mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-20 00:18:05 -05:00
Compare commits
315 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b1b009f7b8 | ||
|
|
3431e6385c | ||
|
|
5db1027d32 | ||
|
|
579f182fe9 | ||
|
|
55bf41f63f | ||
|
|
fc32fd2d2e | ||
|
|
a2b6536078 | ||
|
|
144c54a6c8 | ||
|
|
ca40daeb97 | ||
|
|
e600cdc826 | ||
|
|
b7c52f33dc | ||
|
|
e78157fcf0 | ||
|
|
7d7b98249f | ||
|
|
f5bf84f304 | ||
|
|
c30d5bece2 | ||
|
|
27845b2f1b | ||
|
|
bad6eea077 | ||
|
|
9c26ac5ce3 | ||
|
|
b7306bb5c9 | ||
|
|
0c115177b2 | ||
|
|
5aae41b5bb | ||
|
|
7ad09a2f79 | ||
|
|
5a6d3639b7 | ||
|
|
84617d3df2 | ||
|
|
e05f30749e | ||
|
|
88a2e27338 | ||
|
|
15a6fd76c8 | ||
|
|
6adb46a86c | ||
|
|
e8a74eb79d | ||
|
|
dcd716c384 | ||
|
|
56697635dd | ||
|
|
5b5657e292 | ||
|
|
ad3dfbe1ed | ||
|
|
59ddc4f7b0 | ||
|
|
4653b79f12 | ||
|
|
778d6f167f | ||
|
|
05c71f50f1 | ||
|
|
406e0be39c | ||
|
|
0d71234a12 | ||
|
|
e38019bb70 | ||
|
|
a879880b42 | ||
|
|
71c8accbfe | ||
|
|
154fb99daf | ||
|
|
0df476ce13 | ||
|
|
e7ad830fa9 | ||
|
|
e81e0a8286 | ||
|
|
d0f7e72cbb | ||
|
|
fdead4fb8c | ||
|
|
31c9945b32 | ||
|
|
22de8a4b12 | ||
|
|
89cb3c3230 | ||
|
|
7bb99ece4e | ||
|
|
28f040123f | ||
|
|
1be3a4db64 | ||
|
|
cb44c995d2 | ||
|
|
9b9b35c315 | ||
|
|
f6edab6032 | ||
|
|
f79665b023 | ||
|
|
6b1bc7a87d | ||
|
|
c6f2994c84 | ||
|
|
0cff67ff23 | ||
|
|
e957c11c9a | ||
|
|
4baa685c7a | ||
|
|
1bd5907a12 | ||
|
|
2fd56e6029 | ||
|
|
b0548edc8c | ||
|
|
41d781176f | ||
|
|
8709de0b33 | ||
|
|
af43fe2fd4 | ||
|
|
ebbb11c3b1 | ||
|
|
0fc8c08da3 | ||
|
|
bfadcffe3c | ||
|
|
49c2332c13 | ||
|
|
dacef158c4 | ||
|
|
0c34d8201e | ||
|
|
77132075ff | ||
|
|
f008d3b0b2 | ||
|
|
4e66ccefe8 | ||
|
|
5d0ed45326 | ||
|
|
379d633ac6 | ||
|
|
93bba1b692 | ||
|
|
667e175ab7 | ||
|
|
de146aa4aa | ||
|
|
ed9c2c8208 | ||
|
|
9d984878f3 | ||
|
|
585eb8c69d | ||
|
|
c105bae127 | ||
|
|
c39f26266f | ||
|
|
47dffd123a | ||
|
|
b946ec3172 | ||
|
|
024c02329d | ||
|
|
4b43b59472 | ||
|
|
d11f115e1a | ||
|
|
92253ce854 | ||
|
|
0ebbfa90c9 | ||
|
|
fdfee11e37 | ||
|
|
6091bf4f60 | ||
|
|
07271ca468 | ||
|
|
3971382a6d | ||
|
|
0d827d8306 | ||
|
|
ec793cb636 | ||
|
|
e4f24c4dc4 | ||
|
|
a6b0581939 | ||
|
|
2a6cfde488 | ||
|
|
8c2e6a3988 | ||
|
|
0b05b24e9a | ||
|
|
842d729ec8 | ||
|
|
8642e8881d | ||
|
|
239fb86a46 | ||
|
|
269d4fe670 | ||
|
|
20813b5615 | ||
|
|
36c16d2781 | ||
|
|
3ae99df091 | ||
|
|
431fd83a43 | ||
|
|
ab41f71a36 | ||
|
|
1f526a1c27 | ||
|
|
8a60def51f | ||
|
|
4845d31857 | ||
|
|
0de5097207 | ||
|
|
505c75a5ab | ||
|
|
4c32b2a123 | ||
|
|
b2ed3c99d4 | ||
|
|
8eb3f40e1b | ||
|
|
9fcba3b876 | ||
|
|
5cabc37a87 | ||
|
|
c5a76806c1 | ||
|
|
bc6dd12083 | ||
|
|
41e1697e79 | ||
|
|
378f33bc92 | ||
|
|
1bf25fadb3 | ||
|
|
6a20271dba | ||
|
|
e36490c2ec | ||
|
|
d4378d9f2a | ||
|
|
1cc6893d0d | ||
|
|
b16d1a943d | ||
|
|
6c375b228e | ||
|
|
23cde86bc4 | ||
|
|
c6f2d127ef | ||
|
|
fb0a924918 | ||
|
|
2d9c82da85 | ||
|
|
7e031e9c01 | ||
|
|
26fe937d97 | ||
|
|
55139bb169 | ||
|
|
6a7fe6668b | ||
|
|
f5fdba795a | ||
|
|
84dc4e4ea9 | ||
|
|
24f22d539f | ||
|
|
89efe9c2b1 | ||
|
|
fbf8aa17c8 | ||
|
|
e55d39a20b | ||
|
|
3a1cedbced | ||
|
|
3d9889e272 | ||
|
|
b2026d9c00 | ||
|
|
f631b5178f | ||
|
|
8df3067599 | ||
|
|
b377b80446 | ||
|
|
7828102b67 | ||
|
|
1b0d599dc2 | ||
|
|
aa4e3adadb | ||
|
|
637d19c22b | ||
|
|
45b4432833 | ||
|
|
b71829a827 | ||
|
|
d95a698ebd | ||
|
|
49d569ec59 | ||
|
|
6ef1c2a5e1 | ||
|
|
0ec6d33086 | ||
|
|
64dfa125d2 | ||
|
|
67042e6dec | ||
|
|
a918198d4f | ||
|
|
288ac0a293 | ||
|
|
963c2ec60c | ||
|
|
79e8482b27 | ||
|
|
f98bbc32dd | ||
|
|
9380d8901c | ||
|
|
67de3f2d9b | ||
|
|
530d20c1be | ||
|
|
4d8bcad15b | ||
|
|
5c93e53195 | ||
|
|
e9c4e12454 | ||
|
|
295b5a20a8 | ||
|
|
eff9c7b92f | ||
|
|
07565d4015 | ||
|
|
94ba840948 | ||
|
|
bd251f8cce | ||
|
|
97719b0aab | ||
|
|
e89266bfe3 | ||
|
|
453ef1a220 | ||
|
|
faf8f0f291 | ||
|
|
5d36499982 | ||
|
|
151d67a0cc | ||
|
|
72431ff197 | ||
|
|
0de1feed76 | ||
|
|
7ffb626dbe | ||
|
|
79753289b1 | ||
|
|
bac4c05fd9 | ||
|
|
8a3b5d2c6f | ||
|
|
309578c19a | ||
|
|
fd58e1d0f2 | ||
|
|
04ffb979ce | ||
|
|
35c00d5a83 | ||
|
|
c2b49d58f5 | ||
|
|
6ff6b40a35 | ||
|
|
1f1beda567 | ||
|
|
91d62eb242 | ||
|
|
013e02d08b | ||
|
|
115053972c | ||
|
|
bcab754ac2 | ||
|
|
f1a542aca2 | ||
|
|
0701cc63a1 | ||
|
|
9337710b45 | ||
|
|
592ef5a9ee | ||
|
|
5fe39a3ae9 | ||
|
|
1888c586ca | ||
|
|
88922a467e | ||
|
|
84115e598c | ||
|
|
370fc67777 | ||
|
|
fa810e1d02 | ||
|
|
ec5043aa83 | ||
|
|
9a2a0cef74 | ||
|
|
c205c1d19e | ||
|
|
ae1a815453 | ||
|
|
687bc281e5 | ||
|
|
567316d753 | ||
|
|
53ac7c9d2c | ||
|
|
90be2a0cdf | ||
|
|
c7fb8f69ae | ||
|
|
7fecb8e88b | ||
|
|
ee6a2a6603 | ||
|
|
2496ac19c4 | ||
|
|
e34ed199c9 | ||
|
|
569533ef80 | ||
|
|
dfac73f9f0 | ||
|
|
f4219d5db3 | ||
|
|
04d1958e93 | ||
|
|
47d7d93e78 | ||
|
|
0e17950949 | ||
|
|
b0cfdc94b5 | ||
|
|
bb153b55d3 | ||
|
|
93ef637d59 | ||
|
|
c5689ca1a7 | ||
|
|
008e421ad4 | ||
|
|
28a77ab06c | ||
|
|
be48d3c12d | ||
|
|
518b21a49a | ||
|
|
68825ca9eb | ||
|
|
73c5f0b479 | ||
|
|
7b4e04cd7c | ||
|
|
ae4368fabe | ||
|
|
df8e39a9e1 | ||
|
|
45b43de571 | ||
|
|
6d18a72a05 | ||
|
|
af58a75e97 | ||
|
|
fd4c3bd27a | ||
|
|
1f8a60ded2 | ||
|
|
b1b677997d | ||
|
|
f17b43d736 | ||
|
|
c009a50489 | ||
|
|
97a16c455c | ||
|
|
a8a07598c8 | ||
|
|
23206e22e8 | ||
|
|
f4aba52b90 | ||
|
|
d17c273939 | ||
|
|
aeb5e7d50a | ||
|
|
580ad30832 | ||
|
|
6390f7d734 | ||
|
|
5ddbfefb6a | ||
|
|
bbf5ed7956 | ||
|
|
19cd6eed08 | ||
|
|
9c1eb263a8 | ||
|
|
75755189a7 | ||
|
|
a9ab72d27d | ||
|
|
678eb34995 | ||
|
|
ef7050f560 | ||
|
|
9787d9de74 | ||
|
|
bb4a50bab2 | ||
|
|
f3554b4e1b | ||
|
|
9dcb025241 | ||
|
|
ecf646066a | ||
|
|
3fd10b68cd | ||
|
|
6e32c7993c | ||
|
|
8329533848 | ||
|
|
fc7157b029 | ||
|
|
a1897f7490 | ||
|
|
a89b3efd14 | ||
|
|
5259693ed1 | ||
|
|
d77c24206d | ||
|
|
c5069557f3 | ||
|
|
9b220f61bd | ||
|
|
7fc3af12cc | ||
|
|
e2721b46b6 | ||
|
|
17118a04bd | ||
|
|
24788e3c83 | ||
|
|
056387c981 | ||
|
|
8a43d90273 | ||
|
|
4f9b9760db | ||
|
|
fdaddafa56 | ||
|
|
23d59abbd7 | ||
|
|
cf7fa5bce8 | ||
|
|
39e41998bb | ||
|
|
c6eff71b74 | ||
|
|
6ea4c47757 | ||
|
|
91f91aa835 | ||
|
|
ea7868d076 | ||
|
|
7d86f00d82 | ||
|
|
7785061e7d | ||
|
|
3370052e54 | ||
|
|
325dacd29c | ||
|
|
f4981a6ba9 | ||
|
|
8c159942eb | ||
|
|
deb4dc64af | ||
|
|
1a11437b6f | ||
|
|
04572c94ad | ||
|
|
1e9e78089e | ||
|
|
e65f93663d | ||
|
|
2a796fe25e |
8
.github/workflows/build-container.yml
vendored
8
.github/workflows/build-container.yml
vendored
@@ -45,6 +45,9 @@ jobs:
|
||||
steps:
|
||||
- name: Free up more disk space on the runner
|
||||
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
||||
# the /mnt dir has 70GBs of free space
|
||||
# /dev/sda1 74G 28K 70G 1% /mnt
|
||||
# According to some online posts the /mnt is not always there, so checking before setting docker to use it
|
||||
run: |
|
||||
echo "----- Free space before cleanup"
|
||||
df -h
|
||||
@@ -52,6 +55,11 @@ jobs:
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
sudo swapoff /mnt/swapfile
|
||||
sudo rm -rf /mnt/swapfile
|
||||
if [ -d /mnt ]; then
|
||||
sudo chmod -R 777 /mnt
|
||||
echo '{"data-root": "/mnt/docker-root"}' | sudo tee /etc/docker/daemon.json
|
||||
sudo systemctl restart docker
|
||||
fi
|
||||
echo "----- Free space after cleanup"
|
||||
df -h
|
||||
|
||||
|
||||
30
.github/workflows/lfs-checks.yml
vendored
Normal file
30
.github/workflows/lfs-checks.yml
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
# Checks that large files and LFS-tracked files are properly checked in with pointer format.
|
||||
# Uses https://github.com/ppremk/lfs-warning to detect LFS issues.
|
||||
|
||||
name: 'lfs checks'
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- 'main'
|
||||
pull_request:
|
||||
types:
|
||||
- 'ready_for_review'
|
||||
- 'opened'
|
||||
- 'synchronize'
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
lfs-check:
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 5
|
||||
permissions:
|
||||
# Required to label and comment on the PRs
|
||||
pull-requests: write
|
||||
steps:
|
||||
- name: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: check lfs files
|
||||
uses: ppremk/lfs-warning@v3.3
|
||||
@@ -265,7 +265,7 @@ If the key is unrecognized, this call raises an
|
||||
|
||||
#### exists(key) -> AnyModelConfig
|
||||
|
||||
Returns True if a model with the given key exists in the databsae.
|
||||
Returns True if a model with the given key exists in the database.
|
||||
|
||||
#### search_by_path(path) -> AnyModelConfig
|
||||
|
||||
@@ -718,7 +718,7 @@ When downloading remote models is implemented, additional
|
||||
configuration information, such as list of trigger terms, will be
|
||||
retrieved from the HuggingFace and Civitai model repositories.
|
||||
|
||||
The probed values can be overriden by providing a dictionary in the
|
||||
The probed values can be overridden by providing a dictionary in the
|
||||
optional `config` argument passed to `import_model()`. You may provide
|
||||
overriding values for any of the model's configuration
|
||||
attributes. Here is an example of setting the
|
||||
@@ -841,7 +841,7 @@ variable.
|
||||
|
||||
#### installer.start(invoker)
|
||||
|
||||
The `start` method is called by the API intialization routines when
|
||||
The `start` method is called by the API initialization routines when
|
||||
the API starts up. Its effect is to call `sync_to_config()` to
|
||||
synchronize the model record store database with what's currently on
|
||||
disk.
|
||||
|
||||
@@ -16,7 +16,7 @@ We thank [all contributors](https://github.com/invoke-ai/InvokeAI/graphs/contrib
|
||||
- @psychedelicious (Spencer Mabrito) - Web Team Leader
|
||||
- @joshistoast (Josh Corbett) - Web Development
|
||||
- @cheerio (Mary Rogers) - Lead Engineer & Web App Development
|
||||
- @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
|
||||
- @ebr (Eugene Brodsky) - Cloud/DevOps/Software engineer; your friendly neighbourhood cluster-autoscaler
|
||||
- @sunija - Standalone version
|
||||
- @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
|
||||
- @ryanjdick (Ryan Dick) - Machine Learning & Training
|
||||
|
||||
@@ -33,30 +33,45 @@ Hardware requirements vary significantly depending on model and image output siz
|
||||
|
||||
More detail on system requirements can be found [here](./requirements.md).
|
||||
|
||||
## Step 2: Download
|
||||
## Step 2: Download and Set Up the Launcher
|
||||
|
||||
Download the most recent launcher for your operating system:
|
||||
The Launcher manages your Invoke install. Follow these instructions to download and set up the Launcher.
|
||||
|
||||
- [Download for Windows](https://download.invoke.ai/Invoke%20Community%20Edition.exe)
|
||||
- [Download for macOS](https://download.invoke.ai/Invoke%20Community%20Edition.dmg)
|
||||
- [Download for Linux](https://download.invoke.ai/Invoke%20Community%20Edition.AppImage)
|
||||
!!! info "Instructions for each OS"
|
||||
|
||||
## Step 3: Install or Update
|
||||
=== "Windows"
|
||||
|
||||
Run the launcher you just downloaded, click **Install** and follow the instructions to get set up.
|
||||
- [Download for Windows](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition.Setup.latest.exe)
|
||||
- Run the `EXE` to install the Launcher and start it.
|
||||
- A desktop shortcut will be created; use this to run the Launcher in the future.
|
||||
- You can delete the `EXE` file you downloaded.
|
||||
|
||||
=== "macOS"
|
||||
|
||||
- [Download for macOS](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest-arm64.dmg)
|
||||
- Open the `DMG` and drag the app into `Applications`.
|
||||
- Run the Launcher using its entry in `Applications`.
|
||||
- You can delete the `DMG` file you downloaded.
|
||||
|
||||
=== "Linux"
|
||||
|
||||
- [Download for Linux](https://github.com/invoke-ai/launcher/releases/latest/download/Invoke.Community.Edition-latest.AppImage)
|
||||
- You may need to edit the `AppImage` file properties and make it executable.
|
||||
- Optionally move the file to a location that does not require admin privileges and add a desktop shortcut for it.
|
||||
- Run the Launcher by double-clicking the `AppImage` or the shortcut you made.
|
||||
|
||||
## Step 3: Install Invoke
|
||||
|
||||
Run the Launcher you just set up if you haven't already. Click **Install** and follow the instructions to install (or update) Invoke.
|
||||
|
||||
If you have an existing Invoke installation, you can select it and let the launcher manage the install. You'll be able to update or launch the installation.
|
||||
|
||||
!!! warning "Problem running the launcher on macOS"
|
||||
!!! tip "Updating"
|
||||
|
||||
macOS may not allow you to run the launcher. We are working to resolve this by signing the launcher executable. Until that is done, you can manually flag the launcher as safe:
|
||||
The Launcher will check for updates for itself _and_ Invoke.
|
||||
|
||||
- Open the **Invoke Community Edition.dmg** file.
|
||||
- Drag the launcher to **Applications**.
|
||||
- Open a terminal.
|
||||
- Run `xattr -d 'com.apple.quarantine' /Applications/Invoke\ Community\ Edition.app`.
|
||||
|
||||
You should now be able to run the launcher.
|
||||
- When the Launcher detects an update is available for itself, you'll get a small popup window. Click through this and the Launcher will update itself.
|
||||
- When the Launcher detects an update for Invoke, you'll see a small green alert in the Launcher. Click that and follow the instructions to update Invoke.
|
||||
|
||||
## Step 4: Launch
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ Nodes have a "Use Cache" option in their footer. This allows for performance imp
|
||||
|
||||
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
|
||||
|
||||
### Noise
|
||||
### Create Latent Noise
|
||||
|
||||
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.
|
||||
|
||||
|
||||
@@ -17,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
|
||||
|
||||
# TODO(ryand): This is effectively a copy of SD3ImageToLatentsInvocation and a subset of ImageToLatentsInvocation. We
|
||||
# should refactor to avoid this duplication.
|
||||
@@ -38,7 +39,11 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae_info.model, AutoencoderKL)
|
||||
estimated_working_memory = estimate_vae_working_memory_cogview4(
|
||||
operation="encode", image_tensor=image_tensor, vae=vae_info.model
|
||||
)
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, AutoencoderKL)
|
||||
|
||||
vae.disable_tiling()
|
||||
@@ -62,6 +67,8 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, AutoencoderKL)
|
||||
|
||||
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
|
||||
@@ -6,7 +6,6 @@ from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@@ -20,6 +19,7 @@ from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
|
||||
|
||||
# TODO(ryand): This is effectively a copy of SD3LatentsToImageInvocation and a subset of LatentsToImageInvocation. We
|
||||
# should refactor to avoid this duplication.
|
||||
@@ -39,22 +39,15 @@ class CogView4LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
latents: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
|
||||
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
|
||||
|
||||
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
|
||||
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
scaling_constant = 2200 # Determined experimentally.
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
return int(working_memory)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (AutoencoderKL))
|
||||
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
|
||||
estimated_working_memory = estimate_vae_working_memory_cogview4(
|
||||
operation="decode", image_tensor=latents, vae=vae_info.model
|
||||
)
|
||||
with (
|
||||
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
|
||||
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
|
||||
|
||||
@@ -64,6 +64,7 @@ class UIType(str, Enum, metaclass=MetaEnum):
|
||||
Imagen3Model = "Imagen3ModelField"
|
||||
Imagen4Model = "Imagen4ModelField"
|
||||
ChatGPT4oModel = "ChatGPT4oModelField"
|
||||
Gemini2_5Model = "Gemini2_5ModelField"
|
||||
FluxKontextModel = "FluxKontextModelField"
|
||||
# endregion
|
||||
|
||||
|
||||
@@ -328,6 +328,21 @@ class FluxDenoiseInvocation(BaseInvocation):
|
||||
cfg_scale_end_step=self.cfg_scale_end_step,
|
||||
)
|
||||
|
||||
kontext_extension = None
|
||||
if self.kontext_conditioning:
|
||||
if not self.controlnet_vae:
|
||||
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
|
||||
|
||||
kontext_extension = KontextExtension(
|
||||
context=context,
|
||||
kontext_conditioning=self.kontext_conditioning
|
||||
if isinstance(self.kontext_conditioning, list)
|
||||
else [self.kontext_conditioning],
|
||||
vae_field=self.controlnet_vae,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
)
|
||||
|
||||
with ExitStack() as exit_stack:
|
||||
# Prepare ControlNet extensions.
|
||||
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
|
||||
@@ -385,21 +400,6 @@ class FluxDenoiseInvocation(BaseInvocation):
|
||||
dtype=inference_dtype,
|
||||
)
|
||||
|
||||
kontext_extension = None
|
||||
if self.kontext_conditioning:
|
||||
if not self.controlnet_vae:
|
||||
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
|
||||
|
||||
kontext_extension = KontextExtension(
|
||||
context=context,
|
||||
kontext_conditioning=self.kontext_conditioning
|
||||
if isinstance(self.kontext_conditioning, list)
|
||||
else [self.kontext_conditioning],
|
||||
vae_field=self.controlnet_vae,
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
dtype=inference_dtype,
|
||||
)
|
||||
|
||||
# Prepare Kontext conditioning if provided
|
||||
img_cond_seq = None
|
||||
img_cond_seq_ids = None
|
||||
|
||||
@@ -3,7 +3,6 @@ from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@@ -18,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -39,17 +39,11 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
|
||||
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
scaling_constant = 2200 # Determined experimentally.
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
return int(working_memory)
|
||||
|
||||
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
|
||||
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
|
||||
assert isinstance(vae_info.model, AutoEncoder)
|
||||
estimated_working_memory = estimate_vae_working_memory_flux(
|
||||
operation="decode", image_tensor=latents, vae=vae_info.model
|
||||
)
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
vae_dtype = next(iter(vae.parameters())).dtype
|
||||
|
||||
@@ -15,6 +15,7 @@ from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -41,8 +42,12 @@ class FluxVaeEncodeInvocation(BaseInvocation):
|
||||
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
|
||||
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
|
||||
# should be used for VAE encode sampling.
|
||||
assert isinstance(vae_info.model, AutoEncoder)
|
||||
estimated_working_memory = estimate_vae_working_memory_flux(
|
||||
operation="encode", image_tensor=image_tensor, vae=vae_info.model
|
||||
)
|
||||
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
|
||||
with vae_info as vae:
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
vae_dtype = next(iter(vae.parameters())).dtype
|
||||
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
|
||||
|
||||
@@ -27,6 +27,7 @@ from invokeai.backend.model_manager import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -52,11 +53,24 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
|
||||
|
||||
@staticmethod
|
||||
@classmethod
|
||||
def vae_encode(
|
||||
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
|
||||
cls,
|
||||
vae_info: LoadedModel,
|
||||
upcast: bool,
|
||||
tiled: bool,
|
||||
image_tensor: torch.Tensor,
|
||||
tile_size: int = 0,
|
||||
) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
|
||||
operation="encode",
|
||||
image_tensor=image_tensor,
|
||||
vae=vae_info.model,
|
||||
tile_size=tile_size if tiled else None,
|
||||
fp32=upcast,
|
||||
)
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
|
||||
orig_dtype = vae.dtype
|
||||
if upcast:
|
||||
@@ -113,6 +127,7 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
@@ -120,7 +135,11 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
|
||||
context.util.signal_progress("Running VAE encoder")
|
||||
latents = self.vae_encode(
|
||||
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
|
||||
vae_info=vae_info,
|
||||
upcast=self.fp32,
|
||||
tiled=self.tiled or context.config.get().force_tiled_decode,
|
||||
image_tensor=image_tensor,
|
||||
tile_size=self.tile_size,
|
||||
)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
|
||||
@@ -27,6 +27,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -53,39 +54,6 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
|
||||
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
|
||||
|
||||
def _estimate_working_memory(
|
||||
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
|
||||
) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
|
||||
# element size (precision). This estimate is accurate for both SD1 and SDXL.
|
||||
element_size = 4 if self.fp32 else 2
|
||||
scaling_constant = 2200 # Determined experimentally.
|
||||
|
||||
if use_tiling:
|
||||
tile_size = self.tile_size
|
||||
if tile_size == 0:
|
||||
tile_size = vae.tile_sample_min_size
|
||||
assert isinstance(tile_size, int)
|
||||
out_h = tile_size
|
||||
out_w = tile_size
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
|
||||
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
|
||||
# and number of tiles. We could make this more precise in the future, but this should be good enough for
|
||||
# most use cases.
|
||||
working_memory = working_memory * 1.25
|
||||
else:
|
||||
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
|
||||
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
|
||||
if self.fp32:
|
||||
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
|
||||
working_memory += 250 * 2**20
|
||||
|
||||
return int(working_memory)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
@@ -94,8 +62,13 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
|
||||
|
||||
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
|
||||
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
|
||||
operation="decode",
|
||||
image_tensor=latents,
|
||||
vae=vae_info.model,
|
||||
tile_size=self.tile_size if use_tiling else None,
|
||||
fp32=self.fp32,
|
||||
)
|
||||
with (
|
||||
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
|
||||
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
|
||||
|
||||
@@ -17,6 +17,7 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -34,7 +35,11 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
|
||||
@staticmethod
|
||||
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
|
||||
with vae_info as vae:
|
||||
assert isinstance(vae_info.model, AutoencoderKL)
|
||||
estimated_working_memory = estimate_vae_working_memory_sd3(
|
||||
operation="encode", image_tensor=image_tensor, vae=vae_info.model
|
||||
)
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, AutoencoderKL)
|
||||
|
||||
vae.disable_tiling()
|
||||
@@ -58,6 +63,8 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, AutoencoderKL)
|
||||
|
||||
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||||
|
||||
latents = latents.to("cpu")
|
||||
|
||||
@@ -6,7 +6,6 @@ from einops import rearrange
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@@ -20,6 +19,7 @@ from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
|
||||
|
||||
|
||||
@invocation(
|
||||
@@ -41,22 +41,15 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
input=Input.Connection,
|
||||
)
|
||||
|
||||
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
|
||||
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
scaling_constant = 2200 # Determined experimentally.
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
return int(working_memory)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
assert isinstance(vae_info.model, (AutoencoderKL))
|
||||
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
|
||||
estimated_working_memory = estimate_vae_working_memory_sd3(
|
||||
operation="decode", image_tensor=latents, vae=vae_info.model
|
||||
)
|
||||
with (
|
||||
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
|
||||
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),
|
||||
|
||||
@@ -186,8 +186,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
info: AnyModelConfig = self._probe(Path(model_path), config) # type: ignore
|
||||
|
||||
if preferred_name := config.name:
|
||||
# Careful! Don't use pathlib.Path(...).with_suffix - it can will strip everything after the first dot.
|
||||
preferred_name = f"{preferred_name}{model_path.suffix}"
|
||||
if Path(model_path).is_file():
|
||||
# Careful! Don't use pathlib.Path(...).with_suffix - it can will strip everything after the first dot.
|
||||
preferred_name = f"{preferred_name}{model_path.suffix}"
|
||||
|
||||
dest_path = (
|
||||
self.app_config.models_path / info.base.value / info.type.value / (preferred_name or model_path.name)
|
||||
@@ -622,16 +623,13 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
if old_path == new_path:
|
||||
return old_path
|
||||
|
||||
if new_path.exists():
|
||||
raise FileExistsError(f"Cannot move {old_path} to {new_path}: destination already exists")
|
||||
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# if path already exists then we jigger the name to make it unique
|
||||
counter: int = 1
|
||||
while new_path.exists():
|
||||
path = new_path.with_stem(new_path.stem + f"_{counter:02d}")
|
||||
if not path.exists():
|
||||
new_path = path
|
||||
counter += 1
|
||||
move(old_path, new_path)
|
||||
|
||||
return new_path
|
||||
|
||||
def _probe(self, model_path: Path, config: Optional[ModelRecordChanges] = None):
|
||||
|
||||
@@ -106,8 +106,8 @@ class KontextExtension:
|
||||
|
||||
# Track cumulative dimensions for spatial tiling
|
||||
# These track the running extent of the virtual canvas in latent space
|
||||
h = 0 # Running height extent
|
||||
w = 0 # Running width extent
|
||||
canvas_h = 0 # Running canvas height
|
||||
canvas_w = 0 # Running canvas width
|
||||
|
||||
vae_info = self._context.models.load(self._vae_field.vae)
|
||||
|
||||
@@ -131,12 +131,20 @@ class KontextExtension:
|
||||
|
||||
# Continue with VAE encoding
|
||||
# Don't sample from the distribution for reference images - use the mean (matching ComfyUI)
|
||||
with vae_info as vae:
|
||||
# Estimate working memory for encode operation (50% of decode memory requirements)
|
||||
img_h = image_tensor.shape[-2]
|
||||
img_w = image_tensor.shape[-1]
|
||||
element_size = next(vae_info.model.parameters()).element_size()
|
||||
scaling_constant = 1100 # 50% of decode scaling constant (2200)
|
||||
estimated_working_memory = int(img_h * img_w * element_size * scaling_constant)
|
||||
|
||||
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
|
||||
assert isinstance(vae, AutoEncoder)
|
||||
vae_dtype = next(iter(vae.parameters())).dtype
|
||||
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
|
||||
# Use sample=False to get the distribution mean without noise
|
||||
kontext_latents_unpacked = vae.encode(image_tensor, sample=False)
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
# Extract tensor dimensions
|
||||
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
|
||||
@@ -154,21 +162,33 @@ class KontextExtension:
|
||||
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
|
||||
|
||||
# Determine spatial offsets for this reference image
|
||||
# - Compare the potential new canvas dimensions if we add the image vertically vs horizontally
|
||||
# - Choose the placement that results in a more square-like canvas
|
||||
h_offset = 0
|
||||
w_offset = 0
|
||||
|
||||
if idx > 0: # First image starts at (0, 0)
|
||||
# Check which placement would result in better canvas dimensions
|
||||
# If adding to height would make the canvas taller than wide, tile horizontally
|
||||
# Otherwise, tile vertically
|
||||
if latent_height + h > latent_width + w:
|
||||
# Calculate potential canvas dimensions for each tiling option
|
||||
# Option 1: Tile vertically (below existing content)
|
||||
potential_h_vertical = canvas_h + latent_height
|
||||
|
||||
# Option 2: Tile horizontally (to the right of existing content)
|
||||
potential_w_horizontal = canvas_w + latent_width
|
||||
|
||||
# Choose arrangement that minimizes the maximum dimension
|
||||
# This keeps the canvas closer to square, optimizing attention computation
|
||||
if potential_h_vertical > potential_w_horizontal:
|
||||
# Tile horizontally (to the right of existing images)
|
||||
w_offset = w
|
||||
w_offset = canvas_w
|
||||
canvas_w = canvas_w + latent_width
|
||||
canvas_h = max(canvas_h, latent_height)
|
||||
else:
|
||||
# Tile vertically (below existing images)
|
||||
h_offset = h
|
||||
h_offset = canvas_h
|
||||
canvas_h = canvas_h + latent_height
|
||||
canvas_w = max(canvas_w, latent_width)
|
||||
else:
|
||||
# First image - just set canvas dimensions
|
||||
canvas_h = latent_height
|
||||
canvas_w = latent_width
|
||||
|
||||
# Generate IDs with both index offset and spatial offsets
|
||||
kontext_ids = generate_img_ids_with_offset(
|
||||
@@ -182,11 +202,6 @@ class KontextExtension:
|
||||
w_offset=w_offset,
|
||||
)
|
||||
|
||||
# Update cumulative dimensions
|
||||
# Track the maximum extent of the virtual canvas after placing this image
|
||||
h = max(h, latent_height + h_offset)
|
||||
w = max(w, latent_width + w_offset)
|
||||
|
||||
all_latents.append(kontext_latents_packed)
|
||||
all_ids.append(kontext_ids)
|
||||
|
||||
|
||||
304
invokeai/backend/image_util/imwatermark/vendor.py
Normal file
304
invokeai/backend/image_util/imwatermark/vendor.py
Normal file
@@ -0,0 +1,304 @@
|
||||
# This file is vendored from https://github.com/ShieldMnt/invisible-watermark
|
||||
#
|
||||
# `invisible-watermark` is MIT licensed as of August 23, 2025, when the code was copied into this repo.
|
||||
#
|
||||
# Why we vendored it in:
|
||||
# `invisible-watermark` has a dependency on `opencv-python`, which conflicts with Invoke's dependency on
|
||||
# `opencv-contrib-python`. It's easier to copy the code over than complicate the installation process by
|
||||
# requiring an extra post-install step of removing `opencv-python` and installing `opencv-contrib-python`.
|
||||
|
||||
import struct
|
||||
import uuid
|
||||
import base64
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pywt
|
||||
|
||||
|
||||
class WatermarkEncoder(object):
|
||||
def __init__(self, content=b""):
|
||||
seq = np.array([n for n in content], dtype=np.uint8)
|
||||
self._watermarks = list(np.unpackbits(seq))
|
||||
self._wmLen = len(self._watermarks)
|
||||
self._wmType = "bytes"
|
||||
|
||||
def set_by_ipv4(self, addr):
|
||||
bits = []
|
||||
ips = addr.split(".")
|
||||
for ip in ips:
|
||||
bits += list(np.unpackbits(np.array([ip % 255], dtype=np.uint8)))
|
||||
self._watermarks = bits
|
||||
self._wmLen = len(self._watermarks)
|
||||
self._wmType = "ipv4"
|
||||
assert self._wmLen == 32
|
||||
|
||||
def set_by_uuid(self, uid):
|
||||
u = uuid.UUID(uid)
|
||||
self._wmType = "uuid"
|
||||
seq = np.array([n for n in u.bytes], dtype=np.uint8)
|
||||
self._watermarks = list(np.unpackbits(seq))
|
||||
self._wmLen = len(self._watermarks)
|
||||
|
||||
def set_by_bytes(self, content):
|
||||
self._wmType = "bytes"
|
||||
seq = np.array([n for n in content], dtype=np.uint8)
|
||||
self._watermarks = list(np.unpackbits(seq))
|
||||
self._wmLen = len(self._watermarks)
|
||||
|
||||
def set_by_b16(self, b16):
|
||||
content = base64.b16decode(b16)
|
||||
self.set_by_bytes(content)
|
||||
self._wmType = "b16"
|
||||
|
||||
def set_by_bits(self, bits=[]):
|
||||
self._watermarks = [int(bit) % 2 for bit in bits]
|
||||
self._wmLen = len(self._watermarks)
|
||||
self._wmType = "bits"
|
||||
|
||||
def set_watermark(self, wmType="bytes", content=""):
|
||||
if wmType == "ipv4":
|
||||
self.set_by_ipv4(content)
|
||||
elif wmType == "uuid":
|
||||
self.set_by_uuid(content)
|
||||
elif wmType == "bits":
|
||||
self.set_by_bits(content)
|
||||
elif wmType == "bytes":
|
||||
self.set_by_bytes(content)
|
||||
elif wmType == "b16":
|
||||
self.set_by_b16(content)
|
||||
else:
|
||||
raise NameError("%s is not supported" % wmType)
|
||||
|
||||
def get_length(self):
|
||||
return self._wmLen
|
||||
|
||||
# @classmethod
|
||||
# def loadModel(cls):
|
||||
# RivaWatermark.loadModel()
|
||||
|
||||
def encode(self, cv2Image, method="dwtDct", **configs):
|
||||
(r, c, channels) = cv2Image.shape
|
||||
if r * c < 256 * 256:
|
||||
raise RuntimeError("image too small, should be larger than 256x256")
|
||||
|
||||
if method == "dwtDct":
|
||||
embed = EmbedMaxDct(self._watermarks, wmLen=self._wmLen, **configs)
|
||||
return embed.encode(cv2Image)
|
||||
# elif method == 'dwtDctSvd':
|
||||
# embed = EmbedDwtDctSvd(self._watermarks, wmLen=self._wmLen, **configs)
|
||||
# return embed.encode(cv2Image)
|
||||
# elif method == 'rivaGan':
|
||||
# embed = RivaWatermark(self._watermarks, self._wmLen)
|
||||
# return embed.encode(cv2Image)
|
||||
else:
|
||||
raise NameError("%s is not supported" % method)
|
||||
|
||||
|
||||
class WatermarkDecoder(object):
|
||||
def __init__(self, wm_type="bytes", length=0):
|
||||
self._wmType = wm_type
|
||||
if wm_type == "ipv4":
|
||||
self._wmLen = 32
|
||||
elif wm_type == "uuid":
|
||||
self._wmLen = 128
|
||||
elif wm_type == "bytes":
|
||||
self._wmLen = length
|
||||
elif wm_type == "bits":
|
||||
self._wmLen = length
|
||||
elif wm_type == "b16":
|
||||
self._wmLen = length
|
||||
else:
|
||||
raise NameError("%s is unsupported" % wm_type)
|
||||
|
||||
def reconstruct_ipv4(self, bits):
|
||||
ips = [str(ip) for ip in list(np.packbits(bits))]
|
||||
return ".".join(ips)
|
||||
|
||||
def reconstruct_uuid(self, bits):
|
||||
nums = np.packbits(bits)
|
||||
bstr = b""
|
||||
for i in range(16):
|
||||
bstr += struct.pack(">B", nums[i])
|
||||
|
||||
return str(uuid.UUID(bytes=bstr))
|
||||
|
||||
def reconstruct_bits(self, bits):
|
||||
# return ''.join([str(b) for b in bits])
|
||||
return bits
|
||||
|
||||
def reconstruct_b16(self, bits):
|
||||
bstr = self.reconstruct_bytes(bits)
|
||||
return base64.b16encode(bstr)
|
||||
|
||||
def reconstruct_bytes(self, bits):
|
||||
nums = np.packbits(bits)
|
||||
bstr = b""
|
||||
for i in range(self._wmLen // 8):
|
||||
bstr += struct.pack(">B", nums[i])
|
||||
return bstr
|
||||
|
||||
def reconstruct(self, bits):
|
||||
if len(bits) != self._wmLen:
|
||||
raise RuntimeError("bits are not matched with watermark length")
|
||||
|
||||
if self._wmType == "ipv4":
|
||||
return self.reconstruct_ipv4(bits)
|
||||
elif self._wmType == "uuid":
|
||||
return self.reconstruct_uuid(bits)
|
||||
elif self._wmType == "bits":
|
||||
return self.reconstruct_bits(bits)
|
||||
elif self._wmType == "b16":
|
||||
return self.reconstruct_b16(bits)
|
||||
else:
|
||||
return self.reconstruct_bytes(bits)
|
||||
|
||||
def decode(self, cv2Image, method="dwtDct", **configs):
|
||||
(r, c, channels) = cv2Image.shape
|
||||
if r * c < 256 * 256:
|
||||
raise RuntimeError("image too small, should be larger than 256x256")
|
||||
|
||||
bits = []
|
||||
if method == "dwtDct":
|
||||
embed = EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
|
||||
bits = embed.decode(cv2Image)
|
||||
# elif method == 'dwtDctSvd':
|
||||
# embed = EmbedDwtDctSvd(watermarks=[], wmLen=self._wmLen, **configs)
|
||||
# bits = embed.decode(cv2Image)
|
||||
# elif method == 'rivaGan':
|
||||
# embed = RivaWatermark(watermarks=[], wmLen=self._wmLen, **configs)
|
||||
# bits = embed.decode(cv2Image)
|
||||
else:
|
||||
raise NameError("%s is not supported" % method)
|
||||
return self.reconstruct(bits)
|
||||
|
||||
# @classmethod
|
||||
# def loadModel(cls):
|
||||
# RivaWatermark.loadModel()
|
||||
|
||||
|
||||
class EmbedMaxDct(object):
|
||||
def __init__(self, watermarks=[], wmLen=8, scales=[0, 36, 36], block=4):
|
||||
self._watermarks = watermarks
|
||||
self._wmLen = wmLen
|
||||
self._scales = scales
|
||||
self._block = block
|
||||
|
||||
def encode(self, bgr):
|
||||
(row, col, channels) = bgr.shape
|
||||
|
||||
yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
|
||||
|
||||
for channel in range(2):
|
||||
if self._scales[channel] <= 0:
|
||||
continue
|
||||
|
||||
ca1, (h1, v1, d1) = pywt.dwt2(yuv[: row // 4 * 4, : col // 4 * 4, channel], "haar")
|
||||
self.encode_frame(ca1, self._scales[channel])
|
||||
|
||||
yuv[: row // 4 * 4, : col // 4 * 4, channel] = pywt.idwt2((ca1, (v1, h1, d1)), "haar")
|
||||
|
||||
bgr_encoded = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
|
||||
return bgr_encoded
|
||||
|
||||
def decode(self, bgr):
|
||||
(row, col, channels) = bgr.shape
|
||||
|
||||
yuv = cv2.cvtColor(bgr, cv2.COLOR_BGR2YUV)
|
||||
|
||||
scores = [[] for i in range(self._wmLen)]
|
||||
for channel in range(2):
|
||||
if self._scales[channel] <= 0:
|
||||
continue
|
||||
|
||||
ca1, (h1, v1, d1) = pywt.dwt2(yuv[: row // 4 * 4, : col // 4 * 4, channel], "haar")
|
||||
|
||||
scores = self.decode_frame(ca1, self._scales[channel], scores)
|
||||
|
||||
avgScores = list(map(lambda l: np.array(l).mean(), scores))
|
||||
|
||||
bits = np.array(avgScores) * 255 > 127
|
||||
return bits
|
||||
|
||||
def decode_frame(self, frame, scale, scores):
|
||||
(row, col) = frame.shape
|
||||
num = 0
|
||||
|
||||
for i in range(row // self._block):
|
||||
for j in range(col // self._block):
|
||||
block = frame[
|
||||
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
|
||||
]
|
||||
|
||||
score = self.infer_dct_matrix(block, scale)
|
||||
# score = self.infer_dct_svd(block, scale)
|
||||
wmBit = num % self._wmLen
|
||||
scores[wmBit].append(score)
|
||||
num = num + 1
|
||||
|
||||
return scores
|
||||
|
||||
def diffuse_dct_svd(self, block, wmBit, scale):
|
||||
u, s, v = np.linalg.svd(cv2.dct(block))
|
||||
|
||||
s[0] = (s[0] // scale + 0.25 + 0.5 * wmBit) * scale
|
||||
return cv2.idct(np.dot(u, np.dot(np.diag(s), v)))
|
||||
|
||||
def infer_dct_svd(self, block, scale):
|
||||
u, s, v = np.linalg.svd(cv2.dct(block))
|
||||
|
||||
score = 0
|
||||
score = int((s[0] % scale) > scale * 0.5)
|
||||
return score
|
||||
if score >= 0.5:
|
||||
return 1.0
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
def diffuse_dct_matrix(self, block, wmBit, scale):
|
||||
pos = np.argmax(abs(block.flatten()[1:])) + 1
|
||||
i, j = pos // self._block, pos % self._block
|
||||
val = block[i][j]
|
||||
if val >= 0.0:
|
||||
block[i][j] = (val // scale + 0.25 + 0.5 * wmBit) * scale
|
||||
else:
|
||||
val = abs(val)
|
||||
block[i][j] = -1.0 * (val // scale + 0.25 + 0.5 * wmBit) * scale
|
||||
return block
|
||||
|
||||
def infer_dct_matrix(self, block, scale):
|
||||
pos = np.argmax(abs(block.flatten()[1:])) + 1
|
||||
i, j = pos // self._block, pos % self._block
|
||||
|
||||
val = block[i][j]
|
||||
if val < 0:
|
||||
val = abs(val)
|
||||
|
||||
if (val % scale) > 0.5 * scale:
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
def encode_frame(self, frame, scale):
|
||||
"""
|
||||
frame is a matrix (M, N)
|
||||
|
||||
we get K (watermark bits size) blocks (self._block x self._block)
|
||||
|
||||
For i-th block, we encode watermark[i] bit into it
|
||||
"""
|
||||
(row, col) = frame.shape
|
||||
num = 0
|
||||
for i in range(row // self._block):
|
||||
for j in range(col // self._block):
|
||||
block = frame[
|
||||
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
|
||||
]
|
||||
wmBit = self._watermarks[(num % self._wmLen)]
|
||||
|
||||
diffusedBlock = self.diffuse_dct_matrix(block, wmBit, scale)
|
||||
# diffusedBlock = self.diffuse_dct_svd(block, wmBit, scale)
|
||||
frame[
|
||||
i * self._block : i * self._block + self._block, j * self._block : j * self._block + self._block
|
||||
] = diffusedBlock
|
||||
|
||||
num = num + 1
|
||||
@@ -6,13 +6,10 @@ configuration variable, that allows the watermarking to be supressed.
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from imwatermark import WatermarkEncoder
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
config = get_config()
|
||||
from invokeai.backend.image_util.imwatermark.vendor import WatermarkEncoder
|
||||
|
||||
|
||||
class InvisibleWatermark:
|
||||
|
||||
@@ -28,6 +28,7 @@ class BaseModelType(str, Enum):
|
||||
CogView4 = "cogview4"
|
||||
Imagen3 = "imagen3"
|
||||
Imagen4 = "imagen4"
|
||||
Gemini2_5 = "gemini-2.5"
|
||||
ChatGPT4o = "chatgpt-4o"
|
||||
FluxKontext = "flux-kontext"
|
||||
|
||||
|
||||
@@ -18,16 +18,25 @@ def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Te
|
||||
# First, check that all keys end in "lora_A.weight" or "lora_B.weight" (i.e. are in PEFT format).
|
||||
all_keys_in_peft_format = all(k.endswith(("lora_A.weight", "lora_B.weight")) for k in state_dict.keys())
|
||||
|
||||
# Next, check that this is likely a FLUX model by spot-checking a few keys.
|
||||
expected_keys = [
|
||||
# Check if keys use transformer prefix
|
||||
transformer_prefix_keys = [
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
|
||||
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
|
||||
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
|
||||
]
|
||||
all_expected_keys_present = all(k in state_dict for k in expected_keys)
|
||||
transformer_keys_present = all(k in state_dict for k in transformer_prefix_keys)
|
||||
|
||||
return all_keys_in_peft_format and all_expected_keys_present
|
||||
# Check if keys use base_model.model prefix
|
||||
base_model_prefix_keys = [
|
||||
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_A.weight",
|
||||
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_B.weight",
|
||||
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
|
||||
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
|
||||
]
|
||||
base_model_keys_present = all(k in state_dict for k in base_model_prefix_keys)
|
||||
|
||||
return all_keys_in_peft_format and (transformer_keys_present or base_model_keys_present)
|
||||
|
||||
|
||||
def lora_model_from_flux_diffusers_state_dict(
|
||||
@@ -49,8 +58,16 @@ def lora_layers_from_flux_diffusers_grouped_state_dict(
|
||||
https://github.com/huggingface/diffusers/blob/55ac421f7bb12fd00ccbef727be4dc2f3f920abb/scripts/convert_flux_to_diffusers.py
|
||||
"""
|
||||
|
||||
# Remove the "transformer." prefix from all keys.
|
||||
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
|
||||
# Determine which prefix is used and remove it from all keys.
|
||||
# Check if any key starts with "base_model.model." prefix
|
||||
has_base_model_prefix = any(k.startswith("base_model.model.") for k in grouped_state_dict.keys())
|
||||
|
||||
if has_base_model_prefix:
|
||||
# Remove the "base_model.model." prefix from all keys.
|
||||
grouped_state_dict = {k.replace("base_model.model.", ""): v for k, v in grouped_state_dict.items()}
|
||||
else:
|
||||
# Remove the "transformer." prefix from all keys.
|
||||
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
|
||||
|
||||
# Constants for FLUX.1
|
||||
num_double_layers = 19
|
||||
|
||||
@@ -20,7 +20,7 @@ def main():
|
||||
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
|
||||
)
|
||||
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
with log_time("Initialize FLUX transformer on meta device"):
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
p = params["flux-schnell"]
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ def main():
|
||||
)
|
||||
|
||||
# inference_dtype = torch.bfloat16
|
||||
with log_time("Intialize FLUX transformer on meta device"):
|
||||
with log_time("Initialize FLUX transformer on meta device"):
|
||||
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
||||
p = params["flux-schnell"]
|
||||
|
||||
|
||||
@@ -27,7 +27,7 @@ def main():
|
||||
"""
|
||||
model_path = Path("/data/misc/text_encoder_2")
|
||||
|
||||
with log_time("Intialize T5 on meta device"):
|
||||
with log_time("Initialize T5 on meta device"):
|
||||
model_config = AutoConfig.from_pretrained(model_path)
|
||||
with accelerate.init_empty_weights():
|
||||
model = AutoModelForTextEncoding.from_config(model_config)
|
||||
|
||||
117
invokeai/backend/util/vae_working_memory.py
Normal file
117
invokeai/backend/util/vae_working_memory.py
Normal file
@@ -0,0 +1,117 @@
|
||||
from typing import Literal
|
||||
|
||||
import torch
|
||||
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||||
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
||||
|
||||
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
|
||||
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||||
|
||||
|
||||
def estimate_vae_working_memory_sd15_sdxl(
|
||||
operation: Literal["encode", "decode"],
|
||||
image_tensor: torch.Tensor,
|
||||
vae: AutoencoderKL | AutoencoderTiny,
|
||||
tile_size: int | None,
|
||||
fp32: bool,
|
||||
) -> int:
|
||||
"""Estimate the working memory required to encode or decode the given tensor."""
|
||||
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
|
||||
# element size (precision). This estimate is accurate for both SD1 and SDXL.
|
||||
element_size = 4 if fp32 else 2
|
||||
|
||||
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
|
||||
# Encoding uses ~45% the working memory as decoding.
|
||||
scaling_constant = 2200 if operation == "decode" else 1100
|
||||
|
||||
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
|
||||
|
||||
if tile_size is not None:
|
||||
if tile_size == 0:
|
||||
tile_size = vae.tile_sample_min_size
|
||||
assert isinstance(tile_size, int)
|
||||
h = tile_size
|
||||
w = tile_size
|
||||
working_memory = h * w * element_size * scaling_constant
|
||||
|
||||
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
|
||||
# and number of tiles. We could make this more precise in the future, but this should be good enough for
|
||||
# most use cases.
|
||||
working_memory = working_memory * 1.25
|
||||
else:
|
||||
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
|
||||
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
|
||||
working_memory = h * w * element_size * scaling_constant
|
||||
|
||||
if fp32:
|
||||
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
|
||||
working_memory += 250 * 2**20
|
||||
|
||||
print(f"estimate_vae_working_memory_sd15_sdxl: {int(working_memory)}")
|
||||
|
||||
return int(working_memory)
|
||||
|
||||
|
||||
def estimate_vae_working_memory_cogview4(
|
||||
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoencoderKL
|
||||
) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
|
||||
|
||||
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
|
||||
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
|
||||
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
|
||||
# Encoding uses ~45% the working memory as decoding.
|
||||
scaling_constant = 2200 if operation == "decode" else 1100
|
||||
working_memory = h * w * element_size * scaling_constant
|
||||
|
||||
print(f"estimate_vae_working_memory_cogview4: {int(working_memory)}")
|
||||
|
||||
return int(working_memory)
|
||||
|
||||
|
||||
def estimate_vae_working_memory_flux(
|
||||
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoEncoder
|
||||
) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
|
||||
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
|
||||
|
||||
out_h = latent_scale_factor_for_operation * image_tensor.shape[-2]
|
||||
out_w = latent_scale_factor_for_operation * image_tensor.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
|
||||
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
|
||||
# Encoding uses ~45% the working memory as decoding.
|
||||
scaling_constant = 2200 if operation == "decode" else 1100
|
||||
|
||||
working_memory = out_h * out_w * element_size * scaling_constant
|
||||
|
||||
print(f"estimate_vae_working_memory_flux: {int(working_memory)}")
|
||||
|
||||
return int(working_memory)
|
||||
|
||||
|
||||
def estimate_vae_working_memory_sd3(
|
||||
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoencoderKL
|
||||
) -> int:
|
||||
"""Estimate the working memory required by the invocation in bytes."""
|
||||
# Encode operations use approximately 50% of the memory required for decode operations
|
||||
|
||||
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
|
||||
|
||||
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
|
||||
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
|
||||
element_size = next(vae.parameters()).element_size()
|
||||
|
||||
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
|
||||
# Encoding uses ~45% the working memory as decoding.
|
||||
scaling_constant = 2200 if operation == "decode" else 1100
|
||||
|
||||
working_memory = h * w * element_size * scaling_constant
|
||||
|
||||
print(f"estimate_vae_working_memory_sd3: {int(working_memory)}")
|
||||
|
||||
return int(working_memory)
|
||||
@@ -38,6 +38,7 @@
|
||||
"deletedImagesCannotBeRestored": "Deleted images cannot be restored.",
|
||||
"hideBoards": "Hide Boards",
|
||||
"loading": "Loading...",
|
||||
"locateInGalery": "Locate in Gallery",
|
||||
"menuItemAutoAdd": "Auto-add to this Board",
|
||||
"move": "Move",
|
||||
"movingImagesToBoard_one": "Moving {{count}} image to board:",
|
||||
@@ -114,6 +115,9 @@
|
||||
"t2iAdapter": "T2I Adapter",
|
||||
"positivePrompt": "Positive Prompt",
|
||||
"negativePrompt": "Negative Prompt",
|
||||
"removeNegativePrompt": "Remove Negative Prompt",
|
||||
"addNegativePrompt": "Add Negative Prompt",
|
||||
"selectYourModel": "Select Your Model",
|
||||
"discordLabel": "Discord",
|
||||
"dontAskMeAgain": "Don't ask me again",
|
||||
"dontShowMeThese": "Don't show me these",
|
||||
@@ -618,6 +622,10 @@
|
||||
"title": "Fit Bbox To Masks",
|
||||
"desc": "Automatically adjust the generation bounding box to fit visible inpaint masks"
|
||||
},
|
||||
"toggleBbox": {
|
||||
"title": "Toggle Bbox Visibility",
|
||||
"desc": "Hide or show the generation bounding box"
|
||||
},
|
||||
"applySegmentAnything": {
|
||||
"title": "Apply Segment Anything",
|
||||
"desc": "Apply the current Segment Anything mask.",
|
||||
@@ -767,6 +775,7 @@
|
||||
"allPrompts": "All Prompts",
|
||||
"cfgScale": "CFG scale",
|
||||
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
|
||||
"clipSkip": "$t(parameters.clipSkip)",
|
||||
"createdBy": "Created By",
|
||||
"generationMode": "Generation Mode",
|
||||
"guidance": "Guidance",
|
||||
@@ -869,6 +878,9 @@
|
||||
"install": "Install",
|
||||
"installAll": "Install All",
|
||||
"installRepo": "Install Repo",
|
||||
"installBundle": "Install Bundle",
|
||||
"installBundleMsg1": "Are you sure you want to install the {{bundleName}} bundle?",
|
||||
"installBundleMsg2": "This bundle will install the following {{count}} models:",
|
||||
"ipAdapters": "IP Adapters",
|
||||
"learnMoreAboutSupportedModels": "Learn more about the models we support",
|
||||
"load": "Load",
|
||||
@@ -1287,6 +1299,7 @@
|
||||
"remixImage": "Remix Image",
|
||||
"usePrompt": "Use Prompt",
|
||||
"useSeed": "Use Seed",
|
||||
"useClipSkip": "Use CLIP Skip",
|
||||
"width": "Width",
|
||||
"gaussianBlur": "Gaussian Blur",
|
||||
"boxBlur": "Box Blur",
|
||||
@@ -1368,8 +1381,8 @@
|
||||
"addedToBoard": "Added to board {{name}}'s assets",
|
||||
"addedToUncategorized": "Added to board $t(boards.uncategorized)'s assets",
|
||||
"baseModelChanged": "Base Model Changed",
|
||||
"baseModelChangedCleared_one": "Cleared or disabled {{count}} incompatible submodel",
|
||||
"baseModelChangedCleared_other": "Cleared or disabled {{count}} incompatible submodels",
|
||||
"baseModelChangedCleared_one": "Updated, cleared or disabled {{count}} incompatible submodel",
|
||||
"baseModelChangedCleared_other": "Updated, cleared or disabled {{count}} incompatible submodels",
|
||||
"canceled": "Processing Canceled",
|
||||
"connected": "Connected to Server",
|
||||
"imageCopied": "Image Copied",
|
||||
@@ -1937,8 +1950,11 @@
|
||||
"zoomToNode": "Zoom to Node",
|
||||
"nodeFieldTooltip": "To add a node field, click the small plus sign button on the field in the Workflow Editor, or drag the field by its name into the form.",
|
||||
"addToForm": "Add to Form",
|
||||
"removeFromForm": "Remove from Form",
|
||||
"label": "Label",
|
||||
"showDescription": "Show Description",
|
||||
"showShuffle": "Show Shuffle",
|
||||
"shuffle": "Shuffle",
|
||||
"component": "Component",
|
||||
"numberInput": "Number Input",
|
||||
"singleLine": "Single Line",
|
||||
@@ -2180,7 +2196,8 @@
|
||||
"rgReferenceImagesNotSupported": "regional Reference Images not supported for selected base model",
|
||||
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
|
||||
"rgNoRegion": "no region drawn",
|
||||
"fluxFillIncompatibleWithControlLoRA": "Control LoRA is not compatible with FLUX Fill"
|
||||
"fluxFillIncompatibleWithControlLoRA": "Control LoRA is not compatible with FLUX Fill",
|
||||
"bboxHidden": "Bounding box is hidden (shift+o to toggle)"
|
||||
},
|
||||
"errors": {
|
||||
"unableToFindImage": "Unable to find image",
|
||||
@@ -2672,8 +2689,8 @@
|
||||
"whatsNew": {
|
||||
"whatsNewInInvoke": "What's New in Invoke",
|
||||
"items": [
|
||||
"Studio state is saved to the server, allowing you to continue your work on any device.",
|
||||
"Support for multiple reference images for FLUX Kontext (local model only)."
|
||||
"Canvas: Color Picker does not sample alpha, bbox respects aspect ratio lock when resizing shuffle button for number fields in Workflow Builder, hide pixel dimension sliders when using a model that doesn't support them",
|
||||
"Workflows: Add a Shuffle button to number input fields"
|
||||
],
|
||||
"readReleaseNotes": "Read Release Notes",
|
||||
"watchRecentReleaseVideos": "Watch Recent Release Videos",
|
||||
|
||||
@@ -128,7 +128,10 @@
|
||||
"search": "Cerca",
|
||||
"clear": "Cancella",
|
||||
"compactView": "Vista compatta",
|
||||
"fullView": "Vista completa"
|
||||
"fullView": "Vista completa",
|
||||
"removeNegativePrompt": "Rimuovi prompt negativo",
|
||||
"addNegativePrompt": "Aggiungi prompt negativo",
|
||||
"selectYourModel": "Seleziona il modello"
|
||||
},
|
||||
"gallery": {
|
||||
"galleryImageSize": "Dimensione dell'immagine",
|
||||
@@ -410,6 +413,14 @@
|
||||
"cancelSegmentAnything": {
|
||||
"title": "Annulla Segment Anything",
|
||||
"desc": "Annulla l'operazione Segment Anything corrente."
|
||||
},
|
||||
"fitBboxToLayers": {
|
||||
"title": "Adatta il riquadro di delimitazione ai livelli",
|
||||
"desc": "Regola automaticamente il riquadro di delimitazione della generazione per adattarlo ai livelli visibili"
|
||||
},
|
||||
"toggleBbox": {
|
||||
"title": "Attiva/disattiva la visibilità del riquadro di delimitazione",
|
||||
"desc": "Nascondi o mostra il riquadro di delimitazione della generazione"
|
||||
}
|
||||
},
|
||||
"workflows": {
|
||||
@@ -711,7 +722,10 @@
|
||||
"bundleDescription": "Ogni pacchetto include modelli essenziali per ogni famiglia di modelli e modelli base selezionati per iniziare.",
|
||||
"browseAll": "Oppure scopri tutti i modelli disponibili:"
|
||||
},
|
||||
"launchpadTab": "Rampa di lancio"
|
||||
"launchpadTab": "Rampa di lancio",
|
||||
"installBundle": "Installa pacchetto",
|
||||
"installBundleMsg1": "Vuoi davvero installare il pacchetto {{bundleName}}?",
|
||||
"installBundleMsg2": "Questo pacchetto installerà i seguenti {{count}} modelli:"
|
||||
},
|
||||
"parameters": {
|
||||
"images": "Immagini",
|
||||
@@ -798,7 +812,6 @@
|
||||
"modelIncompatibleScaledBboxWidth": "La larghezza scalata del riquadro è {{width}} ma {{model}} richiede multipli di {{multiple}}",
|
||||
"modelIncompatibleScaledBboxHeight": "L'altezza scalata del riquadro è {{height}} ma {{model}} richiede multipli di {{multiple}}",
|
||||
"modelDisabledForTrial": "La generazione con {{modelName}} non è disponibile per gli account di prova. Accedi alle impostazioni del tuo account per effettuare l'upgrade.",
|
||||
"fluxKontextMultipleReferenceImages": "È possibile utilizzare solo 1 immagine di riferimento alla volta con FLUX Kontext tramite BFL API",
|
||||
"promptExpansionResultPending": "Accetta o ignora il risultato dell'espansione del prompt",
|
||||
"promptExpansionPending": "Espansione del prompt in corso"
|
||||
},
|
||||
@@ -828,7 +841,8 @@
|
||||
"coherenceMinDenoise": "Min rid. rumore",
|
||||
"recallMetadata": "Richiama i metadati",
|
||||
"disabledNoRasterContent": "Disabilitato (nessun contenuto Raster)",
|
||||
"modelDisabledForTrial": "La generazione con {{modelName}} non è disponibile per gli account di prova. Visita le <LinkComponent>impostazioni account</LinkComponent> per effettuare l'upgrade."
|
||||
"modelDisabledForTrial": "La generazione con {{modelName}} non è disponibile per gli account di prova. Visita le <LinkComponent>impostazioni account</LinkComponent> per effettuare l'upgrade.",
|
||||
"useClipSkip": "Usa CLIP Skip"
|
||||
},
|
||||
"settings": {
|
||||
"models": "Modelli",
|
||||
@@ -881,8 +895,8 @@
|
||||
"parameterSet": "Parametro richiamato",
|
||||
"parameterNotSet": "Parametro non richiamato",
|
||||
"problemCopyingImage": "Impossibile copiare l'immagine",
|
||||
"baseModelChangedCleared_one": "Cancellato o disabilitato {{count}} sottomodello incompatibile",
|
||||
"baseModelChangedCleared_many": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"baseModelChangedCleared_one": "Aggiornato, cancellato o disabilitato {{count}} sottomodello incompatibile",
|
||||
"baseModelChangedCleared_many": "Aggiornati, cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"baseModelChangedCleared_other": "Cancellati o disabilitati {{count}} sottomodelli incompatibili",
|
||||
"loadedWithWarnings": "Flusso di lavoro caricato con avvisi",
|
||||
"imageUploaded": "Immagine caricata",
|
||||
@@ -1227,7 +1241,8 @@
|
||||
"updateBoardError": "Errore durante l'aggiornamento della bacheca",
|
||||
"uncategorizedImages": "Immagini non categorizzate",
|
||||
"deleteAllUncategorizedImages": "Elimina tutte le immagini non categorizzate",
|
||||
"deletedImagesCannotBeRestored": "Le immagini eliminate non possono essere ripristinate."
|
||||
"deletedImagesCannotBeRestored": "Le immagini eliminate non possono essere ripristinate.",
|
||||
"locateInGalery": "Trova nella Galleria"
|
||||
},
|
||||
"queue": {
|
||||
"queueFront": "Aggiungi all'inizio della coda",
|
||||
@@ -1974,7 +1989,10 @@
|
||||
"publishInProgress": "Pubblicazione in corso",
|
||||
"selectingOutputNode": "Selezione del nodo di uscita",
|
||||
"selectingOutputNodeDesc": "Fare clic su un nodo per selezionarlo come nodo di uscita del flusso di lavoro.",
|
||||
"errorWorkflowHasUnpublishableNodes": "Il flusso di lavoro ha nodi di estrazione lotto, generatore o metadati"
|
||||
"errorWorkflowHasUnpublishableNodes": "Il flusso di lavoro ha nodi di estrazione lotto, generatore o metadati",
|
||||
"showShuffle": "Mostra Mescola",
|
||||
"shuffle": "Mescola",
|
||||
"removeFromForm": "Rimuovi dal modulo"
|
||||
},
|
||||
"loadMore": "Carica altro",
|
||||
"searchPlaceholder": "Cerca per nome, descrizione o etichetta",
|
||||
@@ -2455,7 +2473,8 @@
|
||||
"ipAdapterIncompatibleBaseModel": "modello base dell'immagine di riferimento incompatibile",
|
||||
"ipAdapterNoImageSelected": "nessuna immagine di riferimento selezionata",
|
||||
"rgAutoNegativeNotSupported": "Auto-Negativo non supportato per il modello base selezionato",
|
||||
"fluxFillIncompatibleWithControlLoRA": "Il controllo LoRA non è compatibile con FLUX Fill"
|
||||
"fluxFillIncompatibleWithControlLoRA": "Il controllo LoRA non è compatibile con FLUX Fill",
|
||||
"bboxHidden": "Il riquadro di delimitazione è nascosto (Shift+o per attivarlo)"
|
||||
},
|
||||
"pasteTo": "Incolla su",
|
||||
"pasteToBboxDesc": "Nuovo livello (nel riquadro di delimitazione)",
|
||||
@@ -2685,8 +2704,8 @@
|
||||
"watchRecentReleaseVideos": "Guarda i video su questa versione",
|
||||
"watchUiUpdatesOverview": "Guarda le novità dell'interfaccia",
|
||||
"items": [
|
||||
"Lo stato dello studio viene salvato sul server, consentendoti di continuare a lavorare su qualsiasi dispositivo.",
|
||||
"Supporto per più immagini di riferimento per FLUX Kontext (solo modello locale)."
|
||||
"Tela: Color Picker non campiona l'alfa, il riquadro di delimitazione rispetta il blocco delle proporzioni quando si ridimensiona il pulsante Mescola per i campi numerici nel generatore di flusso di lavoro, nasconde i cursori delle dimensioni dei pixel quando si utilizza un modello che non li supporta",
|
||||
"Flussi di lavoro: aggiunto un pulsante Mescola ai campi di input numerici"
|
||||
]
|
||||
},
|
||||
"system": {
|
||||
|
||||
@@ -755,7 +755,6 @@
|
||||
"noFLUXVAEModelSelected": "FLUX生成にVAEモデルが選択されていません",
|
||||
"noT5EncoderModelSelected": "FLUX生成にT5エンコーダモデルが選択されていません",
|
||||
"modelDisabledForTrial": "{{modelName}} を使用した生成はトライアルアカウントではご利用いただけません.アカウント設定にアクセスしてアップグレードしてください。",
|
||||
"fluxKontextMultipleReferenceImages": "Flux Kontext では一度に 1 つの参照画像しか使用できません",
|
||||
"promptExpansionPending": "プロンプト拡張が進行中",
|
||||
"promptExpansionResultPending": "プロンプト拡張結果を受け入れるか破棄してください"
|
||||
},
|
||||
|
||||
@@ -55,7 +55,8 @@
|
||||
"assetsWithCount_other": "{{count}} tài nguyên",
|
||||
"uncategorizedImages": "Ảnh Chưa Sắp Xếp",
|
||||
"deleteAllUncategorizedImages": "Xoá Tất Cả Ảnh Chưa Sắp Xếp",
|
||||
"deletedImagesCannotBeRestored": "Ảnh đã xoá không thể phục hồi lại."
|
||||
"deletedImagesCannotBeRestored": "Ảnh đã xoá không thể phục hồi lại.",
|
||||
"locateInGalery": "Vị Trí Ở Thư Viện Ảnh"
|
||||
},
|
||||
"gallery": {
|
||||
"swapImages": "Đổi Hình Ảnh",
|
||||
@@ -252,7 +253,10 @@
|
||||
"clear": "Dọn Dẹp",
|
||||
"compactView": "Chế Độ Xem Gọn",
|
||||
"fullView": "Chế Độ Xem Đầy Đủ",
|
||||
"options_withCount_other": "{{count}} thiết lập"
|
||||
"options_withCount_other": "{{count}} thiết lập",
|
||||
"removeNegativePrompt": "Xóa Lệnh Tiêu Cực",
|
||||
"addNegativePrompt": "Thêm Lệnh Tiêu Cực",
|
||||
"selectYourModel": "Chọn Model"
|
||||
},
|
||||
"prompt": {
|
||||
"addPromptTrigger": "Thêm Trigger Cho Lệnh",
|
||||
@@ -492,6 +496,14 @@
|
||||
"title": "Huỷ Segment Anything",
|
||||
"desc": "Huỷ hoạt động Segment Anything hiện tại.",
|
||||
"key": "esc"
|
||||
},
|
||||
"fitBboxToLayers": {
|
||||
"title": "Xếp Vừa Hộp Giới Hạn Vào Layer",
|
||||
"desc": "Tự động điểu chỉnh hộp giới hạn tạo sinh vừa vặn vào layer nhìn thấy được"
|
||||
},
|
||||
"toggleBbox": {
|
||||
"title": "Bật/Tắt Hiển Thị Hộp Giới Hạn",
|
||||
"desc": "Ẩn hoặc hiện hộp giới hạn tạo sinh"
|
||||
}
|
||||
},
|
||||
"workflows": {
|
||||
@@ -865,7 +877,10 @@
|
||||
"stableDiffusion15": "Stable Diffusion 1.5",
|
||||
"sdxl": "SDXL",
|
||||
"fluxDev": "FLUX.1 dev"
|
||||
}
|
||||
},
|
||||
"installBundle": "Tải Xuống Gói",
|
||||
"installBundleMsg1": "Bạn có chắc chắn muốn tải xuống gói {{bundleName}}?",
|
||||
"installBundleMsg2": "Gói này sẽ tải xuống {{count}} model sau đây:"
|
||||
},
|
||||
"metadata": {
|
||||
"guidance": "Hướng Dẫn",
|
||||
@@ -898,7 +913,8 @@
|
||||
"recallParameters": "Gợi Nhớ Tham Số",
|
||||
"scheduler": "Scheduler",
|
||||
"noMetaData": "Không tìm thấy metadata",
|
||||
"imageDimensions": "Kích Thước Ảnh"
|
||||
"imageDimensions": "Kích Thước Ảnh",
|
||||
"clipSkip": "$t(parameters.clipSkip)"
|
||||
},
|
||||
"accordions": {
|
||||
"generation": {
|
||||
@@ -1641,7 +1657,6 @@
|
||||
"modelIncompatibleScaledBboxHeight": "Chiều dài hộp giới hạn theo tỉ lệ là {{height}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
|
||||
"modelIncompatibleScaledBboxWidth": "Chiều rộng hộp giới hạn theo tỉ lệ là {{width}} nhưng {{model}} yêu cầu bội số của {{multiple}}",
|
||||
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần thiết lập tài khoản để nâng cấp.",
|
||||
"fluxKontextMultipleReferenceImages": "Chỉ có thể dùng 1 Ảnh Mẫu cùng lúc với LUX Kontext thông qua BFL API",
|
||||
"promptExpansionPending": "Trong quá trình mở rộng lệnh",
|
||||
"promptExpansionResultPending": "Hãy chấp thuận hoặc huỷ bỏ kết quả mở rộng lệnh của bạn"
|
||||
},
|
||||
@@ -1707,7 +1722,8 @@
|
||||
"upscaling": "Upscale",
|
||||
"tileSize": "Kích Thước Khối",
|
||||
"disabledNoRasterContent": "Đã Tắt (Không Có Nội Dung Dạng Raster)",
|
||||
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần <LinkComponent>thiết lập tài khoản</LinkComponent> để nâng cấp."
|
||||
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần <LinkComponent>thiết lập tài khoản</LinkComponent> để nâng cấp.",
|
||||
"useClipSkip": "Dùng CLIP Skip"
|
||||
},
|
||||
"dynamicPrompts": {
|
||||
"seedBehaviour": {
|
||||
@@ -2198,7 +2214,8 @@
|
||||
"rgReferenceImagesNotSupported": "Ảnh Mẫu Khu Vực không được hỗ trợ cho model cơ sở được chọn",
|
||||
"rgAutoNegativeNotSupported": "Tự Động Đảo Chiều không được hỗ trợ cho model cơ sở được chọn",
|
||||
"rgNoRegion": "không có khu vực được vẽ",
|
||||
"fluxFillIncompatibleWithControlLoRA": "LoRA Điều Khiển Được không tương tích với FLUX Fill"
|
||||
"fluxFillIncompatibleWithControlLoRA": "LoRA Điều Khiển Được không tương tích với FLUX Fill",
|
||||
"bboxHidden": "Hộp giới hạn đang ẩn (shift+o để bật/tắt)"
|
||||
},
|
||||
"pasteTo": "Dán Vào",
|
||||
"pasteToAssets": "Tài Nguyên",
|
||||
@@ -2622,7 +2639,10 @@
|
||||
"publishingValidationRunInProgress": "Quá trình kiểm tra tính hợp lệ đang diễn ra.",
|
||||
"selectingOutputNodeDesc": "Bấm vào node để biến nó thành node đầu ra của workflow.",
|
||||
"selectingOutputNode": "Chọn node đầu ra",
|
||||
"errorWorkflowHasUnpublishableNodes": "Workflow có lô node, node sản sinh, hoặc node tách metadata"
|
||||
"errorWorkflowHasUnpublishableNodes": "Workflow có lô node, node sản sinh, hoặc node tách metadata",
|
||||
"removeFromForm": "Xóa Khỏi Vùng Nhập",
|
||||
"showShuffle": "Hiện Xáo Trộn",
|
||||
"shuffle": "Xáo Trộn"
|
||||
},
|
||||
"yourWorkflows": "Workflow Của Bạn",
|
||||
"browseWorkflows": "Khám Phá Workflow",
|
||||
@@ -2679,8 +2699,8 @@
|
||||
"watchRecentReleaseVideos": "Xem Video Phát Hành Mới Nhất",
|
||||
"watchUiUpdatesOverview": "Xem Tổng Quan Về Những Cập Nhật Cho Giao Diện Người Dùng",
|
||||
"items": [
|
||||
"Trạng thái Studio được lưu vào server, giúp bạn tiếp tục công việc ở mọi thiết bị.",
|
||||
"Hỗ trợ nhiều ảnh mẫu cho FLUX KONTEXT (chỉ cho model trên máy)."
|
||||
"Misc QoL: Bật/Tắt hiển thị hộp giới hạn, đánh dấu node bị lỗi, chặn lỗi thêm node vào vùng nhập nhiều lần, khả năng đọc lại metadata của CLIP Skip",
|
||||
"Giảm lượng tiêu thụ VRAM cho các ảnh mẫu Kontext và mã hóa VAE"
|
||||
]
|
||||
},
|
||||
"upsell": {
|
||||
|
||||
@@ -71,7 +71,7 @@ interface Props extends PropsWithChildren {
|
||||
* If provided, overrides in-app navigation to the model manager
|
||||
*/
|
||||
onClickGoToModelManager?: () => void;
|
||||
storagePersistThrottle?: number;
|
||||
storagePersistDebounce?: number;
|
||||
}
|
||||
|
||||
const InvokeAIUI = ({
|
||||
@@ -98,7 +98,7 @@ const InvokeAIUI = ({
|
||||
loggingOverrides,
|
||||
onClickGoToModelManager,
|
||||
whatsNew,
|
||||
storagePersistThrottle = 2000,
|
||||
storagePersistDebounce = 300,
|
||||
}: Props) => {
|
||||
const [store, setStore] = useState<ReturnType<typeof createStore> | undefined>(undefined);
|
||||
const [didRehydrate, setDidRehydrate] = useState(false);
|
||||
@@ -318,7 +318,7 @@ const InvokeAIUI = ({
|
||||
const onRehydrated = () => {
|
||||
setDidRehydrate(true);
|
||||
};
|
||||
const store = createStore({ persist: true, persistThrottle: storagePersistThrottle, onRehydrated });
|
||||
const store = createStore({ persist: true, persistDebounce: storagePersistDebounce, onRehydrated });
|
||||
setStore(store);
|
||||
$store.set(store);
|
||||
if (import.meta.env.MODE === 'development') {
|
||||
@@ -333,7 +333,7 @@ const InvokeAIUI = ({
|
||||
window.$store = undefined;
|
||||
}
|
||||
};
|
||||
}, [storagePersistThrottle]);
|
||||
}, [storagePersistDebounce]);
|
||||
|
||||
if (!store || !didRehydrate) {
|
||||
return <Loading />;
|
||||
|
||||
@@ -2,7 +2,7 @@ import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/store';
|
||||
import { bboxSyncedToOptimalDimension, rgRefImageModelChanged } from 'features/controlLayers/store/canvasSlice';
|
||||
import { buildSelectIsStaging, selectCanvasSessionId } from 'features/controlLayers/store/canvasStagingAreaSlice';
|
||||
import { loraDeleted } from 'features/controlLayers/store/lorasSlice';
|
||||
import { loraIsEnabledChanged } from 'features/controlLayers/store/lorasSlice';
|
||||
import { modelChanged, syncedToOptimalDimension, vaeSelected } from 'features/controlLayers/store/paramsSlice';
|
||||
import { refImageModelChanged, selectReferenceImageEntities } from 'features/controlLayers/store/refImagesSlice';
|
||||
import {
|
||||
@@ -12,6 +12,7 @@ import {
|
||||
} from 'features/controlLayers/store/selectors';
|
||||
import { getEntityIdentifier } from 'features/controlLayers/store/types';
|
||||
import { modelSelected } from 'features/parameters/store/actions';
|
||||
import { SUPPORTS_REF_IMAGES_BASE_MODELS } from 'features/parameters/types/constants';
|
||||
import { zParameterModel } from 'features/parameters/types/parameterSchemas';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
@@ -22,6 +23,7 @@ import {
|
||||
isFluxKontextApiModelConfig,
|
||||
isFluxKontextModelConfig,
|
||||
isFluxReduxModelConfig,
|
||||
isGemini2_5ModelConfig,
|
||||
} from 'services/api/types';
|
||||
|
||||
const log = logger('models');
|
||||
@@ -44,13 +46,13 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
|
||||
if (didBaseModelChange) {
|
||||
// we may need to reset some incompatible submodels
|
||||
let modelsCleared = 0;
|
||||
let modelsUpdatedDisabledOrCleared = 0;
|
||||
|
||||
// handle incompatible loras
|
||||
state.loras.loras.forEach((lora) => {
|
||||
if (lora.model.base !== newBase) {
|
||||
dispatch(loraDeleted({ id: lora.id }));
|
||||
modelsCleared += 1;
|
||||
dispatch(loraIsEnabledChanged({ id: lora.id, isEnabled: false }));
|
||||
modelsUpdatedDisabledOrCleared += 1;
|
||||
}
|
||||
});
|
||||
|
||||
@@ -58,52 +60,57 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
const { vae } = state.params;
|
||||
if (vae && vae.base !== newBase) {
|
||||
dispatch(vaeSelected(null));
|
||||
modelsCleared += 1;
|
||||
modelsUpdatedDisabledOrCleared += 1;
|
||||
}
|
||||
|
||||
// Handle incompatible reference image models - switch to first compatible model, with some smart logic
|
||||
// to choose the best available model based on the new main model.
|
||||
const allRefImageModels = selectGlobalRefImageModels(state).filter(({ base }) => base === newBase);
|
||||
if (SUPPORTS_REF_IMAGES_BASE_MODELS.includes(newModel.base)) {
|
||||
// Handle incompatible reference image models - switch to first compatible model, with some smart logic
|
||||
// to choose the best available model based on the new main model.
|
||||
const allRefImageModels = selectGlobalRefImageModels(state).filter(({ base }) => base === newBase);
|
||||
|
||||
let newGlobalRefImageModel = null;
|
||||
let newGlobalRefImageModel = null;
|
||||
|
||||
// Certain models require the ref image model to be the same as the main model - others just need a matching
|
||||
// base. Helper to grab the first exact match or the first available model if no exact match is found.
|
||||
const exactMatchOrFirst = <T extends AnyModelConfig>(candidates: T[]): T | null =>
|
||||
candidates.find(({ key }) => key === newModel.key) ?? candidates[0] ?? null;
|
||||
// Certain models require the ref image model to be the same as the main model - others just need a matching
|
||||
// base. Helper to grab the first exact match or the first available model if no exact match is found.
|
||||
const exactMatchOrFirst = <T extends AnyModelConfig>(candidates: T[]): T | null =>
|
||||
candidates.find(({ key }) => key === newModel.key) ?? candidates[0] ?? null;
|
||||
|
||||
// The only way we can differentiate between FLUX and FLUX Kontext is to check for "kontext" in the name
|
||||
if (newModel.base === 'flux' && newModel.name.toLowerCase().includes('kontext')) {
|
||||
const fluxKontextDevModels = allRefImageModels.filter(isFluxKontextModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(fluxKontextDevModels);
|
||||
} else if (newModel.base === 'chatgpt-4o') {
|
||||
const chatGPT4oModels = allRefImageModels.filter(isChatGPT4oModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(chatGPT4oModels);
|
||||
} else if (newModel.base === 'flux-kontext') {
|
||||
const fluxKontextApiModels = allRefImageModels.filter(isFluxKontextApiModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(fluxKontextApiModels);
|
||||
} else if (newModel.base === 'flux') {
|
||||
const fluxReduxModels = allRefImageModels.filter(isFluxReduxModelConfig);
|
||||
newGlobalRefImageModel = fluxReduxModels[0] ?? null;
|
||||
} else {
|
||||
newGlobalRefImageModel = allRefImageModels[0] ?? null;
|
||||
}
|
||||
// The only way we can differentiate between FLUX and FLUX Kontext is to check for "kontext" in the name
|
||||
if (newModel.base === 'flux' && newModel.name.toLowerCase().includes('kontext')) {
|
||||
const fluxKontextDevModels = allRefImageModels.filter(isFluxKontextModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(fluxKontextDevModels);
|
||||
} else if (newModel.base === 'chatgpt-4o') {
|
||||
const chatGPT4oModels = allRefImageModels.filter(isChatGPT4oModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(chatGPT4oModels);
|
||||
} else if (newModel.base === 'gemini-2.5') {
|
||||
const gemini2_5Models = allRefImageModels.filter(isGemini2_5ModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(gemini2_5Models);
|
||||
} else if (newModel.base === 'flux-kontext') {
|
||||
const fluxKontextApiModels = allRefImageModels.filter(isFluxKontextApiModelConfig);
|
||||
newGlobalRefImageModel = exactMatchOrFirst(fluxKontextApiModels);
|
||||
} else if (newModel.base === 'flux') {
|
||||
const fluxReduxModels = allRefImageModels.filter(isFluxReduxModelConfig);
|
||||
newGlobalRefImageModel = fluxReduxModels[0] ?? null;
|
||||
} else {
|
||||
newGlobalRefImageModel = allRefImageModels[0] ?? null;
|
||||
}
|
||||
|
||||
// All ref image entities are updated to use the same new model
|
||||
const refImageEntities = selectReferenceImageEntities(state);
|
||||
for (const entity of refImageEntities) {
|
||||
const shouldUpdateModel =
|
||||
(entity.config.model && entity.config.model.base !== newBase) ||
|
||||
(!entity.config.model && newGlobalRefImageModel);
|
||||
// All ref image entities are updated to use the same new model
|
||||
const refImageEntities = selectReferenceImageEntities(state);
|
||||
for (const entity of refImageEntities) {
|
||||
const shouldUpdateModel =
|
||||
(entity.config.model && entity.config.model.base !== newBase) ||
|
||||
(!entity.config.model && newGlobalRefImageModel);
|
||||
|
||||
if (shouldUpdateModel) {
|
||||
dispatch(
|
||||
refImageModelChanged({
|
||||
id: entity.id,
|
||||
modelConfig: newGlobalRefImageModel,
|
||||
})
|
||||
);
|
||||
modelsCleared += 1;
|
||||
if (shouldUpdateModel) {
|
||||
dispatch(
|
||||
refImageModelChanged({
|
||||
id: entity.id,
|
||||
modelConfig: newGlobalRefImageModel,
|
||||
})
|
||||
);
|
||||
modelsUpdatedDisabledOrCleared += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -128,17 +135,17 @@ export const addModelSelectedListener = (startAppListening: AppStartListening) =
|
||||
modelConfig: newRegionalRefImageModel,
|
||||
})
|
||||
);
|
||||
modelsCleared += 1;
|
||||
modelsUpdatedDisabledOrCleared += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (modelsCleared > 0) {
|
||||
if (modelsUpdatedDisabledOrCleared > 0) {
|
||||
toast({
|
||||
id: 'BASE_MODEL_CHANGED',
|
||||
title: t('toast.baseModelChanged'),
|
||||
description: t('toast.baseModelChangedCleared', {
|
||||
count: modelsCleared,
|
||||
count: modelsUpdatedDisabledOrCleared,
|
||||
}),
|
||||
status: 'warning',
|
||||
});
|
||||
|
||||
@@ -184,7 +184,7 @@ const PERSISTED_KEYS = Object.values(SLICE_CONFIGS)
|
||||
.filter((sliceConfig) => !!sliceConfig.persistConfig)
|
||||
.map((sliceConfig) => sliceConfig.slice.reducerPath);
|
||||
|
||||
export const createStore = (options?: { persist?: boolean; persistThrottle?: number; onRehydrated?: () => void }) => {
|
||||
export const createStore = (options?: { persist?: boolean; persistDebounce?: number; onRehydrated?: () => void }) => {
|
||||
const store = configureStore({
|
||||
reducer: rememberedRootReducer,
|
||||
middleware: (getDefaultMiddleware) =>
|
||||
@@ -204,7 +204,7 @@ export const createStore = (options?: { persist?: boolean; persistThrottle?: num
|
||||
if (options?.persist) {
|
||||
return enhancers.prepend(
|
||||
rememberEnhancer(reduxRememberDriver, PERSISTED_KEYS, {
|
||||
persistThrottle: options?.persistThrottle ?? 2000,
|
||||
persistDebounce: options?.persistDebounce ?? 2000,
|
||||
serialize,
|
||||
unserialize,
|
||||
prefix: '',
|
||||
|
||||
@@ -58,6 +58,7 @@ const zNumericalParameterConfig = z.object({
|
||||
fineStep: z.number().default(8),
|
||||
coarseStep: z.number().default(64),
|
||||
});
|
||||
export type NumericalParameterConfig = z.infer<typeof zNumericalParameterConfig>;
|
||||
|
||||
/**
|
||||
* Configuration options for the InvokeAI UI.
|
||||
|
||||
5
invokeai/frontend/web/src/common/util/randomFloat.ts
Normal file
5
invokeai/frontend/web/src/common/util/randomFloat.ts
Normal file
@@ -0,0 +1,5 @@
|
||||
const randomFloat = (min: number, max: number): number => {
|
||||
return Math.random() * (max - min + Number.EPSILON) + min;
|
||||
};
|
||||
|
||||
export default randomFloat;
|
||||
@@ -8,6 +8,7 @@ import {
|
||||
isModalOpenChanged,
|
||||
selectChangeBoardModalSlice,
|
||||
} from 'features/changeBoardModal/store/slice';
|
||||
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
|
||||
import { memo, useCallback, useMemo, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useListAllBoardsQuery } from 'services/api/endpoints/boards';
|
||||
@@ -26,7 +27,8 @@ const selectIsModalOpen = createSelector(
|
||||
const ChangeBoardModal = () => {
|
||||
useAssertSingleton('ChangeBoardModal');
|
||||
const dispatch = useAppDispatch();
|
||||
const [selectedBoard, setSelectedBoard] = useState<string | null>();
|
||||
const currentBoardId = useAppSelector(selectSelectedBoardId);
|
||||
const [selectedBoardId, setSelectedBoardId] = useState<string | null>();
|
||||
const { data: boards, isFetching } = useListAllBoardsQuery({ include_archived: true });
|
||||
const isModalOpen = useAppSelector(selectIsModalOpen);
|
||||
const imagesToChange = useAppSelector(selectImagesToChange);
|
||||
@@ -35,15 +37,19 @@ const ChangeBoardModal = () => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const options = useMemo<ComboboxOption[]>(() => {
|
||||
return [{ label: t('boards.uncategorized'), value: 'none' }].concat(
|
||||
(boards ?? []).map((board) => ({
|
||||
label: board.board_name,
|
||||
value: board.board_id,
|
||||
}))
|
||||
);
|
||||
}, [boards, t]);
|
||||
return [{ label: t('boards.uncategorized'), value: 'none' }]
|
||||
.concat(
|
||||
(boards ?? [])
|
||||
.map((board) => ({
|
||||
label: board.board_name,
|
||||
value: board.board_id,
|
||||
}))
|
||||
.sort((a, b) => a.label.localeCompare(b.label))
|
||||
)
|
||||
.filter((board) => board.value !== currentBoardId);
|
||||
}, [boards, currentBoardId, t]);
|
||||
|
||||
const value = useMemo(() => options.find((o) => o.value === selectedBoard), [options, selectedBoard]);
|
||||
const value = useMemo(() => options.find((o) => o.value === selectedBoardId), [options, selectedBoardId]);
|
||||
|
||||
const handleClose = useCallback(() => {
|
||||
dispatch(changeBoardReset());
|
||||
@@ -51,27 +57,26 @@ const ChangeBoardModal = () => {
|
||||
}, [dispatch]);
|
||||
|
||||
const handleChangeBoard = useCallback(() => {
|
||||
if (!imagesToChange.length || !selectedBoard) {
|
||||
if (!imagesToChange.length || !selectedBoardId) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (selectedBoard === 'none') {
|
||||
if (selectedBoardId === 'none') {
|
||||
removeImagesFromBoard({ image_names: imagesToChange });
|
||||
} else {
|
||||
addImagesToBoard({
|
||||
image_names: imagesToChange,
|
||||
board_id: selectedBoard,
|
||||
board_id: selectedBoardId,
|
||||
});
|
||||
}
|
||||
setSelectedBoard(null);
|
||||
dispatch(changeBoardReset());
|
||||
}, [addImagesToBoard, dispatch, imagesToChange, removeImagesFromBoard, selectedBoard]);
|
||||
}, [addImagesToBoard, dispatch, imagesToChange, removeImagesFromBoard, selectedBoardId]);
|
||||
|
||||
const onChange = useCallback<ComboboxOnChange>((v) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
setSelectedBoard(v.value);
|
||||
setSelectedBoardId(v.value);
|
||||
}, []);
|
||||
|
||||
return (
|
||||
@@ -89,7 +94,6 @@ const ChangeBoardModal = () => {
|
||||
{t('boards.movingImagesToBoard', {
|
||||
count: imagesToChange.length,
|
||||
})}
|
||||
:
|
||||
</Text>
|
||||
<FormControl isDisabled={isFetching}>
|
||||
<Combobox
|
||||
|
||||
@@ -0,0 +1,24 @@
|
||||
import { Alert, AlertIcon, AlertTitle } from '@invoke-ai/ui-library';
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export const CanvasAlertsBboxVisibility = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const canvasManager = useCanvasManager();
|
||||
const isBboxHidden = useStore(canvasManager.tool.tools.bbox.$isBboxHidden);
|
||||
|
||||
if (!isBboxHidden) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
|
||||
<AlertIcon />
|
||||
<AlertTitle>{t('controlLayers.warnings.bboxHidden')}</AlertTitle>
|
||||
</Alert>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasAlertsBboxVisibility.displayName = 'CanvasAlertsBboxVisibility';
|
||||
@@ -10,13 +10,19 @@ import type {
|
||||
ChatGPT4oModelConfig,
|
||||
FLUXKontextModelConfig,
|
||||
FLUXReduxModelConfig,
|
||||
Gemini2_5ModelConfig,
|
||||
IPAdapterModelConfig,
|
||||
} from 'services/api/types';
|
||||
|
||||
type Props = {
|
||||
modelKey: string | null;
|
||||
onChangeModel: (
|
||||
modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ChatGPT4oModelConfig | FLUXKontextModelConfig
|
||||
modelConfig:
|
||||
| IPAdapterModelConfig
|
||||
| FLUXReduxModelConfig
|
||||
| ChatGPT4oModelConfig
|
||||
| FLUXKontextModelConfig
|
||||
| Gemini2_5ModelConfig
|
||||
) => void;
|
||||
};
|
||||
|
||||
@@ -28,7 +34,13 @@ export const RefImageModel = memo(({ modelKey, onChangeModel }: Props) => {
|
||||
|
||||
const _onChangeModel = useCallback(
|
||||
(
|
||||
modelConfig: IPAdapterModelConfig | FLUXReduxModelConfig | ChatGPT4oModelConfig | FLUXKontextModelConfig | null
|
||||
modelConfig:
|
||||
| IPAdapterModelConfig
|
||||
| FLUXReduxModelConfig
|
||||
| ChatGPT4oModelConfig
|
||||
| FLUXKontextModelConfig
|
||||
| Gemini2_5ModelConfig
|
||||
| null
|
||||
) => {
|
||||
if (!modelConfig) {
|
||||
return;
|
||||
@@ -39,7 +51,14 @@ export const RefImageModel = memo(({ modelKey, onChangeModel }: Props) => {
|
||||
);
|
||||
|
||||
const getIsDisabled = useCallback(
|
||||
(model: IPAdapterModelConfig | FLUXReduxModelConfig | ChatGPT4oModelConfig | FLUXKontextModelConfig): boolean => {
|
||||
(
|
||||
model:
|
||||
| IPAdapterModelConfig
|
||||
| FLUXReduxModelConfig
|
||||
| ChatGPT4oModelConfig
|
||||
| FLUXKontextModelConfig
|
||||
| Gemini2_5ModelConfig
|
||||
): boolean => {
|
||||
return !areBasesCompatibleForRefImage(mainModelConfig, model);
|
||||
},
|
||||
[mainModelConfig]
|
||||
|
||||
@@ -12,7 +12,7 @@ import {
|
||||
} from 'features/controlLayers/store/canvasStagingAreaSlice';
|
||||
import { selectBboxRect, selectSelectedEntityIdentifier } from 'features/controlLayers/store/selectors';
|
||||
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
|
||||
import { imageNameToImageObject } from 'features/controlLayers/store/util';
|
||||
import { imageDTOToImageObject } from 'features/controlLayers/store/util';
|
||||
import type { PropsWithChildren } from 'react';
|
||||
import { createContext, memo, useContext, useEffect, useMemo, useState } from 'react';
|
||||
import { getImageDTOSafe } from 'services/api/endpoints/images';
|
||||
@@ -71,8 +71,8 @@ export const StagingAreaContextProvider = memo(({ children, sessionId }: PropsWi
|
||||
},
|
||||
onAccept: (item, imageDTO) => {
|
||||
const bboxRect = selectBboxRect(store.getState());
|
||||
const { x, y, width, height } = bboxRect;
|
||||
const imageObject = imageNameToImageObject(imageDTO.image_name, { width, height });
|
||||
const { x, y } = bboxRect;
|
||||
const imageObject = imageDTOToImageObject(imageDTO);
|
||||
const selectedEntityIdentifier = selectSelectedEntityIdentifier(store.getState());
|
||||
const overrides: Partial<CanvasRasterLayerState> = {
|
||||
position: { x, y },
|
||||
|
||||
@@ -15,6 +15,7 @@ import { useCanvasEntityQuickSwitchHotkey } from 'features/controlLayers/hooks/u
|
||||
import { useCanvasFilterHotkey } from 'features/controlLayers/hooks/useCanvasFilterHotkey';
|
||||
import { useCanvasInvertMaskHotkey } from 'features/controlLayers/hooks/useCanvasInvertMaskHotkey';
|
||||
import { useCanvasResetLayerHotkey } from 'features/controlLayers/hooks/useCanvasResetLayerHotkey';
|
||||
import { useCanvasToggleBboxHotkey } from 'features/controlLayers/hooks/useCanvasToggleBboxHotkey';
|
||||
import { useCanvasToggleNonRasterLayersHotkey } from 'features/controlLayers/hooks/useCanvasToggleNonRasterLayersHotkey';
|
||||
import { useCanvasTransformHotkey } from 'features/controlLayers/hooks/useCanvasTransformHotkey';
|
||||
import { useCanvasUndoRedoHotkeys } from 'features/controlLayers/hooks/useCanvasUndoRedoHotkeys';
|
||||
@@ -31,6 +32,7 @@ export const CanvasToolbar = memo(() => {
|
||||
useCanvasFilterHotkey();
|
||||
useCanvasInvertMaskHotkey();
|
||||
useCanvasToggleNonRasterLayersHotkey();
|
||||
useCanvasToggleBboxHotkey();
|
||||
|
||||
return (
|
||||
<Flex w="full" gap={2} alignItems="center" px={2}>
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
|
||||
import type { AppGetState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppStore } from 'app/store/storeHooks';
|
||||
import { useAppDispatch, useAppSelector, useAppStore } from 'app/store/storeHooks';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { getPrefixedId } from 'features/controlLayers/konva/util';
|
||||
import {
|
||||
@@ -16,7 +16,11 @@ import {
|
||||
rgRefImageAdded,
|
||||
} from 'features/controlLayers/store/canvasSlice';
|
||||
import { selectBase, selectMainModelConfig } from 'features/controlLayers/store/paramsSlice';
|
||||
import { selectCanvasSlice, selectEntity } from 'features/controlLayers/store/selectors';
|
||||
import {
|
||||
selectCanvasSlice,
|
||||
selectEntity,
|
||||
selectSelectedEntityIdentifier,
|
||||
} from 'features/controlLayers/store/selectors';
|
||||
import type {
|
||||
CanvasEntityIdentifier,
|
||||
CanvasRegionalGuidanceState,
|
||||
@@ -24,6 +28,7 @@ import type {
|
||||
ControlLoRAConfig,
|
||||
ControlNetConfig,
|
||||
FluxKontextReferenceImageConfig,
|
||||
Gemini2_5ReferenceImageConfig,
|
||||
IPAdapterConfig,
|
||||
T2IAdapterConfig,
|
||||
} from 'features/controlLayers/store/types';
|
||||
@@ -31,6 +36,7 @@ import {
|
||||
initialChatGPT4oReferenceImage,
|
||||
initialControlNet,
|
||||
initialFluxKontextReferenceImage,
|
||||
initialGemini2_5ReferenceImage,
|
||||
initialIPAdapter,
|
||||
initialT2IAdapter,
|
||||
} from 'features/controlLayers/store/util';
|
||||
@@ -72,7 +78,11 @@ export const selectDefaultControlAdapter = createSelector(
|
||||
|
||||
export const getDefaultRefImageConfig = (
|
||||
getState: AppGetState
|
||||
): IPAdapterConfig | ChatGPT4oReferenceImageConfig | FluxKontextReferenceImageConfig => {
|
||||
):
|
||||
| IPAdapterConfig
|
||||
| ChatGPT4oReferenceImageConfig
|
||||
| FluxKontextReferenceImageConfig
|
||||
| Gemini2_5ReferenceImageConfig => {
|
||||
const state = getState();
|
||||
|
||||
const mainModelConfig = selectMainModelConfig(state);
|
||||
@@ -93,6 +103,12 @@ export const getDefaultRefImageConfig = (
|
||||
return config;
|
||||
}
|
||||
|
||||
if (base === 'gemini-2.5') {
|
||||
const config = deepClone(initialGemini2_5ReferenceImage);
|
||||
config.model = zModelIdentifierField.parse(mainModelConfig);
|
||||
return config;
|
||||
}
|
||||
|
||||
// Otherwise, find the first compatible IP Adapter model.
|
||||
const modelConfig = ipAdapterModelConfigs.find((m) => m.base === base);
|
||||
|
||||
@@ -136,37 +152,49 @@ export const getDefaultRegionalGuidanceRefImageConfig = (getState: AppGetState):
|
||||
|
||||
export const useAddControlLayer = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
|
||||
const selectedControlLayer =
|
||||
selectedEntityIdentifier?.type === 'control_layer' ? selectedEntityIdentifier.id : undefined;
|
||||
const func = useCallback(() => {
|
||||
const overrides = { controlAdapter: deepClone(initialControlNet) };
|
||||
dispatch(controlLayerAdded({ isSelected: true, overrides }));
|
||||
}, [dispatch]);
|
||||
dispatch(controlLayerAdded({ isSelected: true, overrides, addAfter: selectedControlLayer }));
|
||||
}, [dispatch, selectedControlLayer]);
|
||||
|
||||
return func;
|
||||
};
|
||||
|
||||
export const useAddRasterLayer = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
|
||||
const selectedRasterLayer =
|
||||
selectedEntityIdentifier?.type === 'raster_layer' ? selectedEntityIdentifier.id : undefined;
|
||||
const func = useCallback(() => {
|
||||
dispatch(rasterLayerAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
dispatch(rasterLayerAdded({ isSelected: true, addAfter: selectedRasterLayer }));
|
||||
}, [dispatch, selectedRasterLayer]);
|
||||
|
||||
return func;
|
||||
};
|
||||
|
||||
export const useAddInpaintMask = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
|
||||
const selectedInpaintMask =
|
||||
selectedEntityIdentifier?.type === 'inpaint_mask' ? selectedEntityIdentifier.id : undefined;
|
||||
const func = useCallback(() => {
|
||||
dispatch(inpaintMaskAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
dispatch(inpaintMaskAdded({ isSelected: true, addAfter: selectedInpaintMask }));
|
||||
}, [dispatch, selectedInpaintMask]);
|
||||
|
||||
return func;
|
||||
};
|
||||
|
||||
export const useAddRegionalGuidance = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
|
||||
const selectedRegionalGuidance =
|
||||
selectedEntityIdentifier?.type === 'regional_guidance' ? selectedEntityIdentifier.id : undefined;
|
||||
const func = useCallback(() => {
|
||||
dispatch(rgAdded({ isSelected: true }));
|
||||
}, [dispatch]);
|
||||
dispatch(rgAdded({ isSelected: true, addAfter: selectedRegionalGuidance }));
|
||||
}, [dispatch, selectedRegionalGuidance]);
|
||||
|
||||
return func;
|
||||
};
|
||||
|
||||
@@ -0,0 +1,18 @@
|
||||
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
|
||||
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
export const useCanvasToggleBboxHotkey = () => {
|
||||
const canvasManager = useCanvasManager();
|
||||
|
||||
const handleToggleBboxVisibility = useCallback(() => {
|
||||
canvasManager.tool.tools.bbox.toggleBboxVisibility();
|
||||
}, [canvasManager]);
|
||||
|
||||
useRegisteredHotkeys({
|
||||
id: 'toggleBbox',
|
||||
category: 'canvas',
|
||||
callback: handleToggleBboxVisibility,
|
||||
dependencies: [handleToggleBboxVisibility],
|
||||
});
|
||||
};
|
||||
@@ -3,6 +3,7 @@ import {
|
||||
selectIsChatGPT4o,
|
||||
selectIsCogView4,
|
||||
selectIsFluxKontext,
|
||||
selectIsGemini2_5,
|
||||
selectIsImagen3,
|
||||
selectIsImagen4,
|
||||
selectIsSD3,
|
||||
@@ -19,21 +20,22 @@ export const useIsEntityTypeEnabled = (entityType: CanvasEntityType) => {
|
||||
const isImagen4 = useAppSelector(selectIsImagen4);
|
||||
const isFluxKontext = useAppSelector(selectIsFluxKontext);
|
||||
const isChatGPT4o = useAppSelector(selectIsChatGPT4o);
|
||||
const isGemini2_5 = useAppSelector(selectIsGemini2_5);
|
||||
|
||||
const isEntityTypeEnabled = useMemo<boolean>(() => {
|
||||
switch (entityType) {
|
||||
case 'regional_guidance':
|
||||
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o;
|
||||
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o && !isGemini2_5;
|
||||
case 'control_layer':
|
||||
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o;
|
||||
return !isSD3 && !isCogView4 && !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o && !isGemini2_5;
|
||||
case 'inpaint_mask':
|
||||
return !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o;
|
||||
return !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o && !isGemini2_5;
|
||||
case 'raster_layer':
|
||||
return !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o;
|
||||
return !isImagen3 && !isImagen4 && !isFluxKontext && !isChatGPT4o && !isGemini2_5;
|
||||
default:
|
||||
assert<Equals<typeof entityType, never>>(false);
|
||||
}
|
||||
}, [entityType, isSD3, isCogView4, isImagen3, isImagen4, isFluxKontext, isChatGPT4o]);
|
||||
}, [entityType, isSD3, isCogView4, isImagen3, isImagen4, isFluxKontext, isChatGPT4o, isGemini2_5]);
|
||||
|
||||
return isEntityTypeEnabled;
|
||||
};
|
||||
|
||||
@@ -372,6 +372,7 @@ export class CanvasCompositorModule extends CanvasModuleBase {
|
||||
position: { x: Math.floor(rect.x), y: Math.floor(rect.y) },
|
||||
},
|
||||
mergedEntitiesToDelete: deleteMergedEntities ? entityIdentifiers.map(mapId) : [],
|
||||
addAfter: entityIdentifiers.map(mapId).at(-1),
|
||||
};
|
||||
|
||||
switch (type) {
|
||||
|
||||
@@ -214,6 +214,9 @@ export class CanvasEntityObjectRenderer extends CanvasModuleBase {
|
||||
const isVisible = this.parent.konva.layer.visible();
|
||||
const isCached = this.konva.objectGroup.isCached();
|
||||
|
||||
// We should also never cache if the entity has no dimensions. Konva will log an error to console like this:
|
||||
// Konva error: Can not cache the node. Width or height of the node equals 0. Caching is skipped.
|
||||
|
||||
if (isVisible && (force || !isCached)) {
|
||||
this.log.trace('Caching object group');
|
||||
this.konva.objectGroup.clearCache();
|
||||
|
||||
@@ -482,13 +482,24 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
|
||||
// "contain" means that the entity should be scaled to fit within the bbox, but it should not exceed the bbox.
|
||||
const scale = Math.min(scaleX, scaleY);
|
||||
|
||||
// Center the shape within the bounding box
|
||||
const offsetX = (rect.width - width * scale) / 2;
|
||||
const offsetY = (rect.height - height * scale) / 2;
|
||||
// Calculate the scaled dimensions
|
||||
const scaledWidth = width * scale;
|
||||
const scaledHeight = height * scale;
|
||||
|
||||
// Calculate centered position
|
||||
const centerX = rect.x + (rect.width - scaledWidth) / 2;
|
||||
const centerY = rect.y + (rect.height - scaledHeight) / 2;
|
||||
|
||||
// Round to grid and clamp to valid bounds
|
||||
const roundedX = gridSize > 1 ? roundToMultiple(centerX, gridSize) : centerX;
|
||||
const roundedY = gridSize > 1 ? roundToMultiple(centerY, gridSize) : centerY;
|
||||
|
||||
const x = clamp(roundedX, rect.x, rect.x + rect.width - scaledWidth);
|
||||
const y = clamp(roundedY, rect.y, rect.y + rect.height - scaledHeight);
|
||||
|
||||
this.konva.proxyRect.setAttrs({
|
||||
x: clamp(roundToMultiple(rect.x + offsetX, gridSize), rect.x, rect.x + rect.width),
|
||||
y: clamp(roundToMultiple(rect.y + offsetY, gridSize), rect.y, rect.y + rect.height),
|
||||
x,
|
||||
y,
|
||||
scaleX: scale,
|
||||
scaleY: scale,
|
||||
rotation: 0,
|
||||
@@ -513,16 +524,32 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
|
||||
const scaleX = rect.width / width;
|
||||
const scaleY = rect.height / height;
|
||||
|
||||
// "cover" is the same as "contain", but we choose the larger scale to cover the shape
|
||||
// "cover" means the entity should cover the entire bbox, potentially overflowing
|
||||
const scale = Math.max(scaleX, scaleY);
|
||||
|
||||
// Center the shape within the bounding box
|
||||
const offsetX = (rect.width - width * scale) / 2;
|
||||
const offsetY = (rect.height - height * scale) / 2;
|
||||
// Calculate the scaled dimensions
|
||||
const scaledWidth = width * scale;
|
||||
const scaledHeight = height * scale;
|
||||
|
||||
// Calculate position - center only if entity exceeds bbox
|
||||
let x = rect.x;
|
||||
let y = rect.y;
|
||||
|
||||
// If scaled width exceeds bbox width, center horizontally
|
||||
if (scaledWidth > rect.width) {
|
||||
const centerX = rect.x + (rect.width - scaledWidth) / 2;
|
||||
x = gridSize > 1 ? roundToMultiple(centerX, gridSize) : centerX;
|
||||
}
|
||||
|
||||
// If scaled height exceeds bbox height, center vertically
|
||||
if (scaledHeight > rect.height) {
|
||||
const centerY = rect.y + (rect.height - scaledHeight) / 2;
|
||||
y = gridSize > 1 ? roundToMultiple(centerY, gridSize) : centerY;
|
||||
}
|
||||
|
||||
this.konva.proxyRect.setAttrs({
|
||||
x: roundToMultiple(rect.x + offsetX, gridSize),
|
||||
y: roundToMultiple(rect.y + offsetY, gridSize),
|
||||
x,
|
||||
y,
|
||||
scaleX: scale,
|
||||
scaleY: scale,
|
||||
rotation: 0,
|
||||
|
||||
@@ -115,7 +115,7 @@ export abstract class CanvasModuleBase {
|
||||
* ```
|
||||
*/
|
||||
destroy: () => void = () => {
|
||||
this.log('Destroying module');
|
||||
this.log.debug('Destroying module');
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -2,6 +2,7 @@ import { objectEquals } from '@observ33r/object-equals';
|
||||
import { Mutex } from 'async-mutex';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { withResultAsync } from 'common/util/result';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import type { CanvasEntityBufferObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityBufferObjectRenderer';
|
||||
import type { CanvasEntityFilterer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityFilterer';
|
||||
import type { CanvasEntityObjectRenderer } from 'features/controlLayers/konva/CanvasEntity/CanvasEntityObjectRenderer';
|
||||
@@ -10,12 +11,21 @@ import { CanvasModuleBase } from 'features/controlLayers/konva/CanvasModuleBase'
|
||||
import type { CanvasSegmentAnythingModule } from 'features/controlLayers/konva/CanvasSegmentAnythingModule';
|
||||
import type { CanvasStagingAreaModule } from 'features/controlLayers/konva/CanvasStagingAreaModule';
|
||||
import { getKonvaNodeDebugAttrs, loadImage } from 'features/controlLayers/konva/util';
|
||||
import type { CanvasImageState } from 'features/controlLayers/store/types';
|
||||
import type { CanvasImageState, Dimensions } from 'features/controlLayers/store/types';
|
||||
import { t } from 'i18next';
|
||||
import Konva from 'konva';
|
||||
import type { Logger } from 'roarr';
|
||||
import type { JsonObject } from 'roarr/dist/types';
|
||||
import { getImageDTOSafe } from 'services/api/endpoints/images';
|
||||
|
||||
type CanvasObjectImageConfig = {
|
||||
usePhysicalDimensions: boolean;
|
||||
};
|
||||
|
||||
const DEFAULT_CONFIG: CanvasObjectImageConfig = {
|
||||
usePhysicalDimensions: false,
|
||||
};
|
||||
|
||||
export class CanvasObjectImage extends CanvasModuleBase {
|
||||
readonly type = 'object_image';
|
||||
readonly id: string;
|
||||
@@ -30,6 +40,9 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
readonly log: Logger;
|
||||
|
||||
state: CanvasImageState;
|
||||
|
||||
config: CanvasObjectImageConfig;
|
||||
|
||||
konva: {
|
||||
group: Konva.Group;
|
||||
placeholder: { group: Konva.Group; rect: Konva.Rect; text: Konva.Text };
|
||||
@@ -47,7 +60,8 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
| CanvasEntityBufferObjectRenderer
|
||||
| CanvasStagingAreaModule
|
||||
| CanvasSegmentAnythingModule
|
||||
| CanvasEntityFilterer
|
||||
| CanvasEntityFilterer,
|
||||
config = DEFAULT_CONFIG
|
||||
) {
|
||||
super();
|
||||
this.id = state.id;
|
||||
@@ -55,6 +69,7 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
this.manager = parent.manager;
|
||||
this.path = this.manager.buildPath(this);
|
||||
this.log = this.manager.buildLogger(this);
|
||||
this.config = config;
|
||||
|
||||
this.log.debug({ state }, 'Creating module');
|
||||
|
||||
@@ -116,7 +131,10 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
const imageElementResult = await withResultAsync(() => loadImage(imageDTO.image_url, true));
|
||||
if (imageElementResult.isErr()) {
|
||||
// Image loading failed (e.g. the URL to the "physical" image is invalid)
|
||||
this.onFailedToLoadImage(t('controlLayers.unableToLoadImage', 'Unable to load image'));
|
||||
this.onFailedToLoadImage(
|
||||
t('controlLayers.unableToLoadImage', 'Unable to load image'),
|
||||
parseify(imageElementResult.error)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -139,7 +157,10 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
const imageElementResult = await withResultAsync(() => loadImage(dataURL, false));
|
||||
if (imageElementResult.isErr()) {
|
||||
// Image loading failed (e.g. the URL to the "physical" image is invalid)
|
||||
this.onFailedToLoadImage(t('controlLayers.unableToLoadImage', 'Unable to load image'));
|
||||
this.onFailedToLoadImage(
|
||||
t('controlLayers.unableToLoadImage', 'Unable to load image'),
|
||||
parseify(imageElementResult.error)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -148,8 +169,8 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
this.updateImageElement();
|
||||
};
|
||||
|
||||
onFailedToLoadImage = (message: string) => {
|
||||
this.log({ image: this.state.image }, message);
|
||||
onFailedToLoadImage = (message: string, error?: JsonObject) => {
|
||||
this.log.error({ image: this.state.image, error }, message);
|
||||
this.konva.image?.visible(false);
|
||||
this.isLoading = false;
|
||||
this.isError = true;
|
||||
@@ -157,9 +178,22 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
this.konva.placeholder.group.visible(true);
|
||||
};
|
||||
|
||||
getDimensions = (): Dimensions => {
|
||||
if (this.config.usePhysicalDimensions && this.imageElement) {
|
||||
return {
|
||||
width: this.imageElement.width,
|
||||
height: this.imageElement.height,
|
||||
};
|
||||
}
|
||||
return {
|
||||
width: this.state.image.width,
|
||||
height: this.state.image.height,
|
||||
};
|
||||
};
|
||||
|
||||
updateImageElement = () => {
|
||||
if (this.imageElement) {
|
||||
const { width, height } = this.state.image;
|
||||
const { width, height } = this.getDimensions();
|
||||
|
||||
if (this.konva.image) {
|
||||
this.log.trace('Updating Konva image attrs');
|
||||
@@ -196,7 +230,6 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
this.log.trace({ state }, 'Updating image');
|
||||
|
||||
const { image } = state;
|
||||
const { width, height } = image;
|
||||
|
||||
if (force || (!objectEquals(this.state, state) && !this.isLoading)) {
|
||||
const release = await this.mutex.acquire();
|
||||
@@ -212,7 +245,7 @@ export class CanvasObjectImage extends CanvasModuleBase {
|
||||
}
|
||||
}
|
||||
|
||||
this.konva.image?.setAttrs({ width, height });
|
||||
this.konva.image?.setAttrs(this.getDimensions());
|
||||
this.state = state;
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -230,7 +230,16 @@ export class CanvasStagingAreaModule extends CanvasModuleBase {
|
||||
if (imageSrc) {
|
||||
const image = this._getImageFromSrc(imageSrc, width, height);
|
||||
if (!this.image) {
|
||||
this.image = new CanvasObjectImage({ id: 'staging-area-image', type: 'image', image }, this);
|
||||
this.image = new CanvasObjectImage({ id: 'staging-area-image', type: 'image', image }, this, {
|
||||
// Some models do not make guarantees about their output dimensions. This flag allows the staged images to
|
||||
// render at their real dimensions, instead of the bbox size.
|
||||
//
|
||||
// When the image source is an image name, it is a final output image. In that case, we should use its
|
||||
// physical dimensions. Otherwise, if it is a dataURL, that means it is a progress image. These come in at
|
||||
// a smaller resolution and need to be stretched to fill the bbox, so we do not use the physical
|
||||
// dimensions in that case.
|
||||
usePhysicalDimensions: imageSrc.type === 'imageName',
|
||||
});
|
||||
await this.image.update(this.image.state, true);
|
||||
this.konva.group.add(this.image.konva.group);
|
||||
} else if (this.image.isLoading || this.image.isError) {
|
||||
|
||||
@@ -231,7 +231,7 @@ export class CanvasStateApiModule extends CanvasModuleBase {
|
||||
/**
|
||||
* Sets the drawing color, pushing state to redux.
|
||||
*/
|
||||
setColor = (color: RgbaColor) => {
|
||||
setColor = (color: Partial<RgbaColor>) => {
|
||||
return this.store.dispatch(settingsColorChanged(color));
|
||||
};
|
||||
|
||||
|
||||
@@ -30,7 +30,6 @@ const ALL_ANCHORS: string[] = [
|
||||
'bottom-center',
|
||||
'bottom-right',
|
||||
];
|
||||
const CORNER_ANCHORS: string[] = ['top-left', 'top-right', 'bottom-left', 'bottom-right'];
|
||||
const NO_ANCHORS: string[] = [];
|
||||
|
||||
/**
|
||||
@@ -66,6 +65,11 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
*/
|
||||
$aspectRatioBuffer = atom(1);
|
||||
|
||||
/**
|
||||
* Buffer to store the visibility of the bbox.
|
||||
*/
|
||||
$isBboxHidden = atom(false);
|
||||
|
||||
constructor(parent: CanvasToolModule) {
|
||||
super();
|
||||
this.id = getPrefixedId(this.type);
|
||||
@@ -191,6 +195,9 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
|
||||
// Update on busy state changes
|
||||
this.subscriptions.add(this.manager.$isBusy.listen(this.render));
|
||||
|
||||
// Listen for stage changes to update the bbox's visibility
|
||||
this.subscriptions.add(this.$isBboxHidden.listen(this.render));
|
||||
}
|
||||
|
||||
// This is a noop. The cursor is changed when the cursor enters or leaves the bbox.
|
||||
@@ -206,13 +213,15 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
};
|
||||
|
||||
/**
|
||||
* Renders the bbox. The bbox is only visible when the tool is set to 'bbox'.
|
||||
* Renders the bbox.
|
||||
*/
|
||||
render = () => {
|
||||
const tool = this.manager.tool.$tool.get();
|
||||
|
||||
const { x, y, width, height } = this.manager.stateApi.runSelector(selectBbox).rect;
|
||||
|
||||
this.konva.group.visible(!this.$isBboxHidden.get());
|
||||
|
||||
// We need to reach up to the preview layer to enable/disable listening so that the bbox can be interacted with.
|
||||
// If the mangaer is busy, we disable listening so the bbox cannot be interacted with.
|
||||
this.konva.group.listening(tool === 'bbox' && !this.manager.$isBusy.get());
|
||||
@@ -334,9 +343,23 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
let width = roundToMultipleMin(this.konva.proxyRect.width() * this.konva.proxyRect.scaleX(), gridSize);
|
||||
let height = roundToMultipleMin(this.konva.proxyRect.height() * this.konva.proxyRect.scaleY(), gridSize);
|
||||
|
||||
// If shift is held and we are resizing from a corner, retain aspect ratio - needs special handling. We skip this
|
||||
// if alt/opt is held - this requires math too big for my brain.
|
||||
if (shift && CORNER_ANCHORS.includes(anchor) && !alt) {
|
||||
// When resizing the bbox using the transformer, we may need to do some extra math to maintain the current aspect
|
||||
// ratio. Need to check a few things to determine if we should be maintaining the aspect ratio or not.
|
||||
let shouldMaintainAspectRatio = false;
|
||||
|
||||
if (alt) {
|
||||
// If alt is held, we are doing center-anchored transforming. In this case, maintaining aspect ratio is rather
|
||||
// complicated.
|
||||
shouldMaintainAspectRatio = false;
|
||||
} else if (this.manager.stateApi.getBbox().aspectRatio.isLocked) {
|
||||
// When the aspect ratio is locked, holding shift means we SHOULD NOT maintain the aspect ratio
|
||||
shouldMaintainAspectRatio = !shift;
|
||||
} else {
|
||||
// When the aspect ratio is not locked, holding shift means we SHOULD maintain aspect ratio
|
||||
shouldMaintainAspectRatio = shift;
|
||||
}
|
||||
|
||||
if (shouldMaintainAspectRatio) {
|
||||
// Fit the bbox to the last aspect ratio
|
||||
let fittedWidth = Math.sqrt(width * height * this.$aspectRatioBuffer.get());
|
||||
let fittedHeight = fittedWidth / this.$aspectRatioBuffer.get();
|
||||
@@ -377,7 +400,7 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
|
||||
// Update the aspect ratio buffer whenever the shift key is not held - this allows for a nice UX where you can start
|
||||
// a transform, get the right aspect ratio, then hold shift to lock it in.
|
||||
if (!shift) {
|
||||
if (!shouldMaintainAspectRatio) {
|
||||
this.$aspectRatioBuffer.set(bboxRect.width / bboxRect.height);
|
||||
}
|
||||
};
|
||||
@@ -478,4 +501,8 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
|
||||
this.subscriptions.clear();
|
||||
this.konva.group.destroy();
|
||||
};
|
||||
|
||||
toggleBboxVisibility = () => {
|
||||
this.$isBboxHidden.set(!this.$isBboxHidden.get());
|
||||
};
|
||||
}
|
||||
|
||||
@@ -289,6 +289,14 @@ export class CanvasColorPickerToolModule extends CanvasModuleBase {
|
||||
this.manager.stage.setCursor('none');
|
||||
};
|
||||
|
||||
getCanPick = () => {
|
||||
if (this.manager.stage.getIsDragging()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
};
|
||||
|
||||
/**
|
||||
* Renders the color picker tool preview on the canvas.
|
||||
*/
|
||||
@@ -298,6 +306,11 @@ export class CanvasColorPickerToolModule extends CanvasModuleBase {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!this.getCanPick()) {
|
||||
this.setVisibility(false);
|
||||
return;
|
||||
}
|
||||
|
||||
const cursorPos = this.parent.$cursorPos.get();
|
||||
|
||||
if (!cursorPos) {
|
||||
@@ -406,11 +419,21 @@ export class CanvasColorPickerToolModule extends CanvasModuleBase {
|
||||
};
|
||||
|
||||
onStagePointerUp = (_e: KonvaEventObject<PointerEvent>) => {
|
||||
const color = this.$colorUnderCursor.get();
|
||||
this.manager.stateApi.setColor({ ...color, a: color.a / 255 });
|
||||
if (!this.getCanPick()) {
|
||||
this.setVisibility(false);
|
||||
return;
|
||||
}
|
||||
|
||||
const { a: _, ...color } = this.$colorUnderCursor.get();
|
||||
this.manager.stateApi.setColor(color);
|
||||
};
|
||||
|
||||
onStagePointerMove = (_e: KonvaEventObject<PointerEvent>) => {
|
||||
if (!this.getCanPick()) {
|
||||
this.setVisibility(false);
|
||||
return;
|
||||
}
|
||||
|
||||
this.syncColorUnderCursor();
|
||||
};
|
||||
|
||||
|
||||
@@ -164,7 +164,7 @@ export class CanvasToolModule extends CanvasModuleBase {
|
||||
const selectedEntityAdapter = this.manager.stateApi.getSelectedEntityAdapter();
|
||||
|
||||
if (this.manager.stage.getIsDragging()) {
|
||||
this.tools.view.syncCursorStyle();
|
||||
stage.setCursor('grabbing');
|
||||
} else if (tool === 'view') {
|
||||
this.tools.view.syncCursorStyle();
|
||||
} else if (segmentingAdapter) {
|
||||
|
||||
@@ -134,8 +134,8 @@ const slice = createSlice({
|
||||
settingsEraserWidthChanged: (state, action: PayloadAction<CanvasSettingsState['eraserWidth']>) => {
|
||||
state.eraserWidth = Math.round(action.payload);
|
||||
},
|
||||
settingsColorChanged: (state, action: PayloadAction<CanvasSettingsState['color']>) => {
|
||||
state.color = action.payload;
|
||||
settingsColorChanged: (state, action: PayloadAction<Partial<CanvasSettingsState['color']>>) => {
|
||||
state.color = { ...state.color, ...action.payload };
|
||||
},
|
||||
settingsInvertScrollForToolWidthChanged: (
|
||||
state,
|
||||
|
||||
@@ -72,12 +72,14 @@ import {
|
||||
CHATGPT_ASPECT_RATIOS,
|
||||
DEFAULT_ASPECT_RATIO_CONFIG,
|
||||
FLUX_KONTEXT_ASPECT_RATIOS,
|
||||
GEMINI_2_5_ASPECT_RATIOS,
|
||||
getEntityIdentifier,
|
||||
getInitialCanvasState,
|
||||
IMAGEN_ASPECT_RATIOS,
|
||||
isChatGPT4oAspectRatioID,
|
||||
isFluxKontextAspectRatioID,
|
||||
isFLUXReduxConfig,
|
||||
isGemini2_5AspectRatioID,
|
||||
isImagenAspectRatioID,
|
||||
isIPAdapterConfig,
|
||||
zCanvasState,
|
||||
@@ -111,12 +113,16 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}>
|
||||
) => {
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
|
||||
const entityState = getRasterLayerState(id, overrides);
|
||||
|
||||
state.rasterLayers.entities.push(entityState);
|
||||
const index = addAfter
|
||||
? state.rasterLayers.entities.findIndex((e) => e.id === addAfter) + 1
|
||||
: state.rasterLayers.entities.length;
|
||||
state.rasterLayers.entities.splice(index, 0, entityState);
|
||||
|
||||
if (mergedEntitiesToDelete.length > 0) {
|
||||
state.rasterLayers.entities = state.rasterLayers.entities.filter(
|
||||
@@ -139,6 +145,7 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}) => ({
|
||||
payload: { ...payload, id: getPrefixedId('raster_layer') },
|
||||
}),
|
||||
@@ -272,13 +279,17 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}>
|
||||
) => {
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
|
||||
|
||||
const entityState = getControlLayerState(id, overrides);
|
||||
|
||||
state.controlLayers.entities.push(entityState);
|
||||
const index = addAfter
|
||||
? state.controlLayers.entities.findIndex((e) => e.id === addAfter) + 1
|
||||
: state.controlLayers.entities.length;
|
||||
state.controlLayers.entities.splice(index, 0, entityState);
|
||||
|
||||
if (mergedEntitiesToDelete.length > 0) {
|
||||
state.controlLayers.entities = state.controlLayers.entities.filter(
|
||||
@@ -300,6 +311,7 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}) => ({
|
||||
payload: { ...payload, id: getPrefixedId('control_layer') },
|
||||
}),
|
||||
@@ -570,13 +582,17 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}>
|
||||
) => {
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
|
||||
|
||||
const entityState = getRegionalGuidanceState(id, overrides);
|
||||
|
||||
state.regionalGuidance.entities.push(entityState);
|
||||
const index = addAfter
|
||||
? state.regionalGuidance.entities.findIndex((e) => e.id === addAfter) + 1
|
||||
: state.regionalGuidance.entities.length;
|
||||
state.regionalGuidance.entities.splice(index, 0, entityState);
|
||||
|
||||
if (mergedEntitiesToDelete.length > 0) {
|
||||
state.regionalGuidance.entities = state.regionalGuidance.entities.filter(
|
||||
@@ -598,6 +614,7 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}) => ({
|
||||
payload: { ...payload, id: getPrefixedId('regional_guidance') },
|
||||
}),
|
||||
@@ -874,13 +891,17 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}>
|
||||
) => {
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
|
||||
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
|
||||
|
||||
const entityState = getInpaintMaskState(id, overrides);
|
||||
|
||||
state.inpaintMasks.entities.push(entityState);
|
||||
const index = addAfter
|
||||
? state.inpaintMasks.entities.findIndex((e) => e.id === addAfter) + 1
|
||||
: state.inpaintMasks.entities.length;
|
||||
state.inpaintMasks.entities.splice(index, 0, entityState);
|
||||
|
||||
if (mergedEntitiesToDelete.length > 0) {
|
||||
state.inpaintMasks.entities = state.inpaintMasks.entities.filter(
|
||||
@@ -902,6 +923,7 @@ const slice = createSlice({
|
||||
isSelected?: boolean;
|
||||
isBookmarked?: boolean;
|
||||
mergedEntitiesToDelete?: string[];
|
||||
addAfter?: string;
|
||||
}) => ({
|
||||
payload: { ...payload, id: getPrefixedId('inpaint_mask') },
|
||||
}),
|
||||
@@ -1124,6 +1146,12 @@ const slice = createSlice({
|
||||
state.bbox.rect.height = height;
|
||||
state.bbox.aspectRatio.value = state.bbox.rect.width / state.bbox.rect.height;
|
||||
state.bbox.aspectRatio.isLocked = true;
|
||||
} else if (state.bbox.modelBase === 'gemini-2.5' && isGemini2_5AspectRatioID(id)) {
|
||||
const { width, height } = GEMINI_2_5_ASPECT_RATIOS[id];
|
||||
state.bbox.rect.width = width;
|
||||
state.bbox.rect.height = height;
|
||||
state.bbox.aspectRatio.value = state.bbox.rect.width / state.bbox.rect.height;
|
||||
state.bbox.aspectRatio.isLocked = true;
|
||||
} else if (state.bbox.modelBase === 'flux-kontext' && isFluxKontextAspectRatioID(id)) {
|
||||
const { width, height } = FLUX_KONTEXT_ASPECT_RATIOS[id];
|
||||
state.bbox.rect.width = width;
|
||||
@@ -1249,25 +1277,33 @@ const slice = createSlice({
|
||||
newEntity.name = `${newEntity.name} (Copy)`;
|
||||
}
|
||||
switch (newEntity.type) {
|
||||
case 'raster_layer':
|
||||
case 'raster_layer': {
|
||||
newEntity.id = getPrefixedId('raster_layer');
|
||||
state.rasterLayers.entities.push(newEntity);
|
||||
const newEntityIndex = state.rasterLayers.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
|
||||
state.rasterLayers.entities.splice(newEntityIndex, 0, newEntity);
|
||||
break;
|
||||
case 'control_layer':
|
||||
}
|
||||
case 'control_layer': {
|
||||
newEntity.id = getPrefixedId('control_layer');
|
||||
state.controlLayers.entities.push(newEntity);
|
||||
const newEntityIndex = state.controlLayers.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
|
||||
state.controlLayers.entities.splice(newEntityIndex, 0, newEntity);
|
||||
break;
|
||||
case 'regional_guidance':
|
||||
}
|
||||
case 'regional_guidance': {
|
||||
newEntity.id = getPrefixedId('regional_guidance');
|
||||
for (const refImage of newEntity.referenceImages) {
|
||||
refImage.id = getPrefixedId('regional_guidance_ip_adapter');
|
||||
}
|
||||
state.regionalGuidance.entities.push(newEntity);
|
||||
const newEntityIndex = state.regionalGuidance.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
|
||||
state.regionalGuidance.entities.splice(newEntityIndex, 0, newEntity);
|
||||
break;
|
||||
case 'inpaint_mask':
|
||||
}
|
||||
case 'inpaint_mask': {
|
||||
newEntity.id = getPrefixedId('inpaint_mask');
|
||||
state.inpaintMasks.entities.push(newEntity);
|
||||
const newEntityIndex = state.inpaintMasks.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
|
||||
state.inpaintMasks.entities.splice(newEntityIndex, 0, newEntity);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
state.selectedEntityIdentifier = getEntityIdentifier(newEntity);
|
||||
|
||||
@@ -11,15 +11,26 @@ import {
|
||||
CHATGPT_ASPECT_RATIOS,
|
||||
DEFAULT_ASPECT_RATIO_CONFIG,
|
||||
FLUX_KONTEXT_ASPECT_RATIOS,
|
||||
GEMINI_2_5_ASPECT_RATIOS,
|
||||
getInitialParamsState,
|
||||
IMAGEN_ASPECT_RATIOS,
|
||||
isChatGPT4oAspectRatioID,
|
||||
isFluxKontextAspectRatioID,
|
||||
isGemini2_5AspectRatioID,
|
||||
isImagenAspectRatioID,
|
||||
zParamsState,
|
||||
} from 'features/controlLayers/store/types';
|
||||
import { calculateNewSize } from 'features/controlLayers/util/getScaledBoundingBoxDimensions';
|
||||
import { CLIP_SKIP_MAP } from 'features/parameters/types/constants';
|
||||
import {
|
||||
API_BASE_MODELS,
|
||||
CLIP_SKIP_MAP,
|
||||
SUPPORTS_ASPECT_RATIO_BASE_MODELS,
|
||||
SUPPORTS_NEGATIVE_PROMPT_BASE_MODELS,
|
||||
SUPPORTS_OPTIMIZED_DENOISING_BASE_MODELS,
|
||||
SUPPORTS_PIXEL_DIMENSIONS_BASE_MODELS,
|
||||
SUPPORTS_REF_IMAGES_BASE_MODELS,
|
||||
SUPPORTS_SEED_BASE_MODELS,
|
||||
} from 'features/parameters/types/constants';
|
||||
import type {
|
||||
ParameterCanvasCoherenceMode,
|
||||
ParameterCFGRescaleMultiplier,
|
||||
@@ -107,14 +118,15 @@ const slice = createSlice({
|
||||
return;
|
||||
}
|
||||
|
||||
// Clamp CLIP skip layer count to the bounds of the new model
|
||||
if (model.base === 'sdxl') {
|
||||
// We don't support user-defined CLIP skip for SDXL because it doesn't do anything useful
|
||||
state.clipSkip = 0;
|
||||
} else {
|
||||
const { maxClip } = CLIP_SKIP_MAP[model.base];
|
||||
state.clipSkip = clamp(state.clipSkip, 0, maxClip);
|
||||
if (API_BASE_MODELS.includes(model.base)) {
|
||||
state.dimensions.aspectRatio.isLocked = true;
|
||||
state.dimensions.aspectRatio.value = 1;
|
||||
state.dimensions.aspectRatio.id = '1:1';
|
||||
state.dimensions.rect.width = 1024;
|
||||
state.dimensions.rect.height = 1024;
|
||||
}
|
||||
|
||||
applyClipSkip(state, model, state.clipSkip);
|
||||
},
|
||||
vaeSelected: (state, action: PayloadAction<ParameterVAEModel | null>) => {
|
||||
// null is a valid VAE!
|
||||
@@ -170,7 +182,7 @@ const slice = createSlice({
|
||||
state.vaePrecision = action.payload;
|
||||
},
|
||||
setClipSkip: (state, action: PayloadAction<number>) => {
|
||||
state.clipSkip = action.payload;
|
||||
applyClipSkip(state, state.model, action.payload);
|
||||
},
|
||||
shouldUseCpuNoiseChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldUseCpuNoise = action.payload;
|
||||
@@ -181,15 +193,6 @@ const slice = createSlice({
|
||||
negativePromptChanged: (state, action: PayloadAction<ParameterNegativePrompt>) => {
|
||||
state.negativePrompt = action.payload;
|
||||
},
|
||||
positivePrompt2Changed: (state, action: PayloadAction<string>) => {
|
||||
state.positivePrompt2 = action.payload;
|
||||
},
|
||||
negativePrompt2Changed: (state, action: PayloadAction<string>) => {
|
||||
state.negativePrompt2 = action.payload;
|
||||
},
|
||||
shouldConcatPromptsChanged: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldConcatPrompts = action.payload;
|
||||
},
|
||||
refinerModelChanged: (state, action: PayloadAction<ParameterSDXLRefinerModel | null>) => {
|
||||
const result = zParamsState.shape.refinerModel.safeParse(action.payload);
|
||||
if (!result.success) {
|
||||
@@ -306,6 +309,12 @@ const slice = createSlice({
|
||||
state.dimensions.rect.height = height;
|
||||
state.dimensions.aspectRatio.value = state.dimensions.rect.width / state.dimensions.rect.height;
|
||||
state.dimensions.aspectRatio.isLocked = true;
|
||||
} else if (state.model?.base === 'gemini-2.5' && isGemini2_5AspectRatioID(id)) {
|
||||
const { width, height } = GEMINI_2_5_ASPECT_RATIOS[id];
|
||||
state.dimensions.rect.width = width;
|
||||
state.dimensions.rect.height = height;
|
||||
state.dimensions.aspectRatio.value = state.dimensions.rect.width / state.dimensions.rect.height;
|
||||
state.dimensions.aspectRatio.isLocked = true;
|
||||
} else if (state.model?.base === 'flux-kontext' && isFluxKontextAspectRatioID(id)) {
|
||||
const { width, height } = FLUX_KONTEXT_ASPECT_RATIOS[id];
|
||||
state.dimensions.rect.width = width;
|
||||
@@ -375,6 +384,33 @@ const slice = createSlice({
|
||||
},
|
||||
});
|
||||
|
||||
const applyClipSkip = (state: { clipSkip: number }, model: ParameterModel | null, clipSkip: number) => {
|
||||
if (model === null) {
|
||||
return;
|
||||
}
|
||||
|
||||
const maxClip = getModelMaxClipSkip(model);
|
||||
|
||||
state.clipSkip = clamp(clipSkip, 0, maxClip);
|
||||
};
|
||||
|
||||
const hasModelClipSkip = (model: ParameterModel | null) => {
|
||||
if (model === null) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return getModelMaxClipSkip(model) > 0;
|
||||
};
|
||||
|
||||
const getModelMaxClipSkip = (model: ParameterModel) => {
|
||||
if (model.base === 'sdxl') {
|
||||
// We don't support user-defined CLIP skip for SDXL because it doesn't do anything useful
|
||||
return 0;
|
||||
}
|
||||
|
||||
return CLIP_SKIP_MAP[model.base].maxClip;
|
||||
};
|
||||
|
||||
const resetState = (state: ParamsState): ParamsState => {
|
||||
// When a new session is requested, we need to keep the current model selections, plus dependent state
|
||||
// like VAE precision. Everything else gets reset to default.
|
||||
@@ -425,9 +461,6 @@ export const {
|
||||
shouldUseCpuNoiseChanged,
|
||||
positivePromptChanged,
|
||||
negativePromptChanged,
|
||||
positivePrompt2Changed,
|
||||
negativePrompt2Changed,
|
||||
shouldConcatPromptsChanged,
|
||||
refinerModelChanged,
|
||||
setRefinerSteps,
|
||||
setRefinerCFGScale,
|
||||
@@ -460,8 +493,7 @@ export const paramsSliceConfig: SliceConfig<typeof slice> = {
|
||||
};
|
||||
|
||||
export const selectParamsSlice = (state: RootState) => state.params;
|
||||
export const createParamsSelector = <T>(selector: Selector<ParamsState, T>) =>
|
||||
createSelector(selectParamsSlice, selector);
|
||||
const createParamsSelector = <T>(selector: Selector<ParamsState, T>) => createSelector(selectParamsSlice, selector);
|
||||
|
||||
export const selectBase = createParamsSelector((params) => params.model?.base);
|
||||
export const selectIsSDXL = createParamsSelector((params) => params.model?.base === 'sdxl');
|
||||
@@ -470,7 +502,6 @@ export const selectIsSD3 = createParamsSelector((params) => params.model?.base =
|
||||
export const selectIsCogView4 = createParamsSelector((params) => params.model?.base === 'cogview4');
|
||||
export const selectIsImagen3 = createParamsSelector((params) => params.model?.base === 'imagen3');
|
||||
export const selectIsImagen4 = createParamsSelector((params) => params.model?.base === 'imagen4');
|
||||
export const selectIsFluxKontextApi = createParamsSelector((params) => params.model?.base === 'flux-kontext');
|
||||
export const selectIsFluxKontext = createParamsSelector((params) => {
|
||||
if (params.model?.base === 'flux-kontext') {
|
||||
return true;
|
||||
@@ -481,6 +512,7 @@ export const selectIsFluxKontext = createParamsSelector((params) => {
|
||||
return false;
|
||||
});
|
||||
export const selectIsChatGPT4o = createParamsSelector((params) => params.model?.base === 'chatgpt-4o');
|
||||
export const selectIsGemini2_5 = createParamsSelector((params) => params.model?.base === 'gemini-2.5');
|
||||
|
||||
export const selectModel = createParamsSelector((params) => params.model);
|
||||
export const selectModelKey = createParamsSelector((params) => params.model?.key);
|
||||
@@ -497,7 +529,8 @@ export const selectCFGScale = createParamsSelector((params) => params.cfgScale);
|
||||
export const selectGuidance = createParamsSelector((params) => params.guidance);
|
||||
export const selectSteps = createParamsSelector((params) => params.steps);
|
||||
export const selectCFGRescaleMultiplier = createParamsSelector((params) => params.cfgRescaleMultiplier);
|
||||
export const selectCLIPSKip = createParamsSelector((params) => params.clipSkip);
|
||||
export const selectCLIPSkip = createParamsSelector((params) => params.clipSkip);
|
||||
export const selectHasModelCLIPSkip = createParamsSelector((params) => hasModelClipSkip(params.model));
|
||||
export const selectCanvasCoherenceEdgeSize = createParamsSelector((params) => params.canvasCoherenceEdgeSize);
|
||||
export const selectCanvasCoherenceMinDenoise = createParamsSelector((params) => params.canvasCoherenceMinDenoise);
|
||||
export const selectCanvasCoherenceMode = createParamsSelector((params) => params.canvasCoherenceMode);
|
||||
@@ -515,12 +548,33 @@ export const selectNegativePrompt = createParamsSelector((params) => params.nega
|
||||
export const selectNegativePromptWithFallback = createParamsSelector((params) => params.negativePrompt ?? '');
|
||||
export const selectHasNegativePrompt = createParamsSelector((params) => params.negativePrompt !== null);
|
||||
export const selectModelSupportsNegativePrompt = createSelector(
|
||||
[selectIsFLUX, selectIsChatGPT4o, selectIsFluxKontext],
|
||||
(isFLUX, isChatGPT4o, isFluxKontext) => !isFLUX && !isChatGPT4o && !isFluxKontext
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_NEGATIVE_PROMPT_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectModelSupportsSeed = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_SEED_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectModelSupportsRefImages = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_REF_IMAGES_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectModelSupportsAspectRatio = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_ASPECT_RATIO_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectModelSupportsPixelDimensions = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_PIXEL_DIMENSIONS_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectIsApiBaseModel = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && API_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectModelSupportsOptimizedDenoising = createSelector(
|
||||
selectModel,
|
||||
(model) => !!model && SUPPORTS_OPTIMIZED_DENOISING_BASE_MODELS.includes(model.base)
|
||||
);
|
||||
export const selectPositivePrompt2 = createParamsSelector((params) => params.positivePrompt2);
|
||||
export const selectNegativePrompt2 = createParamsSelector((params) => params.negativePrompt2);
|
||||
export const selectShouldConcatPrompts = createParamsSelector((params) => params.shouldConcatPrompts);
|
||||
export const selectScheduler = createParamsSelector((params) => params.scheduler);
|
||||
export const selectSeamlessXAxis = createParamsSelector((params) => params.seamlessXAxis);
|
||||
export const selectSeamlessYAxis = createParamsSelector((params) => params.seamlessYAxis);
|
||||
|
||||
@@ -26,6 +26,7 @@ import {
|
||||
initialChatGPT4oReferenceImage,
|
||||
initialFluxKontextReferenceImage,
|
||||
initialFLUXRedux,
|
||||
initialGemini2_5ReferenceImage,
|
||||
initialIPAdapter,
|
||||
} from './util';
|
||||
|
||||
@@ -136,6 +137,16 @@ const slice = createSlice({
|
||||
return;
|
||||
}
|
||||
|
||||
if (entity.config.model.base === 'gemini-2.5') {
|
||||
// Switching to Gemini 2.5 Flash Preview (nano banana) ref image
|
||||
entity.config = {
|
||||
...initialGemini2_5ReferenceImage,
|
||||
image: entity.config.image,
|
||||
model: entity.config.model,
|
||||
};
|
||||
return;
|
||||
}
|
||||
|
||||
if (
|
||||
entity.config.model.base === 'flux-kontext' ||
|
||||
(entity.config.model.base === 'flux' && entity.config.model.name?.toLowerCase().includes('kontext'))
|
||||
|
||||
@@ -14,9 +14,7 @@ import {
|
||||
zParameterMaskBlurMethod,
|
||||
zParameterModel,
|
||||
zParameterNegativePrompt,
|
||||
zParameterNegativeStylePromptSDXL,
|
||||
zParameterPositivePrompt,
|
||||
zParameterPositiveStylePromptSDXL,
|
||||
zParameterPrecision,
|
||||
zParameterScheduler,
|
||||
zParameterSDXLRefinerModel,
|
||||
@@ -266,6 +264,13 @@ const zChatGPT4oReferenceImageConfig = z.object({
|
||||
});
|
||||
export type ChatGPT4oReferenceImageConfig = z.infer<typeof zChatGPT4oReferenceImageConfig>;
|
||||
|
||||
const zGemini2_5ReferenceImageConfig = z.object({
|
||||
type: z.literal('gemini_2_5_reference_image'),
|
||||
image: zImageWithDims.nullable(),
|
||||
model: zModelIdentifierField.nullable(),
|
||||
});
|
||||
export type Gemini2_5ReferenceImageConfig = z.infer<typeof zGemini2_5ReferenceImageConfig>;
|
||||
|
||||
const zFluxKontextReferenceImageConfig = z.object({
|
||||
type: z.literal('flux_kontext_reference_image'),
|
||||
image: zImageWithDims.nullable(),
|
||||
@@ -288,6 +293,7 @@ export const zRefImageState = z.object({
|
||||
zFLUXReduxConfig,
|
||||
zChatGPT4oReferenceImageConfig,
|
||||
zFluxKontextReferenceImageConfig,
|
||||
zGemini2_5ReferenceImageConfig,
|
||||
]),
|
||||
});
|
||||
export type RefImageState = z.infer<typeof zRefImageState>;
|
||||
@@ -300,10 +306,15 @@ export const isFLUXReduxConfig = (config: RefImageState['config']): config is FL
|
||||
export const isChatGPT4oReferenceImageConfig = (
|
||||
config: RefImageState['config']
|
||||
): config is ChatGPT4oReferenceImageConfig => config.type === 'chatgpt_4o_reference_image';
|
||||
|
||||
export const isFluxKontextReferenceImageConfig = (
|
||||
config: RefImageState['config']
|
||||
): config is FluxKontextReferenceImageConfig => config.type === 'flux_kontext_reference_image';
|
||||
|
||||
export const isGemini2_5ReferenceImageConfig = (
|
||||
config: RefImageState['config']
|
||||
): config is Gemini2_5ReferenceImageConfig => config.type === 'gemini_2_5_reference_image';
|
||||
|
||||
const zFillStyle = z.enum(['solid', 'grid', 'crosshatch', 'diagonal', 'horizontal', 'vertical']);
|
||||
export type FillStyle = z.infer<typeof zFillStyle>;
|
||||
export const isFillStyle = (v: unknown): v is FillStyle => zFillStyle.safeParse(v).success;
|
||||
@@ -449,6 +460,14 @@ export const CHATGPT_ASPECT_RATIOS: Record<ChatGPT4oAspectRatio, Dimensions> = {
|
||||
'2:3': { width: 1024, height: 1536 },
|
||||
} as const;
|
||||
|
||||
export const zGemini2_5AspectRatioID = z.enum(['1:1']);
|
||||
type Gemini2_5AspectRatio = z.infer<typeof zGemini2_5AspectRatioID>;
|
||||
export const isGemini2_5AspectRatioID = (v: unknown): v is Gemini2_5AspectRatio =>
|
||||
zGemini2_5AspectRatioID.safeParse(v).success;
|
||||
export const GEMINI_2_5_ASPECT_RATIOS: Record<Gemini2_5AspectRatio, Dimensions> = {
|
||||
'1:1': { width: 1024, height: 1024 },
|
||||
} as const;
|
||||
|
||||
export const zFluxKontextAspectRatioID = z.enum(['21:9', '16:9', '4:3', '1:1', '3:4', '9:16', '9:21']);
|
||||
type FluxKontextAspectRatio = z.infer<typeof zFluxKontextAspectRatioID>;
|
||||
export const isFluxKontextAspectRatioID = (v: unknown): v is z.infer<typeof zFluxKontextAspectRatioID> =>
|
||||
@@ -493,6 +512,8 @@ const zBboxState = z.object({
|
||||
});
|
||||
|
||||
const zDimensionsState = z.object({
|
||||
// TODO(psyche): There is no concept of x/y coords for the dimensions state here... It's just width and height.
|
||||
// Remove the extraneous data.
|
||||
rect: z.object({
|
||||
x: z.number().int(),
|
||||
y: z.number().int(),
|
||||
@@ -534,9 +555,6 @@ export const zParamsState = z.object({
|
||||
shouldUseCpuNoise: z.boolean(),
|
||||
positivePrompt: zParameterPositivePrompt,
|
||||
negativePrompt: zParameterNegativePrompt,
|
||||
positivePrompt2: zParameterPositiveStylePromptSDXL,
|
||||
negativePrompt2: zParameterNegativeStylePromptSDXL,
|
||||
shouldConcatPrompts: z.boolean(),
|
||||
refinerModel: zParameterSDXLRefinerModel.nullable(),
|
||||
refinerSteps: z.number(),
|
||||
refinerCFGScale: z.number(),
|
||||
@@ -584,9 +602,6 @@ export const getInitialParamsState = (): ParamsState => ({
|
||||
shouldUseCpuNoise: true,
|
||||
positivePrompt: '',
|
||||
negativePrompt: null,
|
||||
positivePrompt2: '',
|
||||
negativePrompt2: '',
|
||||
shouldConcatPrompts: true,
|
||||
refinerModel: null,
|
||||
refinerSteps: 20,
|
||||
refinerCFGScale: 7.5,
|
||||
@@ -663,7 +678,12 @@ export const getInitialRefImagesState = (): RefImagesState => ({
|
||||
|
||||
export const zCanvasReferenceImageState_OLD = zCanvasEntityBase.extend({
|
||||
type: z.literal('reference_image'),
|
||||
ipAdapter: z.discriminatedUnion('type', [zIPAdapterConfig, zFLUXReduxConfig, zChatGPT4oReferenceImageConfig]),
|
||||
ipAdapter: z.discriminatedUnion('type', [
|
||||
zIPAdapterConfig,
|
||||
zFLUXReduxConfig,
|
||||
zChatGPT4oReferenceImageConfig,
|
||||
zGemini2_5ReferenceImageConfig,
|
||||
]),
|
||||
});
|
||||
|
||||
export const zCanvasMetadata = z.object({
|
||||
|
||||
@@ -10,9 +10,9 @@ import type {
|
||||
ChatGPT4oReferenceImageConfig,
|
||||
ControlLoRAConfig,
|
||||
ControlNetConfig,
|
||||
Dimensions,
|
||||
FluxKontextReferenceImageConfig,
|
||||
FLUXReduxConfig,
|
||||
Gemini2_5ReferenceImageConfig,
|
||||
ImageWithDims,
|
||||
IPAdapterConfig,
|
||||
RefImageState,
|
||||
@@ -38,22 +38,6 @@ export const imageDTOToImageObject = (imageDTO: ImageDTO, overrides?: Partial<Ca
|
||||
};
|
||||
};
|
||||
|
||||
export const imageNameToImageObject = (
|
||||
imageName: string,
|
||||
dimensions: Dimensions,
|
||||
overrides?: Partial<CanvasImageState>
|
||||
): CanvasImageState => {
|
||||
return {
|
||||
id: getPrefixedId('image'),
|
||||
type: 'image',
|
||||
image: {
|
||||
image_name: imageName,
|
||||
...dimensions,
|
||||
},
|
||||
...overrides,
|
||||
};
|
||||
};
|
||||
|
||||
export const imageDTOToImageWithDims = ({ image_name, width, height }: ImageDTO): ImageWithDims => ({
|
||||
image_name,
|
||||
width,
|
||||
@@ -105,6 +89,11 @@ export const initialChatGPT4oReferenceImage: ChatGPT4oReferenceImageConfig = {
|
||||
image: null,
|
||||
model: null,
|
||||
};
|
||||
export const initialGemini2_5ReferenceImage: Gemini2_5ReferenceImageConfig = {
|
||||
type: 'gemini_2_5_reference_image',
|
||||
image: null,
|
||||
model: null,
|
||||
};
|
||||
export const initialFluxKontextReferenceImage: FluxKontextReferenceImageConfig = {
|
||||
type: 'flux_kontext_reference_image',
|
||||
image: null,
|
||||
|
||||
@@ -7,13 +7,7 @@ import { useGallerySearchTerm } from 'features/gallery/components/ImageGrid/useG
|
||||
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
|
||||
import { galleryViewChanged, selectGallerySlice } from 'features/gallery/store/gallerySlice';
|
||||
import { useAutoLayoutContext } from 'features/ui/layouts/auto-layout-context';
|
||||
import {
|
||||
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
|
||||
GALLERY_PANEL_ID,
|
||||
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX,
|
||||
GALLERY_PANEL_MIN_HEIGHT_PX,
|
||||
} from 'features/ui/layouts/shared';
|
||||
import { useCollapsibleGridviewPanel } from 'features/ui/layouts/use-collapsible-gridview-panel';
|
||||
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
|
||||
import type { CSSProperties } from 'react';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
@@ -34,16 +28,8 @@ export const GalleryPanel = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const { tab } = useAutoLayoutContext();
|
||||
const collapsibleApi = useCollapsibleGridviewPanel(
|
||||
tab,
|
||||
GALLERY_PANEL_ID,
|
||||
'vertical',
|
||||
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
|
||||
GALLERY_PANEL_MIN_HEIGHT_PX,
|
||||
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX
|
||||
);
|
||||
const isCollapsed = useStore(collapsibleApi.$isCollapsed);
|
||||
|
||||
const galleryPanel = useGalleryPanel(tab);
|
||||
const isCollapsed = useStore(galleryPanel.$isCollapsed);
|
||||
const galleryView = useAppSelector(selectGalleryView);
|
||||
const initialSearchTerm = useAppSelector(selectSearchTerm);
|
||||
const searchDisclosure = useDisclosure(!!initialSearchTerm);
|
||||
@@ -58,11 +44,11 @@ export const GalleryPanel = memo(() => {
|
||||
|
||||
const handleClickSearch = useCallback(() => {
|
||||
onResetSearchTerm();
|
||||
if (!searchDisclosure.isOpen && collapsibleApi.$isCollapsed.get()) {
|
||||
collapsibleApi.expand();
|
||||
if (!searchDisclosure.isOpen && galleryPanel.$isCollapsed.get()) {
|
||||
galleryPanel.expand();
|
||||
}
|
||||
searchDisclosure.toggle();
|
||||
}, [collapsibleApi, onResetSearchTerm, searchDisclosure]);
|
||||
}, [galleryPanel, onResetSearchTerm, searchDisclosure]);
|
||||
|
||||
const selectedBoardId = useAppSelector(selectSelectedBoardId);
|
||||
const boardName = useBoardName(selectedBoardId);
|
||||
@@ -73,7 +59,7 @@ export const GalleryPanel = memo(() => {
|
||||
<Button
|
||||
size="sm"
|
||||
variant="ghost"
|
||||
onClick={collapsibleApi.toggle}
|
||||
onClick={galleryPanel.toggle}
|
||||
leftIcon={isCollapsed ? <PiCaretDownBold /> : <PiCaretUpBold />}
|
||||
noOfLines={1}
|
||||
>
|
||||
|
||||
@@ -40,7 +40,7 @@ export const GallerySettingsPopover = memo(() => {
|
||||
<PopoverBody>
|
||||
<Flex direction="column" gap={2}>
|
||||
<Text fontWeight="semibold" color="base.300">
|
||||
Gallery Settings
|
||||
{t('gallery.gallerySettings')}
|
||||
</Text>
|
||||
|
||||
<Divider />
|
||||
|
||||
@@ -0,0 +1,39 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
|
||||
import { boardIdSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { navigationApi } from 'features/ui/layouts/navigation-api';
|
||||
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { flushSync } from 'react-dom';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiCrosshairBold } from 'react-icons/pi';
|
||||
|
||||
export const ImageMenuItemLocateInGalery = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const imageDTO = useImageDTOContext();
|
||||
const activeTab = useAppSelector(selectActiveTab);
|
||||
const galleryPanel = useGalleryPanel(activeTab);
|
||||
|
||||
const isGalleryImage = useMemo(() => {
|
||||
return !imageDTO.is_intermediate;
|
||||
}, [imageDTO]);
|
||||
|
||||
const onClick = useCallback(() => {
|
||||
navigationApi.expandRightPanel();
|
||||
galleryPanel.expand();
|
||||
flushSync(() => {
|
||||
dispatch(boardIdSelected({ boardId: imageDTO.board_id ?? 'none', selectedImageName: imageDTO.image_name }));
|
||||
});
|
||||
}, [dispatch, galleryPanel, imageDTO]);
|
||||
|
||||
return (
|
||||
<MenuItem icon={<PiCrosshairBold />} onClickCapture={onClick} isDisabled={!isGalleryImage}>
|
||||
{t('boards.locateInGalery')}
|
||||
</MenuItem>
|
||||
);
|
||||
});
|
||||
|
||||
ImageMenuItemLocateInGalery.displayName = 'ImageMenuItemLocateInGalery';
|
||||
@@ -2,6 +2,7 @@ import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
|
||||
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
|
||||
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
|
||||
import { useRecallAll } from 'features/gallery/hooks/useRecallAll';
|
||||
import { useRecallCLIPSkip } from 'features/gallery/hooks/useRecallCLIPSkip';
|
||||
import { useRecallDimensions } from 'features/gallery/hooks/useRecallDimensions';
|
||||
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
|
||||
import { useRecallRemix } from 'features/gallery/hooks/useRecallRemix';
|
||||
@@ -17,7 +18,7 @@ import {
|
||||
PiRulerBold,
|
||||
} from 'react-icons/pi';
|
||||
|
||||
export const ImageMenuItemMetadataRecallActions = memo(() => {
|
||||
export const ImageMenuItemMetadataRecallActionsCanvasGenerateTabs = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const subMenu = useSubMenu();
|
||||
|
||||
@@ -28,6 +29,7 @@ export const ImageMenuItemMetadataRecallActions = memo(() => {
|
||||
const recallPrompts = useRecallPrompts(imageDTO);
|
||||
const recallSeed = useRecallSeed(imageDTO);
|
||||
const recallDimensions = useRecallDimensions(imageDTO);
|
||||
const recallCLIPSkip = useRecallCLIPSkip(imageDTO);
|
||||
|
||||
return (
|
||||
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiArrowBendUpLeftBold />}>
|
||||
@@ -55,10 +57,14 @@ export const ImageMenuItemMetadataRecallActions = memo(() => {
|
||||
<MenuItem icon={<PiRulerBold />} onClick={recallDimensions.recall} isDisabled={!recallDimensions.isEnabled}>
|
||||
{t('parameters.useSize')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiRulerBold />} onClick={recallCLIPSkip.recall} isDisabled={!recallCLIPSkip.isEnabled}>
|
||||
{t('parameters.useClipSkip')}
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
</MenuItem>
|
||||
);
|
||||
});
|
||||
|
||||
ImageMenuItemMetadataRecallActions.displayName = 'ImageMenuItemMetadataRecallActions';
|
||||
ImageMenuItemMetadataRecallActionsCanvasGenerateTabs.displayName =
|
||||
'ImageMenuItemMetadataRecallActionsCanvasGenerateTabs';
|
||||
@@ -0,0 +1,38 @@
|
||||
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
|
||||
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
|
||||
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
|
||||
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
|
||||
import { useRecallSeed } from 'features/gallery/hooks/useRecallSeed';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowBendUpLeftBold, PiPlantBold, PiQuotesBold } from 'react-icons/pi';
|
||||
|
||||
export const ImageMenuItemMetadataRecallActionsUpscaleTab = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const subMenu = useSubMenu();
|
||||
|
||||
const imageDTO = useImageDTOContext();
|
||||
|
||||
const recallPrompts = useRecallPrompts(imageDTO);
|
||||
const recallSeed = useRecallSeed(imageDTO);
|
||||
|
||||
return (
|
||||
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiArrowBendUpLeftBold />}>
|
||||
<Menu {...subMenu.menuProps}>
|
||||
<MenuButton {...subMenu.menuButtonProps}>
|
||||
<SubMenuButtonContent label={t('parameters.recallMetadata')} />
|
||||
</MenuButton>
|
||||
<MenuList {...subMenu.menuListProps}>
|
||||
<MenuItem icon={<PiQuotesBold />} onClick={recallPrompts.recall} isDisabled={!recallPrompts.isEnabled}>
|
||||
{t('parameters.usePrompt')}
|
||||
</MenuItem>
|
||||
<MenuItem icon={<PiPlantBold />} onClick={recallSeed.recall} isDisabled={!recallSeed.isEnabled}>
|
||||
{t('parameters.useSeed')}
|
||||
</MenuItem>
|
||||
</MenuList>
|
||||
</Menu>
|
||||
</MenuItem>
|
||||
);
|
||||
});
|
||||
|
||||
ImageMenuItemMetadataRecallActionsUpscaleTab.displayName = 'ImageMenuItemMetadataRecallActionsUpscaleTab';
|
||||
@@ -6,7 +6,8 @@ import { ImageMenuItemCopy } from 'features/gallery/components/ImageContextMenu/
|
||||
import { ImageMenuItemDelete } from 'features/gallery/components/ImageContextMenu/ImageMenuItemDelete';
|
||||
import { ImageMenuItemDownload } from 'features/gallery/components/ImageContextMenu/ImageMenuItemDownload';
|
||||
import { ImageMenuItemLoadWorkflow } from 'features/gallery/components/ImageContextMenu/ImageMenuItemLoadWorkflow';
|
||||
import { ImageMenuItemMetadataRecallActions } from 'features/gallery/components/ImageContextMenu/ImageMenuItemMetadataRecallActions';
|
||||
import { ImageMenuItemLocateInGalery } from 'features/gallery/components/ImageContextMenu/ImageMenuItemLocateInGalery';
|
||||
import { ImageMenuItemMetadataRecallActionsCanvasGenerateTabs } from 'features/gallery/components/ImageContextMenu/ImageMenuItemMetadataRecallActionsCanvasGenerateTabs';
|
||||
import { ImageMenuItemNewCanvasFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewCanvasFromImageSubMenu';
|
||||
import { ImageMenuItemNewLayerFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewLayerFromImageSubMenu';
|
||||
import { ImageMenuItemOpenInNewTab } from 'features/gallery/components/ImageContextMenu/ImageMenuItemOpenInNewTab';
|
||||
@@ -21,6 +22,7 @@ import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import { memo } from 'react';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
import { ImageMenuItemMetadataRecallActionsUpscaleTab } from './ImageMenuItemMetadataRecallActionsUpscaleTab';
|
||||
import { ImageMenuItemUseAsPromptTemplate } from './ImageMenuItemUseAsPromptTemplate';
|
||||
|
||||
type SingleSelectionMenuItemsProps = {
|
||||
@@ -42,7 +44,8 @@ const SingleSelectionMenuItems = ({ imageDTO }: SingleSelectionMenuItemsProps) =
|
||||
</IconMenuItemGroup>
|
||||
<MenuDivider />
|
||||
<ImageMenuItemLoadWorkflow />
|
||||
{(tab === 'canvas' || tab === 'generate') && <ImageMenuItemMetadataRecallActions />}
|
||||
{(tab === 'canvas' || tab === 'generate') && <ImageMenuItemMetadataRecallActionsCanvasGenerateTabs />}
|
||||
{tab === 'upscaling' && <ImageMenuItemMetadataRecallActionsUpscaleTab />}
|
||||
<MenuDivider />
|
||||
<ImageMenuItemSendToUpscale />
|
||||
<ImageMenuItemUseForPromptGeneration />
|
||||
@@ -53,6 +56,11 @@ const SingleSelectionMenuItems = ({ imageDTO }: SingleSelectionMenuItemsProps) =
|
||||
<MenuDivider />
|
||||
<ImageMenuItemChangeBoard />
|
||||
<ImageMenuItemStarUnstar />
|
||||
{(tab === 'canvas' || tab === 'generate' || tab === 'workflows' || tab === 'upscaling') &&
|
||||
!imageDTO.is_intermediate && (
|
||||
// Only render this button on tabs with a gallery.
|
||||
<ImageMenuItemLocateInGalery />
|
||||
)}
|
||||
</ImageDTOContextProvider>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -118,6 +118,9 @@ const buildOnClick =
|
||||
const start = Math.min(lastClickedIndex, currentClickedIndex);
|
||||
const end = Math.max(lastClickedIndex, currentClickedIndex);
|
||||
const imagesToSelect = imageNames.slice(start, end + 1);
|
||||
if (currentClickedIndex < lastClickedIndex) {
|
||||
imagesToSelect.reverse();
|
||||
}
|
||||
dispatch(selectionChanged(uniq(selection.concat(imagesToSelect))));
|
||||
}
|
||||
} else if (ctrlKey || metaKey) {
|
||||
|
||||
@@ -33,8 +33,6 @@ const ImageMetadataActions = (props: Props) => {
|
||||
<UnrecallableMetadataDatum metadata={metadata} handler={MetadataHandlers.GenerationMode} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.PositivePrompt} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.NegativePrompt} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.PositiveStylePrompt} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.NegativeStylePrompt} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.MainModel} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.VAEModel} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Width} />
|
||||
@@ -42,6 +40,7 @@ const ImageMetadataActions = (props: Props) => {
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Seed} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Steps} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Scheduler} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CLIPSkip} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CFGScale} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CFGRescaleMultiplier} />
|
||||
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Guidance} />
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { Button, Divider, IconButton, Menu, MenuButton, MenuList } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { DeleteImageButton } from 'features/deleteImageModal/components/DeleteImageButton';
|
||||
import SingleSelectionMenuItems from 'features/gallery/components/ImageContextMenu/SingleSelectionMenuItems';
|
||||
import { useDeleteImage } from 'features/gallery/hooks/useDeleteImage';
|
||||
@@ -10,14 +10,19 @@ import { useRecallDimensions } from 'features/gallery/hooks/useRecallDimensions'
|
||||
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
|
||||
import { useRecallRemix } from 'features/gallery/hooks/useRecallRemix';
|
||||
import { useRecallSeed } from 'features/gallery/hooks/useRecallSeed';
|
||||
import { boardIdSelected } from 'features/gallery/store/gallerySlice';
|
||||
import { PostProcessingPopover } from 'features/parameters/components/PostProcessing/PostProcessingPopover';
|
||||
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
|
||||
import { navigationApi } from 'features/ui/layouts/navigation-api';
|
||||
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import { memo } from 'react';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { flushSync } from 'react-dom';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import {
|
||||
PiArrowsCounterClockwiseBold,
|
||||
PiAsteriskBold,
|
||||
PiCrosshairBold,
|
||||
PiDotsThreeOutlineFill,
|
||||
PiFlowArrowBold,
|
||||
PiPencilBold,
|
||||
@@ -30,7 +35,25 @@ import type { ImageDTO } from 'services/api/types';
|
||||
export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) => {
|
||||
const { t } = useTranslation();
|
||||
const tab = useAppSelector(selectActiveTab);
|
||||
const dispatch = useAppDispatch();
|
||||
const activeTab = useAppSelector(selectActiveTab);
|
||||
const galleryPanel = useGalleryPanel(activeTab);
|
||||
|
||||
const isGalleryImage = useMemo(() => {
|
||||
return !imageDTO.is_intermediate;
|
||||
}, [imageDTO]);
|
||||
|
||||
const locateInGallery = useCallback(() => {
|
||||
navigationApi.expandRightPanel();
|
||||
galleryPanel.expand();
|
||||
flushSync(() => {
|
||||
dispatch(boardIdSelected({ boardId: imageDTO.board_id ?? 'none', selectedImageName: imageDTO.image_name }));
|
||||
});
|
||||
}, [dispatch, galleryPanel, imageDTO]);
|
||||
|
||||
const isCanvasOrGenerateTab = tab === 'canvas' || tab === 'generate';
|
||||
const isCanvasOrGenerateOrUpscalingTab = tab === 'canvas' || tab === 'generate' || tab === 'upscaling';
|
||||
const doesTabHaveGallery = tab === 'canvas' || tab === 'generate' || tab === 'workflows' || tab === 'upscaling';
|
||||
|
||||
const isUpscalingEnabled = useFeatureStatus('upscaling');
|
||||
|
||||
@@ -74,6 +97,17 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
|
||||
|
||||
<Divider orientation="vertical" h={8} mx={2} />
|
||||
|
||||
{doesTabHaveGallery && isGalleryImage && (
|
||||
<IconButton
|
||||
icon={<PiCrosshairBold />}
|
||||
aria-label={t('boards.locateInGalery')}
|
||||
tooltip={t('boards.locateInGalery')}
|
||||
onClick={locateInGallery}
|
||||
variant="link"
|
||||
size="sm"
|
||||
alignSelf="stretch"
|
||||
/>
|
||||
)}
|
||||
<IconButton
|
||||
icon={<PiFlowArrowBold />}
|
||||
tooltip={`${t('nodes.loadWorkflow')} (W)`}
|
||||
@@ -94,7 +128,7 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
|
||||
onClick={recallRemix.recall}
|
||||
/>
|
||||
)}
|
||||
{isCanvasOrGenerateTab && (
|
||||
{isCanvasOrGenerateOrUpscalingTab && (
|
||||
<IconButton
|
||||
icon={<PiQuotesBold />}
|
||||
tooltip={`${t('parameters.usePrompt')} (P)`}
|
||||
@@ -105,7 +139,7 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
|
||||
onClick={recallPrompts.recall}
|
||||
/>
|
||||
)}
|
||||
{isCanvasOrGenerateTab && (
|
||||
{isCanvasOrGenerateOrUpscalingTab && (
|
||||
<IconButton
|
||||
icon={<PiPlantBold />}
|
||||
tooltip={`${t('parameters.useSeed')} (S)`}
|
||||
|
||||
@@ -83,7 +83,15 @@ export const ImageViewerContextProvider = memo((props: PropsWithChildren) => {
|
||||
// switch to the final image automatically. In this case, we clear the progress image immediately.
|
||||
//
|
||||
// We also clear the progress image if the queue item is canceled or failed, as there is no final image to show.
|
||||
if (data.status === 'canceled' || data.status === 'failed' || !autoSwitch) {
|
||||
if (
|
||||
data.status === 'canceled' ||
|
||||
data.status === 'failed' ||
|
||||
!autoSwitch ||
|
||||
// When the origin is 'canvas' and destination is 'canvas' (without a ':<session id>' suffix), that means the
|
||||
// image is going to be added to the staging area. In this case, we need to clear the progress image else it
|
||||
// will be stuck on the viewer.
|
||||
(data.origin === 'canvas' && data.destination !== 'canvas')
|
||||
) {
|
||||
$progressEvent.set(null);
|
||||
$progressImage.set(null);
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@ import {
|
||||
selectGalleryImageMinimumWidth,
|
||||
selectImageToCompare,
|
||||
selectLastSelectedImage,
|
||||
selectSelection,
|
||||
selectSelectionCount,
|
||||
} from 'features/gallery/store/gallerySelectors';
|
||||
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
|
||||
@@ -138,6 +139,7 @@ const scrollIntoView = (
|
||||
) => {
|
||||
if (range.endIndex === 0) {
|
||||
// No range is rendered; no need to scroll to anything.
|
||||
log.trace('Not scrolling into view: Range endIdex is 0');
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -145,6 +147,7 @@ const scrollIntoView = (
|
||||
|
||||
if (targetIndex === -1) {
|
||||
// The image isn't in the currently rendered list.
|
||||
log.trace('Not scrolling into view: targetIndex is -1');
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -154,12 +157,28 @@ const scrollIntoView = (
|
||||
|
||||
if (!targetItem) {
|
||||
if (targetIndex > range.endIndex) {
|
||||
log.trace(
|
||||
{
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'start',
|
||||
},
|
||||
'Scrolling into view: not in DOM'
|
||||
);
|
||||
virtuosoGridHandle.scrollToIndex({
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'start',
|
||||
});
|
||||
} else if (targetIndex < range.startIndex) {
|
||||
log.trace(
|
||||
{
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'end',
|
||||
},
|
||||
'Scrolling into view: not in DOM'
|
||||
);
|
||||
virtuosoGridHandle.scrollToIndex({
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
@@ -180,12 +199,28 @@ const scrollIntoView = (
|
||||
const rootRect = rootEl.getBoundingClientRect();
|
||||
|
||||
if (itemRect.top < rootRect.top) {
|
||||
log.trace(
|
||||
{
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'start',
|
||||
},
|
||||
'Scrolling into view: in overscan'
|
||||
);
|
||||
virtuosoGridHandle.scrollToIndex({
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'start',
|
||||
});
|
||||
} else if (itemRect.bottom > rootRect.bottom) {
|
||||
log.trace(
|
||||
{
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
align: 'end',
|
||||
},
|
||||
'Scrolling into view: in overscan'
|
||||
);
|
||||
virtuosoGridHandle.scrollToIndex({
|
||||
index: targetIndex,
|
||||
behavior: 'auto',
|
||||
@@ -193,6 +228,7 @@ const scrollIntoView = (
|
||||
});
|
||||
} else {
|
||||
// Image is already in view
|
||||
log.debug('Not scrolling into view: Image is already in view');
|
||||
}
|
||||
|
||||
return;
|
||||
@@ -392,9 +428,10 @@ const useKeepSelectedImageInView = (
|
||||
rootRef: React.RefObject<HTMLDivElement>,
|
||||
rangeRef: MutableRefObject<ListRange>
|
||||
) => {
|
||||
const targetImageName = useAppSelector(selectLastSelectedImage);
|
||||
const selection = useAppSelector(selectSelection);
|
||||
|
||||
useEffect(() => {
|
||||
const targetImageName = selection.at(-1);
|
||||
const virtuosoGridHandle = virtuosoRef.current;
|
||||
const rootEl = rootRef.current;
|
||||
const range = rangeRef.current;
|
||||
@@ -402,8 +439,11 @@ const useKeepSelectedImageInView = (
|
||||
if (!virtuosoGridHandle || !rootEl || !targetImageName || !imageNames || imageNames.length === 0) {
|
||||
return;
|
||||
}
|
||||
scrollIntoView(targetImageName, imageNames, rootEl, virtuosoGridHandle, range);
|
||||
}, [targetImageName, imageNames, rangeRef, rootRef, virtuosoRef]);
|
||||
|
||||
setTimeout(() => {
|
||||
scrollIntoView(targetImageName, imageNames, rootEl, virtuosoGridHandle, range);
|
||||
}, 0);
|
||||
}, [imageNames, rangeRef, rootRef, virtuosoRef, selection]);
|
||||
};
|
||||
|
||||
/**
|
||||
|
||||
@@ -0,0 +1,72 @@
|
||||
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
|
||||
import { selectHasModelCLIPSkip } from 'features/controlLayers/store/paramsSlice';
|
||||
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
import { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
|
||||
|
||||
export const useRecallCLIPSkip = (imageDTO: ImageDTO) => {
|
||||
const store = useAppStore();
|
||||
const hasModelCLIPSkip = useAppSelector(selectHasModelCLIPSkip);
|
||||
const tab = useAppSelector(selectActiveTab);
|
||||
const [hasCLIPSkip, setHasCLIPSkip] = useState(false);
|
||||
|
||||
const { metadata, isLoading } = useDebouncedMetadata(imageDTO.image_name);
|
||||
|
||||
useEffect(() => {
|
||||
const parse = async () => {
|
||||
try {
|
||||
await MetadataHandlers.CLIPSkip.parse(metadata, store);
|
||||
setHasCLIPSkip(true);
|
||||
} catch {
|
||||
setHasCLIPSkip(false);
|
||||
}
|
||||
};
|
||||
|
||||
if (!hasModelCLIPSkip) {
|
||||
setHasCLIPSkip(false);
|
||||
return;
|
||||
}
|
||||
|
||||
parse();
|
||||
}, [metadata, store, hasModelCLIPSkip]);
|
||||
|
||||
const isEnabled = useMemo(() => {
|
||||
if (isLoading) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!ALLOWED_TABS.includes(tab)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!metadata) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!hasCLIPSkip) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}, [hasCLIPSkip, isLoading, metadata, tab]);
|
||||
|
||||
const recall = useCallback(() => {
|
||||
if (!metadata) {
|
||||
return;
|
||||
}
|
||||
if (!isEnabled) {
|
||||
return;
|
||||
}
|
||||
MetadataUtils.recallByHandler({ metadata, handler: MetadataHandlers.CLIPSkip, store });
|
||||
}, [metadata, isEnabled, store]);
|
||||
|
||||
return {
|
||||
recall,
|
||||
isEnabled,
|
||||
};
|
||||
};
|
||||
@@ -1,12 +1,15 @@
|
||||
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
|
||||
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
import { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
import { useClearStylePresetWithToast } from './useClearStylePresetWithToast';
|
||||
|
||||
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
|
||||
|
||||
export const useRecallPrompts = (imageDTO: ImageDTO) => {
|
||||
const store = useAppStore();
|
||||
const tab = useAppSelector(selectActiveTab);
|
||||
@@ -19,12 +22,7 @@ export const useRecallPrompts = (imageDTO: ImageDTO) => {
|
||||
const parse = async () => {
|
||||
try {
|
||||
const result = await MetadataUtils.hasMetadataByHandlers({
|
||||
handlers: [
|
||||
MetadataHandlers.PositivePrompt,
|
||||
MetadataHandlers.NegativePrompt,
|
||||
MetadataHandlers.PositiveStylePrompt,
|
||||
MetadataHandlers.NegativeStylePrompt,
|
||||
],
|
||||
handlers: [MetadataHandlers.PositivePrompt, MetadataHandlers.NegativePrompt],
|
||||
metadata,
|
||||
store,
|
||||
require: 'some',
|
||||
@@ -43,7 +41,7 @@ export const useRecallPrompts = (imageDTO: ImageDTO) => {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tab !== 'canvas' && tab !== 'generate') {
|
||||
if (!ALLOWED_TABS.includes(tab)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
|
||||
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
|
||||
import { selectActiveTab } from 'features/ui/store/uiSelectors';
|
||||
import type { TabName } from 'features/ui/store/uiTypes';
|
||||
import { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
|
||||
|
||||
export const useRecallSeed = (imageDTO: ImageDTO) => {
|
||||
const store = useAppStore();
|
||||
const tab = useAppSelector(selectActiveTab);
|
||||
@@ -30,7 +33,7 @@ export const useRecallSeed = (imageDTO: ImageDTO) => {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tab !== 'canvas' && tab !== 'generate') {
|
||||
if (!ALLOWED_TABS.includes(tab)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import { objectEquals } from '@observ33r/object-equals';
|
||||
import type { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import type { RootState } from 'app/store/store';
|
||||
@@ -43,54 +42,16 @@ const slice = createSlice({
|
||||
initialState: getInitialState(),
|
||||
reducers: {
|
||||
imageSelected: (state, action: PayloadAction<string | null>) => {
|
||||
// Let's be efficient here and not update the selection unless it has actually changed. This helps to prevent
|
||||
// unnecessary re-renders of the gallery.
|
||||
|
||||
const selectedImageName = action.payload;
|
||||
|
||||
// If we got `null`, clear the selection
|
||||
if (!selectedImageName) {
|
||||
// But only if we have images selected
|
||||
if (state.selection.length > 0) {
|
||||
state.selection = [];
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// If we have multiple images selected, clear the selection and select the new image
|
||||
if (state.selection.length !== 1) {
|
||||
state.selection = [];
|
||||
} else {
|
||||
state.selection = [selectedImageName];
|
||||
return;
|
||||
}
|
||||
|
||||
// If the selected image is different from the current selection, clear the selection and select the new image
|
||||
if (state.selection[0] !== selectedImageName) {
|
||||
state.selection = [selectedImageName];
|
||||
return;
|
||||
}
|
||||
|
||||
// Else we have the same image selected, do nothing
|
||||
},
|
||||
selectionChanged: (state, action: PayloadAction<string[]>) => {
|
||||
// Let's be efficient here and not update the selection unless it has actually changed. This helps to prevent
|
||||
// unnecessary re-renders of the gallery.
|
||||
|
||||
// Remove duplicates from the selection
|
||||
const newSelection = uniq(action.payload);
|
||||
|
||||
// If the new selection has a different length, update the selection
|
||||
if (newSelection.length !== state.selection.length) {
|
||||
state.selection = newSelection;
|
||||
return;
|
||||
}
|
||||
|
||||
// If the new selection is different, update the selection
|
||||
if (!objectEquals(newSelection, state.selection)) {
|
||||
state.selection = newSelection;
|
||||
return;
|
||||
}
|
||||
|
||||
// Else we have the same selection, do nothing
|
||||
state.selection = uniq(action.payload);
|
||||
},
|
||||
imageToCompareChanged: (state, action: PayloadAction<string | null>) => {
|
||||
state.imageToCompare = action.payload;
|
||||
|
||||
@@ -9,14 +9,13 @@ import { bboxHeightChanged, bboxWidthChanged, canvasMetadataRecalled } from 'fea
|
||||
import { loraAllDeleted, loraRecalled } from 'features/controlLayers/store/lorasSlice';
|
||||
import {
|
||||
heightChanged,
|
||||
negativePrompt2Changed,
|
||||
negativePromptChanged,
|
||||
positivePrompt2Changed,
|
||||
positivePromptChanged,
|
||||
refinerModelChanged,
|
||||
selectBase,
|
||||
setCfgRescaleMultiplier,
|
||||
setCfgScale,
|
||||
setClipSkip,
|
||||
setGuidance,
|
||||
setImg2imgStrength,
|
||||
setRefinerCFGScale,
|
||||
@@ -30,7 +29,6 @@ import {
|
||||
setSeamlessYAxis,
|
||||
setSeed,
|
||||
setSteps,
|
||||
shouldConcatPromptsChanged,
|
||||
vaeSelected,
|
||||
widthChanged,
|
||||
} from 'features/controlLayers/store/paramsSlice';
|
||||
@@ -44,12 +42,12 @@ import { modelSelected } from 'features/parameters/store/actions';
|
||||
import type {
|
||||
ParameterCFGRescaleMultiplier,
|
||||
ParameterCFGScale,
|
||||
ParameterCLIPSkip,
|
||||
ParameterGuidance,
|
||||
ParameterHeight,
|
||||
ParameterModel,
|
||||
ParameterNegativePrompt,
|
||||
ParameterPositivePrompt,
|
||||
ParameterPositiveStylePromptSDXL,
|
||||
ParameterScheduler,
|
||||
ParameterSDXLRefinerModel,
|
||||
ParameterSDXLRefinerNegativeAestheticScore,
|
||||
@@ -67,12 +65,11 @@ import {
|
||||
zLoRAWeight,
|
||||
zParameterCFGRescaleMultiplier,
|
||||
zParameterCFGScale,
|
||||
zParameterCLIPSkip,
|
||||
zParameterGuidance,
|
||||
zParameterImageDimension,
|
||||
zParameterNegativePrompt,
|
||||
zParameterNegativeStylePromptSDXL,
|
||||
zParameterPositivePrompt,
|
||||
zParameterPositiveStylePromptSDXL,
|
||||
zParameterScheduler,
|
||||
zParameterSDXLRefinerNegativeAestheticScore,
|
||||
zParameterSDXLRefinerPositiveAestheticScore,
|
||||
@@ -289,46 +286,6 @@ const NegativePrompt: SingleMetadataHandler<ParameterNegativePrompt> = {
|
||||
};
|
||||
//#endregion Negative Prompt
|
||||
|
||||
//#region SDXL Positive Style Prompt
|
||||
const PositiveStylePrompt: SingleMetadataHandler<ParameterPositiveStylePromptSDXL> = {
|
||||
[SingleMetadataKey]: true,
|
||||
type: 'PositiveStylePrompt',
|
||||
parse: (metadata, _store) => {
|
||||
const raw = getProperty(metadata, 'positive_style_prompt');
|
||||
const parsed = zParameterPositiveStylePromptSDXL.parse(raw);
|
||||
return Promise.resolve(parsed);
|
||||
},
|
||||
recall: (value, store) => {
|
||||
store.dispatch(positivePrompt2Changed(value));
|
||||
},
|
||||
i18nKey: 'sdxl.posStylePrompt',
|
||||
LabelComponent: MetadataLabel,
|
||||
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterPositiveStylePromptSDXL>) => (
|
||||
<MetadataPrimitiveValue value={value} />
|
||||
),
|
||||
};
|
||||
//#endregion SDXL Positive Style Prompt
|
||||
|
||||
//#region SDXL Negative Style Prompt
|
||||
const NegativeStylePrompt: SingleMetadataHandler<ParameterPositiveStylePromptSDXL> = {
|
||||
[SingleMetadataKey]: true,
|
||||
type: 'NegativeStylePrompt',
|
||||
parse: (metadata, _store) => {
|
||||
const raw = getProperty(metadata, 'negative_style_prompt');
|
||||
const parsed = zParameterNegativeStylePromptSDXL.parse(raw);
|
||||
return Promise.resolve(parsed);
|
||||
},
|
||||
recall: (value, store) => {
|
||||
store.dispatch(negativePrompt2Changed(value));
|
||||
},
|
||||
i18nKey: 'sdxl.negStylePrompt',
|
||||
LabelComponent: MetadataLabel,
|
||||
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterPositiveStylePromptSDXL>) => (
|
||||
<MetadataPrimitiveValue value={value} />
|
||||
),
|
||||
};
|
||||
//#endregion SDXL Negative Style Prompt
|
||||
|
||||
//#region CFG Scale
|
||||
const CFGScale: SingleMetadataHandler<ParameterCFGScale> = {
|
||||
[SingleMetadataKey]: true,
|
||||
@@ -367,6 +324,24 @@ const CFGRescaleMultiplier: SingleMetadataHandler<ParameterCFGRescaleMultiplier>
|
||||
};
|
||||
//#endregion CFG Rescale Multiplier
|
||||
|
||||
//#region CLIP Skip
|
||||
const CLIPSkip: SingleMetadataHandler<ParameterCLIPSkip> = {
|
||||
[SingleMetadataKey]: true,
|
||||
type: 'CLIPSkip',
|
||||
parse: (metadata, _store) => {
|
||||
const raw = getProperty(metadata, 'clip_skip');
|
||||
const parsed = zParameterCLIPSkip.parse(raw);
|
||||
return Promise.resolve(parsed);
|
||||
},
|
||||
recall: (value, store) => {
|
||||
store.dispatch(setClipSkip(value));
|
||||
},
|
||||
i18nKey: 'metadata.clipSkip',
|
||||
LabelComponent: MetadataLabel,
|
||||
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterCLIPSkip>) => <MetadataPrimitiveValue value={value} />,
|
||||
};
|
||||
//#endregion CLIP Skip
|
||||
|
||||
//#region Guidance
|
||||
const Guidance: SingleMetadataHandler<ParameterGuidance> = {
|
||||
[SingleMetadataKey]: true,
|
||||
@@ -927,10 +902,9 @@ export const MetadataHandlers = {
|
||||
GenerationMode,
|
||||
PositivePrompt,
|
||||
NegativePrompt,
|
||||
PositiveStylePrompt,
|
||||
NegativeStylePrompt,
|
||||
CFGScale,
|
||||
CFGRescaleMultiplier,
|
||||
CLIPSkip,
|
||||
Guidance,
|
||||
Scheduler,
|
||||
Width,
|
||||
@@ -1052,26 +1026,6 @@ const recallByHandlers = async (arg: {
|
||||
}
|
||||
}
|
||||
|
||||
// We may need to update the prompt concat flag based on the recalled prompts
|
||||
const positivePrompt = recalled.get(MetadataHandlers.PositivePrompt);
|
||||
const negativePrompt = recalled.get(MetadataHandlers.NegativePrompt);
|
||||
const positiveStylePrompt = recalled.get(MetadataHandlers.PositiveStylePrompt);
|
||||
const negativeStylePrompt = recalled.get(MetadataHandlers.NegativeStylePrompt);
|
||||
|
||||
// The values will be undefined if the handler was not recalled
|
||||
if (
|
||||
positivePrompt !== undefined ||
|
||||
negativePrompt !== undefined ||
|
||||
positiveStylePrompt !== undefined ||
|
||||
negativeStylePrompt !== undefined
|
||||
) {
|
||||
const concat =
|
||||
(Boolean(positiveStylePrompt) && positiveStylePrompt === positivePrompt) ||
|
||||
(Boolean(negativeStylePrompt) && negativeStylePrompt === negativePrompt);
|
||||
|
||||
store.dispatch(shouldConcatPromptsChanged(concat));
|
||||
}
|
||||
|
||||
if (!silent) {
|
||||
if (recalled.size > 0) {
|
||||
toast({
|
||||
@@ -1094,12 +1048,7 @@ const recallByHandlers = async (arg: {
|
||||
const recallPrompts = async (metadata: unknown, store: AppStore) => {
|
||||
const recalled = await recallByHandlers({
|
||||
metadata,
|
||||
handlers: [
|
||||
MetadataHandlers.PositivePrompt,
|
||||
MetadataHandlers.NegativePrompt,
|
||||
MetadataHandlers.PositiveStylePrompt,
|
||||
MetadataHandlers.NegativeStylePrompt,
|
||||
],
|
||||
handlers: [MetadataHandlers.PositivePrompt, MetadataHandlers.NegativePrompt],
|
||||
store,
|
||||
silent: true,
|
||||
});
|
||||
|
||||
@@ -2,7 +2,7 @@ import { Button, Flex, Grid, Heading, Text } from '@invoke-ai/ui-library';
|
||||
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
|
||||
import { map } from 'es-toolkit/compat';
|
||||
import { setInstallModelsTabByName } from 'features/modelManagerV2/store/installModelsStore';
|
||||
import { StarterBundleButton } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundle';
|
||||
import { StarterBundleButton } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundleButton';
|
||||
import { StarterBundleTooltipContentCompact } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundleTooltipContentCompact';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
import type { ButtonProps } from '@invoke-ai/ui-library';
|
||||
import { Button } from '@invoke-ai/ui-library';
|
||||
import { useStarterBundleInstall } from 'features/modelManagerV2/hooks/useStarterBundleInstall';
|
||||
import { useStarterBundleInstallStatus } from 'features/modelManagerV2/hooks/useStarterBundleInstallStatus';
|
||||
import { useCallback } from 'react';
|
||||
import type { S } from 'services/api/types';
|
||||
|
||||
export const StarterBundleButton = ({ bundle, ...rest }: { bundle: S['StarterModelBundle'] } & ButtonProps) => {
|
||||
const { installBundle } = useStarterBundleInstall();
|
||||
const { install } = useStarterBundleInstallStatus(bundle);
|
||||
|
||||
const handleClickBundle = useCallback(() => {
|
||||
installBundle(bundle);
|
||||
}, [installBundle, bundle]);
|
||||
|
||||
return (
|
||||
<Button onClick={handleClickBundle} isDisabled={install.length === 0} {...rest}>
|
||||
{bundle.name}
|
||||
</Button>
|
||||
);
|
||||
};
|
||||
@@ -0,0 +1,61 @@
|
||||
import type { ButtonProps } from '@invoke-ai/ui-library';
|
||||
import {
|
||||
Button,
|
||||
ConfirmationAlertDialog,
|
||||
Flex,
|
||||
ListItem,
|
||||
Text,
|
||||
UnorderedList,
|
||||
useDisclosure,
|
||||
} from '@invoke-ai/ui-library';
|
||||
import { useStarterBundleInstall } from 'features/modelManagerV2/hooks/useStarterBundleInstall';
|
||||
import { useStarterBundleInstallStatus } from 'features/modelManagerV2/hooks/useStarterBundleInstallStatus';
|
||||
import { t } from 'i18next';
|
||||
import type { MouseEvent } from 'react';
|
||||
import { useCallback } from 'react';
|
||||
import type { S } from 'services/api/types';
|
||||
|
||||
export const StarterBundleButton = ({ bundle, ...rest }: { bundle: S['StarterModelBundle'] } & ButtonProps) => {
|
||||
const { installBundle } = useStarterBundleInstall();
|
||||
const { install } = useStarterBundleInstallStatus(bundle);
|
||||
const { isOpen, onOpen, onClose } = useDisclosure();
|
||||
|
||||
const onClickBundle = useCallback(
|
||||
(e: MouseEvent<HTMLButtonElement>) => {
|
||||
e.stopPropagation();
|
||||
onOpen();
|
||||
},
|
||||
[onOpen]
|
||||
);
|
||||
const handleInstallBundle = useCallback(() => {
|
||||
installBundle(bundle);
|
||||
}, [installBundle, bundle]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<Button onClick={onClickBundle} isDisabled={install.length === 0} {...rest}>
|
||||
{bundle.name}
|
||||
</Button>
|
||||
<ConfirmationAlertDialog
|
||||
isOpen={isOpen}
|
||||
onClose={onClose}
|
||||
title={t('modelManager.installBundle')}
|
||||
acceptCallback={handleInstallBundle}
|
||||
acceptButtonText={t('modelManager.install')}
|
||||
useInert={false}
|
||||
>
|
||||
<Flex rowGap={4} flexDirection="column">
|
||||
<Text fontWeight="bold">{t('modelManager.installBundleMsg1', { bundleName: bundle.name })}</Text>
|
||||
<Text>{t('modelManager.installBundleMsg2', { count: install.length })}</Text>
|
||||
<UnorderedList>
|
||||
{install.map((model, index) => (
|
||||
<ListItem key={index} wordBreak="break-all">
|
||||
<Text>{model.config.name}</Text>
|
||||
</ListItem>
|
||||
))}
|
||||
</UnorderedList>
|
||||
</Flex>
|
||||
</ConfirmationAlertDialog>
|
||||
</>
|
||||
);
|
||||
};
|
||||
@@ -7,7 +7,7 @@ import { useTranslation } from 'react-i18next';
|
||||
import { PiInfoBold, PiXBold } from 'react-icons/pi';
|
||||
import type { GetStarterModelsResponse } from 'services/api/endpoints/models';
|
||||
|
||||
import { StarterBundleButton } from './StarterBundle';
|
||||
import { StarterBundleButton } from './StarterBundleButton';
|
||||
import { StarterBundleTooltipContent } from './StarterBundleTooltipContent';
|
||||
import { StarterModelsResultItem } from './StarterModelsResultItem';
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@ export const BASE_COLOR_MAP: Record<BaseModelType, string> = {
|
||||
imagen4: 'pink',
|
||||
'chatgpt-4o': 'pink',
|
||||
'flux-kontext': 'pink',
|
||||
'gemini-2.5': 'pink',
|
||||
};
|
||||
|
||||
const ModelBaseBadge = ({ base }: Props) => {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import InvocationNodeTitle from 'features/nodes/components/flow/nodes/common/InvocationNodeTitle';
|
||||
import NodeCollapseButton from 'features/nodes/components/flow/nodes/common/NodeCollapseButton';
|
||||
import NodeTitle from 'features/nodes/components/flow/nodes/common/NodeTitle';
|
||||
import InvocationNodeClassificationIcon from 'features/nodes/components/flow/nodes/Invocation/InvocationNodeClassificationIcon';
|
||||
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
|
||||
import { memo } from 'react';
|
||||
@@ -35,7 +35,7 @@ const InvocationNodeHeader = ({ nodeId, isOpen }: Props) => {
|
||||
<Flex sx={sx} data-is-open={isOpen} data-is-invalid={isInvalid}>
|
||||
<NodeCollapseButton nodeId={nodeId} isOpen={isOpen} />
|
||||
<InvocationNodeClassificationIcon nodeId={nodeId} />
|
||||
<NodeTitle nodeId={nodeId} />
|
||||
<InvocationNodeTitle nodeId={nodeId} />
|
||||
<Flex alignItems="center">
|
||||
<InvocationNodeStatusIndicator nodeId={nodeId} />
|
||||
<InvocationNodeInfoIcon nodeId={nodeId} />
|
||||
|
||||
@@ -1,35 +1,43 @@
|
||||
import { CompositeNumberInput } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeNumberInput } from '@invoke-ai/ui-library';
|
||||
import { useFloatField } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/useFloatField';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { FloatFieldInputInstance, FloatFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldFloatSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const FloatFieldInput = memo(
|
||||
(
|
||||
props: FieldComponentProps<FloatFieldInputInstance, FloatFieldInputTemplate, { settings?: NodeFieldFloatSettings }>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep } = useFloatField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
const { defaultValue, onChange, min, max, step, fineStep, constrainValue, showShuffle, randomizeValue } =
|
||||
useFloatField(nodeId, field.name, fieldTemplate, settings);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<CompositeNumberInput
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
/>
|
||||
<>
|
||||
<CompositeNumberInput
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
constrainValue={constrainValue}
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
@@ -1,22 +1,22 @@
|
||||
import { CompositeNumberInput, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeNumberInput, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { useFloatField } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/useFloatField';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { FloatFieldInputInstance, FloatFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldFloatSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const FloatFieldInputAndSlider = memo(
|
||||
(
|
||||
props: FieldComponentProps<FloatFieldInputInstance, FloatFieldInputTemplate, { settings?: NodeFieldFloatSettings }>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep } = useFloatField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
const { defaultValue, onChange, min, max, step, fineStep, constrainValue, showShuffle, randomizeValue } =
|
||||
useFloatField(nodeId, field.name, fieldTemplate, settings);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<>
|
||||
@@ -43,7 +43,13 @@ export const FloatFieldInputAndSlider = memo(
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
constrainValue={constrainValue}
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -1,37 +1,48 @@
|
||||
import { CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { useFloatField } from 'features/nodes/components/flow/nodes/Invocation/fields/FloatField/useFloatField';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { FloatFieldInputInstance, FloatFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldFloatSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const FloatFieldSlider = memo(
|
||||
(
|
||||
props: FieldComponentProps<FloatFieldInputInstance, FloatFieldInputTemplate, { settings?: NodeFieldFloatSettings }>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep } = useFloatField(
|
||||
const { defaultValue, onChange, min, max, step, fineStep, showShuffle, randomizeValue } = useFloatField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<CompositeSlider
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
marks
|
||||
withThumbTooltip
|
||||
flex="1 1 0"
|
||||
/>
|
||||
<>
|
||||
<CompositeSlider
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
marks
|
||||
withThumbTooltip
|
||||
flex="1 1 0"
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { NUMPY_RAND_MAX } from 'app/constants';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import randomFloat from 'common/util/randomFloat';
|
||||
import { roundDownToMultiple, roundUpToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import { isNil } from 'es-toolkit/compat';
|
||||
import { fieldFloatValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
@@ -11,9 +12,9 @@ export const useFloatField = (
|
||||
nodeId: string,
|
||||
fieldName: string,
|
||||
fieldTemplate: FloatFieldInputTemplate,
|
||||
overrides: { min?: number; max?: number; step?: number } = {}
|
||||
overrides: { showShuffle?: boolean; min?: number; max?: number; step?: number } = {}
|
||||
) => {
|
||||
const { min: overrideMin, max: overrideMax, step: overrideStep } = overrides;
|
||||
const { showShuffle, min: overrideMin, max: overrideMax, step: overrideStep } = overrides;
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const step = useMemo(() => {
|
||||
@@ -36,6 +37,13 @@ export const useFloatField = (
|
||||
return fieldTemplate.multipleOf;
|
||||
}, [fieldTemplate.multipleOf, overrideStep]);
|
||||
|
||||
const baseStep = useMemo(() => {
|
||||
if (isNil(fieldTemplate.multipleOf)) {
|
||||
return undefined;
|
||||
}
|
||||
return fieldTemplate.multipleOf;
|
||||
}, [fieldTemplate.multipleOf]);
|
||||
|
||||
const min = useMemo(() => {
|
||||
let min = -NUMPY_RAND_MAX;
|
||||
|
||||
@@ -66,8 +74,8 @@ export const useFloatField = (
|
||||
|
||||
const constrainValue = useCallback(
|
||||
(v: number) =>
|
||||
constrainNumber(v, { min, max, step: step }, { min: overrideMin, max: overrideMax, step: overrideStep }),
|
||||
[max, min, overrideMax, overrideMin, overrideStep, step]
|
||||
constrainNumber(v, { min, max, step: baseStep }, { min: overrideMin, max: overrideMax, step: overrideStep }),
|
||||
[max, min, overrideMax, overrideMin, overrideStep, baseStep]
|
||||
);
|
||||
|
||||
const onChange = useCallback(
|
||||
@@ -77,6 +85,11 @@ export const useFloatField = (
|
||||
[dispatch, fieldName, nodeId]
|
||||
);
|
||||
|
||||
const randomizeValue = useCallback(() => {
|
||||
const value = Number((Math.round(randomFloat(min, max) / step) * step).toFixed(10));
|
||||
dispatch(fieldFloatValueChanged({ nodeId, fieldName, value }));
|
||||
}, [dispatch, fieldName, nodeId, min, max, step]);
|
||||
|
||||
return {
|
||||
defaultValue: fieldTemplate.default,
|
||||
onChange,
|
||||
@@ -85,5 +98,7 @@ export const useFloatField = (
|
||||
step,
|
||||
fineStep,
|
||||
constrainValue,
|
||||
showShuffle,
|
||||
randomizeValue,
|
||||
};
|
||||
};
|
||||
|
||||
@@ -0,0 +1,41 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAddRemoveFormElement } from 'features/nodes/components/sidePanel/builder/use-add-remove-form-element';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiMinusBold, PiPlusBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
};
|
||||
|
||||
export const InputFieldAddRemoveFormRoot = memo(({ nodeId, fieldName }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const { isAddedToRoot, addNodeFieldToRoot, removeNodeFieldFromRoot } = useAddRemoveFormElement(nodeId, fieldName);
|
||||
|
||||
const description = useMemo(() => {
|
||||
return isAddedToRoot ? t('workflows.builder.removeFromForm') : t('workflows.builder.addToForm');
|
||||
}, [isAddedToRoot, t]);
|
||||
|
||||
const icon = useMemo(() => {
|
||||
return isAddedToRoot ? <PiMinusBold /> : <PiPlusBold />;
|
||||
}, [isAddedToRoot]);
|
||||
|
||||
const onClick = useCallback(() => {
|
||||
return isAddedToRoot ? removeNodeFieldFromRoot() : addNodeFieldToRoot();
|
||||
}, [isAddedToRoot, addNodeFieldToRoot, removeNodeFieldFromRoot]);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
tooltip={description}
|
||||
aria-label={description}
|
||||
icon={icon}
|
||||
pointerEvents="auto"
|
||||
size="xs"
|
||||
onClick={onClick}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
InputFieldAddRemoveFormRoot.displayName = 'InputFieldAddRemoveFormRoot';
|
||||
@@ -1,29 +0,0 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAddNodeFieldToRoot } from 'features/nodes/components/sidePanel/builder/use-add-node-field-to-root';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiPlusBold } from 'react-icons/pi';
|
||||
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
fieldName: string;
|
||||
};
|
||||
|
||||
export const InputFieldAddToFormRoot = memo(({ nodeId, fieldName }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const addToRoot = useAddNodeFieldToRoot(nodeId, fieldName);
|
||||
|
||||
return (
|
||||
<IconButton
|
||||
variant="ghost"
|
||||
tooltip={t('workflows.builder.addToForm')}
|
||||
aria-label={t('workflows.builder.addToForm')}
|
||||
icon={<PiPlusBold />}
|
||||
pointerEvents="auto"
|
||||
size="xs"
|
||||
onClick={addToRoot}
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
InputFieldAddToFormRoot.displayName = 'InputFieldAddToFormRoot';
|
||||
@@ -1,6 +1,5 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Flex, Spacer } from '@invoke-ai/ui-library';
|
||||
import { InputFieldAddToFormRoot } from 'features/nodes/components/flow/nodes/Invocation/fields/InputFieldAddToFormRoot';
|
||||
import { InputFieldDescriptionPopover } from 'features/nodes/components/flow/nodes/Invocation/fields/InputFieldDescriptionPopover';
|
||||
import { InputFieldHandle } from 'features/nodes/components/flow/nodes/Invocation/fields/InputFieldHandle';
|
||||
import { InputFieldResetToDefaultValueIconButton } from 'features/nodes/components/flow/nodes/Invocation/fields/InputFieldResetToDefaultValueIconButton';
|
||||
@@ -12,6 +11,7 @@ import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { FieldInputTemplate } from 'features/nodes/types/field';
|
||||
import { memo, useRef } from 'react';
|
||||
|
||||
import { InputFieldAddRemoveFormRoot } from './InputFieldAddRemoveFormRoot';
|
||||
import { InputFieldRenderer } from './InputFieldRenderer';
|
||||
import { InputFieldTitle } from './InputFieldTitle';
|
||||
import { InputFieldWrapper } from './InputFieldWrapper';
|
||||
@@ -113,7 +113,7 @@ const DirectField = memo(({ nodeId, fieldName, isInvalid, isConnected, fieldTemp
|
||||
<Flex className="direct-field-action-buttons">
|
||||
<InputFieldDescriptionPopover nodeId={nodeId} fieldName={fieldName} />
|
||||
<InputFieldResetToDefaultValueIconButton nodeId={nodeId} fieldName={fieldName} />
|
||||
<InputFieldAddToFormRoot nodeId={nodeId} fieldName={fieldName} />
|
||||
<InputFieldAddRemoveFormRoot nodeId={nodeId} fieldName={fieldName} />
|
||||
</Flex>
|
||||
</Flex>
|
||||
<InputFieldRenderer nodeId={nodeId} fieldName={fieldName} />
|
||||
|
||||
@@ -30,12 +30,12 @@ const labelSx: SystemStyleObject = {
|
||||
_hover: {
|
||||
fontWeight: 'semibold !important',
|
||||
},
|
||||
'&[data-is-invalid="true"]': {
|
||||
color: 'error.300',
|
||||
},
|
||||
'&[data-is-added-to-form="true"]': {
|
||||
color: 'blue.300',
|
||||
},
|
||||
'&[data-is-invalid="true"]': {
|
||||
color: 'error.300',
|
||||
},
|
||||
'&[data-is-disabled="true"]': {
|
||||
opacity: 0.5,
|
||||
},
|
||||
@@ -106,7 +106,7 @@ export const InputFieldTitle = memo((props: Props) => {
|
||||
onDoubleClick={onDoubleClick}
|
||||
>
|
||||
{editable.value}
|
||||
{isAddedToForm && <Icon as={PiLinkBold} color="blue.200" ml={1} />}
|
||||
{isAddedToForm && <Icon as={PiLinkBold} color={isInvalid ? 'error.300' : 'blue.200'} ml={1} />}
|
||||
</Text>
|
||||
</Tooltip>
|
||||
);
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import { CompositeNumberInput } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeNumberInput } from '@invoke-ai/ui-library';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { useIntegerField } from 'features/nodes/components/flow/nodes/Invocation/fields/IntegerField/useIntegerField';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { IntegerFieldInputInstance, IntegerFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldIntegerSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const IntegerFieldInput = memo(
|
||||
(
|
||||
@@ -15,26 +17,31 @@ export const IntegerFieldInput = memo(
|
||||
>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep, constrainValue } = useIntegerField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
const { defaultValue, onChange, min, max, step, fineStep, constrainValue, showShuffle, randomizeValue } =
|
||||
useIntegerField(nodeId, field.name, fieldTemplate, settings);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<CompositeNumberInput
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
constrainValue={constrainValue}
|
||||
/>
|
||||
<>
|
||||
<CompositeNumberInput
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
constrainValue={constrainValue}
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import { CompositeNumberInput, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeNumberInput, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { useIntegerField } from 'features/nodes/components/flow/nodes/Invocation/fields/IntegerField/useIntegerField';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { IntegerFieldInputInstance, IntegerFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldIntegerSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const IntegerFieldInputAndSlider = memo(
|
||||
(
|
||||
@@ -15,12 +17,10 @@ export const IntegerFieldInputAndSlider = memo(
|
||||
>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep } = useIntegerField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
const { defaultValue, onChange, min, max, step, fineStep, constrainValue, showShuffle, randomizeValue } =
|
||||
useIntegerField(nodeId, field.name, fieldTemplate, settings);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<>
|
||||
@@ -47,7 +47,13 @@ export const IntegerFieldInputAndSlider = memo(
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
flex="1 1 0"
|
||||
constrainValue={constrainValue}
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import { CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import { Button, CompositeSlider } from '@invoke-ai/ui-library';
|
||||
import type { FieldComponentProps } from 'features/nodes/components/flow/nodes/Invocation/fields/inputs/types';
|
||||
import { useIntegerField } from 'features/nodes/components/flow/nodes/Invocation/fields/IntegerField/useIntegerField';
|
||||
import { NO_DRAG_CLASS } from 'features/nodes/types/constants';
|
||||
import type { IntegerFieldInputInstance, IntegerFieldInputTemplate } from 'features/nodes/types/field';
|
||||
import type { NodeFieldIntegerSettings } from 'features/nodes/types/workflow';
|
||||
import { memo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiShuffleBold } from 'react-icons/pi';
|
||||
|
||||
export const IntegerFieldSlider = memo(
|
||||
(
|
||||
@@ -15,27 +17,36 @@ export const IntegerFieldSlider = memo(
|
||||
>
|
||||
) => {
|
||||
const { nodeId, field, fieldTemplate, settings } = props;
|
||||
const { defaultValue, onChange, min, max, step, fineStep } = useIntegerField(
|
||||
const { defaultValue, onChange, min, max, step, fineStep, showShuffle, randomizeValue } = useIntegerField(
|
||||
nodeId,
|
||||
field.name,
|
||||
fieldTemplate,
|
||||
settings
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
return (
|
||||
<CompositeSlider
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
marks
|
||||
withThumbTooltip
|
||||
flex="1 1 0"
|
||||
/>
|
||||
<>
|
||||
<CompositeSlider
|
||||
defaultValue={defaultValue}
|
||||
onChange={onChange}
|
||||
value={field.value}
|
||||
min={min}
|
||||
max={max}
|
||||
step={step}
|
||||
fineStep={fineStep}
|
||||
className={NO_DRAG_CLASS}
|
||||
marks
|
||||
withThumbTooltip
|
||||
flex="1 1 0"
|
||||
/>
|
||||
{showShuffle && (
|
||||
<Button size="sm" isDisabled={false} onClick={randomizeValue} leftIcon={<PiShuffleBold />} flexShrink={0}>
|
||||
{t('workflows.builder.shuffle')}
|
||||
</Button>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
||||
);
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import { NUMPY_RAND_MAX } from 'app/constants';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import randomInt from 'common/util/randomInt';
|
||||
import { roundDownToMultiple, roundUpToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import { isNil } from 'es-toolkit/compat';
|
||||
import { fieldIntegerValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
@@ -11,9 +12,9 @@ export const useIntegerField = (
|
||||
nodeId: string,
|
||||
fieldName: string,
|
||||
fieldTemplate: IntegerFieldInputTemplate,
|
||||
overrides: { min?: number; max?: number; step?: number } = {}
|
||||
overrides: { showShuffle?: boolean; min?: number; max?: number; step?: number } = {}
|
||||
) => {
|
||||
const { min: overrideMin, max: overrideMax, step: overrideStep } = overrides;
|
||||
const { showShuffle, min: overrideMin, max: overrideMax, step: overrideStep } = overrides;
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const step = useMemo(() => {
|
||||
@@ -65,8 +66,7 @@ export const useIntegerField = (
|
||||
}, [fieldTemplate.exclusiveMaximum, fieldTemplate.maximum, overrideMax, step]);
|
||||
|
||||
const constrainValue = useCallback(
|
||||
(v: number) =>
|
||||
constrainNumber(v, { min, max, step: step }, { min: overrideMin, max: overrideMax, step: overrideStep }),
|
||||
(v: number) => constrainNumber(v, { min, max, step }, { min: overrideMin, max: overrideMax, step: overrideStep }),
|
||||
[max, min, overrideMax, overrideMin, overrideStep, step]
|
||||
);
|
||||
|
||||
@@ -77,6 +77,11 @@ export const useIntegerField = (
|
||||
[dispatch, fieldName, nodeId]
|
||||
);
|
||||
|
||||
const randomizeValue = useCallback(() => {
|
||||
const value = Math.round(randomInt(min, max) / step) * step;
|
||||
dispatch(fieldIntegerValueChanged({ nodeId, fieldName, value }));
|
||||
}, [dispatch, fieldName, nodeId, min, max, step]);
|
||||
|
||||
return {
|
||||
defaultValue: fieldTemplate.default,
|
||||
onChange,
|
||||
@@ -85,5 +90,7 @@ export const useIntegerField = (
|
||||
step,
|
||||
fineStep,
|
||||
constrainValue,
|
||||
showShuffle,
|
||||
randomizeValue,
|
||||
};
|
||||
};
|
||||
|
||||
@@ -1,22 +1,32 @@
|
||||
import type { SystemStyleObject } from '@invoke-ai/ui-library';
|
||||
import { Flex, Input, Text } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEditable } from 'common/hooks/useEditable';
|
||||
import { useBatchGroupColorToken } from 'features/nodes/hooks/useBatchGroupColorToken';
|
||||
import { useBatchGroupId } from 'features/nodes/hooks/useBatchGroupId';
|
||||
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
|
||||
import { useNodeTemplateTitleSafe } from 'features/nodes/hooks/useNodeTemplateTitleSafe';
|
||||
import { useNodeUserTitleSafe } from 'features/nodes/hooks/useNodeUserTitleSafe';
|
||||
import { nodeLabelChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
|
||||
import { NO_DRAG_CLASS, NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
|
||||
import { memo, useCallback, useMemo, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const labelSx: SystemStyleObject = {
|
||||
fontWeight: 'semibold',
|
||||
'&[data-is-invalid="true"]': {
|
||||
color: 'error.300',
|
||||
},
|
||||
};
|
||||
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
title?: string;
|
||||
};
|
||||
|
||||
const NodeTitle = ({ nodeId, title }: Props) => {
|
||||
const InvocationNodeTitle = ({ nodeId, title }: Props) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const isInvalid = useNodeHasErrors();
|
||||
const label = useNodeUserTitleSafe();
|
||||
const batchGroupId = useBatchGroupId(nodeId);
|
||||
const batchGroupColorToken = useBatchGroupColorToken(batchGroupId);
|
||||
@@ -53,16 +63,18 @@ const NodeTitle = ({ nodeId, title }: Props) => {
|
||||
{!editable.isEditing && (
|
||||
<Text
|
||||
className={NO_FIT_ON_DOUBLE_CLICK_CLASS}
|
||||
fontWeight="semibold"
|
||||
color={batchGroupColorToken}
|
||||
onDoubleClick={editable.startEditing}
|
||||
sx={labelSx}
|
||||
noOfLines={1}
|
||||
color={batchGroupColorToken}
|
||||
data-is-invalid={isInvalid}
|
||||
onDoubleClick={editable.startEditing}
|
||||
>
|
||||
{titleWithBatchGroupId}
|
||||
</Text>
|
||||
)}
|
||||
{editable.isEditing && (
|
||||
<Input
|
||||
className={NO_DRAG_CLASS}
|
||||
ref={inputRef}
|
||||
{...editable.inputProps}
|
||||
variant="outline"
|
||||
@@ -73,4 +85,4 @@ const NodeTitle = ({ nodeId, title }: Props) => {
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(NodeTitle);
|
||||
export default memo(InvocationNodeTitle);
|
||||
@@ -5,6 +5,7 @@ import { useInvocationNodeContext } from 'features/nodes/components/flow/nodes/I
|
||||
import { useIsWorkflowEditorLocked } from 'features/nodes/hooks/useIsWorkflowEditorLocked';
|
||||
import { useMouseOverFormField, useMouseOverNode } from 'features/nodes/hooks/useMouseOverNode';
|
||||
import { useNodeExecutionState } from 'features/nodes/hooks/useNodeExecutionState';
|
||||
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
|
||||
import { useZoomToNode } from 'features/nodes/hooks/useZoomToNode';
|
||||
import { selectNodeOpacity } from 'features/nodes/store/workflowSettingsSlice';
|
||||
import { DRAG_HANDLE_CLASSNAME, NO_FIT_ON_DOUBLE_CLICK_CLASS, NODE_WIDTH } from 'features/nodes/types/constants';
|
||||
@@ -29,6 +30,8 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
const mouseOverFormField = useMouseOverFormField(nodeId);
|
||||
const zoomToNode = useZoomToNode(nodeId);
|
||||
const isLocked = useIsWorkflowEditorLocked();
|
||||
const isInvalid = useNodeHasErrors();
|
||||
const hasError = isMissingTemplate || isInvalid;
|
||||
|
||||
const executionState = useNodeExecutionState(nodeId);
|
||||
const isInProgress = executionState?.status === zNodeStatus.enum.IN_PROGRESS;
|
||||
@@ -74,7 +77,7 @@ const NodeWrapper = (props: NodeWrapperProps) => {
|
||||
data-is-editor-locked={isLocked}
|
||||
data-is-selected={selected}
|
||||
data-is-mouse-over-form-field={mouseOverFormField.isMouseOverFormField}
|
||||
data-status={isMissingTemplate ? 'error' : needsUpdate ? 'warning' : undefined}
|
||||
data-status={hasError ? 'error' : needsUpdate ? 'warning' : undefined}
|
||||
>
|
||||
<Box sx={shadowsSx} />
|
||||
<Box sx={inProgressSx} data-is-in-progress={isInProgress} />
|
||||
|
||||
@@ -4,7 +4,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useEditable } from 'common/hooks/useEditable';
|
||||
import { nodeLabelChanged } from 'features/nodes/store/nodesSlice';
|
||||
import { selectNodes } from 'features/nodes/store/selectors';
|
||||
import { NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
|
||||
import { NO_DRAG_CLASS, NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
|
||||
import { memo, useCallback, useMemo, useRef } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@@ -56,6 +56,7 @@ const NonInvocationNodeTitle = ({ nodeId, title }: Props) => {
|
||||
)}
|
||||
{editable.isEditing && (
|
||||
<Input
|
||||
className={NO_DRAG_CLASS}
|
||||
ref={inputRef}
|
||||
{...editable.inputProps}
|
||||
variant="outline"
|
||||
|
||||
@@ -22,6 +22,7 @@ type Props = {
|
||||
export const NodeFieldElementFloatSettings = memo(({ id, settings, nodeId, fieldName, fieldTemplate }: Props) => {
|
||||
return (
|
||||
<>
|
||||
<SettingShuffle id={id} settings={settings} nodeId={nodeId} fieldName={fieldName} fieldTemplate={fieldTemplate} />
|
||||
<SettingComponent
|
||||
id={id}
|
||||
settings={settings}
|
||||
@@ -36,6 +37,29 @@ export const NodeFieldElementFloatSettings = memo(({ id, settings, nodeId, field
|
||||
});
|
||||
NodeFieldElementFloatSettings.displayName = 'NodeFieldElementFloatSettings';
|
||||
|
||||
const SettingShuffle = memo(({ id, settings }: Props) => {
|
||||
const { showShuffle } = settings;
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const toggleShowShuffle = useCallback(() => {
|
||||
const newSettings: NodeFieldFloatSettings = {
|
||||
...settings,
|
||||
showShuffle: !showShuffle,
|
||||
};
|
||||
dispatch(formElementNodeFieldDataChanged({ id, changes: { settings: newSettings } }));
|
||||
}, [dispatch, id, settings, showShuffle]);
|
||||
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel flex={1}>{t('workflows.builder.showShuffle')}</FormLabel>
|
||||
<Switch size="sm" isChecked={showShuffle} onChange={toggleShowShuffle} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
SettingShuffle.displayName = 'SettingShuffle';
|
||||
|
||||
const SettingComponent = memo(({ id, settings }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
@@ -23,6 +23,7 @@ type Props = {
|
||||
export const NodeFieldElementIntegerSettings = memo(({ id, settings, nodeId, fieldName, fieldTemplate }: Props) => {
|
||||
return (
|
||||
<>
|
||||
<SettingShuffle id={id} settings={settings} nodeId={nodeId} fieldName={fieldName} fieldTemplate={fieldTemplate} />
|
||||
<SettingComponent
|
||||
id={id}
|
||||
settings={settings}
|
||||
@@ -37,6 +38,29 @@ export const NodeFieldElementIntegerSettings = memo(({ id, settings, nodeId, fie
|
||||
});
|
||||
NodeFieldElementIntegerSettings.displayName = 'NodeFieldElementIntegerSettings';
|
||||
|
||||
const SettingShuffle = memo(({ id, settings }: Props) => {
|
||||
const { showShuffle } = settings;
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const toggleShowShuffle = useCallback(() => {
|
||||
const newSettings: NodeFieldIntegerSettings = {
|
||||
...settings,
|
||||
showShuffle: !showShuffle,
|
||||
};
|
||||
dispatch(formElementNodeFieldDataChanged({ id, changes: { settings: newSettings } }));
|
||||
}, [dispatch, id, settings, showShuffle]);
|
||||
|
||||
return (
|
||||
<FormControl>
|
||||
<FormLabel flex={1}>{t('workflows.builder.showShuffle')}</FormLabel>
|
||||
<Switch size="sm" isChecked={showShuffle} onChange={toggleShowShuffle} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
SettingShuffle.displayName = 'SettingShuffle';
|
||||
|
||||
const SettingComponent = memo(({ id, settings }: Props) => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
@@ -34,7 +34,7 @@ import {
|
||||
import { selectFormRootElementId, selectNodesSlice, selectWorkflowForm } from 'features/nodes/store/selectors';
|
||||
import type { FieldInputTemplate, StatefulFieldValue } from 'features/nodes/types/field';
|
||||
import type { ElementId, FormElement } from 'features/nodes/types/workflow';
|
||||
import { buildNodeFieldElement, isContainerElement } from 'features/nodes/types/workflow';
|
||||
import { buildNodeFieldElement, isContainerElement, isNodeFieldElement } from 'features/nodes/types/workflow';
|
||||
import type { RefObject } from 'react';
|
||||
import { useCallback, useEffect, useMemo, useState } from 'react';
|
||||
import { flushSync } from 'react-dom';
|
||||
@@ -121,6 +121,29 @@ const useElementExists = () => {
|
||||
return _elementExists;
|
||||
};
|
||||
|
||||
/**
|
||||
* Checks if a node field element exists in the form.
|
||||
*
|
||||
* @param form The form to check
|
||||
* @param nodeId The id of the node
|
||||
* @param fieldName The name of field
|
||||
*
|
||||
* @returns True if the element exists, false otherwise
|
||||
*/
|
||||
const useNodeFieldElementExists = () => {
|
||||
const store = useAppStore();
|
||||
const nodeFieldElementExists = useCallback(
|
||||
(nodeId: string, fieldName: string): boolean => {
|
||||
const form = selectWorkflowForm(store.getState());
|
||||
return Object.values(form.elements)
|
||||
.filter(isNodeFieldElement)
|
||||
.some((el) => el.data.fieldIdentifier.nodeId === nodeId && el.data.fieldIdentifier.fieldName === fieldName);
|
||||
},
|
||||
[store]
|
||||
);
|
||||
return nodeFieldElementExists;
|
||||
};
|
||||
|
||||
/**
|
||||
* Wrapper around `getAllowedDropRegions` that provides the form state from the store.
|
||||
* @see {@link getAllowedDropRegions}
|
||||
@@ -368,6 +391,7 @@ export const useFormElementDnd = (
|
||||
const [activeDropRegion, setActiveDropRegion] = useState<CenterOrEdge | null>(null);
|
||||
const getElement = useGetElement();
|
||||
const getAllowedDropRegions = useGetAllowedDropRegions();
|
||||
const nodeFieldElementExists = useNodeFieldElementExists();
|
||||
|
||||
useEffect(() => {
|
||||
if (isRootElement) {
|
||||
@@ -401,7 +425,7 @@ export const useFormElementDnd = (
|
||||
// TODO(psyche): This causes a kinda jittery behaviour - need a better heuristic to determine stickiness
|
||||
getIsSticky: () => false,
|
||||
canDrop: ({ source }) => {
|
||||
if (isNodeFieldDndData(source.data)) {
|
||||
if (isNodeFieldDndData(source.data) && !nodeFieldElementExists(source.data.nodeId, source.data.fieldName)) {
|
||||
return true;
|
||||
}
|
||||
if (isFormElementDndData(source.data)) {
|
||||
@@ -449,7 +473,15 @@ export const useFormElementDnd = (
|
||||
},
|
||||
})
|
||||
);
|
||||
}, [dragHandleRef, draggableRef, elementId, getAllowedDropRegions, getElement, isRootElement]);
|
||||
}, [
|
||||
dragHandleRef,
|
||||
draggableRef,
|
||||
elementId,
|
||||
getAllowedDropRegions,
|
||||
getElement,
|
||||
nodeFieldElementExists,
|
||||
isRootElement,
|
||||
]);
|
||||
|
||||
return [activeDropRegion, isDragging] as const;
|
||||
};
|
||||
|
||||
@@ -1,27 +0,0 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { useInputFieldInstance } from 'features/nodes/hooks/useInputFieldInstance';
|
||||
import { useInputFieldTemplateOrThrow } from 'features/nodes/hooks/useInputFieldTemplateOrThrow';
|
||||
import { formElementAdded } from 'features/nodes/store/nodesSlice';
|
||||
import { selectFormRootElementId } from 'features/nodes/store/selectors';
|
||||
import { buildNodeFieldElement } from 'features/nodes/types/workflow';
|
||||
import { useCallback } from 'react';
|
||||
|
||||
export const useAddNodeFieldToRoot = (nodeId: string, fieldName: string) => {
|
||||
const dispatch = useAppDispatch();
|
||||
const rootElementId = useAppSelector(selectFormRootElementId);
|
||||
const fieldTemplate = useInputFieldTemplateOrThrow(fieldName);
|
||||
const field = useInputFieldInstance(fieldName);
|
||||
|
||||
const addNodeFieldToRoot = useCallback(() => {
|
||||
const element = buildNodeFieldElement(nodeId, fieldName, fieldTemplate.type);
|
||||
dispatch(
|
||||
formElementAdded({
|
||||
element,
|
||||
parentId: rootElementId,
|
||||
initialValue: field.value,
|
||||
})
|
||||
);
|
||||
}, [nodeId, fieldName, fieldTemplate.type, dispatch, rootElementId, field.value]);
|
||||
|
||||
return addNodeFieldToRoot;
|
||||
};
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user