893,25 @@
|
||||
"starterBundleHelpText": "Easily install all models needed to get started with a base model, including a main model, controlnets, IP adapters, and more. Selecting a bundle will skip any models that you already have installed.",
|
||||
"starterModels": "Starter Models",
|
||||
"starterModelsInModelManager": "Starter Models can be found in Model Manager",
|
||||
"bundleAlreadyInstalled": "Bundle already installed",
|
||||
"bundleAlreadyInstalledDesc": "All models in the {{bundleName}} bundle are already installed.",
|
||||
"launchpadTab": "Launchpad",
|
||||
"launchpad": {
|
||||
"welcome": "Welcome to Model Management",
|
||||
"description": "Invoke requires models to be installed to utilize most features of the platform. Choose from manual installation options or explore curated starter models.",
|
||||
"manualInstall": "Manual Installation",
|
||||
"urlDescription": "Install models from a URL or local file path. Perfect for specific models you want to add.",
|
||||
"huggingFaceDescription": "Browse and install models directly from HuggingFace repositories.",
|
||||
"scanFolderDescription": "Scan a local folder to automatically detect and install models.",
|
||||
"recommendedModels": "Recommended Models",
|
||||
"exploreStarter": "Or browse all available starter models",
|
||||
"quickStart": "Quick Start Bundles",
|
||||
"bundleDescription": "Each bundle includes essential models for each model family and curated base models to get started.",
|
||||
"browseAll": "Or browse all available models:",
|
||||
"stableDiffusion15": "Stable Diffusion 1.5",
|
||||
"sdxl": "SDXL",
|
||||
"fluxDev": "FLUX.1 dev"
|
||||
},
|
||||
"controlLora": "Control LoRA",
|
||||
"llavaOnevision": "LLaVA OneVision",
|
||||
"syncModels": "Sync Models",
|
||||
@@ -905,7 +948,8 @@
|
||||
"selectModel": "Select a Model",
|
||||
"noLoRAsInstalled": "No LoRAs installed",
|
||||
"noRefinerModelsInstalled": "No SDXL Refiner models installed",
|
||||
"defaultVAE": "Default VAE"
|
||||
"defaultVAE": "Default VAE",
|
||||
"noCompatibleLoRAs": "No Compatible LoRAs"
|
||||
},
|
||||
"nodes": {
|
||||
"arithmeticSequence": "Arithmetic Sequence",
|
||||
@@ -1147,6 +1191,7 @@
|
||||
"modelIncompatibleScaledBboxWidth": "Scaled bbox width is {{width}} but {{model}} requires multiple of {{multiple}}",
|
||||
"modelIncompatibleScaledBboxHeight": "Scaled bbox height is {{height}} but {{model}} requires multiple of {{multiple}}",
|
||||
"fluxModelMultipleControlLoRAs": "Can only use 1 Control LoRA at a time",
|
||||
"fluxKontextMultipleReferenceImages": "Can only use 1 Reference Image at a time with Flux Kontext",
|
||||
"canvasIsFiltering": "Canvas is busy (filtering)",
|
||||
"canvasIsTransforming": "Canvas is busy (transforming)",
|
||||
"canvasIsRasterizing": "Canvas is busy (rasterizing)",
|
||||
@@ -1154,7 +1199,9 @@
|
||||
"canvasIsSelectingObject": "Canvas is busy (selecting object)",
|
||||
"noPrompts": "No prompts generated",
|
||||
"noNodesInGraph": "No nodes in graph",
|
||||
"systemDisconnected": "System disconnected"
|
||||
"systemDisconnected": "System disconnected",
|
||||
"promptExpansionPending": "Prompt expansion in progress",
|
||||
"promptExpansionResultPending": "Please accept or discard your prompt expansion result"
|
||||
},
|
||||
"maskBlur": "Mask Blur",
|
||||
"negativePromptPlaceholder": "Negative Prompt",
|
||||
@@ -1312,6 +1359,21 @@
|
||||
"problemCopyingLayer": "Unable to Copy Layer",
|
||||
"problemSavingLayer": "Unable to Save Layer",
|
||||
"problemDownloadingImage": "Unable to Download Image",
|
||||
"noRasterLayers": "No Raster Layers Found",
|
||||
"noRasterLayersDesc": "Create at least one raster layer to export to PSD",
|
||||
"noActiveRasterLayers": "No Active Raster Layers",
|
||||
"noActiveRasterLayersDesc": "Enable at least one raster layer to export to PSD",
|
||||
"noVisibleRasterLayers": "No Visible Raster Layers",
|
||||
"noVisibleRasterLayersDesc": "Enable at least one raster layer to export to PSD",
|
||||
"invalidCanvasDimensions": "Invalid Canvas Dimensions",
|
||||
"canvasTooLarge": "Canvas Too Large",
|
||||
"canvasTooLargeDesc": "Canvas dimensions exceed the maximum allowed size for PSD export. Reduce the total width and height of the canvas of the canvas and try again.",
|
||||
"failedToProcessLayers": "Failed to Process Layers",
|
||||
"psdExportSuccess": "PSD Export Complete",
|
||||
"psdExportSuccessDesc": "Successfully exported {{count}} layers to PSD file",
|
||||
"problemExportingPSD": "Problem Exporting PSD",
|
||||
"canvasManagerNotAvailable": "Canvas Manager Not Available",
|
||||
"noValidLayerAdapters": "No Valid Layer Adapters Found",
|
||||
"pasteSuccess": "Pasted to {{destination}}",
|
||||
"pasteFailed": "Paste Failed",
|
||||
"prunedQueue": "Pruned Queue",
|
||||
@@ -1337,9 +1399,15 @@
|
||||
"fluxFillIncompatibleWithT2IAndI2I": "FLUX Fill is not compatible with Text to Image or Image to Image. Use other FLUX models for these tasks.",
|
||||
"imagenIncompatibleGenerationMode": "Google {{model}} supports Text to Image only. Use other models for Image to Image, Inpainting and Outpainting tasks.",
|
||||
"chatGPT4oIncompatibleGenerationMode": "ChatGPT 4o supports Text to Image and Image to Image only. Use other models Inpainting and Outpainting tasks.",
|
||||
"fluxKontextIncompatibleGenerationMode": "FLUX Kontext supports Text to Image only. Use other models for Image to Image, Inpainting and Outpainting tasks.",
|
||||
"problemUnpublishingWorkflow": "Problem Unpublishing Workflow",
|
||||
"problemUnpublishingWorkflowDescription": "There was a problem unpublishing the workflow. Please try again.",
|
||||
"workflowUnpublished": "Workflow Unpublished"
|
||||
"workflowUnpublished": "Workflow Unpublished",
|
||||
"sentToCanvas": "Sent to Canvas",
|
||||
"sentToUpscale": "Sent to Upscale",
|
||||
"promptGenerationStarted": "Prompt generation started",
|
||||
"uploadAndPromptGenerationFailed": "Failed to upload image and generate prompt",
|
||||
"promptExpansionFailed": "Prompt expansion failed"
|
||||
},
|
||||
"popovers": {
|
||||
"clipSkip": {
|
||||
@@ -1862,6 +1930,7 @@
|
||||
"saveCanvasToGallery": "Save Canvas to Gallery",
|
||||
"saveBboxToGallery": "Save Bbox to Gallery",
|
||||
"saveLayerToAssets": "Save Layer to Assets",
|
||||
"exportCanvasToPSD": "Export Canvas to PSD",
|
||||
"cropLayerToBbox": "Crop Layer to Bbox",
|
||||
"savedToGalleryOk": "Saved to Gallery",
|
||||
"savedToGalleryError": "Error saving to gallery",
|
||||
@@ -1887,6 +1956,7 @@
|
||||
"mergingLayers": "Merging layers",
|
||||
"clearHistory": "Clear History",
|
||||
"bboxOverlay": "Show Bbox Overlay",
|
||||
"ruleOfThirds": "Show Rule of Thirds",
|
||||
"newSession": "New Session",
|
||||
"clearCaches": "Clear Caches",
|
||||
"recalculateRects": "Recalculate Rects",
|
||||
@@ -1992,6 +2062,8 @@
|
||||
"disableTransparencyEffect": "Disable Transparency Effect",
|
||||
"hidingType": "Hiding {{type}}",
|
||||
"showingType": "Showing {{type}}",
|
||||
"showNonRasterLayers": "Show Non-Raster Layers (Shift+H)",
|
||||
"hideNonRasterLayers": "Hide Non-Raster Layers (Shift+H)",
|
||||
"dynamicGrid": "Dynamic Grid",
|
||||
"logDebugInfo": "Log Debug Info",
|
||||
"locked": "Locked",
|
||||
@@ -2286,6 +2358,7 @@
|
||||
"newGlobalReferenceImage": "New Global Reference Image",
|
||||
"newRegionalReferenceImage": "New Regional Reference Image",
|
||||
"newControlLayer": "New Control Layer",
|
||||
"newResizedControlLayer": "New Resized Control Layer",
|
||||
"newRasterLayer": "New Raster Layer",
|
||||
"newInpaintMask": "New Inpaint Mask",
|
||||
"newRegionalGuidance": "New Regional Guidance",
|
||||
@@ -2369,7 +2442,8 @@
|
||||
"uploadImage": "Upload Image",
|
||||
"useForTemplate": "Use For Prompt Template",
|
||||
"viewList": "View Template List",
|
||||
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box."
|
||||
"viewModeTooltip": "This is how your prompt will look with your currently selected template. To edit your prompt, click anywhere in the text box.",
|
||||
"togglePromptPreviews": "Toggle Prompt Previews"
|
||||
},
|
||||
"upsell": {
|
||||
"inviteTeammates": "Invite Teammates",
|
||||
@@ -2389,6 +2463,55 @@
|
||||
"upscaling": "Upscaling",
|
||||
"upscalingTab": "$t(ui.tabs.upscaling) $t(common.tab)",
|
||||
"gallery": "Gallery"
|
||||
},
|
||||
"launchpad": {
|
||||
"workflowsTitle": "Go deep with Workflows.",
|
||||
"upscalingTitle": "Upscale and add detail.",
|
||||
"canvasTitle": "Edit and refine on Canvas.",
|
||||
"generateTitle": "Generate images from text prompts.",
|
||||
"modelGuideText": "Want to learn what prompts work best for each model?",
|
||||
"modelGuideLink": "Check out our Model Guide.",
|
||||
"workflows": {
|
||||
"description": "Workflows are reusable templates that automate image generation tasks, allowing you to quickly perform complex operations and get consistent results.",
|
||||
"learnMoreLink": "Learn more about creating workflows",
|
||||
"browseTemplates": {
|
||||
"title": "Browse Workflow Templates",
|
||||
"description": "Choose from pre-built workflows for common tasks"
|
||||
},
|
||||
"createNew": {
|
||||
"title": "Create a new Workflow",
|
||||
"description": "Start a new workflow from scratch"
|
||||
},
|
||||
"loadFromFile": {
|
||||
"title": "Load workflow from file",
|
||||
"description": "Upload a workflow to start with an existing setup"
|
||||
}
|
||||
},
|
||||
"upscaling": {
|
||||
"uploadImage": {
|
||||
"title": "Upload Image to Upscale",
|
||||
"description": "Click or drag an image to upscale (JPG, PNG, WebP up to 100MB)"
|
||||
},
|
||||
"replaceImage": {
|
||||
"title": "Replace Current Image",
|
||||
"description": "Click or drag a new image to replace the current one"
|
||||
},
|
||||
"imageReady": {
|
||||
"title": "Image Ready",
|
||||
"description": "Press Invoke to begin upscaling"
|
||||
},
|
||||
"readyToUpscale": {
|
||||
"title": "Ready to upscale!",
|
||||
"description": "Configure your settings below, then click the Invoke button to begin upscaling your image."
|
||||
},
|
||||
"upscaleModel": "Upscale Model",
|
||||
"model": "Model",
|
||||
"scale": "Scale",
|
||||
"helpText": {
|
||||
"promptAdvice": "When upscaling, use a prompt that describes the medium and style. Avoid describing specific content details in the image.",
|
||||
"styleAdvice": "Upscaling works best with the general style of your image."
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"system": {
|
||||
|
||||
@@ -2,8 +2,7 @@ import { Box } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { GlobalHookIsolator } from 'app/components/GlobalHookIsolator';
|
||||
import { GlobalModalIsolator } from 'app/components/GlobalModalIsolator';
|
||||
import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
|
||||
import { $globalIsLoading } from 'app/store/nanostores/globalIsLoading';
|
||||
import { $didStudioInit, type StudioInitAction } from 'app/hooks/useStudioInitAction';
|
||||
import type { PartialAppConfig } from 'app/types/invokeai';
|
||||
import Loading from 'common/components/Loading/Loading';
|
||||
import { useClearStorage } from 'common/hooks/useClearStorage';
|
||||
@@ -20,7 +19,7 @@ interface Props {
|
||||
}
|
||||
|
||||
const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
|
||||
const globalIsLoading = useStore($globalIsLoading);
|
||||
const didStudioInit = useStore($didStudioInit);
|
||||
const clearStorage = useClearStorage();
|
||||
|
||||
const handleReset = useCallback(() => {
|
||||
@@ -33,7 +32,7 @@ const App = ({ config = DEFAULT_CONFIG, studioInitAction }: Props) => {
|
||||
<ErrorBoundary onReset={handleReset} FallbackComponent={AppErrorBoundaryFallback}>
|
||||
<Box id="invoke-app-wrapper" w="100dvw" h="100dvh" position="relative" overflow="hidden">
|
||||
<AppContent />
|
||||
{globalIsLoading && <Loading />}
|
||||
{!didStudioInit && <Loading />}
|
||||
</Box>
|
||||
<GlobalHookIsolator config={config} studioInitAction={studioInitAction} />
|
||||
<GlobalModalIsolator />
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import { useGlobalModifiersInit } from '@invoke-ai/ui-library';
|
||||
import { setupListeners } from '@reduxjs/toolkit/query';
|
||||
import type { StudioInitAction } from 'app/hooks/useStudioInitAction';
|
||||
import { useStudioInitAction } from 'app/hooks/useStudioInitAction';
|
||||
import { useSyncQueueStatus } from 'app/hooks/useSyncQueueStatus';
|
||||
@@ -10,14 +11,15 @@ import type { PartialAppConfig } from 'app/types/invokeai';
|
||||
import { useFocusRegionWatcher } from 'common/hooks/focus';
|
||||
import { useCloseChakraTooltipsOnDragFix } from 'common/hooks/useCloseChakraTooltipsOnDragFix';
|
||||
import { useGlobalHotkeys } from 'common/hooks/useGlobalHotkeys';
|
||||
import { useDndMonitor } from 'features/dnd/useDndMonitor';
|
||||
import { useDynamicPromptsWatcher } from 'features/dynamicPrompts/hooks/useDynamicPromptsWatcher';
|
||||
import { useStarterModelsToast } from 'features/modelManagerV2/hooks/useStarterModelsToast';
|
||||
import { useWorkflowBuilderWatcher } from 'features/nodes/components/sidePanel/workflow/IsolatedWorkflowBuilderWatcher';
|
||||
import { useReadinessWatcher } from 'features/queue/store/readiness';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { selectLanguage } from 'features/system/store/systemSelectors';
|
||||
import { useNavigationApi } from 'features/ui/layouts/use-navigation-api';
|
||||
import i18n from 'i18n';
|
||||
import { size } from 'lodash-es';
|
||||
import { memo, useEffect } from 'react';
|
||||
import { useGetOpenAPISchemaQuery } from 'services/api/endpoints/appInfo';
|
||||
import { useGetQueueCountsByDestinationQuery } from 'services/api/endpoints/queue';
|
||||
@@ -43,6 +45,8 @@ export const GlobalHookIsolator = memo(
|
||||
useGetOpenAPISchemaQuery();
|
||||
useSyncLoggingConfig();
|
||||
useCloseChakraTooltipsOnDragFix();
|
||||
useNavigationApi();
|
||||
useDndMonitor();
|
||||
|
||||
// Persistent subscription to the queue counts query - canvas relies on this to know if there are pending
|
||||
// and/or in progress canvas sessions.
|
||||
@@ -53,16 +57,18 @@ export const GlobalHookIsolator = memo(
|
||||
}, [language]);
|
||||
|
||||
useEffect(() => {
|
||||
if (size(config)) {
|
||||
logger.info({ config }, 'Received config');
|
||||
dispatch(configChanged(config));
|
||||
}
|
||||
logger.info({ config }, 'Received config');
|
||||
dispatch(configChanged(config));
|
||||
}, [dispatch, config, logger]);
|
||||
|
||||
useEffect(() => {
|
||||
dispatch(appStarted());
|
||||
}, [dispatch]);
|
||||
|
||||
useEffect(() => {
|
||||
return setupListeners(dispatch);
|
||||
}, [dispatch]);
|
||||
|
||||
useStudioInitAction(studioInitAction);
|
||||
useStarterModelsToast();
|
||||
useSyncQueueStatus();
|
||||
|
||||
@@ -8,7 +8,7 @@ import { paramsReset } from 'features/controlLayers/store/paramsSlice';
|
||||
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
|
||||
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
|
||||
import { sentImageToCanvas } from 'features/gallery/store/actions';
|
||||
import { parseAndRecallAllMetadata } from 'features/metadata/util/handlers';
|
||||
import { MetadataUtils } from 'features/metadata/parsing';
|
||||
import { $hasTemplates } from 'features/nodes/store/nodesSlice';
|
||||
import { $isWorkflowLibraryModalOpen } from 'features/nodes/store/workflowLibraryModal';
|
||||
import {
|
||||
@@ -19,7 +19,8 @@ import {
|
||||
} from 'features/nodes/store/workflowLibrarySlice';
|
||||
import { $isStylePresetsMenuOpen, activeStylePresetIdChanged } from 'features/stylePresets/store/stylePresetSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { activeTabCanvasRightPanelChanged, setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import { navigationApi } from 'features/ui/layouts/navigation-api';
|
||||
import { activeTabCanvasRightPanelChanged } from 'features/ui/store/uiSlice';
|
||||
import { useLoadWorkflowWithDialog } from 'features/workflowLibrary/components/LoadWorkflowConfirmationAlertDialog';
|
||||
import { atom } from 'nanostores';
|
||||
import { useCallback, useEffect } from 'react';
|
||||
@@ -116,23 +117,23 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
|
||||
const metadata = getImageMetadataResult.value;
|
||||
store.dispatch(canvasReset());
|
||||
// This shows a toast
|
||||
await parseAndRecallAllMetadata(metadata, true);
|
||||
await MetadataUtils.recallAll(metadata, store);
|
||||
},
|
||||
[store, t]
|
||||
);
|
||||
|
||||
const handleLoadWorkflow = useCallback(
|
||||
async (workflowId: string) => {
|
||||
(workflowId: string) => {
|
||||
// This shows a toast
|
||||
await loadWorkflowWithDialog({
|
||||
loadWorkflowWithDialog({
|
||||
type: 'library',
|
||||
data: workflowId,
|
||||
onSuccess: () => {
|
||||
store.dispatch(setActiveTab('workflows'));
|
||||
navigationApi.switchToTab('workflows');
|
||||
},
|
||||
});
|
||||
},
|
||||
[loadWorkflowWithDialog, store]
|
||||
[loadWorkflowWithDialog]
|
||||
);
|
||||
|
||||
const handleSelectStylePreset = useCallback(
|
||||
@@ -146,7 +147,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
|
||||
return;
|
||||
}
|
||||
store.dispatch(activeStylePresetIdChanged(stylePresetId));
|
||||
store.dispatch(setActiveTab('canvas'));
|
||||
navigationApi.switchToTab('canvas');
|
||||
toast({
|
||||
title: t('toast.stylePresetLoaded'),
|
||||
status: 'info',
|
||||
@@ -169,20 +170,20 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
|
||||
break;
|
||||
case 'workflows':
|
||||
// Go to the workflows tab
|
||||
store.dispatch(setActiveTab('workflows'));
|
||||
navigationApi.switchToTab('workflows');
|
||||
break;
|
||||
case 'upscaling':
|
||||
// Go to the upscaling tab
|
||||
store.dispatch(setActiveTab('upscaling'));
|
||||
navigationApi.switchToTab('upscaling');
|
||||
break;
|
||||
case 'viewAllWorkflows':
|
||||
// Go to the workflows tab and open the workflow library modal
|
||||
store.dispatch(setActiveTab('workflows'));
|
||||
navigationApi.switchToTab('workflows');
|
||||
$isWorkflowLibraryModalOpen.set(true);
|
||||
break;
|
||||
case 'viewAllWorkflowsRecommended':
|
||||
// Go to the workflows tab and open the workflow library modal with the recommended workflows view
|
||||
store.dispatch(setActiveTab('workflows'));
|
||||
navigationApi.switchToTab('workflows');
|
||||
$isWorkflowLibraryModalOpen.set(true);
|
||||
store.dispatch(workflowLibraryViewChanged('defaults'));
|
||||
store.dispatch(workflowLibraryTagsReset());
|
||||
@@ -194,7 +195,7 @@ export const useStudioInitAction = (action?: StudioInitAction) => {
|
||||
break;
|
||||
case 'viewAllStylePresets':
|
||||
// Go to the canvas tab and open the style presets menu
|
||||
store.dispatch(setActiveTab('canvas'));
|
||||
navigationApi.switchToTab('canvas');
|
||||
$isStylePresetsMenuOpen.set(true);
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -2,7 +2,7 @@ import { createLogWriter } from '@roarr/browser-log-writer';
|
||||
import { atom } from 'nanostores';
|
||||
import type { Logger, MessageSerializer } from 'roarr';
|
||||
import { ROARR, Roarr } from 'roarr';
|
||||
import { z } from 'zod';
|
||||
import { z } from 'zod/v4';
|
||||
|
||||
const serializeMessage: MessageSerializer = (message) => {
|
||||
return JSON.stringify(message);
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import { objectEquals } from '@observ33r/object-equals';
|
||||
import { createDraftSafeSelectorCreator, createSelectorCreator, lruMemoize } from '@reduxjs/toolkit';
|
||||
import { isEqual } from 'lodash-es';
|
||||
|
||||
/**
|
||||
* A memoized selector creator that uses LRU cache and lodash's isEqual for equality check.
|
||||
* A memoized selector creator that uses LRU cache and @observ33r/object-equals's objectEquals for equality check.
|
||||
*/
|
||||
export const createMemoizedSelector = createSelectorCreator({
|
||||
memoize: lruMemoize,
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
resultEqualityCheck: objectEquals,
|
||||
},
|
||||
argsMemoize: lruMemoize,
|
||||
});
|
||||
|
||||
@@ -8,10 +8,13 @@ import { diff } from 'jsondiffpatch';
|
||||
* Super simple logger middleware. Useful for debugging when the redux devtools are awkward.
|
||||
*/
|
||||
export const getDebugLoggerMiddleware =
|
||||
(options?: { withDiff?: boolean; withNextState?: boolean }): Middleware =>
|
||||
(options?: { filter?: (action: unknown) => boolean; withDiff?: boolean; withNextState?: boolean }): Middleware =>
|
||||
(api: MiddlewareAPI) =>
|
||||
(next) =>
|
||||
(action) => {
|
||||
if (options?.filter?.(action)) {
|
||||
return next(action);
|
||||
}
|
||||
const originalState = api.getState();
|
||||
console.log('REDUX: dispatching', action);
|
||||
const result = next(action);
|
||||
|
||||
@@ -8,10 +8,6 @@ import { addBatchEnqueuedListener } from 'app/store/middleware/listenerMiddlewar
|
||||
import { addDeleteBoardAndImagesFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/boardAndImagesDeleted';
|
||||
import { addBoardIdSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/boardIdSelected';
|
||||
import { addBulkDownloadListeners } from 'app/store/middleware/listenerMiddleware/listeners/bulkDownload';
|
||||
import { addEnqueueRequestedLinear } from 'app/store/middleware/listenerMiddleware/listeners/enqueueRequestedLinear';
|
||||
import { addEnsureImageIsSelectedListener } from 'app/store/middleware/listenerMiddleware/listeners/ensureImageIsSelectedListener';
|
||||
import { addGalleryImageClickedListener } from 'app/store/middleware/listenerMiddleware/listeners/galleryImageClicked';
|
||||
import { addGalleryOffsetChangedListener } from 'app/store/middleware/listenerMiddleware/listeners/galleryOffsetChanged';
|
||||
import { addGetOpenAPISchemaListener } from 'app/store/middleware/listenerMiddleware/listeners/getOpenAPISchema';
|
||||
import { addImageAddedToBoardFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/imageAddedToBoard';
|
||||
import { addImageRemovedFromBoardFulfilledListener } from 'app/store/middleware/listenerMiddleware/listeners/imageRemovedFromBoard';
|
||||
@@ -23,7 +19,6 @@ import { addSocketConnectedEventListener } from 'app/store/middleware/listenerMi
|
||||
import type { AppDispatch, RootState } from 'app/store/store';
|
||||
|
||||
import { addArchivedOrDeletedBoardListener } from './listeners/addArchivedOrDeletedBoardListener';
|
||||
import { addEnqueueRequestedUpscale } from './listeners/enqueueRequestedUpscale';
|
||||
|
||||
export const listenerMiddleware = createListenerMiddleware();
|
||||
|
||||
@@ -45,13 +40,7 @@ addImageUploadedFulfilledListener(startAppListening);
|
||||
// Image deleted
|
||||
addDeleteBoardAndImagesFulfilledListener(startAppListening);
|
||||
|
||||
// Gallery
|
||||
addGalleryImageClickedListener(startAppListening);
|
||||
addGalleryOffsetChangedListener(startAppListening);
|
||||
|
||||
// User Invoked
|
||||
addEnqueueRequestedLinear(startAppListening);
|
||||
addEnqueueRequestedUpscale(startAppListening);
|
||||
addAnyEnqueuedListener(startAppListening);
|
||||
addBatchEnqueuedListener(startAppListening);
|
||||
|
||||
@@ -82,5 +71,3 @@ addAppConfigReceivedListener(startAppListening);
|
||||
addAdHocPostProcessingRequestedListener(startAppListening);
|
||||
|
||||
addSetDefaultSettingsListener(startAppListening);
|
||||
|
||||
addEnsureImageIsSelectedListener(startAppListening);
|
||||
|
||||
@@ -1,15 +1,29 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectLastSelectedImage } from 'features/gallery/store/gallerySelectors';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const appStarted = createAction('app/appStarted');
|
||||
|
||||
export const addAppStartedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: appStarted,
|
||||
effect: (action, { unsubscribe, cancelActiveListeners }) => {
|
||||
effect: async (action, { unsubscribe, cancelActiveListeners, take, getState, dispatch }) => {
|
||||
// this should only run once
|
||||
cancelActiveListeners();
|
||||
unsubscribe();
|
||||
|
||||
// ensure an image is selected when we load the first board
|
||||
const firstImageLoad = await take(imagesApi.endpoints.getImageNames.matchFulfilled);
|
||||
if (firstImageLoad !== null) {
|
||||
const [{ payload }] = firstImageLoad;
|
||||
const selectedImage = selectLastSelectedImage(getState());
|
||||
if (selectedImage) {
|
||||
return;
|
||||
}
|
||||
dispatch(imageSelected(payload.image_names.at(0) ?? null));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { truncate } from 'es-toolkit/compat';
|
||||
import { zPydanticValidationError } from 'features/system/store/zodSchemas';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { truncate } from 'lodash-es';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { JsonObject } from 'type-fest';
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { selectGetImageNamesQueryArgs, selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
|
||||
import { boardIdSelected, galleryViewChanged, imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
@@ -11,36 +11,35 @@ export const addBoardIdSelectedListener = (startAppListening: AppStartListening)
|
||||
// Cancel any in-progress instances of this listener, we don't want to select an image from a previous board
|
||||
cancelActiveListeners();
|
||||
|
||||
if (boardIdSelected.match(action) && action.payload.selectedImageName) {
|
||||
// This action already has a selected image name, we trust it is valid
|
||||
return;
|
||||
}
|
||||
|
||||
const state = getState();
|
||||
|
||||
const queryArgs = selectListImagesQueryArgs(state);
|
||||
const board_id = selectSelectedBoardId(state);
|
||||
|
||||
const queryArgs = { ...selectGetImageNamesQueryArgs(state), board_id };
|
||||
|
||||
// wait until the board has some images - maybe it already has some from a previous fetch
|
||||
// must use getState() to ensure we do not have stale state
|
||||
const isSuccess = await condition(
|
||||
() => imagesApi.endpoints.listImages.select(queryArgs)(getState()).isSuccess,
|
||||
() => imagesApi.endpoints.getImageNames.select(queryArgs)(getState()).isSuccess,
|
||||
5000
|
||||
);
|
||||
|
||||
if (isSuccess) {
|
||||
// the board was just changed - we can select the first image
|
||||
const { data: boardImagesData } = imagesApi.endpoints.listImages.select(queryArgs)(getState());
|
||||
|
||||
if (boardImagesData && boardIdSelected.match(action) && action.payload.selectedImageName) {
|
||||
const selectedImage = boardImagesData.items.find(
|
||||
(item) => item.image_name === action.payload.selectedImageName
|
||||
);
|
||||
dispatch(imageSelected(selectedImage?.image_name ?? null));
|
||||
} else if (boardImagesData) {
|
||||
dispatch(imageSelected(boardImagesData.items[0]?.image_name ?? null));
|
||||
} else {
|
||||
// board has no images - deselect
|
||||
dispatch(imageSelected(null));
|
||||
}
|
||||
} else {
|
||||
// fallback - deselect
|
||||
if (!isSuccess) {
|
||||
dispatch(imageSelected(null));
|
||||
return;
|
||||
}
|
||||
|
||||
// the board was just changed - we can select the first image
|
||||
const imageNames = imagesApi.endpoints.getImageNames.select(queryArgs)(getState()).data?.image_names;
|
||||
|
||||
const imageToSelect = imageNames?.at(0) ?? null;
|
||||
|
||||
dispatch(imageSelected(imageToSelect));
|
||||
},
|
||||
});
|
||||
};
|
||||
|
||||
@@ -1,151 +0,0 @@
|
||||
import type { AlertStatus } from '@invoke-ai/ui-library';
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { extractMessageFromAssertionError } from 'common/util/extractMessageFromAssertionError';
|
||||
import { withResult, withResultAsync } from 'common/util/result';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import {
|
||||
canvasSessionIdCreated,
|
||||
generateSessionIdCreated,
|
||||
selectCanvasSessionId,
|
||||
selectGenerateSessionId,
|
||||
} from 'features/controlLayers/store/canvasStagingAreaSlice';
|
||||
import { $canvasManager } from 'features/controlLayers/store/ephemeral';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildChatGPT4oGraph } from 'features/nodes/util/graph/generation/buildChatGPT4oGraph';
|
||||
import { buildCogView4Graph } from 'features/nodes/util/graph/generation/buildCogView4Graph';
|
||||
import { buildFLUXGraph } from 'features/nodes/util/graph/generation/buildFLUXGraph';
|
||||
import { buildImagen3Graph } from 'features/nodes/util/graph/generation/buildImagen3Graph';
|
||||
import { buildImagen4Graph } from 'features/nodes/util/graph/generation/buildImagen4Graph';
|
||||
import { buildSD1Graph } from 'features/nodes/util/graph/generation/buildSD1Graph';
|
||||
import { buildSD3Graph } from 'features/nodes/util/graph/generation/buildSD3Graph';
|
||||
import { buildSDXLGraph } from 'features/nodes/util/graph/generation/buildSDXLGraph';
|
||||
import { UnsupportedGenerationModeError } from 'features/nodes/util/graph/types';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
|
||||
import { assert, AssertionError } from 'tsafe';
|
||||
|
||||
const log = logger('generation');
|
||||
|
||||
export const enqueueRequestedCanvas = createAction<{ prepend: boolean }>('app/enqueueRequestedCanvas');
|
||||
|
||||
export const addEnqueueRequestedLinear = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: enqueueRequestedCanvas,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
log.debug('Enqueue requested');
|
||||
|
||||
const tab = selectActiveTab(getState());
|
||||
let sessionId = null;
|
||||
if (tab === 'generate') {
|
||||
sessionId = selectGenerateSessionId(getState());
|
||||
if (!sessionId) {
|
||||
dispatch(generateSessionIdCreated());
|
||||
sessionId = selectGenerateSessionId(getState());
|
||||
}
|
||||
} else if (tab === 'canvas') {
|
||||
sessionId = selectCanvasSessionId(getState());
|
||||
if (!sessionId) {
|
||||
dispatch(canvasSessionIdCreated());
|
||||
sessionId = selectCanvasSessionId(getState());
|
||||
}
|
||||
} else {
|
||||
log.warn(`Enqueue requested in unsupported tab ${tab}`);
|
||||
return;
|
||||
}
|
||||
|
||||
const state = getState();
|
||||
const destination = sessionId;
|
||||
assert(destination !== null);
|
||||
|
||||
const { prepend } = action.payload;
|
||||
|
||||
const manager = $canvasManager.get();
|
||||
// assert(manager, 'No canvas manager');
|
||||
|
||||
const model = state.params.model;
|
||||
assert(model, 'No model found in state');
|
||||
const base = model.base;
|
||||
|
||||
const buildGraphResult = await withResultAsync(async () => {
|
||||
switch (base) {
|
||||
case 'sdxl':
|
||||
return await buildSDXLGraph(state, manager);
|
||||
case 'sd-1':
|
||||
case `sd-2`:
|
||||
return await buildSD1Graph(state, manager);
|
||||
case `sd-3`:
|
||||
return await buildSD3Graph(state, manager);
|
||||
case `flux`:
|
||||
return await buildFLUXGraph(state, manager);
|
||||
case 'cogview4':
|
||||
return await buildCogView4Graph(state, manager);
|
||||
case 'imagen3':
|
||||
return await buildImagen3Graph(state, manager);
|
||||
case 'imagen4':
|
||||
return await buildImagen4Graph(state, manager);
|
||||
case 'chatgpt-4o':
|
||||
return await buildChatGPT4oGraph(state, manager);
|
||||
default:
|
||||
assert(false, `No graph builders for base ${base}`);
|
||||
}
|
||||
});
|
||||
|
||||
if (buildGraphResult.isErr()) {
|
||||
let title = 'Failed to build graph';
|
||||
let status: AlertStatus = 'error';
|
||||
let description: string | null = null;
|
||||
if (buildGraphResult.error instanceof AssertionError) {
|
||||
description = extractMessageFromAssertionError(buildGraphResult.error);
|
||||
} else if (buildGraphResult.error instanceof UnsupportedGenerationModeError) {
|
||||
title = 'Unsupported generation mode';
|
||||
description = buildGraphResult.error.message;
|
||||
status = 'warning';
|
||||
}
|
||||
const error = serializeError(buildGraphResult.error);
|
||||
log.error({ error }, 'Failed to build graph');
|
||||
toast({
|
||||
status,
|
||||
title,
|
||||
description,
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { g, seedFieldIdentifier, positivePromptFieldIdentifier } = buildGraphResult.value;
|
||||
|
||||
const prepareBatchResult = withResult(() =>
|
||||
prepareLinearUIBatch({
|
||||
state,
|
||||
g,
|
||||
prepend,
|
||||
seedFieldIdentifier,
|
||||
positivePromptFieldIdentifier,
|
||||
origin: 'canvas',
|
||||
destination,
|
||||
})
|
||||
);
|
||||
|
||||
if (prepareBatchResult.isErr()) {
|
||||
log.error({ error: serializeError(prepareBatchResult.error) }, 'Failed to prepare batch');
|
||||
return;
|
||||
}
|
||||
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(prepareBatchResult.value, enqueueMutationFixedCacheKeyOptions)
|
||||
);
|
||||
|
||||
try {
|
||||
await req.unwrap();
|
||||
log.debug(parseify({ batchConfig: prepareBatchResult.value }), 'Enqueued batch');
|
||||
} catch (error) {
|
||||
log.error({ error: serializeError(error as Error) }, 'Failed to enqueue batch');
|
||||
} finally {
|
||||
req.reset();
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,44 +0,0 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildMultidiffusionUpscaleGraph } from 'features/nodes/util/graph/buildMultidiffusionUpscaleGraph';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { enqueueMutationFixedCacheKeyOptions, queueApi } from 'services/api/endpoints/queue';
|
||||
|
||||
const log = logger('generation');
|
||||
|
||||
export const enqueueRequestedUpscaling = createAction<{ prepend: boolean }>('app/enqueueRequestedUpscaling');
|
||||
|
||||
export const addEnqueueRequestedUpscale = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: enqueueRequestedUpscaling,
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const state = getState();
|
||||
const { prepend } = action.payload;
|
||||
|
||||
const { g, seedFieldIdentifier, positivePromptFieldIdentifier } = await buildMultidiffusionUpscaleGraph(state);
|
||||
|
||||
const batchConfig = prepareLinearUIBatch({
|
||||
state,
|
||||
g,
|
||||
prepend,
|
||||
seedFieldIdentifier,
|
||||
positivePromptFieldIdentifier,
|
||||
origin: 'upscaling',
|
||||
destination: 'gallery',
|
||||
});
|
||||
|
||||
const req = dispatch(queueApi.endpoints.enqueueBatch.initiate(batchConfig, enqueueMutationFixedCacheKeyOptions));
|
||||
try {
|
||||
await req.unwrap();
|
||||
log.debug(parseify({ batchConfig }), 'Enqueued batch');
|
||||
} catch (error) {
|
||||
log.error({ error: serializeError(error as Error) }, 'Failed to enqueue batch');
|
||||
} finally {
|
||||
req.reset();
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,16 +0,0 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { imageSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addEnsureImageIsSelectedListener = (startAppListening: AppStartListening) => {
|
||||
// When we list images, if no images is selected, select the first one.
|
||||
startAppListening({
|
||||
matcher: imagesApi.endpoints.listImages.matchFulfilled,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const selection = getState().gallery.selection;
|
||||
if (selection.length === 0) {
|
||||
dispatch(imageSelected(action.payload.items[0]?.image_name ?? null));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,99 +0,0 @@
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { selectImageCollectionQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { uniq } from 'lodash-es';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageCategory, SQLiteDirection } from 'services/api/types';
|
||||
|
||||
// Type for image collection query arguments
|
||||
type ImageCollectionQueryArgs = {
|
||||
board_id?: string;
|
||||
categories?: ImageCategory[];
|
||||
search_term?: string;
|
||||
order_dir?: SQLiteDirection;
|
||||
is_intermediate: boolean;
|
||||
};
|
||||
|
||||
/**
|
||||
* Helper function to get cached image names list for selection operations
|
||||
* Returns an ordered array of image names (starred first, then unstarred)
|
||||
*/
|
||||
const getCachedImageNames = (state: RootState, queryArgs: ImageCollectionQueryArgs): string[] => {
|
||||
const queryResult = imagesApi.endpoints.getImageNames.select(queryArgs)(state);
|
||||
return queryResult.data || [];
|
||||
};
|
||||
|
||||
export const galleryImageClicked = createAction<{
|
||||
imageName: string;
|
||||
shiftKey: boolean;
|
||||
ctrlKey: boolean;
|
||||
metaKey: boolean;
|
||||
altKey: boolean;
|
||||
}>('gallery/imageClicked');
|
||||
|
||||
/**
|
||||
* This listener handles the logic for selecting images in the gallery.
|
||||
*
|
||||
* Previously, this logic was in a `useCallback` with the whole gallery selection as a dependency. Every time
|
||||
* the selection changed, the callback got recreated and all images rerendered. This could easily block for
|
||||
* hundreds of ms, more for lower end devices.
|
||||
*
|
||||
* Moving this logic into a listener means we don't need to recalculate anything dynamically and the gallery
|
||||
* is much more responsive.
|
||||
*/
|
||||
|
||||
export const addGalleryImageClickedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: galleryImageClicked,
|
||||
effect: (action, { dispatch, getState }) => {
|
||||
const { imageName, shiftKey, ctrlKey, metaKey, altKey } = action.payload;
|
||||
const state = getState();
|
||||
const queryArgs = selectImageCollectionQueryArgs(state);
|
||||
|
||||
// Get cached image names for selection operations
|
||||
const imageNames = getCachedImageNames(state, queryArgs);
|
||||
|
||||
// If we don't have the image names cached, we can't perform selection operations
|
||||
// This can happen if the user clicks on an image before the names are loaded
|
||||
if (imageNames.length === 0) {
|
||||
// For basic click without modifiers, we can still set selection
|
||||
if (!shiftKey && !ctrlKey && !metaKey && !altKey) {
|
||||
dispatch(selectionChanged([imageName]));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
const selection = state.gallery.selection;
|
||||
|
||||
if (altKey) {
|
||||
if (state.gallery.imageToCompare === imageName) {
|
||||
dispatch(imageToCompareChanged(null));
|
||||
} else {
|
||||
dispatch(imageToCompareChanged(imageName));
|
||||
}
|
||||
} else if (shiftKey) {
|
||||
const rangeEndImageName = imageName;
|
||||
const lastSelectedImage = selection.at(-1);
|
||||
const lastClickedIndex = imageNames.findIndex((name) => name === lastSelectedImage);
|
||||
const currentClickedIndex = imageNames.findIndex((name) => name === rangeEndImageName);
|
||||
if (lastClickedIndex > -1 && currentClickedIndex > -1) {
|
||||
// We have a valid range!
|
||||
const start = Math.min(lastClickedIndex, currentClickedIndex);
|
||||
const end = Math.max(lastClickedIndex, currentClickedIndex);
|
||||
const imagesToSelect = imageNames.slice(start, end + 1);
|
||||
dispatch(selectionChanged(uniq(selection.concat(imagesToSelect))));
|
||||
}
|
||||
} else if (ctrlKey || metaKey) {
|
||||
if (selection.some((n) => n === imageName) && selection.length > 1) {
|
||||
dispatch(selectionChanged(uniq(selection.filter((n) => n !== imageName))));
|
||||
} else {
|
||||
dispatch(selectionChanged(uniq(selection.concat(imageName))));
|
||||
}
|
||||
} else {
|
||||
dispatch(selectionChanged([imageName]));
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,119 +0,0 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { selectListImagesQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { imageToCompareChanged, offsetChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addGalleryOffsetChangedListener = (startAppListening: AppStartListening) => {
|
||||
/**
|
||||
* When the user changes pages in the gallery, we need to wait until the next page of images is loaded, then maybe
|
||||
* update the selection.
|
||||
*
|
||||
* There are a three scenarios:
|
||||
*
|
||||
* 1. The page is changed by clicking the pagination buttons. No changes to selection are needed.
|
||||
*
|
||||
* 2. The page is changed by using the arrow keys (without alt).
|
||||
* - When going backwards, select the last image.
|
||||
* - When going forwards, select the first image.
|
||||
*
|
||||
* 3. The page is changed by using the arrows keys with alt. This means the user is changing the comparison image.
|
||||
* - When going backwards, select the last image _as the comparison image_.
|
||||
* - When going forwards, select the first image _as the comparison image_.
|
||||
*/
|
||||
startAppListening({
|
||||
actionCreator: offsetChanged,
|
||||
effect: async (action, { dispatch, getState, getOriginalState, take, cancelActiveListeners }) => {
|
||||
// Cancel any active listeners to prevent the selection from changing without user input
|
||||
cancelActiveListeners();
|
||||
|
||||
const { withHotkey } = action.payload;
|
||||
|
||||
if (!withHotkey) {
|
||||
// User changed pages by clicking the pagination buttons - no changes to selection
|
||||
return;
|
||||
}
|
||||
|
||||
const originalState = getOriginalState();
|
||||
const prevOffset = originalState.gallery.offset;
|
||||
const offset = getState().gallery.offset;
|
||||
|
||||
if (offset === prevOffset) {
|
||||
// The page didn't change - bail
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* We need to wait until the next page of images is loaded before updating the selection, so we use the correct
|
||||
* page of images.
|
||||
*
|
||||
* The simplest way to do it would be to use `take` to wait for the next fulfilled action, but RTK-Q doesn't
|
||||
* dispatch an action on cache hits. This means the `take` will only return if the cache is empty. If the user
|
||||
* changes to a cached page - a common situation - the `take` will never resolve.
|
||||
*
|
||||
* So we need to take a two-step approach. First, check if we have data in the cache for the page of images. If
|
||||
* we have data cached, use it to update the selection. If we don't have data cached, wait for the next fulfilled
|
||||
* action, which updates the cache, then use the cache to update the selection.
|
||||
*/
|
||||
|
||||
// Check if we have data in the cache for the page of images
|
||||
const queryArgs = selectListImagesQueryArgs(getState());
|
||||
let { data } = imagesApi.endpoints.listImages.select(queryArgs)(getState());
|
||||
|
||||
// No data yet - wait for the network request to complete
|
||||
if (!data) {
|
||||
const takeResult = await take(imagesApi.endpoints.listImages.matchFulfilled, 5000);
|
||||
if (!takeResult) {
|
||||
// The request didn't complete in time - bail
|
||||
return;
|
||||
}
|
||||
data = takeResult[0].payload;
|
||||
}
|
||||
|
||||
// We awaited a network request - state could have changed, get fresh state
|
||||
const state = getState();
|
||||
const { selection, imageToCompare } = state.gallery;
|
||||
const imageDTOs = data?.items;
|
||||
|
||||
if (!imageDTOs) {
|
||||
// The page didn't load - bail
|
||||
return;
|
||||
}
|
||||
|
||||
if (withHotkey === 'arrow') {
|
||||
// User changed pages by using the arrow keys - selection changes to first or last image depending
|
||||
if (offset < prevOffset) {
|
||||
// We've gone backwards
|
||||
const lastImage = imageDTOs[imageDTOs.length - 1];
|
||||
if (!selection.some((selectedImage) => selectedImage === lastImage?.image_name)) {
|
||||
dispatch(selectionChanged(lastImage ? [lastImage.image_name] : []));
|
||||
}
|
||||
} else {
|
||||
// We've gone forwards
|
||||
const firstImage = imageDTOs[0];
|
||||
if (!selection.some((selectedImage) => selectedImage === firstImage?.image_name)) {
|
||||
dispatch(selectionChanged(firstImage ? [firstImage.image_name] : []));
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (withHotkey === 'alt+arrow') {
|
||||
// User changed pages by using the arrow keys with alt - comparison image changes to first or last depending
|
||||
if (offset < prevOffset) {
|
||||
// We've gone backwards
|
||||
const lastImage = imageDTOs[imageDTOs.length - 1];
|
||||
if (lastImage && imageToCompare !== lastImage.image_name) {
|
||||
dispatch(imageToCompareChanged(lastImage.image_name));
|
||||
}
|
||||
} else {
|
||||
// We've gone forwards
|
||||
const firstImage = imageDTOs[0];
|
||||
if (firstImage && imageToCompare !== firstImage.image_name) {
|
||||
dispatch(imageToCompareChanged(firstImage.image_name));
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
||||
@@ -1,9 +1,9 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { size } from 'es-toolkit/compat';
|
||||
import { $templates } from 'features/nodes/store/nodesSlice';
|
||||
import { parseSchema } from 'features/nodes/util/schema/parseSchema';
|
||||
import { size } from 'lodash-es';
|
||||
import { serializeError } from 'serialize-error';
|
||||
import { appInfoApi } from 'services/api/endpoints/appInfo';
|
||||
import type { JsonObject } from 'type-fest';
|
||||
|
||||
@@ -2,12 +2,12 @@ import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { omit } from 'es-toolkit/compat';
|
||||
import { imageUploadedClientSide } from 'features/gallery/store/actions';
|
||||
import { selectListBoardsQueryArgs } from 'features/gallery/store/gallerySelectors';
|
||||
import { boardIdSelected, galleryViewChanged } from 'features/gallery/store/gallerySlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { omit } from 'lodash-es';
|
||||
import { boardsApi } from 'services/api/endpoints/boards';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
@@ -3,7 +3,7 @@ import type { AppStartListening } from 'app/store/middleware/listenerMiddleware'
|
||||
import { bboxSyncedToOptimalDimension } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
|
||||
import { loraDeleted } from 'features/controlLayers/store/lorasSlice';
|
||||
import { modelChanged, vaeSelected } from 'features/controlLayers/store/paramsSlice';
|
||||
import { modelChanged, syncedToOptimalDimension, vaeSelected } from 'features/controlLayers/store/paramsSlice';
|
||||
import { selectBboxModelBase } from 'features/controlLayers/store/selectors';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { zParameterModel } from 'features/parameters/types/parameterSchemas';
|
||||
@@ -71,9 +71,16 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
}
|
||||
|
||||
dispatch(modelChanged({ model: newModel, previousModel: state.params.model }));
|
||||
|
||||
const modelBase = selectBboxModelBase(state);
|
||||
if (!selectIsStaging(state) && modelBase !== state.params.model?.base) {
|
||||
dispatch(bboxSyncedToOptimalDimension());
|
||||
|
||||
if (modelBase !== state.params.model?.base) {
|
||||
// Sync generate tab settings whenever the model base changes
|
||||
dispatch(syncedToOptimalDimension());
|
||||
if (!selectIsStaging(state)) {
|
||||
// Canvas tab only syncs if not staging
|
||||
dispatch(bboxSyncedToOptimalDimension());
|
||||
}
|
||||
}
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { isNil } from 'es-toolkit';
|
||||
import { bboxHeightChanged, bboxWidthChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectIsStaging } from 'features/controlLayers/store/canvasStagingAreaSlice';
|
||||
import {
|
||||
@@ -86,10 +87,16 @@ export const addSetDefaultSettingsListener = (startAppListening: AppStartListeni
|
||||
}
|
||||
}
|
||||
|
||||
if (cfg_rescale_multiplier) {
|
||||
if (!isNil(cfg_rescale_multiplier)) {
|
||||
if (isParameterCFGRescaleMultiplier(cfg_rescale_multiplier)) {
|
||||
dispatch(setCfgRescaleMultiplier(cfg_rescale_multiplier));
|
||||
}
|
||||
} else {
|
||||
// Set this to 0 if it doesn't have a default. This value is
|
||||
// easy to miss in the UI when users are resetting defaults
|
||||
// and leaving it non-zero could lead to detrimental
|
||||
// effects.
|
||||
dispatch(setCfgRescaleMultiplier(0));
|
||||
}
|
||||
|
||||
if (steps) {
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import { objectEquals } from '@observ33r/object-equals';
|
||||
import { createAction } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { $baseUrl } from 'app/store/nanostores/baseUrl';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { atom } from 'nanostores';
|
||||
import { api } from 'services/api';
|
||||
import { modelsApi } from 'services/api/endpoints/models';
|
||||
@@ -64,7 +64,7 @@ export const addSocketConnectedEventListener = (startAppListening: AppStartListe
|
||||
const nextQueueStatusData = await queueStatusRequest.unwrap();
|
||||
|
||||
// If the queue hasn't changed, we don't need to do anything.
|
||||
if (isEqual(prevQueueStatusData?.queue, nextQueueStatusData.queue)) {
|
||||
if (objectEquals(prevQueueStatusData?.queue, nextQueueStatusData.queue)) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
import { $didStudioInit } from 'app/hooks/useStudioInitAction';
|
||||
import { atom, computed } from 'nanostores';
|
||||
import { flushSync } from 'react-dom';
|
||||
|
||||
export const $isLayoutLoading = atom(false);
|
||||
export const setIsLayoutLoading = (isLoading: boolean) => {
|
||||
flushSync(() => {
|
||||
$isLayoutLoading.set(isLoading);
|
||||
});
|
||||
};
|
||||
export const $globalIsLoading = computed([$didStudioInit, $isLayoutLoading], (didStudioInit, isLayoutLoading) => {
|
||||
return !didStudioInit || isLayoutLoading;
|
||||
});
|
||||
@@ -1,4 +1,3 @@
|
||||
import { useStore } from '@nanostores/react';
|
||||
import type { AppStore } from 'app/store/store';
|
||||
import { atom } from 'nanostores';
|
||||
|
||||
@@ -32,11 +31,3 @@ export const getStore = () => {
|
||||
}
|
||||
return store;
|
||||
};
|
||||
|
||||
export const useAppStore = () => {
|
||||
const store = useStore($store);
|
||||
if (!store) {
|
||||
throw new ReduxStoreNotInitialized();
|
||||
}
|
||||
return store;
|
||||
};
|
||||
|
||||
@@ -11,5 +11,7 @@ export const $false: ReadableAtom<boolean> = atom(false);
|
||||
/**
|
||||
* A fallback non-writable atom that always returns `true`, used when a nanostores atom is only conditionally available
|
||||
* in a hook or component.
|
||||
*
|
||||
* @knipignore
|
||||
*/
|
||||
export const $true: ReadableAtom<boolean> = atom(true);
|
||||
|
||||
@@ -4,6 +4,7 @@ import { logger } from 'app/logging/logger';
|
||||
import { idbKeyValDriver } from 'app/store/enhancers/reduxRemember/driver';
|
||||
import { errorHandler } from 'app/store/enhancers/reduxRemember/errors';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { keys, mergeWith, omit, pick } from 'es-toolkit/compat';
|
||||
import { changeBoardModalSlice } from 'features/changeBoardModal/store/slice';
|
||||
import { canvasSettingsPersistConfig, canvasSettingsSlice } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { canvasPersistConfig, canvasSlice, canvasUndoableConfig } from 'features/controlLayers/store/canvasSlice';
|
||||
@@ -16,7 +17,6 @@ import { paramsPersistConfig, paramsSlice } from 'features/controlLayers/store/p
|
||||
import { refImagesPersistConfig, refImagesSlice } from 'features/controlLayers/store/refImagesSlice';
|
||||
import { dynamicPromptsPersistConfig, dynamicPromptsSlice } from 'features/dynamicPrompts/store/dynamicPromptsSlice';
|
||||
import { galleryPersistConfig, gallerySlice } from 'features/gallery/store/gallerySlice';
|
||||
import { hrfPersistConfig, hrfSlice } from 'features/hrf/store/hrfSlice';
|
||||
import { modelManagerV2PersistConfig, modelManagerV2Slice } from 'features/modelManagerV2/store/modelManagerV2Slice';
|
||||
import { nodesPersistConfig, nodesSlice, nodesUndoableConfig } from 'features/nodes/store/nodesSlice';
|
||||
import { workflowLibraryPersistConfig, workflowLibrarySlice } from 'features/nodes/store/workflowLibrarySlice';
|
||||
@@ -28,7 +28,6 @@ import { configSlice } from 'features/system/store/configSlice';
|
||||
import { systemPersistConfig, systemSlice } from 'features/system/store/systemSlice';
|
||||
import { uiPersistConfig, uiSlice } from 'features/ui/store/uiSlice';
|
||||
import { diff } from 'jsondiffpatch';
|
||||
import { keys, mergeWith, omit, pick } from 'lodash-es';
|
||||
import dynamicMiddlewares from 'redux-dynamic-middlewares';
|
||||
import type { SerializeFunction, UnserializeFunction } from 'redux-remember';
|
||||
import { rememberEnhancer, rememberReducer } from 'redux-remember';
|
||||
@@ -57,7 +56,6 @@ const allReducers = {
|
||||
[changeBoardModalSlice.name]: changeBoardModalSlice.reducer,
|
||||
[modelManagerV2Slice.name]: modelManagerV2Slice.reducer,
|
||||
[queueSlice.name]: queueSlice.reducer,
|
||||
[hrfSlice.name]: hrfSlice.reducer,
|
||||
[canvasSlice.name]: undoable(canvasSlice.reducer, canvasUndoableConfig),
|
||||
[workflowSettingsSlice.name]: workflowSettingsSlice.reducer,
|
||||
[upscaleSlice.name]: upscaleSlice.reducer,
|
||||
@@ -103,7 +101,6 @@ const persistConfigs: { [key in keyof typeof allReducers]?: PersistConfig } = {
|
||||
[uiPersistConfig.name]: uiPersistConfig,
|
||||
[dynamicPromptsPersistConfig.name]: dynamicPromptsPersistConfig,
|
||||
[modelManagerV2PersistConfig.name]: modelManagerV2PersistConfig,
|
||||
[hrfPersistConfig.name]: hrfPersistConfig,
|
||||
[canvasPersistConfig.name]: canvasPersistConfig,
|
||||
[workflowSettingsPersistConfig.name]: workflowSettingsPersistConfig,
|
||||
[upscalePersistConfig.name]: upscalePersistConfig,
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
import type { AppThunkDispatch, RootState } from 'app/store/store';
|
||||
import type { AppStore, AppThunkDispatch, RootState } from 'app/store/store';
|
||||
import type { TypedUseSelectorHook } from 'react-redux';
|
||||
import { useDispatch, useSelector, useStore } from 'react-redux';
|
||||
|
||||
// Use throughout your app instead of plain `useDispatch` and `useSelector`
|
||||
export const useAppDispatch = () => useDispatch<AppThunkDispatch>();
|
||||
export const useAppSelector: TypedUseSelectorHook<RootState> = useSelector;
|
||||
export const useAppStore = () => useStore<RootState>();
|
||||
export const useAppStore = () => useStore.withTypes<AppStore>()();
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import type { Selector } from '@reduxjs/toolkit';
|
||||
import { useAppStore } from 'app/store/nanostores/store';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppStore } from 'app/store/storeHooks';
|
||||
import { useEffect, useState } from 'react';
|
||||
|
||||
/**
|
||||
|
||||
@@ -14,6 +14,7 @@ export type AppFeature =
|
||||
| 'githubLink'
|
||||
| 'discordLink'
|
||||
| 'bugLink'
|
||||
| 'aboutModal'
|
||||
| 'localization'
|
||||
| 'consoleLogging'
|
||||
| 'dynamicPrompting'
|
||||
@@ -29,7 +30,8 @@ export type AppFeature =
|
||||
| 'hfToken'
|
||||
| 'retryQueueItem'
|
||||
| 'cancelAndClearAll'
|
||||
| 'chatGPT4oHigh';
|
||||
| 'chatGPT4oHigh'
|
||||
| 'modelRelationships';
|
||||
/**
|
||||
* A disable-able Stable Diffusion feature
|
||||
*/
|
||||
@@ -76,6 +78,7 @@ export type AppConfig = {
|
||||
allowPrivateStylePresets: boolean;
|
||||
allowClientSideUpload: boolean;
|
||||
allowPublishWorkflows: boolean;
|
||||
allowPromptExpansion: boolean;
|
||||
disabledTabs: TabName[];
|
||||
disabledFeatures: AppFeature[];
|
||||
disabledSDFeatures: SDFeature[];
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
import { Box, type BoxProps, type SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { type FocusRegionName, useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
|
||||
import { selectSystemShouldEnableHighlightFocusedRegions } from 'features/system/store/systemSlice';
|
||||
import { memo, useMemo, useRef } from 'react';
|
||||
|
||||
interface FocusRegionWrapperProps extends BoxProps {
|
||||
region: FocusRegionName;
|
||||
focusOnMount?: boolean;
|
||||
}
|
||||
|
||||
const FOCUS_REGION_STYLES: SystemStyleObject = {
|
||||
position: 'relative',
|
||||
'&[data-highlighted="true"]::after': {
|
||||
borderColor: 'blue.700',
|
||||
},
|
||||
'&::after': {
|
||||
content: '""',
|
||||
position: 'absolute',
|
||||
inset: 0,
|
||||
zIndex: 1,
|
||||
borderRadius: 'base',
|
||||
border: '2px solid',
|
||||
borderColor: 'transparent',
|
||||
pointerEvents: 'none',
|
||||
transition: 'border-color 0.1s ease-in-out',
|
||||
},
|
||||
};
|
||||
|
||||
export const FocusRegionWrapper = memo(
|
||||
({ region, focusOnMount = false, sx, children, ...boxProps }: FocusRegionWrapperProps) => {
|
||||
const shouldHighlightFocusedRegions = useAppSelector(selectSystemShouldEnableHighlightFocusedRegions);
|
||||
|
||||
const ref = useRef<HTMLDivElement>(null);
|
||||
|
||||
const options = useMemo(() => ({ focusOnMount }), [focusOnMount]);
|
||||
|
||||
useFocusRegion(region, ref, options);
|
||||
const isFocused = useIsRegionFocused(region);
|
||||
const isHighlighted = isFocused && shouldHighlightFocusedRegions;
|
||||
|
||||
return (
|
||||
<Box
|
||||
ref={ref}
|
||||
tabIndex={-1}
|
||||
sx={useMemo(() => ({ ...FOCUS_REGION_STYLES, ...sx }), [sx])}
|
||||
data-highlighted={isHighlighted}
|
||||
{...boxProps}
|
||||
>
|
||||
{children}
|
||||
</Box>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
FocusRegionWrapper.displayName = 'FocusRegionWrapper';
|
||||
@@ -15,9 +15,9 @@ import {
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { merge, omit } from 'es-toolkit/compat';
|
||||
import { selectSystemSlice, setShouldEnableInformationalPopovers } from 'features/system/store/systemSlice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { merge, omit } from 'lodash-es';
|
||||
import type { ReactElement } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@@ -8,21 +8,16 @@ const Loading = () => {
|
||||
return (
|
||||
<Flex
|
||||
position="absolute"
|
||||
width="100dvw"
|
||||
height="100dvh"
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
bg="#151519"
|
||||
top={0}
|
||||
right={0}
|
||||
bottom={0}
|
||||
left={0}
|
||||
bg="hsl(220 12% 10% / 1)" // base.900
|
||||
inset={0}
|
||||
zIndex={99999}
|
||||
>
|
||||
<Image src={InvokeLogoWhite} w="8rem" h="8rem" />
|
||||
<Spinner
|
||||
label="Loading"
|
||||
color="grey"
|
||||
color="hsl(220 12% 68% / 1)" // base.300
|
||||
position="absolute"
|
||||
size="sm"
|
||||
width="24px !important"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { merge } from 'lodash-es';
|
||||
import { merge } from 'es-toolkit/compat';
|
||||
import { ClickScrollPlugin, OverlayScrollbars } from 'overlayscrollbars';
|
||||
import type { UseOverlayScrollbarsParams } from 'overlayscrollbars-react';
|
||||
import type { CSSProperties } from 'react';
|
||||
|
||||
@@ -91,6 +91,10 @@ const isGroup = <T extends object>(optionOrGroup: OptionOrGroup<T>): optionOrGro
|
||||
return uniqueGroupKey in optionOrGroup && optionOrGroup[uniqueGroupKey] === true;
|
||||
};
|
||||
|
||||
export const isOption = <T extends object>(optionOrGroup: OptionOrGroup<T>): optionOrGroup is T => {
|
||||
return !(uniqueGroupKey in optionOrGroup);
|
||||
};
|
||||
|
||||
const DefaultOptionComponent = typedMemo(<T extends object>({ option }: { option: T }) => {
|
||||
const { getOptionId } = usePickerContext();
|
||||
return <Text fontWeight="bold">{getOptionId(option)}</Text>;
|
||||
@@ -198,6 +202,10 @@ type PickerProps<T extends object> = {
|
||||
* Whether the picker should be searchable. If true, renders a search input.
|
||||
*/
|
||||
searchable?: boolean;
|
||||
/**
|
||||
* Initial state for group toggles. If provided, groups will start with these states instead of all being disabled.
|
||||
*/
|
||||
initialGroupStates?: GroupStatusMap;
|
||||
};
|
||||
|
||||
export type PickerContextState<T extends object> = {
|
||||
@@ -310,9 +318,9 @@ const flattenOptions = <T extends object>(options: OptionOrGroup<T>[]): T[] => {
|
||||
return flattened;
|
||||
};
|
||||
|
||||
type GroupStatusMap = Record<string, boolean>;
|
||||
export type GroupStatusMap = Record<string, boolean>;
|
||||
|
||||
const useTogglableGroups = <T extends object>(options: OptionOrGroup<T>[]) => {
|
||||
const useTogglableGroups = <T extends object>(options: OptionOrGroup<T>[], initialGroupStates?: GroupStatusMap) => {
|
||||
const groupsWithOptions = useMemo(() => {
|
||||
const ids: string[] = [];
|
||||
for (const optionOrGroup of options) {
|
||||
@@ -332,14 +340,16 @@ const useTogglableGroups = <T extends object>(options: OptionOrGroup<T>[]) => {
|
||||
const groupStatusMap = $groupStatusMap.get();
|
||||
const newMap: GroupStatusMap = {};
|
||||
for (const id of groupsWithOptions) {
|
||||
if (newMap[id] === undefined) {
|
||||
newMap[id] = false;
|
||||
if (initialGroupStates && initialGroupStates[id] !== undefined) {
|
||||
newMap[id] = initialGroupStates[id];
|
||||
} else if (groupStatusMap[id] !== undefined) {
|
||||
newMap[id] = groupStatusMap[id];
|
||||
} else {
|
||||
newMap[id] = false;
|
||||
}
|
||||
}
|
||||
$groupStatusMap.set(newMap);
|
||||
}, [groupsWithOptions, $groupStatusMap]);
|
||||
}, [groupsWithOptions, $groupStatusMap, initialGroupStates]);
|
||||
|
||||
const toggleGroup = useCallback(
|
||||
(idToToggle: string) => {
|
||||
@@ -511,10 +521,14 @@ export const Picker = typedMemo(<T extends object>(props: PickerProps<T>) => {
|
||||
OptionComponent = DefaultOptionComponent,
|
||||
NextToSearchBar,
|
||||
searchable,
|
||||
initialGroupStates,
|
||||
} = props;
|
||||
const rootRef = useRef<HTMLDivElement>(null);
|
||||
const inputRef = useRef<HTMLInputElement>(null);
|
||||
const { $groupStatusMap, $areAllGroupsDisabled, toggleGroup } = useTogglableGroups(optionsOrGroups);
|
||||
const { $groupStatusMap, $areAllGroupsDisabled, toggleGroup } = useTogglableGroups(
|
||||
optionsOrGroups,
|
||||
initialGroupStates
|
||||
);
|
||||
const $activeOptionId = useAtom(getFirstOptionId(optionsOrGroups, getOptionId));
|
||||
const $compactView = useAtom(true);
|
||||
const $optionsOrGroups = useAtom(optionsOrGroups);
|
||||
|
||||
@@ -1,20 +1,15 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import {
|
||||
useNewCanvasSession,
|
||||
useNewGallerySession,
|
||||
} from 'features/controlLayers/components/NewSessionConfirmationAlertDialog';
|
||||
import { allEntitiesDeleted } from 'features/controlLayers/store/canvasSlice';
|
||||
import { paramsReset } from 'features/controlLayers/store/paramsSlice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowsCounterClockwiseBold, PiFilePlusBold } from 'react-icons/pi';
|
||||
import { PiArrowsCounterClockwiseBold } from 'react-icons/pi';
|
||||
|
||||
export const SessionMenuItems = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const { newGallerySessionWithDialog } = useNewGallerySession();
|
||||
const { newCanvasSessionWithDialog } = useNewCanvasSession();
|
||||
|
||||
const resetCanvasLayers = useCallback(() => {
|
||||
dispatch(allEntitiesDeleted());
|
||||
}, [dispatch]);
|
||||
@@ -23,12 +18,6 @@ export const SessionMenuItems = memo(() => {
|
||||
}, [dispatch]);
|
||||
return (
|
||||
<>
|
||||
<MenuItem icon={<PiFilePlusBold />} onClick={newGallerySessionWithDialog}>
|
||||
{t('controlLayers.newGallerySession')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiFilePlusBold />} onClick={newCanvasSessionWithDialog}>
|
||||
{t('controlLayers.newCanvasSession')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiArrowsCounterClockwiseBold />} onClick={resetCanvasLayers}>
|
||||
{t('controlLayers.resetCanvasLayers')}
|
||||
</MenuItem>
|
||||
|
||||
@@ -6,6 +6,7 @@ import { atom, computed } from 'nanostores';
|
||||
import type { RefObject } from 'react';
|
||||
import { useEffect } from 'react';
|
||||
import { objectKeys } from 'tsafe';
|
||||
import z from 'zod/v4';
|
||||
|
||||
/**
|
||||
* We need to manage focus regions to conditionally enable hotkeys:
|
||||
@@ -30,23 +31,34 @@ const log = logger('system');
|
||||
/**
|
||||
* The names of the focus regions.
|
||||
*/
|
||||
export type FocusRegionName = 'gallery' | 'layers' | 'canvas' | 'workflows' | 'viewer';
|
||||
const zFocusRegionName = z.enum([
|
||||
'launchpad',
|
||||
'viewer',
|
||||
'gallery',
|
||||
'boards',
|
||||
'layers',
|
||||
'canvas',
|
||||
'workflows',
|
||||
'progress',
|
||||
'settings',
|
||||
]);
|
||||
export type FocusRegionName = z.infer<typeof zFocusRegionName>;
|
||||
|
||||
/**
|
||||
* A map of focus regions to the elements that are part of that region.
|
||||
*/
|
||||
const REGION_TARGETS: Record<FocusRegionName, Set<HTMLElement>> = {
|
||||
gallery: new Set<HTMLElement>(),
|
||||
layers: new Set<HTMLElement>(),
|
||||
canvas: new Set<HTMLElement>(),
|
||||
workflows: new Set<HTMLElement>(),
|
||||
viewer: new Set<HTMLElement>(),
|
||||
} as const;
|
||||
const REGION_TARGETS: Record<FocusRegionName, Set<HTMLElement>> = zFocusRegionName.options.values().reduce(
|
||||
(acc, region) => {
|
||||
acc[region] = new Set<HTMLElement>();
|
||||
return acc;
|
||||
},
|
||||
{} as Record<FocusRegionName, Set<HTMLElement>>
|
||||
);
|
||||
|
||||
/**
|
||||
* The currently-focused region or `null` if no region is focused.
|
||||
*/
|
||||
export const $focusedRegion = atom<FocusRegionName | null>(null);
|
||||
const $focusedRegion = atom<FocusRegionName | null>(null);
|
||||
|
||||
/**
|
||||
* A map of focus regions to atoms that indicate if that region is focused.
|
||||
@@ -62,11 +74,13 @@ const FOCUS_REGIONS = objectKeys(REGION_TARGETS).reduce(
|
||||
/**
|
||||
* Sets the focused region, logging a trace level message.
|
||||
*/
|
||||
const setFocus = (region: FocusRegionName | null) => {
|
||||
export const setFocusedRegion = (region: FocusRegionName | null) => {
|
||||
$focusedRegion.set(region);
|
||||
log.trace(`Focus changed: ${region}`);
|
||||
};
|
||||
|
||||
export const getFocusedRegion = () => $focusedRegion.get();
|
||||
|
||||
type UseFocusRegionOptions = {
|
||||
focusOnMount?: boolean;
|
||||
};
|
||||
@@ -99,14 +113,14 @@ export const useFocusRegion = (
|
||||
REGION_TARGETS[region].add(element);
|
||||
|
||||
if (focusOnMount) {
|
||||
setFocus(region);
|
||||
setFocusedRegion(region);
|
||||
}
|
||||
|
||||
return () => {
|
||||
REGION_TARGETS[region].delete(element);
|
||||
|
||||
if (REGION_TARGETS[region].size === 0 && $focusedRegion.get() === region) {
|
||||
setFocus(null);
|
||||
setFocusedRegion(null);
|
||||
}
|
||||
};
|
||||
}, [options, ref, region]);
|
||||
@@ -163,7 +177,7 @@ const onFocus = (_: FocusEvent) => {
|
||||
return;
|
||||
}
|
||||
|
||||
setFocus(focusedRegion);
|
||||
setFocusedRegion(focusedRegion);
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -73,7 +73,7 @@ export const useBoolean = (initialValue: boolean): UseBoolean => {
|
||||
};
|
||||
};
|
||||
|
||||
export type UseDisclosure = {
|
||||
type UseDisclosure = {
|
||||
isOpen: boolean;
|
||||
open: () => void;
|
||||
close: () => void;
|
||||
|
||||
@@ -1,165 +0,0 @@
|
||||
/* eslint-disable @typescript-eslint/no-explicit-any */
|
||||
|
||||
/**
|
||||
* Adapted from https://github.com/chakra-ui/chakra-ui/blob/v2/packages/hooks/src/use-outside-click.ts
|
||||
*
|
||||
* The main change here is to support filtering of outside clicks via a `filter` function.
|
||||
*
|
||||
* This lets us work around issues with portals and components like popovers, which typically close on an outside click.
|
||||
*
|
||||
* For example, consider a popover that has a custom drop-down component inside it, which uses a portal to render
|
||||
* the drop-down options. The original outside click handler would close the popover when clicking on the drop-down options,
|
||||
* because the click is outside the popover - but we expect the popover to stay open in this case.
|
||||
*
|
||||
* A filter function like this can fix that:
|
||||
*
|
||||
* ```ts
|
||||
* const filter = (el: HTMLElement) => el.className.includes('chakra-portal') || el.id.includes('react-select')
|
||||
* ```
|
||||
*
|
||||
* This ignores clicks on react-select-based drop-downs and Chakra UI portals and is used as the default filter.
|
||||
*/
|
||||
|
||||
import { useCallback, useEffect, useRef } from 'react';
|
||||
|
||||
type FilterFunction = (el: HTMLElement | SVGElement) => boolean;
|
||||
|
||||
export function useCallbackRef<T extends (...args: any[]) => any>(
|
||||
callback: T | undefined,
|
||||
deps: React.DependencyList = []
|
||||
) {
|
||||
const callbackRef = useRef(callback);
|
||||
|
||||
useEffect(() => {
|
||||
callbackRef.current = callback;
|
||||
});
|
||||
|
||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||
return useCallback(((...args) => callbackRef.current?.(...args)) as T, deps);
|
||||
}
|
||||
|
||||
export interface UseOutsideClickProps {
|
||||
/**
|
||||
* Whether the hook is enabled
|
||||
*/
|
||||
enabled?: boolean;
|
||||
/**
|
||||
* The reference to a DOM element.
|
||||
*/
|
||||
ref: React.RefObject<HTMLElement | null>;
|
||||
/**
|
||||
* Function invoked when a click is triggered outside the referenced element.
|
||||
*/
|
||||
handler?: (e: Event) => void;
|
||||
/**
|
||||
* A function that filters the elements that should be considered as outside clicks.
|
||||
*
|
||||
* If omitted, a default filter function that ignores clicks in Chakra UI portals and react-select components is used.
|
||||
*/
|
||||
filter?: FilterFunction;
|
||||
}
|
||||
|
||||
export const DEFAULT_FILTER: FilterFunction = (el) => {
|
||||
if (el instanceof SVGElement) {
|
||||
// SVGElement's type appears to be incorrect. Its className is not a string, which causes `includes` to fail.
|
||||
// Let's assume that SVG elements with a class name are not part of the portal and should not be filtered.
|
||||
return false;
|
||||
}
|
||||
return el.className.includes('chakra-portal') || el.id.includes('react-select');
|
||||
};
|
||||
|
||||
/**
|
||||
* Example, used in components like Dialogs and Popovers, so they can close
|
||||
* when a user clicks outside them.
|
||||
*/
|
||||
export function useFilterableOutsideClick(props: UseOutsideClickProps) {
|
||||
const { ref, handler, enabled = true, filter = DEFAULT_FILTER } = props;
|
||||
const savedHandler = useCallbackRef(handler);
|
||||
|
||||
const stateRef = useRef({
|
||||
isPointerDown: false,
|
||||
ignoreEmulatedMouseEvents: false,
|
||||
});
|
||||
|
||||
const state = stateRef.current;
|
||||
|
||||
useEffect(() => {
|
||||
if (!enabled) {
|
||||
return;
|
||||
}
|
||||
const onPointerDown: any = (e: PointerEvent) => {
|
||||
if (isValidEvent(e, ref, filter)) {
|
||||
state.isPointerDown = true;
|
||||
}
|
||||
};
|
||||
|
||||
const onMouseUp: any = (event: MouseEvent) => {
|
||||
if (state.ignoreEmulatedMouseEvents) {
|
||||
state.ignoreEmulatedMouseEvents = false;
|
||||
return;
|
||||
}
|
||||
|
||||
if (state.isPointerDown && handler && isValidEvent(event, ref)) {
|
||||
state.isPointerDown = false;
|
||||
savedHandler(event);
|
||||
}
|
||||
};
|
||||
|
||||
const onTouchEnd = (event: TouchEvent) => {
|
||||
state.ignoreEmulatedMouseEvents = true;
|
||||
if (handler && state.isPointerDown && isValidEvent(event, ref)) {
|
||||
state.isPointerDown = false;
|
||||
savedHandler(event);
|
||||
}
|
||||
};
|
||||
|
||||
const doc = getOwnerDocument(ref.current);
|
||||
doc.addEventListener('mousedown', onPointerDown, true);
|
||||
doc.addEventListener('mouseup', onMouseUp, true);
|
||||
doc.addEventListener('touchstart', onPointerDown, true);
|
||||
doc.addEventListener('touchend', onTouchEnd, true);
|
||||
|
||||
return () => {
|
||||
doc.removeEventListener('mousedown', onPointerDown, true);
|
||||
doc.removeEventListener('mouseup', onMouseUp, true);
|
||||
doc.removeEventListener('touchstart', onPointerDown, true);
|
||||
doc.removeEventListener('touchend', onTouchEnd, true);
|
||||
};
|
||||
}, [handler, ref, savedHandler, state, enabled, filter]);
|
||||
}
|
||||
|
||||
function isValidEvent(event: Event, ref: React.RefObject<HTMLElement | null>, filter?: FilterFunction): boolean {
|
||||
const target = (event.composedPath?.()[0] ?? event.target) as HTMLElement;
|
||||
|
||||
if (target) {
|
||||
const doc = getOwnerDocument(target);
|
||||
if (!doc.contains(target)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (ref.current?.contains(target)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// This is the main logic change from the original hook.
|
||||
if (filter) {
|
||||
// Check if the click is inside an element matching the filter.
|
||||
// This is used for portal-awareness or other general exclusion cases.
|
||||
let currentElement: HTMLElement | null = target;
|
||||
// Traverse up the DOM tree from the target element.
|
||||
while (currentElement && currentElement !== document.body) {
|
||||
if (filter(currentElement)) {
|
||||
return false;
|
||||
}
|
||||
currentElement = currentElement.parentElement;
|
||||
}
|
||||
}
|
||||
|
||||
// If the click is not inside the ref and not inside a portal, it's a valid outside click.
|
||||
return true;
|
||||
}
|
||||
|
||||
function getOwnerDocument(node?: Element | null): Document {
|
||||
return node?.ownerDocument ?? document;
|
||||
}
|
||||
@@ -1,13 +1,17 @@
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useAppStore } from 'app/store/storeHooks';
|
||||
import { useDeleteImageModalApi } from 'features/deleteImageModal/store/state';
|
||||
import { selectSelection } from 'features/gallery/store/gallerySelectors';
|
||||
import { useClearQueue } from 'features/queue/hooks/useClearQueue';
|
||||
import { useDeleteCurrentQueueItem } from 'features/queue/hooks/useDeleteCurrentQueueItem';
|
||||
import { useInvoke } from 'features/queue/hooks/useInvoke';
|
||||
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { setActiveTab } from 'features/ui/store/uiSlice';
|
||||
import { navigationApi } from 'features/ui/layouts/navigation-api';
|
||||
|
||||
import { getFocusedRegion } from './focus';
|
||||
|
||||
export const useGlobalHotkeys = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { dispatch, getState } = useAppStore();
|
||||
const isModelManagerEnabled = useFeatureStatus('modelManager');
|
||||
const queue = useInvoke();
|
||||
|
||||
@@ -65,7 +69,7 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectGenerateTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('generate'));
|
||||
navigationApi.switchToTab('generate');
|
||||
},
|
||||
dependencies: [dispatch],
|
||||
});
|
||||
@@ -74,7 +78,7 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectCanvasTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('canvas'));
|
||||
navigationApi.switchToTab('canvas');
|
||||
},
|
||||
dependencies: [dispatch],
|
||||
});
|
||||
@@ -83,7 +87,7 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectUpscalingTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('upscaling'));
|
||||
navigationApi.switchToTab('upscaling');
|
||||
},
|
||||
dependencies: [dispatch],
|
||||
});
|
||||
@@ -92,7 +96,7 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectWorkflowsTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('workflows'));
|
||||
navigationApi.switchToTab('workflows');
|
||||
},
|
||||
dependencies: [dispatch],
|
||||
});
|
||||
@@ -101,7 +105,7 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectModelsTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('models'));
|
||||
navigationApi.switchToTab('models');
|
||||
},
|
||||
options: {
|
||||
enabled: isModelManagerEnabled,
|
||||
@@ -113,8 +117,26 @@ export const useGlobalHotkeys = () => {
|
||||
id: 'selectQueueTab',
|
||||
category: 'app',
|
||||
callback: () => {
|
||||
dispatch(setActiveTab('queue'));
|
||||
navigationApi.switchToTab('queue');
|
||||
},
|
||||
dependencies: [dispatch, isModelManagerEnabled],
|
||||
});
|
||||
|
||||
const deleteImageModalApi = useDeleteImageModalApi();
|
||||
useRegisteredHotkeys({
|
||||
id: 'deleteSelection',
|
||||
category: 'gallery',
|
||||
callback: () => {
|
||||
const focusedRegion = getFocusedRegion();
|
||||
if (focusedRegion !== 'gallery' && focusedRegion !== 'viewer') {
|
||||
return;
|
||||
}
|
||||
const selection = selectSelection(getState());
|
||||
if (!selection.length) {
|
||||
return;
|
||||
}
|
||||
deleteImageModalApi.delete(selection);
|
||||
},
|
||||
dependencies: [getState, deleteImageModalApi],
|
||||
});
|
||||
};
|
||||
|
||||
@@ -2,10 +2,10 @@ import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import type { GroupBase } from 'chakra-react-select';
|
||||
import { groupBy, reduce } from 'es-toolkit/compat';
|
||||
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
|
||||
import type { ModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { selectSystemShouldEnableModelDescriptions } from 'features/system/store/systemSlice';
|
||||
import { groupBy, reduce } from 'lodash-es';
|
||||
import { useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
|
||||
@@ -21,11 +21,15 @@ type UseImageUploadButtonArgs =
|
||||
isDisabled?: boolean;
|
||||
allowMultiple: false;
|
||||
onUpload?: (imageDTO: ImageDTO) => void;
|
||||
onUploadStarted?: (files: File) => void;
|
||||
onError?: (error: unknown) => void;
|
||||
}
|
||||
| {
|
||||
isDisabled?: boolean;
|
||||
allowMultiple: true;
|
||||
onUpload?: (imageDTOs: ImageDTO[]) => void;
|
||||
onUploadStarted?: (files: File[]) => void;
|
||||
onError?: (error: unknown) => void;
|
||||
};
|
||||
|
||||
const log = logger('gallery');
|
||||
@@ -49,7 +53,13 @@ const log = logger('gallery');
|
||||
* <Button {...getUploadButtonProps()} /> // will open the file dialog on click
|
||||
* <input {...getUploadInputProps()} /> // hidden, handles native upload functionality
|
||||
*/
|
||||
export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: UseImageUploadButtonArgs) => {
|
||||
export const useImageUploadButton = ({
|
||||
onUpload,
|
||||
isDisabled,
|
||||
allowMultiple,
|
||||
onUploadStarted,
|
||||
onError,
|
||||
}: UseImageUploadButtonArgs) => {
|
||||
const autoAddBoardId = useAppSelector(selectAutoAddBoardId);
|
||||
const isClientSideUploadEnabled = useAppSelector(selectIsClientSideUploadEnabled);
|
||||
const [uploadImage, request] = useUploadImageMutation();
|
||||
@@ -71,6 +81,7 @@ export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: Us
|
||||
}
|
||||
const file = files[0];
|
||||
assert(file !== undefined); // should never happen
|
||||
onUploadStarted?.(file);
|
||||
const imageDTO = await uploadImage({
|
||||
file,
|
||||
image_category: 'user',
|
||||
@@ -82,6 +93,8 @@ export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: Us
|
||||
onUpload(imageDTO);
|
||||
}
|
||||
} else {
|
||||
onUploadStarted?.(files);
|
||||
|
||||
let imageDTOs: ImageDTO[] = [];
|
||||
if (isClientSideUploadEnabled && files.length > 1) {
|
||||
imageDTOs = await Promise.all(files.map((file, i) => clientSideUpload(file, i)));
|
||||
@@ -102,6 +115,7 @@ export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: Us
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
onError?.(error);
|
||||
toast({
|
||||
id: 'UPLOAD_FAILED',
|
||||
title: t('toast.imageUploadFailed'),
|
||||
@@ -109,7 +123,17 @@ export const useImageUploadButton = ({ onUpload, isDisabled, allowMultiple }: Us
|
||||
});
|
||||
}
|
||||
},
|
||||
[allowMultiple, autoAddBoardId, onUpload, uploadImage, isClientSideUploadEnabled, clientSideUpload, t]
|
||||
[
|
||||
allowMultiple,
|
||||
onUploadStarted,
|
||||
uploadImage,
|
||||
autoAddBoardId,
|
||||
onUpload,
|
||||
isClientSideUploadEnabled,
|
||||
clientSideUpload,
|
||||
onError,
|
||||
t,
|
||||
]
|
||||
);
|
||||
|
||||
const onDropRejected = useCallback(
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { useAppStore } from 'app/store/nanostores/store';
|
||||
import { useAppStore } from 'app/store/storeHooks';
|
||||
import { debounce } from 'es-toolkit/compat';
|
||||
import type { Dimensions } from 'features/controlLayers/store/types';
|
||||
import { selectUiSlice, textAreaSizesStateChanged } from 'features/ui/store/uiSlice';
|
||||
import { debounce } from 'lodash-es';
|
||||
import { type RefObject, useCallback, useEffect, useMemo } from 'react';
|
||||
|
||||
type Options = {
|
||||
|
||||
@@ -1,132 +0,0 @@
|
||||
import type { ComboboxOnChange, ComboboxOption } from '@invoke-ai/ui-library';
|
||||
import { EMPTY_ARRAY } from 'app/store/constants';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import type { GroupBase } from 'chakra-react-select';
|
||||
import { selectLoRAsSlice } from 'features/controlLayers/store/lorasSlice';
|
||||
import { selectParamsSlice } from 'features/controlLayers/store/paramsSlice';
|
||||
import type { ModelIdentifierField } from 'features/nodes/types/common';
|
||||
import { uniq } from 'lodash-es';
|
||||
import { useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useGetRelatedModelIdsBatchQuery } from 'services/api/endpoints/modelRelationships';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
|
||||
import { useGroupedModelCombobox } from './useGroupedModelCombobox';
|
||||
|
||||
type UseRelatedGroupedModelComboboxArg<T extends AnyModelConfig> = {
|
||||
modelConfigs: T[];
|
||||
selectedModel?: ModelIdentifierField | null;
|
||||
onChange: (value: T | null) => void;
|
||||
getIsDisabled?: (model: T) => boolean;
|
||||
isLoading?: boolean;
|
||||
groupByType?: boolean;
|
||||
};
|
||||
|
||||
// Custom hook to overlay the grouped model combobox with related models on top!
|
||||
// Cleaner than hooking into useGroupedModelCombobox with a flag to enable/disable the related models
|
||||
// Also allows for related models to be shown conditionally with some pretty simple logic if it ends up as a config flag.
|
||||
|
||||
type UseRelatedGroupedModelComboboxReturn = {
|
||||
value: ComboboxOption | undefined | null;
|
||||
options: GroupBase<ComboboxOption>[];
|
||||
onChange: ComboboxOnChange;
|
||||
placeholder: string;
|
||||
noOptionsMessage: () => string;
|
||||
};
|
||||
|
||||
const selectSelectedModelKeys = createMemoizedSelector(selectParamsSlice, selectLoRAsSlice, (params, loras) => {
|
||||
const keys: string[] = [];
|
||||
const main = params.model;
|
||||
const vae = params.vae;
|
||||
const refiner = params.refinerModel;
|
||||
const controlnet = params.controlLora;
|
||||
|
||||
if (main) {
|
||||
keys.push(main.key);
|
||||
}
|
||||
if (vae) {
|
||||
keys.push(vae.key);
|
||||
}
|
||||
if (refiner) {
|
||||
keys.push(refiner.key);
|
||||
}
|
||||
if (controlnet) {
|
||||
keys.push(controlnet.key);
|
||||
}
|
||||
for (const { model } of loras.loras) {
|
||||
keys.push(model.key);
|
||||
}
|
||||
|
||||
return uniq(keys);
|
||||
});
|
||||
|
||||
export function useRelatedGroupedModelCombobox<T extends AnyModelConfig>({
|
||||
modelConfigs,
|
||||
selectedModel,
|
||||
onChange,
|
||||
isLoading = false,
|
||||
getIsDisabled,
|
||||
groupByType,
|
||||
}: UseRelatedGroupedModelComboboxArg<T>): UseRelatedGroupedModelComboboxReturn {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const selectedKeys = useAppSelector(selectSelectedModelKeys);
|
||||
const { relatedKeys } = useGetRelatedModelIdsBatchQuery(selectedKeys, {
|
||||
selectFromResult: ({ data }) => {
|
||||
if (!data) {
|
||||
return { relatedKeys: EMPTY_ARRAY };
|
||||
}
|
||||
return { relatedKeys: data };
|
||||
},
|
||||
});
|
||||
|
||||
// Base grouped options
|
||||
const base = useGroupedModelCombobox({
|
||||
modelConfigs,
|
||||
selectedModel,
|
||||
onChange,
|
||||
getIsDisabled,
|
||||
isLoading,
|
||||
groupByType,
|
||||
});
|
||||
|
||||
const options = useMemo(() => {
|
||||
if (relatedKeys.length === 0) {
|
||||
return base.options;
|
||||
}
|
||||
|
||||
const relatedOptions: ComboboxOption[] = [];
|
||||
const updatedGroups: GroupBase<ComboboxOption>[] = [];
|
||||
|
||||
for (const group of base.options) {
|
||||
const remainingOptions: ComboboxOption[] = [];
|
||||
|
||||
for (const option of group.options) {
|
||||
if (relatedKeys.includes(option.value)) {
|
||||
relatedOptions.push({ ...option, label: `* ${option.label}` });
|
||||
} else {
|
||||
remainingOptions.push(option);
|
||||
}
|
||||
}
|
||||
|
||||
if (remainingOptions.length > 0) {
|
||||
updatedGroups.push({
|
||||
label: group.label,
|
||||
options: remainingOptions,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
if (relatedOptions.length > 0) {
|
||||
return [{ label: t('modelManager.relatedModels'), options: relatedOptions }, ...updatedGroups];
|
||||
} else {
|
||||
return updatedGroups;
|
||||
}
|
||||
}, [base.options, relatedKeys, t]);
|
||||
|
||||
return {
|
||||
...base,
|
||||
options,
|
||||
};
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
import type { Selector } from '@reduxjs/toolkit';
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { useAppStore } from 'app/store/storeHooks';
|
||||
import type { Atom, WritableAtom } from 'nanostores';
|
||||
import { atom } from 'nanostores';
|
||||
import { useEffect, useState } from 'react';
|
||||
|
||||
/* eslint-disable-next-line @typescript-eslint/no-explicit-any */
|
||||
export const useSelectorAsAtom = <T extends Selector<RootState, any>>(selector: T): Atom<ReturnType<T>> => {
|
||||
const store = useAppStore();
|
||||
const $atom = useState<WritableAtom<ReturnType<T>>>(() => atom<ReturnType<T>>(selector(store.getState())))[0];
|
||||
|
||||
useEffect(() => {
|
||||
const unsubscribe = store.subscribe(() => {
|
||||
const prev = $atom.get();
|
||||
const next = selector(store.getState());
|
||||
if (prev !== next) {
|
||||
$atom.set(next);
|
||||
}
|
||||
});
|
||||
|
||||
return () => {
|
||||
unsubscribe();
|
||||
};
|
||||
}, [$atom, selector, store]);
|
||||
|
||||
return $atom;
|
||||
};
|
||||
@@ -0,0 +1,20 @@
|
||||
export type Deferred<T> = {
|
||||
promise: Promise<T>;
|
||||
resolve: (value: T) => void;
|
||||
reject: (error: Error) => void;
|
||||
};
|
||||
|
||||
/**
|
||||
* Create a promise and expose its resolve and reject callbacks.
|
||||
*/
|
||||
export const createDeferredPromise = <T>(): Deferred<T> => {
|
||||
let resolve!: (value: T) => void;
|
||||
let reject!: (error: Error) => void;
|
||||
|
||||
const promise = new Promise<T>((res, rej) => {
|
||||
resolve = res;
|
||||
reject = rej;
|
||||
});
|
||||
|
||||
return { promise, resolve, reject };
|
||||
};
|
||||
@@ -1,5 +1,5 @@
|
||||
import { NUMPY_RAND_MAX, NUMPY_RAND_MIN } from 'app/constants';
|
||||
import { random } from 'lodash-es';
|
||||
import { random } from 'es-toolkit/compat';
|
||||
|
||||
type GenerateSeedsArg = {
|
||||
count: number;
|
||||
|
||||
@@ -1,6 +0,0 @@
|
||||
/**
|
||||
* Get the keys of an object. This is a wrapper around `Object.keys` that types the result as an array of the keys of the object.
|
||||
* @param obj The object to get the keys of.
|
||||
* @returns The keys of the object.
|
||||
*/
|
||||
export const objectKeys = <T extends Record<string, unknown>>(obj: T) => Object.keys(obj) as Array<keyof T>;
|
||||
@@ -89,7 +89,7 @@ export function withResult<T>(fn: () => T): Result<T> {
|
||||
try {
|
||||
return new Ok(fn());
|
||||
} catch (error) {
|
||||
return new Err(error instanceof Error ? error : new Error(String(error)));
|
||||
return new Err(error instanceof Error ? error : new WrappedError(error));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -104,6 +104,23 @@ export async function withResultAsync<T>(fn: () => Promise<T>): Promise<Result<T
|
||||
const result = await fn();
|
||||
return new Ok(result);
|
||||
} catch (error) {
|
||||
return new Err(error instanceof Error ? error : new Error(String(error)));
|
||||
return new Err(error instanceof Error ? error : new WrappedError(error));
|
||||
}
|
||||
}
|
||||
|
||||
export class WrappedError extends Error {
|
||||
error: unknown;
|
||||
|
||||
constructor(error: unknown) {
|
||||
super('Wrapped Error');
|
||||
this.name = this.constructor.name;
|
||||
this.error = error;
|
||||
}
|
||||
|
||||
static wrap(error: unknown): Error | WrappedError {
|
||||
if (error instanceof Error) {
|
||||
return error;
|
||||
}
|
||||
return new WrappedError(error);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import type { z } from 'zod';
|
||||
import type { z } from 'zod/v4';
|
||||
|
||||
/**
|
||||
* Helper to create a type guard from a zod schema. The type guard will infer the schema's TS type.
|
||||
|
||||
@@ -1,182 +0,0 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import {
|
||||
ContextMenu,
|
||||
Divider,
|
||||
Flex,
|
||||
IconButton,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuList,
|
||||
Tab,
|
||||
TabList,
|
||||
TabPanel,
|
||||
TabPanels,
|
||||
Tabs,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { FocusRegionWrapper } from 'common/components/FocusRegionWrapper';
|
||||
import { CanvasAlertsInvocationProgress } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsInvocationProgress';
|
||||
import { CanvasAlertsPreserveMask } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsPreserveMask';
|
||||
import { CanvasAlertsSelectedEntityStatus } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsSelectedEntityStatus';
|
||||
import { CanvasContextMenuGlobalMenuItems } from 'features/controlLayers/components/CanvasContextMenu/CanvasContextMenuGlobalMenuItems';
|
||||
import { CanvasContextMenuSelectedEntityMenuItems } from 'features/controlLayers/components/CanvasContextMenu/CanvasContextMenuSelectedEntityMenuItems';
|
||||
import { CanvasDropArea } from 'features/controlLayers/components/CanvasDropArea';
|
||||
import { Filter } from 'features/controlLayers/components/Filters/Filter';
|
||||
import { CanvasHUD } from 'features/controlLayers/components/HUD/CanvasHUD';
|
||||
import { InvokeCanvasComponent } from 'features/controlLayers/components/InvokeCanvasComponent';
|
||||
import { SelectObject } from 'features/controlLayers/components/SelectObject/SelectObject';
|
||||
import { CanvasSessionContextProvider } from 'features/controlLayers/components/SimpleSession/context';
|
||||
import { GenerateLaunchpadPanel } from 'features/controlLayers/components/SimpleSession/GenerateLaunchpadPanel';
|
||||
import { StagingAreaItemsList } from 'features/controlLayers/components/SimpleSession/StagingAreaItemsList';
|
||||
import { StagingAreaToolbar } from 'features/controlLayers/components/StagingArea/StagingAreaToolbar';
|
||||
import { CanvasToolbar } from 'features/controlLayers/components/Toolbar/CanvasToolbar';
|
||||
import { Transform } from 'features/controlLayers/components/Transform/Transform';
|
||||
import { CanvasManagerProviderGate } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { selectDynamicGrid, selectShowHUD } from 'features/controlLayers/store/canvasSettingsSlice';
|
||||
import { ImageViewer } from 'features/gallery/components/ImageViewer/ImageViewer';
|
||||
import { ViewerToolbar } from 'features/gallery/components/ImageViewer/ViewerToolbar';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { PiDotsThreeOutlineVerticalFill } from 'react-icons/pi';
|
||||
|
||||
const FOCUS_REGION_STYLES: SystemStyleObject = {
|
||||
width: 'full',
|
||||
height: 'full',
|
||||
};
|
||||
|
||||
const MenuContent = memo(() => {
|
||||
return (
|
||||
<CanvasManagerProviderGate>
|
||||
<MenuList>
|
||||
<CanvasContextMenuSelectedEntityMenuItems />
|
||||
<CanvasContextMenuGlobalMenuItems />
|
||||
</MenuList>
|
||||
</CanvasManagerProviderGate>
|
||||
);
|
||||
});
|
||||
MenuContent.displayName = 'MenuContent';
|
||||
|
||||
const canvasBgSx = {
|
||||
position: 'relative',
|
||||
w: 'full',
|
||||
h: 'full',
|
||||
borderRadius: 'base',
|
||||
overflow: 'hidden',
|
||||
bg: 'base.900',
|
||||
'&[data-dynamic-grid="true"]': {
|
||||
bg: 'base.850',
|
||||
},
|
||||
};
|
||||
|
||||
export const AdvancedSession = memo(({ id }: { id: string | null }) => {
|
||||
const dynamicGrid = useAppSelector(selectDynamicGrid);
|
||||
const showHUD = useAppSelector(selectShowHUD);
|
||||
|
||||
const renderMenu = useCallback(() => {
|
||||
return <MenuContent />;
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<Tabs w="full" h="full">
|
||||
<TabList>
|
||||
<Tab>Welcome</Tab>
|
||||
<Tab>Workspace</Tab>
|
||||
<Tab>Viewer</Tab>
|
||||
</TabList>
|
||||
<TabPanels w="full" h="full">
|
||||
<TabPanel w="full" h="full" justifyContent="center">
|
||||
<GenerateLaunchpadPanel />
|
||||
</TabPanel>
|
||||
<TabPanel w="full" h="full">
|
||||
<FocusRegionWrapper region="canvas" sx={FOCUS_REGION_STYLES}>
|
||||
<Flex
|
||||
tabIndex={-1}
|
||||
borderRadius="base"
|
||||
position="relative"
|
||||
flexDirection="column"
|
||||
height="full"
|
||||
width="full"
|
||||
gap={2}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
overflow="hidden"
|
||||
>
|
||||
<CanvasManagerProviderGate>
|
||||
<CanvasToolbar />
|
||||
</CanvasManagerProviderGate>
|
||||
<Divider />
|
||||
<ContextMenu<HTMLDivElement> renderMenu={renderMenu} withLongPress={false}>
|
||||
{(ref) => (
|
||||
<Flex ref={ref} sx={canvasBgSx} data-dynamic-grid={dynamicGrid}>
|
||||
<InvokeCanvasComponent />
|
||||
<CanvasManagerProviderGate>
|
||||
<Flex
|
||||
position="absolute"
|
||||
flexDir="column"
|
||||
top={1}
|
||||
insetInlineStart={1}
|
||||
pointerEvents="none"
|
||||
gap={2}
|
||||
alignItems="flex-start"
|
||||
>
|
||||
{showHUD && <CanvasHUD />}
|
||||
<CanvasAlertsSelectedEntityStatus />
|
||||
<CanvasAlertsPreserveMask />
|
||||
<CanvasAlertsInvocationProgress />
|
||||
</Flex>
|
||||
<Flex position="absolute" top={1} insetInlineEnd={1}>
|
||||
<Menu>
|
||||
<MenuButton as={IconButton} icon={<PiDotsThreeOutlineVerticalFill />} colorScheme="base" />
|
||||
<MenuContent />
|
||||
</Menu>
|
||||
</Flex>
|
||||
</CanvasManagerProviderGate>
|
||||
</Flex>
|
||||
)}
|
||||
</ContextMenu>
|
||||
{id !== null && (
|
||||
<CanvasManagerProviderGate>
|
||||
<CanvasSessionContextProvider type="advanced" id={id}>
|
||||
<Flex
|
||||
position="absolute"
|
||||
flexDir="column"
|
||||
bottom={4}
|
||||
gap={2}
|
||||
align="center"
|
||||
justify="center"
|
||||
left={4}
|
||||
right={4}
|
||||
>
|
||||
<Flex position="relative" maxW="full" w="full" h={108}>
|
||||
<StagingAreaItemsList />
|
||||
</Flex>
|
||||
<Flex gap={2}>
|
||||
<StagingAreaToolbar />
|
||||
</Flex>
|
||||
</Flex>
|
||||
</CanvasSessionContextProvider>
|
||||
</CanvasManagerProviderGate>
|
||||
)}
|
||||
<Flex position="absolute" bottom={4}>
|
||||
<CanvasManagerProviderGate>
|
||||
<Filter />
|
||||
<Transform />
|
||||
<SelectObject />
|
||||
</CanvasManagerProviderGate>
|
||||
</Flex>
|
||||
<CanvasManagerProviderGate>
|
||||
<CanvasDropArea />
|
||||
</CanvasManagerProviderGate>
|
||||
</Flex>
|
||||
</FocusRegionWrapper>
|
||||
</TabPanel>
|
||||
<TabPanel w="full" h="full">
|
||||
<Flex flexDir="column" w="full" h="full">
|
||||
<ViewerToolbar />
|
||||
<ImageViewer />
|
||||
</Flex>
|
||||
</TabPanel>
|
||||
</TabPanels>
|
||||
</Tabs>
|
||||
);
|
||||
});
|
||||
AdvancedSession.displayName = 'AdvancedSession';
|
||||
@@ -1,3 +1,4 @@
|
||||
import type { SpinnerProps } from '@invoke-ai/ui-library';
|
||||
import { Spinner } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
@@ -5,7 +6,7 @@ import { useAllEntityAdapters } from 'features/controlLayers/contexts/EntityAdap
|
||||
import { computed } from 'nanostores';
|
||||
import { memo, useMemo } from 'react';
|
||||
|
||||
export const CanvasBusySpinner = memo(() => {
|
||||
export const CanvasBusySpinner = memo((props: SpinnerProps) => {
|
||||
const canvasManager = useCanvasManager();
|
||||
const allEntityAdapters = useAllEntityAdapters();
|
||||
const $isPendingRectCalculation = useMemo(
|
||||
@@ -21,7 +22,7 @@ export const CanvasBusySpinner = memo(() => {
|
||||
const isCompositing = useStore(canvasManager.compositor.$isBusy);
|
||||
|
||||
if (isRasterizing || isCompositing || isPendingRectCalculation) {
|
||||
return <Spinner opacity={0.3} />;
|
||||
return <Spinner opacity={0.3} {...props} />;
|
||||
}
|
||||
return null;
|
||||
});
|
||||
|
||||
@@ -12,6 +12,10 @@ const addControlLayerFromImageDndTargetData = newCanvasEntityFromImageDndTarget.
|
||||
const addRegionalGuidanceReferenceImageFromImageDndTargetData = newCanvasEntityFromImageDndTarget.getData({
|
||||
type: 'regional_guidance_with_reference_image',
|
||||
});
|
||||
const addResizedControlLayerFromImageDndTargetData = newCanvasEntityFromImageDndTarget.getData({
|
||||
type: 'control_layer',
|
||||
withResize: true,
|
||||
});
|
||||
|
||||
export const CanvasDropArea = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
@@ -45,7 +49,6 @@ export const CanvasDropArea = memo(() => {
|
||||
isDisabled={isBusy}
|
||||
/>
|
||||
</GridItem>
|
||||
|
||||
<GridItem position="relative">
|
||||
<DndDropTarget
|
||||
dndTarget={newCanvasEntityFromImageDndTarget}
|
||||
@@ -54,6 +57,14 @@ export const CanvasDropArea = memo(() => {
|
||||
isDisabled={isBusy}
|
||||
/>
|
||||
</GridItem>
|
||||
<GridItem position="relative">
|
||||
<DndDropTarget
|
||||
dndTarget={newCanvasEntityFromImageDndTarget}
|
||||
dndTargetData={addResizedControlLayerFromImageDndTargetData}
|
||||
label={t('controlLayers.canvasContextMenu.newResizedControlLayer')}
|
||||
isDisabled={isBusy}
|
||||
/>
|
||||
</GridItem>
|
||||
</Grid>
|
||||
</>
|
||||
);
|
||||
|
||||
@@ -10,6 +10,7 @@ import { fixTooltipCloseOnScrollStyles } from 'common/util/fixTooltipCloseOnScro
|
||||
import { CanvasEntityAddOfTypeButton } from 'features/controlLayers/components/common/CanvasEntityAddOfTypeButton';
|
||||
import { CanvasEntityMergeVisibleButton } from 'features/controlLayers/components/common/CanvasEntityMergeVisibleButton';
|
||||
import { CanvasEntityTypeIsHiddenToggle } from 'features/controlLayers/components/common/CanvasEntityTypeIsHiddenToggle';
|
||||
import { RasterLayerExportPSDButton } from 'features/controlLayers/components/RasterLayer/RasterLayerExportPSDButton';
|
||||
import { useEntityTypeInformationalPopover } from 'features/controlLayers/hooks/useEntityTypeInformationalPopover';
|
||||
import { useEntityTypeTitle } from 'features/controlLayers/hooks/useEntityTypeTitle';
|
||||
import { entitiesReordered } from 'features/controlLayers/store/canvasSlice';
|
||||
@@ -118,7 +119,7 @@ export const CanvasEntityGroupList = memo(({ isSelected, type, children, entityI
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" w="full">
|
||||
<Flex w="full">
|
||||
<Flex w="full" ps={2}>
|
||||
<Flex
|
||||
flexGrow={1}
|
||||
as={Button}
|
||||
@@ -166,6 +167,7 @@ export const CanvasEntityGroupList = memo(({ isSelected, type, children, entityI
|
||||
</Flex>
|
||||
<CanvasEntityMergeVisibleButton type={type} />
|
||||
<CanvasEntityTypeIsHiddenToggle type={type} />
|
||||
{type === 'raster_layer' && <RasterLayerExportPSDButton />}
|
||||
<CanvasEntityAddOfTypeButton type={type} />
|
||||
</Flex>
|
||||
<Collapse in={collapse.isTrue} style={fixTooltipCloseOnScrollStyles}>
|
||||
|
||||
@@ -6,6 +6,7 @@ import { EntityListSelectedEntityActionBarFilterButton } from 'features/controlL
|
||||
import { EntityListSelectedEntityActionBarOpacity } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarOpacity';
|
||||
import { EntityListSelectedEntityActionBarSelectObjectButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarSelectObjectButton';
|
||||
import { EntityListSelectedEntityActionBarTransformButton } from 'features/controlLayers/components/CanvasEntityList/EntityListSelectedEntityActionBarTransformButton';
|
||||
import { EntityListNonRasterLayerToggle } from 'features/controlLayers/components/common/CanvasNonRasterLayersIsHiddenToggle';
|
||||
import { memo } from 'react';
|
||||
|
||||
import { EntityListSelectedEntityActionBarSaveToAssetsButton } from './EntityListSelectedEntityActionBarSaveToAssetsButton';
|
||||
@@ -22,6 +23,7 @@ export const EntityListSelectedEntityActionBar = memo(() => {
|
||||
<EntityListSelectedEntityActionBarTransformButton />
|
||||
<EntityListSelectedEntityActionBarSaveToAssetsButton />
|
||||
<EntityListSelectedEntityActionBarDuplicateButton />
|
||||
<EntityListNonRasterLayerToggle />
|
||||
<EntityListGlobalActionBarAddLayerMenu />
|
||||
</Flex>
|
||||
</Flex>
|
||||
|
||||
@@ -15,6 +15,7 @@ import {
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { clamp, round } from 'es-toolkit/compat';
|
||||
import { snapToNearest } from 'features/controlLayers/konva/util';
|
||||
import { entityOpacityChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import {
|
||||
@@ -22,7 +23,6 @@ import {
|
||||
selectEntity,
|
||||
selectSelectedEntityIdentifier,
|
||||
} from 'features/controlLayers/store/selectors';
|
||||
import { clamp, round } from 'lodash-es';
|
||||
import type { KeyboardEvent } from 'react';
|
||||
import { memo, useCallback, useEffect, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@@ -14,7 +14,7 @@ export const CanvasLayersPanel = memo(() => {
|
||||
|
||||
return (
|
||||
<CanvasManagerProviderGate>
|
||||
<Flex flexDir="column" gap={2} w="full" h="full" p={2}>
|
||||
<Flex flexDir="column" gap={2} w="full" h="full">
|
||||
<EntityListSelectedEntityActionBar />
|
||||
<Divider py={0} />
|
||||
<ParamDenoisingStrength />
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user