Compare commits

..

1 Commits

Author SHA1 Message Date
psychedelicious
ccc55069d1 chore: bump version to v6.3.0 2025-08-05 10:30:26 +10:00
102 changed files with 734 additions and 1959 deletions

View File

@@ -45,9 +45,6 @@ jobs:
steps:
- name: Free up more disk space on the runner
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
# the /mnt dir has 70GBs of free space
# /dev/sda1 74G 28K 70G 1% /mnt
# According to some online posts the /mnt is not always there, so checking before setting docker to use it
run: |
echo "----- Free space before cleanup"
df -h
@@ -55,11 +52,6 @@ jobs:
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
sudo swapoff /mnt/swapfile
sudo rm -rf /mnt/swapfile
if [ -d /mnt ]; then
sudo chmod -R 777 /mnt
echo '{"data-root": "/mnt/docker-root"}' | sudo tee /etc/docker/daemon.json
sudo systemctl restart docker
fi
echo "----- Free space after cleanup"
df -h

View File

@@ -265,7 +265,7 @@ If the key is unrecognized, this call raises an
#### exists(key) -> AnyModelConfig
Returns True if a model with the given key exists in the database.
Returns True if a model with the given key exists in the databsae.
#### search_by_path(path) -> AnyModelConfig
@@ -718,7 +718,7 @@ When downloading remote models is implemented, additional
configuration information, such as list of trigger terms, will be
retrieved from the HuggingFace and Civitai model repositories.
The probed values can be overridden by providing a dictionary in the
The probed values can be overriden by providing a dictionary in the
optional `config` argument passed to `import_model()`. You may provide
overriding values for any of the model's configuration
attributes. Here is an example of setting the
@@ -841,7 +841,7 @@ variable.
#### installer.start(invoker)
The `start` method is called by the API initialization routines when
The `start` method is called by the API intialization routines when
the API starts up. Its effect is to call `sync_to_config()` to
synchronize the model record store database with what's currently on
disk.

View File

@@ -16,7 +16,7 @@ We thank [all contributors](https://github.com/invoke-ai/InvokeAI/graphs/contrib
- @psychedelicious (Spencer Mabrito) - Web Team Leader
- @joshistoast (Josh Corbett) - Web Development
- @cheerio (Mary Rogers) - Lead Engineer & Web App Development
- @ebr (Eugene Brodsky) - Cloud/DevOps/Software engineer; your friendly neighbourhood cluster-autoscaler
- @ebr (Eugene Brodsky) - Cloud/DevOps/Sofware engineer; your friendly neighbourhood cluster-autoscaler
- @sunija - Standalone version
- @brandon (Brandon Rising) - Platform, Infrastructure, Backend Systems
- @ryanjdick (Ryan Dick) - Machine Learning & Training

View File

@@ -41,7 +41,7 @@ Nodes have a "Use Cache" option in their footer. This allows for performance imp
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
### Create Latent Noise
### Noise
An initial noise tensor is necessary for the latent diffusion process. As a result, the Denoising node requires a noise node input.

View File

@@ -17,7 +17,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3ImageToLatentsInvocation and a subset of ImageToLatentsInvocation. We
# should refactor to avoid this duplication.
@@ -39,11 +38,7 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
@@ -67,8 +62,6 @@ class CogView4ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -6,6 +6,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -19,7 +20,6 @@ from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_cogview4
# TODO(ryand): This is effectively a copy of SD3LatentsToImageInvocation and a subset of LatentsToImageInvocation. We
# should refactor to avoid this duplication.
@@ -39,15 +39,22 @@ class CogView4LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
latents: LatentsField = InputField(description=FieldDescriptions.latents, input=Input.Connection)
vae: VAEField = InputField(description=FieldDescriptions.vae, input=Input.Connection)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = estimate_vae_working_memory_cogview4(
operation="decode", image_tensor=latents, vae=vae_info.model
)
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -328,21 +328,6 @@ class FluxDenoiseInvocation(BaseInvocation):
cfg_scale_end_step=self.cfg_scale_end_step,
)
kontext_extension = None
if self.kontext_conditioning:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning
if isinstance(self.kontext_conditioning, list)
else [self.kontext_conditioning],
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
with ExitStack() as exit_stack:
# Prepare ControlNet extensions.
# Note: We do this before loading the transformer model to minimize peak memory (see implementation).
@@ -400,6 +385,21 @@ class FluxDenoiseInvocation(BaseInvocation):
dtype=inference_dtype,
)
kontext_extension = None
if self.kontext_conditioning:
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
context=context,
kontext_conditioning=self.kontext_conditioning
if isinstance(self.kontext_conditioning, list)
else [self.kontext_conditioning],
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
# Prepare Kontext conditioning if provided
img_cond_seq = None
img_cond_seq_ids = None

View File

@@ -3,6 +3,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -17,7 +18,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -39,11 +39,17 @@ class FluxVaeDecodeInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoEncoder) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
def _vae_decode(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="decode", image_tensor=latents, vae=vae_info.model
)
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype

View File

@@ -15,7 +15,6 @@ from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_flux
@invocation(
@@ -42,12 +41,8 @@ class FluxVaeEncodeInvocation(BaseInvocation):
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
# should be used for VAE encode sampling.
assert isinstance(vae_info.model, AutoEncoder)
estimated_working_memory = estimate_vae_working_memory_flux(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)

View File

@@ -27,7 +27,6 @@ from invokeai.backend.model_manager import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -53,24 +52,11 @@ class ImageToLatentsInvocation(BaseInvocation):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
@classmethod
@staticmethod
def vae_encode(
cls,
vae_info: LoadedModel,
upcast: bool,
tiled: bool,
image_tensor: torch.Tensor,
tile_size: int = 0,
vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0
) -> torch.Tensor:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="encode",
image_tensor=image_tensor,
vae=vae_info.model,
tile_size=tile_size if tiled else None,
fp32=upcast,
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
orig_dtype = vae.dtype
if upcast:
@@ -127,7 +113,6 @@ class ImageToLatentsInvocation(BaseInvocation):
image = context.images.get_pil(self.image.image_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
@@ -135,11 +120,7 @@ class ImageToLatentsInvocation(BaseInvocation):
context.util.signal_progress("Running VAE encoder")
latents = self.vae_encode(
vae_info=vae_info,
upcast=self.fp32,
tiled=self.tiled or context.config.get().force_tiled_decode,
image_tensor=image_tensor,
tile_size=self.tile_size,
vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size
)
latents = latents.to("cpu")

View File

@@ -27,7 +27,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd15_sdxl
@invocation(
@@ -54,6 +53,39 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=False, description=FieldDescriptions.fp32)
def _estimate_working_memory(
self, latents: torch.Tensor, use_tiling: bool, vae: AutoencoderKL | AutoencoderTiny
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if self.fp32 else 2
scaling_constant = 2200 # Determined experimentally.
if use_tiling:
tile_size = self.tile_size
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
out_h = tile_size
out_w = tile_size
working_memory = out_h * out_w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
working_memory = out_h * out_w * element_size * scaling_constant
if self.fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
@@ -62,13 +94,8 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
estimated_working_memory = estimate_vae_working_memory_sd15_sdxl(
operation="decode",
image_tensor=latents,
vae=vae_info.model,
tile_size=self.tile_size if use_tiling else None,
fp32=self.fp32,
)
estimated_working_memory = self._estimate_working_memory(latents, use_tiling, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -17,7 +17,6 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -35,11 +34,7 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
@staticmethod
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
assert isinstance(vae_info.model, AutoencoderKL)
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="encode", image_tensor=image_tensor, vae=vae_info.model
)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
vae.disable_tiling()
@@ -63,8 +58,6 @@ class SD3ImageToLatentsInvocation(BaseInvocation, WithMetadata, WithBoard):
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, AutoencoderKL)
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
latents = latents.to("cpu")

View File

@@ -6,6 +6,7 @@ from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
@@ -19,7 +20,6 @@ from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.vae_working_memory import estimate_vae_working_memory_sd3
@invocation(
@@ -41,15 +41,22 @@ class SD3LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
input=Input.Connection,
)
def _estimate_working_memory(self, latents: torch.Tensor, vae: AutoencoderKL) -> int:
"""Estimate the working memory required by the invocation in bytes."""
out_h = LATENT_SCALE_FACTOR * latents.shape[-2]
out_w = LATENT_SCALE_FACTOR * latents.shape[-1]
element_size = next(vae.parameters()).element_size()
scaling_constant = 2200 # Determined experimentally.
working_memory = out_h * out_w * element_size * scaling_constant
return int(working_memory)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL))
estimated_working_memory = estimate_vae_working_memory_sd3(
operation="decode", image_tensor=latents, vae=vae_info.model
)
estimated_working_memory = self._estimate_working_memory(latents, vae_info.model)
with (
SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes),
vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae),

View File

@@ -186,9 +186,8 @@ class ModelInstallService(ModelInstallServiceBase):
info: AnyModelConfig = self._probe(Path(model_path), config) # type: ignore
if preferred_name := config.name:
if Path(model_path).is_file():
# Careful! Don't use pathlib.Path(...).with_suffix - it can will strip everything after the first dot.
preferred_name = f"{preferred_name}{model_path.suffix}"
# Careful! Don't use pathlib.Path(...).with_suffix - it can will strip everything after the first dot.
preferred_name = f"{preferred_name}{model_path.suffix}"
dest_path = (
self.app_config.models_path / info.base.value / info.type.value / (preferred_name or model_path.name)
@@ -623,13 +622,16 @@ class ModelInstallService(ModelInstallServiceBase):
if old_path == new_path:
return old_path
if new_path.exists():
raise FileExistsError(f"Cannot move {old_path} to {new_path}: destination already exists")
new_path.parent.mkdir(parents=True, exist_ok=True)
# if path already exists then we jigger the name to make it unique
counter: int = 1
while new_path.exists():
path = new_path.with_stem(new_path.stem + f"_{counter:02d}")
if not path.exists():
new_path = path
counter += 1
move(old_path, new_path)
return new_path
def _probe(self, model_path: Path, config: Optional[ModelRecordChanges] = None):

View File

@@ -106,8 +106,8 @@ class KontextExtension:
# Track cumulative dimensions for spatial tiling
# These track the running extent of the virtual canvas in latent space
canvas_h = 0 # Running canvas height
canvas_w = 0 # Running canvas width
h = 0 # Running height extent
w = 0 # Running width extent
vae_info = self._context.models.load(self._vae_field.vae)
@@ -131,20 +131,12 @@ class KontextExtension:
# Continue with VAE encoding
# Don't sample from the distribution for reference images - use the mean (matching ComfyUI)
# Estimate working memory for encode operation (50% of decode memory requirements)
img_h = image_tensor.shape[-2]
img_w = image_tensor.shape[-1]
element_size = next(vae_info.model.parameters()).element_size()
scaling_constant = 1100 # 50% of decode scaling constant (2200)
estimated_working_memory = int(img_h * img_w * element_size * scaling_constant)
with vae_info.model_on_device(working_mem_bytes=estimated_working_memory) as (_, vae):
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
vae_dtype = next(iter(vae.parameters())).dtype
image_tensor = image_tensor.to(device=TorchDevice.choose_torch_device(), dtype=vae_dtype)
# Use sample=False to get the distribution mean without noise
kontext_latents_unpacked = vae.encode(image_tensor, sample=False)
TorchDevice.empty_cache()
# Extract tensor dimensions
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
@@ -162,33 +154,21 @@ class KontextExtension:
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
# Determine spatial offsets for this reference image
# - Compare the potential new canvas dimensions if we add the image vertically vs horizontally
# - Choose the placement that results in a more square-like canvas
h_offset = 0
w_offset = 0
if idx > 0: # First image starts at (0, 0)
# Calculate potential canvas dimensions for each tiling option
# Option 1: Tile vertically (below existing content)
potential_h_vertical = canvas_h + latent_height
# Option 2: Tile horizontally (to the right of existing content)
potential_w_horizontal = canvas_w + latent_width
# Choose arrangement that minimizes the maximum dimension
# This keeps the canvas closer to square, optimizing attention computation
if potential_h_vertical > potential_w_horizontal:
# Check which placement would result in better canvas dimensions
# If adding to height would make the canvas taller than wide, tile horizontally
# Otherwise, tile vertically
if latent_height + h > latent_width + w:
# Tile horizontally (to the right of existing images)
w_offset = canvas_w
canvas_w = canvas_w + latent_width
canvas_h = max(canvas_h, latent_height)
w_offset = w
else:
# Tile vertically (below existing images)
h_offset = canvas_h
canvas_h = canvas_h + latent_height
canvas_w = max(canvas_w, latent_width)
else:
# First image - just set canvas dimensions
canvas_h = latent_height
canvas_w = latent_width
h_offset = h
# Generate IDs with both index offset and spatial offsets
kontext_ids = generate_img_ids_with_offset(
@@ -202,6 +182,11 @@ class KontextExtension:
w_offset=w_offset,
)
# Update cumulative dimensions
# Track the maximum extent of the virtual canvas after placing this image
h = max(h, latent_height + h_offset)
w = max(w, latent_width + w_offset)
all_latents.append(kontext_latents_packed)
all_ids.append(kontext_ids)

View File

@@ -18,25 +18,16 @@ def is_state_dict_likely_in_flux_diffusers_format(state_dict: Dict[str, torch.Te
# First, check that all keys end in "lora_A.weight" or "lora_B.weight" (i.e. are in PEFT format).
all_keys_in_peft_format = all(k.endswith(("lora_A.weight", "lora_B.weight")) for k in state_dict.keys())
# Check if keys use transformer prefix
transformer_prefix_keys = [
# Next, check that this is likely a FLUX model by spot-checking a few keys.
expected_keys = [
"transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
]
transformer_keys_present = all(k in state_dict for k in transformer_prefix_keys)
all_expected_keys_present = all(k in state_dict for k in expected_keys)
# Check if keys use base_model.model prefix
base_model_prefix_keys = [
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_A.weight",
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_B.weight",
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_A.weight",
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_B.weight",
]
base_model_keys_present = all(k in state_dict for k in base_model_prefix_keys)
return all_keys_in_peft_format and (transformer_keys_present or base_model_keys_present)
return all_keys_in_peft_format and all_expected_keys_present
def lora_model_from_flux_diffusers_state_dict(
@@ -58,16 +49,8 @@ def lora_layers_from_flux_diffusers_grouped_state_dict(
https://github.com/huggingface/diffusers/blob/55ac421f7bb12fd00ccbef727be4dc2f3f920abb/scripts/convert_flux_to_diffusers.py
"""
# Determine which prefix is used and remove it from all keys.
# Check if any key starts with "base_model.model." prefix
has_base_model_prefix = any(k.startswith("base_model.model.") for k in grouped_state_dict.keys())
if has_base_model_prefix:
# Remove the "base_model.model." prefix from all keys.
grouped_state_dict = {k.replace("base_model.model.", ""): v for k, v in grouped_state_dict.items()}
else:
# Remove the "transformer." prefix from all keys.
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
# Remove the "transformer." prefix from all keys.
grouped_state_dict = {k.replace("transformer.", ""): v for k, v in grouped_state_dict.items()}
# Constants for FLUX.1
num_double_layers = 19

View File

@@ -20,7 +20,7 @@ def main():
"/data/invokeai/models/.download_cache/https__huggingface.co_black-forest-labs_flux.1-schnell_resolve_main_flux1-schnell.safetensors/flux1-schnell.safetensors"
)
with log_time("Initialize FLUX transformer on meta device"):
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
p = params["flux-schnell"]

View File

@@ -33,7 +33,7 @@ def main():
)
# inference_dtype = torch.bfloat16
with log_time("Initialize FLUX transformer on meta device"):
with log_time("Intialize FLUX transformer on meta device"):
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
p = params["flux-schnell"]

View File

@@ -27,7 +27,7 @@ def main():
"""
model_path = Path("/data/misc/text_encoder_2")
with log_time("Initialize T5 on meta device"):
with log_time("Intialize T5 on meta device"):
model_config = AutoConfig.from_pretrained(model_path)
with accelerate.init_empty_weights():
model = AutoModelForTextEncoding.from_config(model_config)

View File

@@ -1,117 +0,0 @@
from typing import Literal
import torch
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
def estimate_vae_working_memory_sd15_sdxl(
operation: Literal["encode", "decode"],
image_tensor: torch.Tensor,
vae: AutoencoderKL | AutoencoderTiny,
tile_size: int | None,
fp32: bool,
) -> int:
"""Estimate the working memory required to encode or decode the given tensor."""
# It was found experimentally that the peak working memory scales linearly with the number of pixels and the
# element size (precision). This estimate is accurate for both SD1 and SDXL.
element_size = 4 if fp32 else 2
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
# Encoding uses ~45% the working memory as decoding.
scaling_constant = 2200 if operation == "decode" else 1100
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
if tile_size is not None:
if tile_size == 0:
tile_size = vae.tile_sample_min_size
assert isinstance(tile_size, int)
h = tile_size
w = tile_size
working_memory = h * w * element_size * scaling_constant
# We add 25% to the working memory estimate when tiling is enabled to account for factors like tile overlap
# and number of tiles. We could make this more precise in the future, but this should be good enough for
# most use cases.
working_memory = working_memory * 1.25
else:
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
working_memory = h * w * element_size * scaling_constant
if fp32:
# If we are running in FP32, then we should account for the likely increase in model size (~250MB).
working_memory += 250 * 2**20
print(f"estimate_vae_working_memory_sd15_sdxl: {int(working_memory)}")
return int(working_memory)
def estimate_vae_working_memory_cogview4(
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoencoderKL
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
element_size = next(vae.parameters()).element_size()
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
# Encoding uses ~45% the working memory as decoding.
scaling_constant = 2200 if operation == "decode" else 1100
working_memory = h * w * element_size * scaling_constant
print(f"estimate_vae_working_memory_cogview4: {int(working_memory)}")
return int(working_memory)
def estimate_vae_working_memory_flux(
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoEncoder
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
out_h = latent_scale_factor_for_operation * image_tensor.shape[-2]
out_w = latent_scale_factor_for_operation * image_tensor.shape[-1]
element_size = next(vae.parameters()).element_size()
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
# Encoding uses ~45% the working memory as decoding.
scaling_constant = 2200 if operation == "decode" else 1100
working_memory = out_h * out_w * element_size * scaling_constant
print(f"estimate_vae_working_memory_flux: {int(working_memory)}")
return int(working_memory)
def estimate_vae_working_memory_sd3(
operation: Literal["encode", "decode"], image_tensor: torch.Tensor, vae: AutoencoderKL
) -> int:
"""Estimate the working memory required by the invocation in bytes."""
# Encode operations use approximately 50% of the memory required for decode operations
latent_scale_factor_for_operation = LATENT_SCALE_FACTOR if operation == "decode" else 1
h = latent_scale_factor_for_operation * image_tensor.shape[-2]
w = latent_scale_factor_for_operation * image_tensor.shape[-1]
element_size = next(vae.parameters()).element_size()
# This constant is determined experimentally and takes into consideration both allocated and reserved memory. See #8414
# Encoding uses ~45% the working memory as decoding.
scaling_constant = 2200 if operation == "decode" else 1100
working_memory = h * w * element_size * scaling_constant
print(f"estimate_vae_working_memory_sd3: {int(working_memory)}")
return int(working_memory)

View File

@@ -38,7 +38,6 @@
"deletedImagesCannotBeRestored": "Deleted images cannot be restored.",
"hideBoards": "Hide Boards",
"loading": "Loading...",
"locateInGalery": "Locate in Gallery",
"menuItemAutoAdd": "Auto-add to this Board",
"move": "Move",
"movingImagesToBoard_one": "Moving {{count}} image to board:",
@@ -115,9 +114,6 @@
"t2iAdapter": "T2I Adapter",
"positivePrompt": "Positive Prompt",
"negativePrompt": "Negative Prompt",
"removeNegativePrompt": "Remove Negative Prompt",
"addNegativePrompt": "Add Negative Prompt",
"selectYourModel": "Select Your Model",
"discordLabel": "Discord",
"dontAskMeAgain": "Don't ask me again",
"dontShowMeThese": "Don't show me these",
@@ -771,7 +767,6 @@
"allPrompts": "All Prompts",
"cfgScale": "CFG scale",
"cfgRescaleMultiplier": "$t(parameters.cfgRescaleMultiplier)",
"clipSkip": "$t(parameters.clipSkip)",
"createdBy": "Created By",
"generationMode": "Generation Mode",
"guidance": "Guidance",
@@ -874,9 +869,6 @@
"install": "Install",
"installAll": "Install All",
"installRepo": "Install Repo",
"installBundle": "Install Bundle",
"installBundleMsg1": "Are you sure you want to install the {{bundleName}} bundle?",
"installBundleMsg2": "This bundle will install the following {{count}} models:",
"ipAdapters": "IP Adapters",
"learnMoreAboutSupportedModels": "Learn more about the models we support",
"load": "Load",
@@ -1295,7 +1287,6 @@
"remixImage": "Remix Image",
"usePrompt": "Use Prompt",
"useSeed": "Use Seed",
"useClipSkip": "Use CLIP Skip",
"width": "Width",
"gaussianBlur": "Gaussian Blur",
"boxBlur": "Box Blur",
@@ -2189,8 +2180,7 @@
"rgReferenceImagesNotSupported": "regional Reference Images not supported for selected base model",
"rgAutoNegativeNotSupported": "Auto-Negative not supported for selected base model",
"rgNoRegion": "no region drawn",
"fluxFillIncompatibleWithControlLoRA": "Control LoRA is not compatible with FLUX Fill",
"bboxHidden": "Bounding box is hidden (shift+o to toggle)"
"fluxFillIncompatibleWithControlLoRA": "Control LoRA is not compatible with FLUX Fill"
},
"errors": {
"unableToFindImage": "Unable to find image",
@@ -2682,8 +2672,8 @@
"whatsNew": {
"whatsNewInInvoke": "What's New in Invoke",
"items": [
"Misc QoL: Toggle Bbox visibility, highlight nodes with errors, prevent adding node fields to Builder form multiple times, CLIP Skip metadata recallable",
"Reduced VRAM usage for multiple Kontext Ref images and VAE encoding"
"Studio state is saved to the server, allowing you to continue your work on any device.",
"Support for multiple reference images for FLUX Kontext (local model only)."
],
"readReleaseNotes": "Read Release Notes",
"watchRecentReleaseVideos": "Watch Recent Release Videos",

View File

@@ -128,9 +128,7 @@
"search": "Cerca",
"clear": "Cancella",
"compactView": "Vista compatta",
"fullView": "Vista completa",
"removeNegativePrompt": "Rimuovi prompt negativo",
"addNegativePrompt": "Aggiungi prompt negativo"
"fullView": "Vista completa"
},
"gallery": {
"galleryImageSize": "Dimensione dell'immagine",
@@ -412,10 +410,6 @@
"cancelSegmentAnything": {
"title": "Annulla Segment Anything",
"desc": "Annulla l'operazione Segment Anything corrente."
},
"fitBboxToLayers": {
"title": "Adatta il riquadro di delimitazione ai livelli",
"desc": "Regola automaticamente il riquadro di delimitazione della generazione per adattarlo ai livelli visibili"
}
},
"workflows": {

View File

@@ -252,10 +252,7 @@
"clear": "Dọn Dẹp",
"compactView": "Chế Độ Xem Gọn",
"fullView": "Chế Độ Xem Đầy Đủ",
"options_withCount_other": "{{count}} thiết lập",
"removeNegativePrompt": "Xóa Lệnh Tiêu Cực",
"addNegativePrompt": "Thêm Lệnh Tiêu Cực",
"selectYourModel": "Chọn Model"
"options_withCount_other": "{{count}} thiết lập"
},
"prompt": {
"addPromptTrigger": "Thêm Trigger Cho Lệnh",
@@ -495,10 +492,6 @@
"title": "Huỷ Segment Anything",
"desc": "Huỷ hoạt động Segment Anything hiện tại.",
"key": "esc"
},
"fitBboxToLayers": {
"title": "Xếp Vừa Hộp Giới Hạn Vào Layer",
"desc": "Tự động điểu chỉnh hộp giới hạn tạo sinh vừa vặn vào layer nhìn thấy được"
}
},
"workflows": {
@@ -905,8 +898,7 @@
"recallParameters": "Gợi Nhớ Tham Số",
"scheduler": "Scheduler",
"noMetaData": "Không tìm thấy metadata",
"imageDimensions": "Kích Thước Ảnh",
"clipSkip": "$t(parameters.clipSkip)"
"imageDimensions": "Kích Thước Ảnh"
},
"accordions": {
"generation": {
@@ -1715,8 +1707,7 @@
"upscaling": "Upscale",
"tileSize": "Kích Thước Khối",
"disabledNoRasterContent": "Đã Tắt (Không Có Nội Dung Dạng Raster)",
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần <LinkComponent>thiết lập tài khoản</LinkComponent> để nâng cấp.",
"useClipSkip": "Dùng CLIP Skip"
"modelDisabledForTrial": "Tạo sinh với {{modelName}} là không thể với tài khoản trial. Vào phần <LinkComponent>thiết lập tài khoản</LinkComponent> để nâng cấp."
},
"dynamicPrompts": {
"seedBehaviour": {
@@ -2207,8 +2198,7 @@
"rgReferenceImagesNotSupported": "Ảnh Mẫu Khu Vực không được hỗ trợ cho model cơ sở được chọn",
"rgAutoNegativeNotSupported": "Tự Động Đảo Chiều không được hỗ trợ cho model cơ sở được chọn",
"rgNoRegion": "không có khu vực được vẽ",
"fluxFillIncompatibleWithControlLoRA": "LoRA Điều Khiển Được không tương tích với FLUX Fill",
"bboxHidden": "Hộp giới hạn đang ẩn (shift+o để bật/tắt)"
"fluxFillIncompatibleWithControlLoRA": "LoRA Điều Khiển Được không tương tích với FLUX Fill"
},
"pasteTo": "Dán Vào",
"pasteToAssets": "Tài Nguyên",

View File

@@ -71,7 +71,7 @@ interface Props extends PropsWithChildren {
* If provided, overrides in-app navigation to the model manager
*/
onClickGoToModelManager?: () => void;
storagePersistDebounce?: number;
storagePersistThrottle?: number;
}
const InvokeAIUI = ({
@@ -98,7 +98,7 @@ const InvokeAIUI = ({
loggingOverrides,
onClickGoToModelManager,
whatsNew,
storagePersistDebounce = 300,
storagePersistThrottle = 2000,
}: Props) => {
const [store, setStore] = useState<ReturnType<typeof createStore> | undefined>(undefined);
const [didRehydrate, setDidRehydrate] = useState(false);
@@ -318,7 +318,7 @@ const InvokeAIUI = ({
const onRehydrated = () => {
setDidRehydrate(true);
};
const store = createStore({ persist: true, persistDebounce: storagePersistDebounce, onRehydrated });
const store = createStore({ persist: true, persistThrottle: storagePersistThrottle, onRehydrated });
setStore(store);
$store.set(store);
if (import.meta.env.MODE === 'development') {
@@ -333,7 +333,7 @@ const InvokeAIUI = ({
window.$store = undefined;
}
};
}, [storagePersistDebounce]);
}, [storagePersistThrottle]);
if (!store || !didRehydrate) {
return <Loading />;

View File

@@ -184,7 +184,7 @@ const PERSISTED_KEYS = Object.values(SLICE_CONFIGS)
.filter((sliceConfig) => !!sliceConfig.persistConfig)
.map((sliceConfig) => sliceConfig.slice.reducerPath);
export const createStore = (options?: { persist?: boolean; persistDebounce?: number; onRehydrated?: () => void }) => {
export const createStore = (options?: { persist?: boolean; persistThrottle?: number; onRehydrated?: () => void }) => {
const store = configureStore({
reducer: rememberedRootReducer,
middleware: (getDefaultMiddleware) =>
@@ -204,7 +204,7 @@ export const createStore = (options?: { persist?: boolean; persistDebounce?: num
if (options?.persist) {
return enhancers.prepend(
rememberEnhancer(reduxRememberDriver, PERSISTED_KEYS, {
persistDebounce: options?.persistDebounce ?? 2000,
persistThrottle: options?.persistThrottle ?? 2000,
serialize,
unserialize,
prefix: '',

View File

@@ -58,7 +58,6 @@ const zNumericalParameterConfig = z.object({
fineStep: z.number().default(8),
coarseStep: z.number().default(64),
});
export type NumericalParameterConfig = z.infer<typeof zNumericalParameterConfig>;
/**
* Configuration options for the InvokeAI UI.

View File

@@ -1,24 +0,0 @@
import { Alert, AlertIcon, AlertTitle } from '@invoke-ai/ui-library';
import { useStore } from '@nanostores/react';
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
export const CanvasAlertsBboxVisibility = memo(() => {
const { t } = useTranslation();
const canvasManager = useCanvasManager();
const isBboxHidden = useStore(canvasManager.tool.tools.bbox.$isBboxHidden);
if (!isBboxHidden) {
return null;
}
return (
<Alert status="warning" borderRadius="base" fontSize="sm" shadow="md" w="fit-content">
<AlertIcon />
<AlertTitle>{t('controlLayers.warnings.bboxHidden')}</AlertTitle>
</Alert>
);
});
CanvasAlertsBboxVisibility.displayName = 'CanvasAlertsBboxVisibility';

View File

@@ -15,7 +15,6 @@ import { useCanvasEntityQuickSwitchHotkey } from 'features/controlLayers/hooks/u
import { useCanvasFilterHotkey } from 'features/controlLayers/hooks/useCanvasFilterHotkey';
import { useCanvasInvertMaskHotkey } from 'features/controlLayers/hooks/useCanvasInvertMaskHotkey';
import { useCanvasResetLayerHotkey } from 'features/controlLayers/hooks/useCanvasResetLayerHotkey';
import { useCanvasToggleBboxHotkey } from 'features/controlLayers/hooks/useCanvasToggleBboxHotkey';
import { useCanvasToggleNonRasterLayersHotkey } from 'features/controlLayers/hooks/useCanvasToggleNonRasterLayersHotkey';
import { useCanvasTransformHotkey } from 'features/controlLayers/hooks/useCanvasTransformHotkey';
import { useCanvasUndoRedoHotkeys } from 'features/controlLayers/hooks/useCanvasUndoRedoHotkeys';
@@ -32,7 +31,6 @@ export const CanvasToolbar = memo(() => {
useCanvasFilterHotkey();
useCanvasInvertMaskHotkey();
useCanvasToggleNonRasterLayersHotkey();
useCanvasToggleBboxHotkey();
return (
<Flex w="full" gap={2} alignItems="center" px={2}>

View File

@@ -1,7 +1,7 @@
import { createSelector } from '@reduxjs/toolkit';
import { createMemoizedSelector } from 'app/store/createMemoizedSelector';
import type { AppGetState } from 'app/store/store';
import { useAppDispatch, useAppSelector, useAppStore } from 'app/store/storeHooks';
import { useAppDispatch, useAppStore } from 'app/store/storeHooks';
import { deepClone } from 'common/util/deepClone';
import { getPrefixedId } from 'features/controlLayers/konva/util';
import {
@@ -16,11 +16,7 @@ import {
rgRefImageAdded,
} from 'features/controlLayers/store/canvasSlice';
import { selectBase, selectMainModelConfig } from 'features/controlLayers/store/paramsSlice';
import {
selectCanvasSlice,
selectEntity,
selectSelectedEntityIdentifier,
} from 'features/controlLayers/store/selectors';
import { selectCanvasSlice, selectEntity } from 'features/controlLayers/store/selectors';
import type {
CanvasEntityIdentifier,
CanvasRegionalGuidanceState,
@@ -140,49 +136,37 @@ export const getDefaultRegionalGuidanceRefImageConfig = (getState: AppGetState):
export const useAddControlLayer = () => {
const dispatch = useAppDispatch();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const selectedControlLayer =
selectedEntityIdentifier?.type === 'control_layer' ? selectedEntityIdentifier.id : undefined;
const func = useCallback(() => {
const overrides = { controlAdapter: deepClone(initialControlNet) };
dispatch(controlLayerAdded({ isSelected: true, overrides, addAfter: selectedControlLayer }));
}, [dispatch, selectedControlLayer]);
dispatch(controlLayerAdded({ isSelected: true, overrides }));
}, [dispatch]);
return func;
};
export const useAddRasterLayer = () => {
const dispatch = useAppDispatch();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const selectedRasterLayer =
selectedEntityIdentifier?.type === 'raster_layer' ? selectedEntityIdentifier.id : undefined;
const func = useCallback(() => {
dispatch(rasterLayerAdded({ isSelected: true, addAfter: selectedRasterLayer }));
}, [dispatch, selectedRasterLayer]);
dispatch(rasterLayerAdded({ isSelected: true }));
}, [dispatch]);
return func;
};
export const useAddInpaintMask = () => {
const dispatch = useAppDispatch();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const selectedInpaintMask =
selectedEntityIdentifier?.type === 'inpaint_mask' ? selectedEntityIdentifier.id : undefined;
const func = useCallback(() => {
dispatch(inpaintMaskAdded({ isSelected: true, addAfter: selectedInpaintMask }));
}, [dispatch, selectedInpaintMask]);
dispatch(inpaintMaskAdded({ isSelected: true }));
}, [dispatch]);
return func;
};
export const useAddRegionalGuidance = () => {
const dispatch = useAppDispatch();
const selectedEntityIdentifier = useAppSelector(selectSelectedEntityIdentifier);
const selectedRegionalGuidance =
selectedEntityIdentifier?.type === 'regional_guidance' ? selectedEntityIdentifier.id : undefined;
const func = useCallback(() => {
dispatch(rgAdded({ isSelected: true, addAfter: selectedRegionalGuidance }));
}, [dispatch, selectedRegionalGuidance]);
dispatch(rgAdded({ isSelected: true }));
}, [dispatch]);
return func;
};

View File

@@ -1,18 +0,0 @@
import { useCanvasManager } from 'features/controlLayers/contexts/CanvasManagerProviderGate';
import { useRegisteredHotkeys } from 'features/system/components/HotkeysModal/useHotkeyData';
import { useCallback } from 'react';
export const useCanvasToggleBboxHotkey = () => {
const canvasManager = useCanvasManager();
const handleToggleBboxVisibility = useCallback(() => {
canvasManager.tool.tools.bbox.toggleBboxVisibility();
}, [canvasManager]);
useRegisteredHotkeys({
id: 'toggleBbox',
category: 'canvas',
callback: handleToggleBboxVisibility,
dependencies: [handleToggleBboxVisibility],
});
};

View File

@@ -372,7 +372,6 @@ export class CanvasCompositorModule extends CanvasModuleBase {
position: { x: Math.floor(rect.x), y: Math.floor(rect.y) },
},
mergedEntitiesToDelete: deleteMergedEntities ? entityIdentifiers.map(mapId) : [],
addAfter: entityIdentifiers.map(mapId).at(-1),
};
switch (type) {

View File

@@ -482,24 +482,13 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
// "contain" means that the entity should be scaled to fit within the bbox, but it should not exceed the bbox.
const scale = Math.min(scaleX, scaleY);
// Calculate the scaled dimensions
const scaledWidth = width * scale;
const scaledHeight = height * scale;
// Calculate centered position
const centerX = rect.x + (rect.width - scaledWidth) / 2;
const centerY = rect.y + (rect.height - scaledHeight) / 2;
// Round to grid and clamp to valid bounds
const roundedX = gridSize > 1 ? roundToMultiple(centerX, gridSize) : centerX;
const roundedY = gridSize > 1 ? roundToMultiple(centerY, gridSize) : centerY;
const x = clamp(roundedX, rect.x, rect.x + rect.width - scaledWidth);
const y = clamp(roundedY, rect.y, rect.y + rect.height - scaledHeight);
// Center the shape within the bounding box
const offsetX = (rect.width - width * scale) / 2;
const offsetY = (rect.height - height * scale) / 2;
this.konva.proxyRect.setAttrs({
x,
y,
x: clamp(roundToMultiple(rect.x + offsetX, gridSize), rect.x, rect.x + rect.width),
y: clamp(roundToMultiple(rect.y + offsetY, gridSize), rect.y, rect.y + rect.height),
scaleX: scale,
scaleY: scale,
rotation: 0,
@@ -524,32 +513,16 @@ export class CanvasEntityTransformer extends CanvasModuleBase {
const scaleX = rect.width / width;
const scaleY = rect.height / height;
// "cover" means the entity should cover the entire bbox, potentially overflowing
// "cover" is the same as "contain", but we choose the larger scale to cover the shape
const scale = Math.max(scaleX, scaleY);
// Calculate the scaled dimensions
const scaledWidth = width * scale;
const scaledHeight = height * scale;
// Calculate position - center only if entity exceeds bbox
let x = rect.x;
let y = rect.y;
// If scaled width exceeds bbox width, center horizontally
if (scaledWidth > rect.width) {
const centerX = rect.x + (rect.width - scaledWidth) / 2;
x = gridSize > 1 ? roundToMultiple(centerX, gridSize) : centerX;
}
// If scaled height exceeds bbox height, center vertically
if (scaledHeight > rect.height) {
const centerY = rect.y + (rect.height - scaledHeight) / 2;
y = gridSize > 1 ? roundToMultiple(centerY, gridSize) : centerY;
}
// Center the shape within the bounding box
const offsetX = (rect.width - width * scale) / 2;
const offsetY = (rect.height - height * scale) / 2;
this.konva.proxyRect.setAttrs({
x,
y,
x: roundToMultiple(rect.x + offsetX, gridSize),
y: roundToMultiple(rect.y + offsetY, gridSize),
scaleX: scale,
scaleY: scale,
rotation: 0,

View File

@@ -66,11 +66,6 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
*/
$aspectRatioBuffer = atom(1);
/**
* Buffer to store the visibility of the bbox.
*/
$isBboxHidden = atom(false);
constructor(parent: CanvasToolModule) {
super();
this.id = getPrefixedId(this.type);
@@ -196,9 +191,6 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
// Update on busy state changes
this.subscriptions.add(this.manager.$isBusy.listen(this.render));
// Listen for stage changes to update the bbox's visibility
this.subscriptions.add(this.$isBboxHidden.listen(this.render));
}
// This is a noop. The cursor is changed when the cursor enters or leaves the bbox.
@@ -214,15 +206,13 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
};
/**
* Renders the bbox.
* Renders the bbox. The bbox is only visible when the tool is set to 'bbox'.
*/
render = () => {
const tool = this.manager.tool.$tool.get();
const { x, y, width, height } = this.manager.stateApi.runSelector(selectBbox).rect;
this.konva.group.visible(!this.$isBboxHidden.get());
// We need to reach up to the preview layer to enable/disable listening so that the bbox can be interacted with.
// If the mangaer is busy, we disable listening so the bbox cannot be interacted with.
this.konva.group.listening(tool === 'bbox' && !this.manager.$isBusy.get());
@@ -488,8 +478,4 @@ export class CanvasBboxToolModule extends CanvasModuleBase {
this.subscriptions.clear();
this.konva.group.destroy();
};
toggleBboxVisibility = () => {
this.$isBboxHidden.set(!this.$isBboxHidden.get());
};
}

View File

@@ -111,16 +111,12 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}>
) => {
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
const entityState = getRasterLayerState(id, overrides);
const index = addAfter
? state.rasterLayers.entities.findIndex((e) => e.id === addAfter) + 1
: state.rasterLayers.entities.length;
state.rasterLayers.entities.splice(index, 0, entityState);
state.rasterLayers.entities.push(entityState);
if (mergedEntitiesToDelete.length > 0) {
state.rasterLayers.entities = state.rasterLayers.entities.filter(
@@ -143,7 +139,6 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}) => ({
payload: { ...payload, id: getPrefixedId('raster_layer') },
}),
@@ -277,17 +272,13 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}>
) => {
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
const entityState = getControlLayerState(id, overrides);
const index = addAfter
? state.controlLayers.entities.findIndex((e) => e.id === addAfter) + 1
: state.controlLayers.entities.length;
state.controlLayers.entities.splice(index, 0, entityState);
state.controlLayers.entities.push(entityState);
if (mergedEntitiesToDelete.length > 0) {
state.controlLayers.entities = state.controlLayers.entities.filter(
@@ -309,7 +300,6 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}) => ({
payload: { ...payload, id: getPrefixedId('control_layer') },
}),
@@ -580,17 +570,13 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}>
) => {
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
const entityState = getRegionalGuidanceState(id, overrides);
const index = addAfter
? state.regionalGuidance.entities.findIndex((e) => e.id === addAfter) + 1
: state.regionalGuidance.entities.length;
state.regionalGuidance.entities.splice(index, 0, entityState);
state.regionalGuidance.entities.push(entityState);
if (mergedEntitiesToDelete.length > 0) {
state.regionalGuidance.entities = state.regionalGuidance.entities.filter(
@@ -612,7 +598,6 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}) => ({
payload: { ...payload, id: getPrefixedId('regional_guidance') },
}),
@@ -889,17 +874,13 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}>
) => {
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [], addAfter } = action.payload;
const { id, overrides, isSelected, isBookmarked, mergedEntitiesToDelete = [] } = action.payload;
const entityState = getInpaintMaskState(id, overrides);
const index = addAfter
? state.inpaintMasks.entities.findIndex((e) => e.id === addAfter) + 1
: state.inpaintMasks.entities.length;
state.inpaintMasks.entities.splice(index, 0, entityState);
state.inpaintMasks.entities.push(entityState);
if (mergedEntitiesToDelete.length > 0) {
state.inpaintMasks.entities = state.inpaintMasks.entities.filter(
@@ -921,7 +902,6 @@ const slice = createSlice({
isSelected?: boolean;
isBookmarked?: boolean;
mergedEntitiesToDelete?: string[];
addAfter?: string;
}) => ({
payload: { ...payload, id: getPrefixedId('inpaint_mask') },
}),
@@ -1269,33 +1249,25 @@ const slice = createSlice({
newEntity.name = `${newEntity.name} (Copy)`;
}
switch (newEntity.type) {
case 'raster_layer': {
case 'raster_layer':
newEntity.id = getPrefixedId('raster_layer');
const newEntityIndex = state.rasterLayers.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
state.rasterLayers.entities.splice(newEntityIndex, 0, newEntity);
state.rasterLayers.entities.push(newEntity);
break;
}
case 'control_layer': {
case 'control_layer':
newEntity.id = getPrefixedId('control_layer');
const newEntityIndex = state.controlLayers.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
state.controlLayers.entities.splice(newEntityIndex, 0, newEntity);
state.controlLayers.entities.push(newEntity);
break;
}
case 'regional_guidance': {
case 'regional_guidance':
newEntity.id = getPrefixedId('regional_guidance');
for (const refImage of newEntity.referenceImages) {
refImage.id = getPrefixedId('regional_guidance_ip_adapter');
}
const newEntityIndex = state.regionalGuidance.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
state.regionalGuidance.entities.splice(newEntityIndex, 0, newEntity);
state.regionalGuidance.entities.push(newEntity);
break;
}
case 'inpaint_mask': {
case 'inpaint_mask':
newEntity.id = getPrefixedId('inpaint_mask');
const newEntityIndex = state.inpaintMasks.entities.findIndex((e) => e.id === entityIdentifier.id) + 1;
state.inpaintMasks.entities.splice(newEntityIndex, 0, newEntity);
state.inpaintMasks.entities.push(newEntity);
break;
}
}
state.selectedEntityIdentifier = getEntityIdentifier(newEntity);

View File

@@ -107,7 +107,14 @@ const slice = createSlice({
return;
}
applyClipSkip(state, model, state.clipSkip);
// Clamp CLIP skip layer count to the bounds of the new model
if (model.base === 'sdxl') {
// We don't support user-defined CLIP skip for SDXL because it doesn't do anything useful
state.clipSkip = 0;
} else {
const { maxClip } = CLIP_SKIP_MAP[model.base];
state.clipSkip = clamp(state.clipSkip, 0, maxClip);
}
},
vaeSelected: (state, action: PayloadAction<ParameterVAEModel | null>) => {
// null is a valid VAE!
@@ -163,7 +170,7 @@ const slice = createSlice({
state.vaePrecision = action.payload;
},
setClipSkip: (state, action: PayloadAction<number>) => {
applyClipSkip(state, state.model, action.payload);
state.clipSkip = action.payload;
},
shouldUseCpuNoiseChanged: (state, action: PayloadAction<boolean>) => {
state.shouldUseCpuNoise = action.payload;
@@ -174,6 +181,15 @@ const slice = createSlice({
negativePromptChanged: (state, action: PayloadAction<ParameterNegativePrompt>) => {
state.negativePrompt = action.payload;
},
positivePrompt2Changed: (state, action: PayloadAction<string>) => {
state.positivePrompt2 = action.payload;
},
negativePrompt2Changed: (state, action: PayloadAction<string>) => {
state.negativePrompt2 = action.payload;
},
shouldConcatPromptsChanged: (state, action: PayloadAction<boolean>) => {
state.shouldConcatPrompts = action.payload;
},
refinerModelChanged: (state, action: PayloadAction<ParameterSDXLRefinerModel | null>) => {
const result = zParamsState.shape.refinerModel.safeParse(action.payload);
if (!result.success) {
@@ -359,33 +375,6 @@ const slice = createSlice({
},
});
const applyClipSkip = (state: { clipSkip: number }, model: ParameterModel | null, clipSkip: number) => {
if (model === null) {
return;
}
const maxClip = getModelMaxClipSkip(model);
state.clipSkip = clamp(clipSkip, 0, maxClip);
};
const hasModelClipSkip = (model: ParameterModel | null) => {
if (model === null) {
return false;
}
return getModelMaxClipSkip(model) > 0;
};
const getModelMaxClipSkip = (model: ParameterModel) => {
if (model.base === 'sdxl') {
// We don't support user-defined CLIP skip for SDXL because it doesn't do anything useful
return 0;
}
return CLIP_SKIP_MAP[model.base].maxClip;
};
const resetState = (state: ParamsState): ParamsState => {
// When a new session is requested, we need to keep the current model selections, plus dependent state
// like VAE precision. Everything else gets reset to default.
@@ -436,6 +425,9 @@ export const {
shouldUseCpuNoiseChanged,
positivePromptChanged,
negativePromptChanged,
positivePrompt2Changed,
negativePrompt2Changed,
shouldConcatPromptsChanged,
refinerModelChanged,
setRefinerSteps,
setRefinerCFGScale,
@@ -468,7 +460,8 @@ export const paramsSliceConfig: SliceConfig<typeof slice> = {
};
export const selectParamsSlice = (state: RootState) => state.params;
const createParamsSelector = <T>(selector: Selector<ParamsState, T>) => createSelector(selectParamsSlice, selector);
export const createParamsSelector = <T>(selector: Selector<ParamsState, T>) =>
createSelector(selectParamsSlice, selector);
export const selectBase = createParamsSelector((params) => params.model?.base);
export const selectIsSDXL = createParamsSelector((params) => params.model?.base === 'sdxl');
@@ -504,8 +497,7 @@ export const selectCFGScale = createParamsSelector((params) => params.cfgScale);
export const selectGuidance = createParamsSelector((params) => params.guidance);
export const selectSteps = createParamsSelector((params) => params.steps);
export const selectCFGRescaleMultiplier = createParamsSelector((params) => params.cfgRescaleMultiplier);
export const selectCLIPSkip = createParamsSelector((params) => params.clipSkip);
export const selectHasModelCLIPSkip = createParamsSelector((params) => hasModelClipSkip(params.model));
export const selectCLIPSKip = createParamsSelector((params) => params.clipSkip);
export const selectCanvasCoherenceEdgeSize = createParamsSelector((params) => params.canvasCoherenceEdgeSize);
export const selectCanvasCoherenceMinDenoise = createParamsSelector((params) => params.canvasCoherenceMinDenoise);
export const selectCanvasCoherenceMode = createParamsSelector((params) => params.canvasCoherenceMode);
@@ -526,6 +518,9 @@ export const selectModelSupportsNegativePrompt = createSelector(
[selectIsFLUX, selectIsChatGPT4o, selectIsFluxKontext],
(isFLUX, isChatGPT4o, isFluxKontext) => !isFLUX && !isChatGPT4o && !isFluxKontext
);
export const selectPositivePrompt2 = createParamsSelector((params) => params.positivePrompt2);
export const selectNegativePrompt2 = createParamsSelector((params) => params.negativePrompt2);
export const selectShouldConcatPrompts = createParamsSelector((params) => params.shouldConcatPrompts);
export const selectScheduler = createParamsSelector((params) => params.scheduler);
export const selectSeamlessXAxis = createParamsSelector((params) => params.seamlessXAxis);
export const selectSeamlessYAxis = createParamsSelector((params) => params.seamlessYAxis);

View File

@@ -14,7 +14,9 @@ import {
zParameterMaskBlurMethod,
zParameterModel,
zParameterNegativePrompt,
zParameterNegativeStylePromptSDXL,
zParameterPositivePrompt,
zParameterPositiveStylePromptSDXL,
zParameterPrecision,
zParameterScheduler,
zParameterSDXLRefinerModel,
@@ -532,6 +534,9 @@ export const zParamsState = z.object({
shouldUseCpuNoise: z.boolean(),
positivePrompt: zParameterPositivePrompt,
negativePrompt: zParameterNegativePrompt,
positivePrompt2: zParameterPositiveStylePromptSDXL,
negativePrompt2: zParameterNegativeStylePromptSDXL,
shouldConcatPrompts: z.boolean(),
refinerModel: zParameterSDXLRefinerModel.nullable(),
refinerSteps: z.number(),
refinerCFGScale: z.number(),
@@ -579,6 +584,9 @@ export const getInitialParamsState = (): ParamsState => ({
shouldUseCpuNoise: true,
positivePrompt: '',
negativePrompt: null,
positivePrompt2: '',
negativePrompt2: '',
shouldConcatPrompts: true,
refinerModel: null,
refinerSteps: 20,
refinerCFGScale: 7.5,

View File

@@ -7,7 +7,13 @@ import { useGallerySearchTerm } from 'features/gallery/components/ImageGrid/useG
import { selectSelectedBoardId } from 'features/gallery/store/gallerySelectors';
import { galleryViewChanged, selectGallerySlice } from 'features/gallery/store/gallerySlice';
import { useAutoLayoutContext } from 'features/ui/layouts/auto-layout-context';
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
import {
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
GALLERY_PANEL_ID,
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX,
GALLERY_PANEL_MIN_HEIGHT_PX,
} from 'features/ui/layouts/shared';
import { useCollapsibleGridviewPanel } from 'features/ui/layouts/use-collapsible-gridview-panel';
import type { CSSProperties } from 'react';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
@@ -28,8 +34,16 @@ export const GalleryPanel = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const { tab } = useAutoLayoutContext();
const galleryPanel = useGalleryPanel(tab);
const isCollapsed = useStore(galleryPanel.$isCollapsed);
const collapsibleApi = useCollapsibleGridviewPanel(
tab,
GALLERY_PANEL_ID,
'vertical',
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
GALLERY_PANEL_MIN_HEIGHT_PX,
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX
);
const isCollapsed = useStore(collapsibleApi.$isCollapsed);
const galleryView = useAppSelector(selectGalleryView);
const initialSearchTerm = useAppSelector(selectSearchTerm);
const searchDisclosure = useDisclosure(!!initialSearchTerm);
@@ -44,11 +58,11 @@ export const GalleryPanel = memo(() => {
const handleClickSearch = useCallback(() => {
onResetSearchTerm();
if (!searchDisclosure.isOpen && galleryPanel.$isCollapsed.get()) {
galleryPanel.expand();
if (!searchDisclosure.isOpen && collapsibleApi.$isCollapsed.get()) {
collapsibleApi.expand();
}
searchDisclosure.toggle();
}, [galleryPanel, onResetSearchTerm, searchDisclosure]);
}, [collapsibleApi, onResetSearchTerm, searchDisclosure]);
const selectedBoardId = useAppSelector(selectSelectedBoardId);
const boardName = useBoardName(selectedBoardId);
@@ -59,7 +73,7 @@ export const GalleryPanel = memo(() => {
<Button
size="sm"
variant="ghost"
onClick={galleryPanel.toggle}
onClick={collapsibleApi.toggle}
leftIcon={isCollapsed ? <PiCaretDownBold /> : <PiCaretUpBold />}
noOfLines={1}
>

View File

@@ -40,7 +40,7 @@ export const GallerySettingsPopover = memo(() => {
<PopoverBody>
<Flex direction="column" gap={2}>
<Text fontWeight="semibold" color="base.300">
{t('gallery.gallerySettings')}
Gallery Settings
</Text>
<Divider />

View File

@@ -1,39 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
import { boardIdSelected } from 'features/gallery/store/gallerySlice';
import { navigationApi } from 'features/ui/layouts/navigation-api';
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { memo, useCallback, useMemo } from 'react';
import { flushSync } from 'react-dom';
import { useTranslation } from 'react-i18next';
import { PiCrosshairBold } from 'react-icons/pi';
export const ImageMenuItemLocateInGalery = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const imageDTO = useImageDTOContext();
const activeTab = useAppSelector(selectActiveTab);
const galleryPanel = useGalleryPanel(activeTab);
const isGalleryImage = useMemo(() => {
return !imageDTO.is_intermediate;
}, [imageDTO]);
const onClick = useCallback(() => {
navigationApi.expandRightPanel();
galleryPanel.expand();
flushSync(() => {
dispatch(boardIdSelected({ boardId: imageDTO.board_id ?? 'none', selectedImageName: imageDTO.image_name }));
});
}, [dispatch, galleryPanel, imageDTO]);
return (
<MenuItem icon={<PiCrosshairBold />} onClickCapture={onClick} isDisabled={!isGalleryImage}>
{t('boards.locateInGalery')}
</MenuItem>
);
});
ImageMenuItemLocateInGalery.displayName = 'ImageMenuItemLocateInGalery';

View File

@@ -2,7 +2,6 @@ import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
import { useRecallAll } from 'features/gallery/hooks/useRecallAll';
import { useRecallCLIPSkip } from 'features/gallery/hooks/useRecallCLIPSkip';
import { useRecallDimensions } from 'features/gallery/hooks/useRecallDimensions';
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
import { useRecallRemix } from 'features/gallery/hooks/useRecallRemix';
@@ -18,7 +17,7 @@ import {
PiRulerBold,
} from 'react-icons/pi';
export const ImageMenuItemMetadataRecallActionsCanvasGenerateTabs = memo(() => {
export const ImageMenuItemMetadataRecallActions = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
@@ -29,7 +28,6 @@ export const ImageMenuItemMetadataRecallActionsCanvasGenerateTabs = memo(() => {
const recallPrompts = useRecallPrompts(imageDTO);
const recallSeed = useRecallSeed(imageDTO);
const recallDimensions = useRecallDimensions(imageDTO);
const recallCLIPSkip = useRecallCLIPSkip(imageDTO);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiArrowBendUpLeftBold />}>
@@ -57,14 +55,10 @@ export const ImageMenuItemMetadataRecallActionsCanvasGenerateTabs = memo(() => {
<MenuItem icon={<PiRulerBold />} onClick={recallDimensions.recall} isDisabled={!recallDimensions.isEnabled}>
{t('parameters.useSize')}
</MenuItem>
<MenuItem icon={<PiRulerBold />} onClick={recallCLIPSkip.recall} isDisabled={!recallCLIPSkip.isEnabled}>
{t('parameters.useClipSkip')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ImageMenuItemMetadataRecallActionsCanvasGenerateTabs.displayName =
'ImageMenuItemMetadataRecallActionsCanvasGenerateTabs';
ImageMenuItemMetadataRecallActions.displayName = 'ImageMenuItemMetadataRecallActions';

View File

@@ -1,38 +0,0 @@
import { Menu, MenuButton, MenuItem, MenuList } from '@invoke-ai/ui-library';
import { SubMenuButtonContent, useSubMenu } from 'common/hooks/useSubMenu';
import { useImageDTOContext } from 'features/gallery/contexts/ImageDTOContext';
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
import { useRecallSeed } from 'features/gallery/hooks/useRecallSeed';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowBendUpLeftBold, PiPlantBold, PiQuotesBold } from 'react-icons/pi';
export const ImageMenuItemMetadataRecallActionsUpscaleTab = memo(() => {
const { t } = useTranslation();
const subMenu = useSubMenu();
const imageDTO = useImageDTOContext();
const recallPrompts = useRecallPrompts(imageDTO);
const recallSeed = useRecallSeed(imageDTO);
return (
<MenuItem {...subMenu.parentMenuItemProps} icon={<PiArrowBendUpLeftBold />}>
<Menu {...subMenu.menuProps}>
<MenuButton {...subMenu.menuButtonProps}>
<SubMenuButtonContent label={t('parameters.recallMetadata')} />
</MenuButton>
<MenuList {...subMenu.menuListProps}>
<MenuItem icon={<PiQuotesBold />} onClick={recallPrompts.recall} isDisabled={!recallPrompts.isEnabled}>
{t('parameters.usePrompt')}
</MenuItem>
<MenuItem icon={<PiPlantBold />} onClick={recallSeed.recall} isDisabled={!recallSeed.isEnabled}>
{t('parameters.useSeed')}
</MenuItem>
</MenuList>
</Menu>
</MenuItem>
);
});
ImageMenuItemMetadataRecallActionsUpscaleTab.displayName = 'ImageMenuItemMetadataRecallActionsUpscaleTab';

View File

@@ -6,8 +6,7 @@ import { ImageMenuItemCopy } from 'features/gallery/components/ImageContextMenu/
import { ImageMenuItemDelete } from 'features/gallery/components/ImageContextMenu/ImageMenuItemDelete';
import { ImageMenuItemDownload } from 'features/gallery/components/ImageContextMenu/ImageMenuItemDownload';
import { ImageMenuItemLoadWorkflow } from 'features/gallery/components/ImageContextMenu/ImageMenuItemLoadWorkflow';
import { ImageMenuItemLocateInGalery } from 'features/gallery/components/ImageContextMenu/ImageMenuItemLocateInGalery';
import { ImageMenuItemMetadataRecallActionsCanvasGenerateTabs } from 'features/gallery/components/ImageContextMenu/ImageMenuItemMetadataRecallActionsCanvasGenerateTabs';
import { ImageMenuItemMetadataRecallActions } from 'features/gallery/components/ImageContextMenu/ImageMenuItemMetadataRecallActions';
import { ImageMenuItemNewCanvasFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewCanvasFromImageSubMenu';
import { ImageMenuItemNewLayerFromImageSubMenu } from 'features/gallery/components/ImageContextMenu/ImageMenuItemNewLayerFromImageSubMenu';
import { ImageMenuItemOpenInNewTab } from 'features/gallery/components/ImageContextMenu/ImageMenuItemOpenInNewTab';
@@ -22,7 +21,6 @@ import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { memo } from 'react';
import type { ImageDTO } from 'services/api/types';
import { ImageMenuItemMetadataRecallActionsUpscaleTab } from './ImageMenuItemMetadataRecallActionsUpscaleTab';
import { ImageMenuItemUseAsPromptTemplate } from './ImageMenuItemUseAsPromptTemplate';
type SingleSelectionMenuItemsProps = {
@@ -44,8 +42,7 @@ const SingleSelectionMenuItems = ({ imageDTO }: SingleSelectionMenuItemsProps) =
</IconMenuItemGroup>
<MenuDivider />
<ImageMenuItemLoadWorkflow />
{(tab === 'canvas' || tab === 'generate') && <ImageMenuItemMetadataRecallActionsCanvasGenerateTabs />}
{tab === 'upscaling' && <ImageMenuItemMetadataRecallActionsUpscaleTab />}
{(tab === 'canvas' || tab === 'generate') && <ImageMenuItemMetadataRecallActions />}
<MenuDivider />
<ImageMenuItemSendToUpscale />
<ImageMenuItemUseForPromptGeneration />
@@ -56,11 +53,6 @@ const SingleSelectionMenuItems = ({ imageDTO }: SingleSelectionMenuItemsProps) =
<MenuDivider />
<ImageMenuItemChangeBoard />
<ImageMenuItemStarUnstar />
{(tab === 'canvas' || tab === 'generate' || tab === 'workflows' || tab === 'upscaling') &&
!imageDTO.is_intermediate && (
// Only render this button on tabs with a gallery.
<ImageMenuItemLocateInGalery />
)}
</ImageDTOContextProvider>
);
};

View File

@@ -33,6 +33,8 @@ const ImageMetadataActions = (props: Props) => {
<UnrecallableMetadataDatum metadata={metadata} handler={MetadataHandlers.GenerationMode} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.PositivePrompt} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.NegativePrompt} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.PositiveStylePrompt} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.NegativeStylePrompt} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.MainModel} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.VAEModel} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Width} />
@@ -40,7 +42,6 @@ const ImageMetadataActions = (props: Props) => {
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Seed} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Steps} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Scheduler} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CLIPSkip} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CFGScale} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.CFGRescaleMultiplier} />
<SingleMetadataDatum metadata={metadata} handler={MetadataHandlers.Guidance} />

View File

@@ -1,5 +1,5 @@
import { Button, Divider, IconButton, Menu, MenuButton, MenuList } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useAppSelector } from 'app/store/storeHooks';
import { DeleteImageButton } from 'features/deleteImageModal/components/DeleteImageButton';
import SingleSelectionMenuItems from 'features/gallery/components/ImageContextMenu/SingleSelectionMenuItems';
import { useDeleteImage } from 'features/gallery/hooks/useDeleteImage';
@@ -10,19 +10,14 @@ import { useRecallDimensions } from 'features/gallery/hooks/useRecallDimensions'
import { useRecallPrompts } from 'features/gallery/hooks/useRecallPrompts';
import { useRecallRemix } from 'features/gallery/hooks/useRecallRemix';
import { useRecallSeed } from 'features/gallery/hooks/useRecallSeed';
import { boardIdSelected } from 'features/gallery/store/gallerySlice';
import { PostProcessingPopover } from 'features/parameters/components/PostProcessing/PostProcessingPopover';
import { useFeatureStatus } from 'features/system/hooks/useFeatureStatus';
import { navigationApi } from 'features/ui/layouts/navigation-api';
import { useGalleryPanel } from 'features/ui/layouts/use-gallery-panel';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import { memo, useCallback, useMemo } from 'react';
import { flushSync } from 'react-dom';
import { memo } from 'react';
import { useTranslation } from 'react-i18next';
import {
PiArrowsCounterClockwiseBold,
PiAsteriskBold,
PiCrosshairBold,
PiDotsThreeOutlineFill,
PiFlowArrowBold,
PiPencilBold,
@@ -35,25 +30,7 @@ import type { ImageDTO } from 'services/api/types';
export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) => {
const { t } = useTranslation();
const tab = useAppSelector(selectActiveTab);
const dispatch = useAppDispatch();
const activeTab = useAppSelector(selectActiveTab);
const galleryPanel = useGalleryPanel(activeTab);
const isGalleryImage = useMemo(() => {
return !imageDTO.is_intermediate;
}, [imageDTO]);
const locateInGallery = useCallback(() => {
navigationApi.expandRightPanel();
galleryPanel.expand();
flushSync(() => {
dispatch(boardIdSelected({ boardId: imageDTO.board_id ?? 'none', selectedImageName: imageDTO.image_name }));
});
}, [dispatch, galleryPanel, imageDTO]);
const isCanvasOrGenerateTab = tab === 'canvas' || tab === 'generate';
const isCanvasOrGenerateOrUpscalingTab = tab === 'canvas' || tab === 'generate' || tab === 'upscaling';
const doesTabHaveGallery = tab === 'canvas' || tab === 'generate' || tab === 'workflows' || tab === 'upscaling';
const isUpscalingEnabled = useFeatureStatus('upscaling');
@@ -97,17 +74,6 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
<Divider orientation="vertical" h={8} mx={2} />
{doesTabHaveGallery && isGalleryImage && (
<IconButton
icon={<PiCrosshairBold />}
aria-label={t('boards.locateInGalery')}
tooltip={t('boards.locateInGalery')}
onClick={locateInGallery}
variant="link"
size="sm"
alignSelf="stretch"
/>
)}
<IconButton
icon={<PiFlowArrowBold />}
tooltip={`${t('nodes.loadWorkflow')} (W)`}
@@ -128,7 +94,7 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
onClick={recallRemix.recall}
/>
)}
{isCanvasOrGenerateOrUpscalingTab && (
{isCanvasOrGenerateTab && (
<IconButton
icon={<PiQuotesBold />}
tooltip={`${t('parameters.usePrompt')} (P)`}
@@ -139,7 +105,7 @@ export const CurrentImageButtons = memo(({ imageDTO }: { imageDTO: ImageDTO }) =
onClick={recallPrompts.recall}
/>
)}
{isCanvasOrGenerateOrUpscalingTab && (
{isCanvasOrGenerateTab && (
<IconButton
icon={<PiPlantBold />}
tooltip={`${t('parameters.useSeed')} (S)`}

View File

@@ -9,7 +9,6 @@ import {
selectGalleryImageMinimumWidth,
selectImageToCompare,
selectLastSelectedImage,
selectSelection,
selectSelectionCount,
} from 'features/gallery/store/gallerySelectors';
import { imageToCompareChanged, selectionChanged } from 'features/gallery/store/gallerySlice';
@@ -139,7 +138,6 @@ const scrollIntoView = (
) => {
if (range.endIndex === 0) {
// No range is rendered; no need to scroll to anything.
log.trace('Not scrolling into view: Range endIdex is 0');
return;
}
@@ -147,7 +145,6 @@ const scrollIntoView = (
if (targetIndex === -1) {
// The image isn't in the currently rendered list.
log.trace('Not scrolling into view: targetIndex is -1');
return;
}
@@ -157,28 +154,12 @@ const scrollIntoView = (
if (!targetItem) {
if (targetIndex > range.endIndex) {
log.trace(
{
index: targetIndex,
behavior: 'auto',
align: 'start',
},
'Scrolling into view: not in DOM'
);
virtuosoGridHandle.scrollToIndex({
index: targetIndex,
behavior: 'auto',
align: 'start',
});
} else if (targetIndex < range.startIndex) {
log.trace(
{
index: targetIndex,
behavior: 'auto',
align: 'end',
},
'Scrolling into view: not in DOM'
);
virtuosoGridHandle.scrollToIndex({
index: targetIndex,
behavior: 'auto',
@@ -199,28 +180,12 @@ const scrollIntoView = (
const rootRect = rootEl.getBoundingClientRect();
if (itemRect.top < rootRect.top) {
log.trace(
{
index: targetIndex,
behavior: 'auto',
align: 'start',
},
'Scrolling into view: in overscan'
);
virtuosoGridHandle.scrollToIndex({
index: targetIndex,
behavior: 'auto',
align: 'start',
});
} else if (itemRect.bottom > rootRect.bottom) {
log.trace(
{
index: targetIndex,
behavior: 'auto',
align: 'end',
},
'Scrolling into view: in overscan'
);
virtuosoGridHandle.scrollToIndex({
index: targetIndex,
behavior: 'auto',
@@ -228,7 +193,6 @@ const scrollIntoView = (
});
} else {
// Image is already in view
log.debug('Not scrolling into view: Image is already in view');
}
return;
@@ -428,10 +392,9 @@ const useKeepSelectedImageInView = (
rootRef: React.RefObject<HTMLDivElement>,
rangeRef: MutableRefObject<ListRange>
) => {
const selection = useAppSelector(selectSelection);
const targetImageName = useAppSelector(selectLastSelectedImage);
useEffect(() => {
const targetImageName = selection.at(-1);
const virtuosoGridHandle = virtuosoRef.current;
const rootEl = rootRef.current;
const range = rangeRef.current;
@@ -439,11 +402,8 @@ const useKeepSelectedImageInView = (
if (!virtuosoGridHandle || !rootEl || !targetImageName || !imageNames || imageNames.length === 0) {
return;
}
setTimeout(() => {
scrollIntoView(targetImageName, imageNames, rootEl, virtuosoGridHandle, range);
}, 0);
}, [imageNames, rangeRef, rootRef, virtuosoRef, selection]);
scrollIntoView(targetImageName, imageNames, rootEl, virtuosoGridHandle, range);
}, [targetImageName, imageNames, rangeRef, rootRef, virtuosoRef]);
};
/**

View File

@@ -1,72 +0,0 @@
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
import { selectHasModelCLIPSkip } from 'features/controlLayers/store/paramsSlice';
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import type { TabName } from 'features/ui/store/uiTypes';
import { useCallback, useEffect, useMemo, useState } from 'react';
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
import type { ImageDTO } from 'services/api/types';
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
export const useRecallCLIPSkip = (imageDTO: ImageDTO) => {
const store = useAppStore();
const hasModelCLIPSkip = useAppSelector(selectHasModelCLIPSkip);
const tab = useAppSelector(selectActiveTab);
const [hasCLIPSkip, setHasCLIPSkip] = useState(false);
const { metadata, isLoading } = useDebouncedMetadata(imageDTO.image_name);
useEffect(() => {
const parse = async () => {
try {
await MetadataHandlers.CLIPSkip.parse(metadata, store);
setHasCLIPSkip(true);
} catch {
setHasCLIPSkip(false);
}
};
if (!hasModelCLIPSkip) {
setHasCLIPSkip(false);
return;
}
parse();
}, [metadata, store, hasModelCLIPSkip]);
const isEnabled = useMemo(() => {
if (isLoading) {
return false;
}
if (!ALLOWED_TABS.includes(tab)) {
return false;
}
if (!metadata) {
return false;
}
if (!hasCLIPSkip) {
return false;
}
return true;
}, [hasCLIPSkip, isLoading, metadata, tab]);
const recall = useCallback(() => {
if (!metadata) {
return;
}
if (!isEnabled) {
return;
}
MetadataUtils.recallByHandler({ metadata, handler: MetadataHandlers.CLIPSkip, store });
}, [metadata, isEnabled, store]);
return {
recall,
isEnabled,
};
};

View File

@@ -1,15 +1,12 @@
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import type { TabName } from 'features/ui/store/uiTypes';
import { useCallback, useEffect, useMemo, useState } from 'react';
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
import type { ImageDTO } from 'services/api/types';
import { useClearStylePresetWithToast } from './useClearStylePresetWithToast';
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
export const useRecallPrompts = (imageDTO: ImageDTO) => {
const store = useAppStore();
const tab = useAppSelector(selectActiveTab);
@@ -22,7 +19,12 @@ export const useRecallPrompts = (imageDTO: ImageDTO) => {
const parse = async () => {
try {
const result = await MetadataUtils.hasMetadataByHandlers({
handlers: [MetadataHandlers.PositivePrompt, MetadataHandlers.NegativePrompt],
handlers: [
MetadataHandlers.PositivePrompt,
MetadataHandlers.NegativePrompt,
MetadataHandlers.PositiveStylePrompt,
MetadataHandlers.NegativeStylePrompt,
],
metadata,
store,
require: 'some',
@@ -41,7 +43,7 @@ export const useRecallPrompts = (imageDTO: ImageDTO) => {
return false;
}
if (!ALLOWED_TABS.includes(tab)) {
if (tab !== 'canvas' && tab !== 'generate') {
return false;
}

View File

@@ -1,13 +1,10 @@
import { useAppSelector, useAppStore } from 'app/store/storeHooks';
import { MetadataHandlers, MetadataUtils } from 'features/metadata/parsing';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import type { TabName } from 'features/ui/store/uiTypes';
import { useCallback, useEffect, useMemo, useState } from 'react';
import { useDebouncedMetadata } from 'services/api/hooks/useDebouncedMetadata';
import type { ImageDTO } from 'services/api/types';
const ALLOWED_TABS: TabName[] = ['canvas', 'generate', 'upscaling'];
export const useRecallSeed = (imageDTO: ImageDTO) => {
const store = useAppStore();
const tab = useAppSelector(selectActiveTab);
@@ -33,7 +30,7 @@ export const useRecallSeed = (imageDTO: ImageDTO) => {
return false;
}
if (!ALLOWED_TABS.includes(tab)) {
if (tab !== 'canvas' && tab !== 'generate') {
return false;
}

View File

@@ -1,3 +1,4 @@
import { objectEquals } from '@observ33r/object-equals';
import type { PayloadAction } from '@reduxjs/toolkit';
import { createSlice } from '@reduxjs/toolkit';
import type { RootState } from 'app/store/store';
@@ -42,16 +43,54 @@ const slice = createSlice({
initialState: getInitialState(),
reducers: {
imageSelected: (state, action: PayloadAction<string | null>) => {
// Let's be efficient here and not update the selection unless it has actually changed. This helps to prevent
// unnecessary re-renders of the gallery.
const selectedImageName = action.payload;
// If we got `null`, clear the selection
if (!selectedImageName) {
state.selection = [];
} else {
state.selection = [selectedImageName];
// But only if we have images selected
if (state.selection.length > 0) {
state.selection = [];
}
return;
}
// If we have multiple images selected, clear the selection and select the new image
if (state.selection.length !== 1) {
state.selection = [selectedImageName];
return;
}
// If the selected image is different from the current selection, clear the selection and select the new image
if (state.selection[0] !== selectedImageName) {
state.selection = [selectedImageName];
return;
}
// Else we have the same image selected, do nothing
},
selectionChanged: (state, action: PayloadAction<string[]>) => {
state.selection = uniq(action.payload);
// Let's be efficient here and not update the selection unless it has actually changed. This helps to prevent
// unnecessary re-renders of the gallery.
// Remove duplicates from the selection
const newSelection = uniq(action.payload);
// If the new selection has a different length, update the selection
if (newSelection.length !== state.selection.length) {
state.selection = newSelection;
return;
}
// If the new selection is different, update the selection
if (!objectEquals(newSelection, state.selection)) {
state.selection = newSelection;
return;
}
// Else we have the same selection, do nothing
},
imageToCompareChanged: (state, action: PayloadAction<string | null>) => {
state.imageToCompare = action.payload;

View File

@@ -9,13 +9,14 @@ import { bboxHeightChanged, bboxWidthChanged, canvasMetadataRecalled } from 'fea
import { loraAllDeleted, loraRecalled } from 'features/controlLayers/store/lorasSlice';
import {
heightChanged,
negativePrompt2Changed,
negativePromptChanged,
positivePrompt2Changed,
positivePromptChanged,
refinerModelChanged,
selectBase,
setCfgRescaleMultiplier,
setCfgScale,
setClipSkip,
setGuidance,
setImg2imgStrength,
setRefinerCFGScale,
@@ -29,6 +30,7 @@ import {
setSeamlessYAxis,
setSeed,
setSteps,
shouldConcatPromptsChanged,
vaeSelected,
widthChanged,
} from 'features/controlLayers/store/paramsSlice';
@@ -42,12 +44,12 @@ import { modelSelected } from 'features/parameters/store/actions';
import type {
ParameterCFGRescaleMultiplier,
ParameterCFGScale,
ParameterCLIPSkip,
ParameterGuidance,
ParameterHeight,
ParameterModel,
ParameterNegativePrompt,
ParameterPositivePrompt,
ParameterPositiveStylePromptSDXL,
ParameterScheduler,
ParameterSDXLRefinerModel,
ParameterSDXLRefinerNegativeAestheticScore,
@@ -65,11 +67,12 @@ import {
zLoRAWeight,
zParameterCFGRescaleMultiplier,
zParameterCFGScale,
zParameterCLIPSkip,
zParameterGuidance,
zParameterImageDimension,
zParameterNegativePrompt,
zParameterNegativeStylePromptSDXL,
zParameterPositivePrompt,
zParameterPositiveStylePromptSDXL,
zParameterScheduler,
zParameterSDXLRefinerNegativeAestheticScore,
zParameterSDXLRefinerPositiveAestheticScore,
@@ -286,6 +289,46 @@ const NegativePrompt: SingleMetadataHandler<ParameterNegativePrompt> = {
};
//#endregion Negative Prompt
//#region SDXL Positive Style Prompt
const PositiveStylePrompt: SingleMetadataHandler<ParameterPositiveStylePromptSDXL> = {
[SingleMetadataKey]: true,
type: 'PositiveStylePrompt',
parse: (metadata, _store) => {
const raw = getProperty(metadata, 'positive_style_prompt');
const parsed = zParameterPositiveStylePromptSDXL.parse(raw);
return Promise.resolve(parsed);
},
recall: (value, store) => {
store.dispatch(positivePrompt2Changed(value));
},
i18nKey: 'sdxl.posStylePrompt',
LabelComponent: MetadataLabel,
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterPositiveStylePromptSDXL>) => (
<MetadataPrimitiveValue value={value} />
),
};
//#endregion SDXL Positive Style Prompt
//#region SDXL Negative Style Prompt
const NegativeStylePrompt: SingleMetadataHandler<ParameterPositiveStylePromptSDXL> = {
[SingleMetadataKey]: true,
type: 'NegativeStylePrompt',
parse: (metadata, _store) => {
const raw = getProperty(metadata, 'negative_style_prompt');
const parsed = zParameterNegativeStylePromptSDXL.parse(raw);
return Promise.resolve(parsed);
},
recall: (value, store) => {
store.dispatch(negativePrompt2Changed(value));
},
i18nKey: 'sdxl.negStylePrompt',
LabelComponent: MetadataLabel,
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterPositiveStylePromptSDXL>) => (
<MetadataPrimitiveValue value={value} />
),
};
//#endregion SDXL Negative Style Prompt
//#region CFG Scale
const CFGScale: SingleMetadataHandler<ParameterCFGScale> = {
[SingleMetadataKey]: true,
@@ -324,24 +367,6 @@ const CFGRescaleMultiplier: SingleMetadataHandler<ParameterCFGRescaleMultiplier>
};
//#endregion CFG Rescale Multiplier
//#region CLIP Skip
const CLIPSkip: SingleMetadataHandler<ParameterCLIPSkip> = {
[SingleMetadataKey]: true,
type: 'CLIPSkip',
parse: (metadata, _store) => {
const raw = getProperty(metadata, 'clip_skip');
const parsed = zParameterCLIPSkip.parse(raw);
return Promise.resolve(parsed);
},
recall: (value, store) => {
store.dispatch(setClipSkip(value));
},
i18nKey: 'metadata.clipSkip',
LabelComponent: MetadataLabel,
ValueComponent: ({ value }: SingleMetadataValueProps<ParameterCLIPSkip>) => <MetadataPrimitiveValue value={value} />,
};
//#endregion CLIP Skip
//#region Guidance
const Guidance: SingleMetadataHandler<ParameterGuidance> = {
[SingleMetadataKey]: true,
@@ -902,9 +927,10 @@ export const MetadataHandlers = {
GenerationMode,
PositivePrompt,
NegativePrompt,
PositiveStylePrompt,
NegativeStylePrompt,
CFGScale,
CFGRescaleMultiplier,
CLIPSkip,
Guidance,
Scheduler,
Width,
@@ -1026,6 +1052,26 @@ const recallByHandlers = async (arg: {
}
}
// We may need to update the prompt concat flag based on the recalled prompts
const positivePrompt = recalled.get(MetadataHandlers.PositivePrompt);
const negativePrompt = recalled.get(MetadataHandlers.NegativePrompt);
const positiveStylePrompt = recalled.get(MetadataHandlers.PositiveStylePrompt);
const negativeStylePrompt = recalled.get(MetadataHandlers.NegativeStylePrompt);
// The values will be undefined if the handler was not recalled
if (
positivePrompt !== undefined ||
negativePrompt !== undefined ||
positiveStylePrompt !== undefined ||
negativeStylePrompt !== undefined
) {
const concat =
(Boolean(positiveStylePrompt) && positiveStylePrompt === positivePrompt) ||
(Boolean(negativeStylePrompt) && negativeStylePrompt === negativePrompt);
store.dispatch(shouldConcatPromptsChanged(concat));
}
if (!silent) {
if (recalled.size > 0) {
toast({
@@ -1048,7 +1094,12 @@ const recallByHandlers = async (arg: {
const recallPrompts = async (metadata: unknown, store: AppStore) => {
const recalled = await recallByHandlers({
metadata,
handlers: [MetadataHandlers.PositivePrompt, MetadataHandlers.NegativePrompt],
handlers: [
MetadataHandlers.PositivePrompt,
MetadataHandlers.NegativePrompt,
MetadataHandlers.PositiveStylePrompt,
MetadataHandlers.NegativeStylePrompt,
],
store,
silent: true,
});

View File

@@ -2,7 +2,7 @@ import { Button, Flex, Grid, Heading, Text } from '@invoke-ai/ui-library';
import ScrollableContent from 'common/components/OverlayScrollbars/ScrollableContent';
import { map } from 'es-toolkit/compat';
import { setInstallModelsTabByName } from 'features/modelManagerV2/store/installModelsStore';
import { StarterBundleButton } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundleButton';
import { StarterBundleButton } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundle';
import { StarterBundleTooltipContentCompact } from 'features/modelManagerV2/subpanels/AddModelPanel/StarterModels/StarterBundleTooltipContentCompact';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';

View File

@@ -0,0 +1,21 @@
import type { ButtonProps } from '@invoke-ai/ui-library';
import { Button } from '@invoke-ai/ui-library';
import { useStarterBundleInstall } from 'features/modelManagerV2/hooks/useStarterBundleInstall';
import { useStarterBundleInstallStatus } from 'features/modelManagerV2/hooks/useStarterBundleInstallStatus';
import { useCallback } from 'react';
import type { S } from 'services/api/types';
export const StarterBundleButton = ({ bundle, ...rest }: { bundle: S['StarterModelBundle'] } & ButtonProps) => {
const { installBundle } = useStarterBundleInstall();
const { install } = useStarterBundleInstallStatus(bundle);
const handleClickBundle = useCallback(() => {
installBundle(bundle);
}, [installBundle, bundle]);
return (
<Button onClick={handleClickBundle} isDisabled={install.length === 0} {...rest}>
{bundle.name}
</Button>
);
};

View File

@@ -1,61 +0,0 @@
import type { ButtonProps } from '@invoke-ai/ui-library';
import {
Button,
ConfirmationAlertDialog,
Flex,
ListItem,
Text,
UnorderedList,
useDisclosure,
} from '@invoke-ai/ui-library';
import { useStarterBundleInstall } from 'features/modelManagerV2/hooks/useStarterBundleInstall';
import { useStarterBundleInstallStatus } from 'features/modelManagerV2/hooks/useStarterBundleInstallStatus';
import { t } from 'i18next';
import type { MouseEvent } from 'react';
import { useCallback } from 'react';
import type { S } from 'services/api/types';
export const StarterBundleButton = ({ bundle, ...rest }: { bundle: S['StarterModelBundle'] } & ButtonProps) => {
const { installBundle } = useStarterBundleInstall();
const { install } = useStarterBundleInstallStatus(bundle);
const { isOpen, onOpen, onClose } = useDisclosure();
const onClickBundle = useCallback(
(e: MouseEvent<HTMLButtonElement>) => {
e.stopPropagation();
onOpen();
},
[onOpen]
);
const handleInstallBundle = useCallback(() => {
installBundle(bundle);
}, [installBundle, bundle]);
return (
<>
<Button onClick={onClickBundle} isDisabled={install.length === 0} {...rest}>
{bundle.name}
</Button>
<ConfirmationAlertDialog
isOpen={isOpen}
onClose={onClose}
title={t('modelManager.installBundle')}
acceptCallback={handleInstallBundle}
acceptButtonText={t('modelManager.install')}
useInert={false}
>
<Flex rowGap={4} flexDirection="column">
<Text fontWeight="bold">{t('modelManager.installBundleMsg1', { bundleName: bundle.name })}</Text>
<Text>{t('modelManager.installBundleMsg2', { count: install.length })}</Text>
<UnorderedList>
{install.map((model, index) => (
<ListItem key={index} wordBreak="break-all">
<Text>{model.config.name}</Text>
</ListItem>
))}
</UnorderedList>
</Flex>
</ConfirmationAlertDialog>
</>
);
};

View File

@@ -7,7 +7,7 @@ import { useTranslation } from 'react-i18next';
import { PiInfoBold, PiXBold } from 'react-icons/pi';
import type { GetStarterModelsResponse } from 'services/api/endpoints/models';
import { StarterBundleButton } from './StarterBundleButton';
import { StarterBundleButton } from './StarterBundle';
import { StarterBundleTooltipContent } from './StarterBundleTooltipContent';
import { StarterModelsResultItem } from './StarterModelsResultItem';

View File

@@ -1,7 +1,7 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Flex } from '@invoke-ai/ui-library';
import InvocationNodeTitle from 'features/nodes/components/flow/nodes/common/InvocationNodeTitle';
import NodeCollapseButton from 'features/nodes/components/flow/nodes/common/NodeCollapseButton';
import NodeTitle from 'features/nodes/components/flow/nodes/common/NodeTitle';
import InvocationNodeClassificationIcon from 'features/nodes/components/flow/nodes/Invocation/InvocationNodeClassificationIcon';
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
import { memo } from 'react';
@@ -35,7 +35,7 @@ const InvocationNodeHeader = ({ nodeId, isOpen }: Props) => {
<Flex sx={sx} data-is-open={isOpen} data-is-invalid={isInvalid}>
<NodeCollapseButton nodeId={nodeId} isOpen={isOpen} />
<InvocationNodeClassificationIcon nodeId={nodeId} />
<InvocationNodeTitle nodeId={nodeId} />
<NodeTitle nodeId={nodeId} />
<Flex alignItems="center">
<InvocationNodeStatusIndicator nodeId={nodeId} />
<InvocationNodeInfoIcon nodeId={nodeId} />

View File

@@ -11,7 +11,7 @@ type Props = {
export const InputFieldAddToFormRoot = memo(({ nodeId, fieldName }: Props) => {
const { t } = useTranslation();
const { isAddedToRoot, addNodeFieldToRoot } = useAddNodeFieldToRoot(nodeId, fieldName);
const addToRoot = useAddNodeFieldToRoot(nodeId, fieldName);
return (
<IconButton
@@ -21,8 +21,7 @@ export const InputFieldAddToFormRoot = memo(({ nodeId, fieldName }: Props) => {
icon={<PiPlusBold />}
pointerEvents="auto"
size="xs"
onClick={addNodeFieldToRoot}
isDisabled={isAddedToRoot}
onClick={addToRoot}
/>
);
});

View File

@@ -30,12 +30,12 @@ const labelSx: SystemStyleObject = {
_hover: {
fontWeight: 'semibold !important',
},
'&[data-is-added-to-form="true"]': {
color: 'blue.300',
},
'&[data-is-invalid="true"]': {
color: 'error.300',
},
'&[data-is-added-to-form="true"]': {
color: 'blue.300',
},
'&[data-is-disabled="true"]': {
opacity: 0.5,
},
@@ -106,7 +106,7 @@ export const InputFieldTitle = memo((props: Props) => {
onDoubleClick={onDoubleClick}
>
{editable.value}
{isAddedToForm && <Icon as={PiLinkBold} color={isInvalid ? 'error.300' : 'blue.200'} ml={1} />}
{isAddedToForm && <Icon as={PiLinkBold} color="blue.200" ml={1} />}
</Text>
</Tooltip>
);

View File

@@ -1,32 +1,22 @@
import type { SystemStyleObject } from '@invoke-ai/ui-library';
import { Flex, Input, Text } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEditable } from 'common/hooks/useEditable';
import { useBatchGroupColorToken } from 'features/nodes/hooks/useBatchGroupColorToken';
import { useBatchGroupId } from 'features/nodes/hooks/useBatchGroupId';
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
import { useNodeTemplateTitleSafe } from 'features/nodes/hooks/useNodeTemplateTitleSafe';
import { useNodeUserTitleSafe } from 'features/nodes/hooks/useNodeUserTitleSafe';
import { nodeLabelChanged } from 'features/nodes/store/nodesSlice';
import { NO_DRAG_CLASS, NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
import { NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
const labelSx: SystemStyleObject = {
fontWeight: 'semibold',
'&[data-is-invalid="true"]': {
color: 'error.300',
},
};
type Props = {
nodeId: string;
title?: string;
};
const InvocationNodeTitle = ({ nodeId, title }: Props) => {
const NodeTitle = ({ nodeId, title }: Props) => {
const dispatch = useAppDispatch();
const isInvalid = useNodeHasErrors();
const label = useNodeUserTitleSafe();
const batchGroupId = useBatchGroupId(nodeId);
const batchGroupColorToken = useBatchGroupColorToken(batchGroupId);
@@ -63,18 +53,16 @@ const InvocationNodeTitle = ({ nodeId, title }: Props) => {
{!editable.isEditing && (
<Text
className={NO_FIT_ON_DOUBLE_CLICK_CLASS}
sx={labelSx}
noOfLines={1}
fontWeight="semibold"
color={batchGroupColorToken}
data-is-invalid={isInvalid}
onDoubleClick={editable.startEditing}
noOfLines={1}
>
{titleWithBatchGroupId}
</Text>
)}
{editable.isEditing && (
<Input
className={NO_DRAG_CLASS}
ref={inputRef}
{...editable.inputProps}
variant="outline"
@@ -85,4 +73,4 @@ const InvocationNodeTitle = ({ nodeId, title }: Props) => {
);
};
export default memo(InvocationNodeTitle);
export default memo(NodeTitle);

View File

@@ -5,7 +5,6 @@ import { useInvocationNodeContext } from 'features/nodes/components/flow/nodes/I
import { useIsWorkflowEditorLocked } from 'features/nodes/hooks/useIsWorkflowEditorLocked';
import { useMouseOverFormField, useMouseOverNode } from 'features/nodes/hooks/useMouseOverNode';
import { useNodeExecutionState } from 'features/nodes/hooks/useNodeExecutionState';
import { useNodeHasErrors } from 'features/nodes/hooks/useNodeIsInvalid';
import { useZoomToNode } from 'features/nodes/hooks/useZoomToNode';
import { selectNodeOpacity } from 'features/nodes/store/workflowSettingsSlice';
import { DRAG_HANDLE_CLASSNAME, NO_FIT_ON_DOUBLE_CLICK_CLASS, NODE_WIDTH } from 'features/nodes/types/constants';
@@ -30,8 +29,6 @@ const NodeWrapper = (props: NodeWrapperProps) => {
const mouseOverFormField = useMouseOverFormField(nodeId);
const zoomToNode = useZoomToNode(nodeId);
const isLocked = useIsWorkflowEditorLocked();
const isInvalid = useNodeHasErrors();
const hasError = isMissingTemplate || isInvalid;
const executionState = useNodeExecutionState(nodeId);
const isInProgress = executionState?.status === zNodeStatus.enum.IN_PROGRESS;
@@ -77,7 +74,7 @@ const NodeWrapper = (props: NodeWrapperProps) => {
data-is-editor-locked={isLocked}
data-is-selected={selected}
data-is-mouse-over-form-field={mouseOverFormField.isMouseOverFormField}
data-status={hasError ? 'error' : needsUpdate ? 'warning' : undefined}
data-status={isMissingTemplate ? 'error' : needsUpdate ? 'warning' : undefined}
>
<Box sx={shadowsSx} />
<Box sx={inProgressSx} data-is-in-progress={isInProgress} />

View File

@@ -4,7 +4,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useEditable } from 'common/hooks/useEditable';
import { nodeLabelChanged } from 'features/nodes/store/nodesSlice';
import { selectNodes } from 'features/nodes/store/selectors';
import { NO_DRAG_CLASS, NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
import { NO_FIT_ON_DOUBLE_CLICK_CLASS } from 'features/nodes/types/constants';
import { memo, useCallback, useMemo, useRef } from 'react';
import { useTranslation } from 'react-i18next';
@@ -56,7 +56,6 @@ const NonInvocationNodeTitle = ({ nodeId, title }: Props) => {
)}
{editable.isEditing && (
<Input
className={NO_DRAG_CLASS}
ref={inputRef}
{...editable.inputProps}
variant="outline"

View File

@@ -2,20 +2,15 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { useInputFieldInstance } from 'features/nodes/hooks/useInputFieldInstance';
import { useInputFieldTemplateOrThrow } from 'features/nodes/hooks/useInputFieldTemplateOrThrow';
import { formElementAdded } from 'features/nodes/store/nodesSlice';
import { buildSelectWorkflowFormNodeExists, selectFormRootElementId } from 'features/nodes/store/selectors';
import { selectFormRootElementId } from 'features/nodes/store/selectors';
import { buildNodeFieldElement } from 'features/nodes/types/workflow';
import { useCallback, useMemo } from 'react';
import { useCallback } from 'react';
export const useAddNodeFieldToRoot = (nodeId: string, fieldName: string) => {
const dispatch = useAppDispatch();
const rootElementId = useAppSelector(selectFormRootElementId);
const fieldTemplate = useInputFieldTemplateOrThrow(fieldName);
const field = useInputFieldInstance(fieldName);
const selectWorkflowFormNodeExists = useMemo(
() => buildSelectWorkflowFormNodeExists(nodeId, fieldName),
[nodeId, fieldName]
);
const isAddedToRoot = useAppSelector(selectWorkflowFormNodeExists);
const addNodeFieldToRoot = useCallback(() => {
const element = buildNodeFieldElement(nodeId, fieldName, fieldTemplate.type);
@@ -28,5 +23,5 @@ export const useAddNodeFieldToRoot = (nodeId: string, fieldName: string) => {
);
}, [nodeId, fieldName, fieldTemplate.type, dispatch, rootElementId, field.value]);
return { isAddedToRoot, addNodeFieldToRoot };
return addNodeFieldToRoot;
};

View File

@@ -103,7 +103,3 @@ export const selectWorkflowFormNodeFieldFieldIdentifiersDeduped = createSelector
);
export const buildSelectElement = (id: string) => createNodesSelector((workflow) => workflow.form?.elements[id]);
export const buildSelectWorkflowFormNodeExists = (nodeId: string, fieldName: string) =>
createSelector(selectWorkflowFormNodeFieldFieldIdentifiersDeduped, (identifiers) =>
identifiers.some((identifier) => identifier.nodeId === nodeId && identifier.fieldName === fieldName)
);

View File

@@ -115,7 +115,7 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
type: 'sdxl_compel_prompt',
id: getPrefixedId('neg_cond'),
prompt: prompts.negative,
style: prompts.negative,
style: prompts.negativeStyle,
});
modelLoader = g.addNode({
type: 'sdxl_model_loader',
@@ -130,14 +130,21 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
g.addEdge(modelLoader, 'unet', tiledMultidiffusion, 'unet');
g.addEdge(positivePrompt, 'value', posCond, 'prompt');
g.addEdge(positivePrompt, 'value', posCond, 'style');
addSDXLLoRAs(state, g, tiledMultidiffusion, modelLoader, null, posCond, negCond);
g.upsertMetadata({
negative_prompt: prompts.negative,
negative_style_prompt: prompts.negativeStyle,
});
g.addEdgeToMetadata(positivePrompt, 'value', 'positive_prompt');
if (prompts.useMainPromptsForStyle) {
g.addEdge(positivePrompt, 'value', posCond, 'style');
g.addEdgeToMetadata(positivePrompt, 'value', 'positive_style_prompt');
} else {
posCond.style = prompts.positiveStyle;
g.upsertMetadata({ positive_style_prompt: prompts.positiveStyle });
}
} else {
const prompts = selectPresetModifiedPrompts(state);
@@ -172,8 +179,6 @@ export const buildMultidiffusionUpscaleGraph = async (state: RootState): Promise
g.upsertMetadata({
negative_prompt: prompts.negative,
});
g.addEdgeToMetadata(positivePrompt, 'value', 'positive_prompt');
}
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);

View File

@@ -156,24 +156,17 @@ export const buildFLUXGraph = async (arg: GraphBuilderArg): Promise<GraphBuilder
.filter((entity) => getGlobalReferenceImageWarnings(entity, model).length === 0);
if (validFLUXKontextConfigs.length > 0) {
const fluxKontextCollect = g.addNode({
type: 'collect',
id: getPrefixedId('flux_kontext_collect'),
const kontextConcatenator = g.addNode({
id: getPrefixedId('flux_kontext_image_prep'),
type: 'flux_kontext_image_prep',
images: validFLUXKontextConfigs.map(({ config }) => zImageField.parse(config.image)),
});
for (const { config } of validFLUXKontextConfigs) {
const kontextImagePrep = g.addNode({
id: getPrefixedId('flux_kontext_image_prep'),
type: 'flux_kontext_image_prep',
images: [zImageField.parse(config.image)],
});
const kontextConditioning = g.addNode({
type: 'flux_kontext',
id: getPrefixedId('flux_kontext'),
});
g.addEdge(kontextImagePrep, 'image', kontextConditioning, 'image');
g.addEdge(kontextConditioning, 'kontext_cond', fluxKontextCollect, 'item');
}
g.addEdge(fluxKontextCollect, 'collection', denoise, 'kontext_conditioning');
const kontextConditioning = g.addNode({
type: 'flux_kontext',
id: getPrefixedId('flux_kontext'),
});
g.addEdge(kontextConcatenator, 'image', kontextConditioning, 'image');
g.addEdge(kontextConditioning, 'kontext_cond', denoise, 'kontext_conditioning');
g.upsertMetadata({ ref_images: [validFLUXKontextConfigs] }, 'merge');
}

View File

@@ -78,7 +78,7 @@ export const buildSDXLGraph = async (arg: GraphBuilderArg): Promise<GraphBuilder
type: 'sdxl_compel_prompt',
id: getPrefixedId('neg_cond'),
prompt: prompts.negative,
style: prompts.negative,
style: prompts.useMainPromptsForStyle ? prompts.negative : prompts.negativeStyle,
});
const negCondCollect = g.addNode({
type: 'collect',
@@ -123,8 +123,6 @@ export const buildSDXLGraph = async (arg: GraphBuilderArg): Promise<GraphBuilder
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
g.addEdge(positivePrompt, 'value', posCond, 'prompt');
g.addEdge(positivePrompt, 'value', posCond, 'style');
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
@@ -143,11 +141,20 @@ export const buildSDXLGraph = async (arg: GraphBuilderArg): Promise<GraphBuilder
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
scheduler,
negative_prompt: prompts.negative,
negative_style_prompt: prompts.useMainPromptsForStyle ? prompts.negative : prompts.negativeStyle,
vae: vae ?? undefined,
});
g.addEdgeToMetadata(seed, 'value', 'seed');
g.addEdgeToMetadata(positivePrompt, 'value', 'positive_prompt');
if (prompts.useMainPromptsForStyle) {
g.addEdge(positivePrompt, 'value', posCond, 'style');
g.addEdgeToMetadata(positivePrompt, 'value', 'positive_style_prompt');
} else {
posCond.style = prompts.positiveStyle;
g.upsertMetadata({ positive_style_prompt: prompts.positiveStyle });
}
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
addSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);

View File

@@ -85,7 +85,7 @@ export const selectPresetModifiedPrompts = createSelector(
selectListStylePresetsRequestState,
(params, stylePresetSlice, listStylePresetsRequestState) => {
const negativePrompt = params.negativePrompt ?? '';
const { positivePrompt } = params;
const { positivePrompt, positivePrompt2, negativePrompt2, shouldConcatPrompts } = params;
const { activeStylePresetId } = stylePresetSlice;
if (activeStylePresetId) {
@@ -107,6 +107,9 @@ export const selectPresetModifiedPrompts = createSelector(
return {
positive: presetModifiedPositivePrompt,
negative: presetModifiedNegativePrompt,
positiveStyle: positivePrompt2,
negativeStyle: negativePrompt2,
useMainPromptsForStyle: shouldConcatPrompts,
};
}
}
@@ -114,6 +117,9 @@ export const selectPresetModifiedPrompts = createSelector(
return {
positive: positivePrompt,
negative: negativePrompt,
positiveStyle: positivePrompt2,
negativeStyle: negativePrompt2,
useMainPromptsForStyle: shouldConcatPrompts,
};
}
);

View File

@@ -1,14 +1,14 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { InformationalPopover } from 'common/components/InformationalPopover/InformationalPopover';
import { selectCLIPSkip, selectModel, setClipSkip } from 'features/controlLayers/store/paramsSlice';
import { selectCLIPSKip, selectModel, setClipSkip } from 'features/controlLayers/store/paramsSlice';
import { CLIP_SKIP_MAP } from 'features/parameters/types/constants';
import { selectCLIPSkipConfig } from 'features/system/store/configSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
const ParamClipSkip = () => {
const clipSkip = useAppSelector(selectCLIPSkip);
const clipSkip = useAppSelector(selectCLIPSKip);
const config = useAppSelector(selectCLIPSkipConfig);
const model = useAppSelector(selectModel);

View File

@@ -2,11 +2,9 @@ import { IconButton, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { negativePromptChanged, selectHasNegativePrompt } from 'features/controlLayers/store/paramsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiPlusMinusBold } from 'react-icons/pi';
export const NegativePromptToggleButton = memo(() => {
const { t } = useTranslation();
const hasNegativePrompt = useAppSelector(selectHasNegativePrompt);
const dispatch = useAppDispatch();
@@ -20,8 +18,8 @@ export const NegativePromptToggleButton = memo(() => {
}, [dispatch, hasNegativePrompt]);
const label = useMemo(
() => (hasNegativePrompt ? t('common.removeNegativePrompt') : t('common.addNegativePrompt')),
[hasNegativePrompt, t]
() => (hasNegativePrompt ? 'Remove Negative Prompt' : 'Add Negative Prompt'),
[hasNegativePrompt]
);
return (

View File

@@ -4,6 +4,7 @@ import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { usePersistedTextAreaSize } from 'common/hooks/usePersistedTextareaSize';
import {
positivePromptChanged,
selectBase,
selectModelSupportsNegativePrompt,
selectPositivePrompt,
} from 'features/controlLayers/store/paramsSlice';
@@ -20,6 +21,7 @@ import { PromptExpansionOverlay } from 'features/prompt/PromptExpansion/PromptEx
import { promptExpansionApi } from 'features/prompt/PromptExpansion/state';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { SDXLConcatButton } from 'features/sdxl/components/SDXLPrompts/SDXLConcatButton';
import {
selectStylePresetActivePresetId,
selectStylePresetViewMode,
@@ -40,6 +42,7 @@ const persistOptions: Parameters<typeof usePersistedTextAreaSize>[2] = {
export const ParamPositivePrompt = memo(() => {
const dispatch = useAppDispatch();
const prompt = useAppSelector(selectPositivePrompt);
const baseModel = useAppSelector(selectBase);
const viewMode = useAppSelector(selectStylePresetViewMode);
const activeStylePresetId = useAppSelector(selectStylePresetActivePresetId);
const modelSupportsNegativePrompt = useAppSelector(selectModelSupportsNegativePrompt);
@@ -115,6 +118,7 @@ export const ParamPositivePrompt = memo(() => {
<PromptOverlayButtonWrapper>
<Flex flexDir="column" gap={2} justifyContent="flex-start" alignItems="center">
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
{baseModel === 'sdxl' && <SDXLConcatButton />}
<ShowDynamicPromptsPreviewButton />
{modelSupportsNegativePrompt && <NegativePromptToggleButton />}
</Flex>

View File

@@ -1,18 +1,33 @@
import { Flex } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { RefImageList } from 'features/controlLayers/components/RefImage/RefImageList';
import { selectHasNegativePrompt, selectModelSupportsNegativePrompt } from 'features/controlLayers/store/paramsSlice';
import {
createParamsSelector,
selectHasNegativePrompt,
selectModelSupportsNegativePrompt,
} from 'features/controlLayers/store/paramsSlice';
import { ParamNegativePrompt } from 'features/parameters/components/Core/ParamNegativePrompt';
import { ParamPositivePrompt } from 'features/parameters/components/Core/ParamPositivePrompt';
import { ParamSDXLNegativeStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLNegativeStylePrompt';
import { ParamSDXLPositiveStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLPositiveStylePrompt';
import { memo } from 'react';
const selectWithStylePrompts = createParamsSelector((params) => {
const isSDXL = params.model?.base === 'sdxl';
const shouldConcatPrompts = params.shouldConcatPrompts;
return isSDXL && !shouldConcatPrompts;
});
export const Prompts = memo(() => {
const withStylePrompts = useAppSelector(selectWithStylePrompts);
const modelSupportsNegativePrompt = useAppSelector(selectModelSupportsNegativePrompt);
const hasNegativePrompt = useAppSelector(selectHasNegativePrompt);
return (
<Flex flexDir="column" gap={2}>
<ParamPositivePrompt />
{withStylePrompts && <ParamSDXLPositiveStylePrompt />}
{modelSupportsNegativePrompt && hasNegativePrompt && <ParamNegativePrompt />}
{withStylePrompts && <ParamSDXLNegativeStylePrompt />}
<RefImageList />
</Flex>
);

View File

@@ -1,17 +1,32 @@
import { Flex } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { selectHasNegativePrompt, selectModelSupportsNegativePrompt } from 'features/controlLayers/store/paramsSlice';
import {
createParamsSelector,
selectHasNegativePrompt,
selectModelSupportsNegativePrompt,
} from 'features/controlLayers/store/paramsSlice';
import { ParamNegativePrompt } from 'features/parameters/components/Core/ParamNegativePrompt';
import { ParamPositivePrompt } from 'features/parameters/components/Core/ParamPositivePrompt';
import { ParamSDXLNegativeStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLNegativeStylePrompt';
import { ParamSDXLPositiveStylePrompt } from 'features/sdxl/components/SDXLPrompts/ParamSDXLPositiveStylePrompt';
import { memo } from 'react';
const selectWithStylePrompts = createParamsSelector((params) => {
const isSDXL = params.model?.base === 'sdxl';
const shouldConcatPrompts = params.shouldConcatPrompts;
return isSDXL && !shouldConcatPrompts;
});
export const UpscalePrompts = memo(() => {
const withStylePrompts = useAppSelector(selectWithStylePrompts);
const modelSupportsNegativePrompt = useAppSelector(selectModelSupportsNegativePrompt);
const hasNegativePrompt = useAppSelector(selectHasNegativePrompt);
return (
<Flex flexDir="column" gap={2}>
<ParamPositivePrompt />
{withStylePrompts && <ParamSDXLPositiveStylePrompt />}
{modelSupportsNegativePrompt && hasNegativePrompt && <ParamNegativePrompt />}
{withStylePrompts && <ParamSDXLNegativeStylePrompt />}
</Flex>
);
});

View File

@@ -33,6 +33,16 @@ export const [zParameterNegativePrompt, isParameterNegativePrompt] = buildParame
export type ParameterNegativePrompt = z.infer<typeof zParameterNegativePrompt>;
// #endregion
// #region Positive style prompt (SDXL)
export const [zParameterPositiveStylePromptSDXL, isParameterPositiveStylePromptSDXL] = buildParameter(z.string());
export type ParameterPositiveStylePromptSDXL = z.infer<typeof zParameterPositiveStylePromptSDXL>;
// #endregion
// #region Positive style prompt (SDXL)
export const [zParameterNegativeStylePromptSDXL, isParameterNegativeStylePromptSDXL] = buildParameter(z.string());
export type ParameterNegativeStylePromptSDXL = z.infer<typeof zParameterNegativeStylePromptSDXL>;
// #endregion
// #region Steps
export const [zParameterSteps, isParameterSteps] = buildParameter(z.number().int().min(1));
export type ParameterSteps = z.infer<typeof zParameterSteps>;
@@ -193,8 +203,3 @@ export type ParameterCanvasCoherenceMode = z.infer<typeof zParameterCanvasCohere
export const [zLoRAWeight, isParameterLoRAWeight] = buildParameter(z.number());
export type ParameterLoRAWeight = z.infer<typeof zLoRAWeight>;
// #endregion
// #region CLIP skip
export const [zParameterCLIPSkip, isParameterCLIPSkip] = buildParameter(z.number().int().min(0));
export type ParameterCLIPSkip = z.infer<typeof zParameterCLIPSkip>;
// #endregion

View File

@@ -0,0 +1,65 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { usePersistedTextAreaSize } from 'common/hooks/usePersistedTextareaSize';
import { negativePrompt2Changed, selectNegativePrompt2 } from 'features/controlLayers/store/paramsSlice';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
const persistOptions: Parameters<typeof usePersistedTextAreaSize>[2] = {
trackWidth: false,
trackHeight: true,
};
export const ParamSDXLNegativeStylePrompt = memo(() => {
const dispatch = useAppDispatch();
const prompt = useAppSelector(selectNegativePrompt2);
const textareaRef = useRef<HTMLTextAreaElement>(null);
usePersistedTextAreaSize('negative_style_prompt', textareaRef, persistOptions);
const { t } = useTranslation();
const handleChange = useCallback(
(v: string) => {
dispatch(negativePrompt2Changed(v));
},
[dispatch]
);
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
prompt,
textareaRef: textareaRef,
onChange: handleChange,
});
return (
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
<Box pos="relative">
<Textarea
className="negative-style-prompt-textarea"
name="prompt"
ref={textareaRef}
value={prompt}
onChange={onChange}
onKeyDown={onKeyDown}
fontSize="sm"
variant="darkFilled"
minH={24}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('sdxl.negStylePrompt')} />
</Box>
</PromptPopover>
);
});
ParamSDXLNegativeStylePrompt.displayName = 'ParamSDXLNegativeStylePrompt';

View File

@@ -0,0 +1,65 @@
import { Box, Textarea } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { usePersistedTextAreaSize } from 'common/hooks/usePersistedTextareaSize';
import { positivePrompt2Changed, selectPositivePrompt2 } from 'features/controlLayers/store/paramsSlice';
import { PromptLabel } from 'features/parameters/components/Prompts/PromptLabel';
import { PromptOverlayButtonWrapper } from 'features/parameters/components/Prompts/PromptOverlayButtonWrapper';
import { AddPromptTriggerButton } from 'features/prompt/AddPromptTriggerButton';
import { PromptPopover } from 'features/prompt/PromptPopover';
import { usePrompt } from 'features/prompt/usePrompt';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
const persistOptions: Parameters<typeof usePersistedTextAreaSize>[2] = {
trackWidth: false,
trackHeight: true,
};
export const ParamSDXLPositiveStylePrompt = memo(() => {
const dispatch = useAppDispatch();
const prompt = useAppSelector(selectPositivePrompt2);
const textareaRef = useRef<HTMLTextAreaElement>(null);
usePersistedTextAreaSize('positive_style_prompt', textareaRef, persistOptions);
const { t } = useTranslation();
const handleChange = useCallback(
(v: string) => {
dispatch(positivePrompt2Changed(v));
},
[dispatch]
);
const { onChange, isOpen, onClose, onOpen, onSelect, onKeyDown } = usePrompt({
prompt,
textareaRef: textareaRef,
onChange: handleChange,
});
return (
<PromptPopover isOpen={isOpen} onClose={onClose} onSelect={onSelect} width={textareaRef.current?.clientWidth}>
<Box pos="relative">
<Textarea
className="positive-style-prompt-textarea"
name="prompt"
ref={textareaRef}
value={prompt}
onChange={onChange}
onKeyDown={onKeyDown}
fontSize="sm"
variant="darkFilled"
minH={24}
borderTopWidth={24} // This prevents the prompt from being hidden behind the header
paddingInlineEnd={10}
paddingInlineStart={3}
paddingTop={0}
paddingBottom={3}
/>
<PromptOverlayButtonWrapper>
<AddPromptTriggerButton isOpen={isOpen} onOpen={onOpen} />
</PromptOverlayButtonWrapper>
<PromptLabel label={t('sdxl.posStylePrompt')} />
</Box>
</PromptPopover>
);
});
ParamSDXLPositiveStylePrompt.displayName = 'ParamSDXLPositiveStylePrompt';

View File

@@ -0,0 +1,37 @@
import { IconButton, Tooltip } from '@invoke-ai/ui-library';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { selectShouldConcatPrompts, shouldConcatPromptsChanged } from 'features/controlLayers/store/paramsSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { PiLinkSimpleBold, PiLinkSimpleBreakBold } from 'react-icons/pi';
export const SDXLConcatButton = memo(() => {
const shouldConcatPrompts = useAppSelector(selectShouldConcatPrompts);
const dispatch = useAppDispatch();
const { t } = useTranslation();
const handleShouldConcatPromptChange = useCallback(() => {
dispatch(shouldConcatPromptsChanged(!shouldConcatPrompts));
}, [dispatch, shouldConcatPrompts]);
const label = useMemo(
() => (shouldConcatPrompts ? t('sdxl.concatPromptStyle') : t('sdxl.freePromptStyle')),
[shouldConcatPrompts, t]
);
return (
<Tooltip label={label}>
<IconButton
aria-label={label}
onClick={handleShouldConcatPromptChange}
icon={shouldConcatPrompts ? <PiLinkSimpleBold size={14} /> : <PiLinkSimpleBreakBold size={14} />}
variant="promptOverlay"
fontSize={12}
px={0.5}
/>
</Tooltip>
);
});
SDXLConcatButton.displayName = 'SDXLConcatButton';

View File

@@ -126,7 +126,6 @@ export const useHotkeyData = (): HotkeysData => {
addHotkey('canvas', 'cancelSegmentAnything', ['esc']);
addHotkey('canvas', 'toggleNonRasterLayers', ['shift+h']);
addHotkey('canvas', 'fitBboxToMasks', ['shift+b']);
addHotkey('canvas', 'toggleBbox', ['shift+o']);
// Workflows
addHotkey('workflows', 'addNode', ['shift+a', 'space']);

View File

@@ -3,7 +3,7 @@ import { useAppSelector } from 'app/store/storeHooks';
import { useFocusRegion, useIsRegionFocused } from 'common/hooks/focus';
import type { IDockviewPanelProps, IGridviewPanelProps } from 'dockview';
import { selectSystemShouldEnableHighlightFocusedRegions } from 'features/system/store/systemSlice';
import type { DockviewPanelParameters, GridviewPanelParameters } from 'features/ui/layouts/auto-layout-context';
import type { PanelParameters } from 'features/ui/layouts/auto-layout-context';
import type { PropsWithChildren } from 'react';
import { memo, useRef } from 'react';
@@ -30,8 +30,8 @@ const sx: SystemStyleObject = {
export const AutoLayoutPanelContainer = memo(
(
props:
| PropsWithChildren<IDockviewPanelProps<DockviewPanelParameters>>
| PropsWithChildren<IGridviewPanelProps<GridviewPanelParameters>>
| PropsWithChildren<IDockviewPanelProps<PanelParameters>>
| PropsWithChildren<IGridviewPanelProps<PanelParameters>>
) => {
const ref = useRef<HTMLDivElement>(null);
const shouldHighlightFocusedRegions = useAppSelector(selectSystemShouldEnableHighlightFocusedRegions);

View File

@@ -1,6 +1,5 @@
import { ContextMenu, Divider, Flex, IconButton, Menu, MenuButton, MenuList } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { CanvasAlertsBboxVisibility } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsBboxVisibility';
import { CanvasAlertsInvocationProgress } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsInvocationProgress';
import { CanvasAlertsPreserveMask } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsPreserveMask';
import { CanvasAlertsSaveAllImagesToGallery } from 'features/controlLayers/components/CanvasAlerts/CanvasAlertsSaveAllImagesToGallery';
@@ -93,7 +92,6 @@ export const CanvasWorkspacePanel = memo(() => {
<CanvasAlertsSelectedEntityStatus />
<CanvasAlertsPreserveMask />
<CanvasAlertsInvocationProgress />
<CanvasAlertsBboxVisibility />
</Flex>
<Flex position="absolute" top={1} insetInlineEnd={1}>
<Menu>

View File

@@ -3,12 +3,10 @@ import { setFocusedRegion } from 'common/hooks/focus';
import { useCallbackOnDragEnter } from 'common/hooks/useCallbackOnDragEnter';
import type { IDockviewPanelHeaderProps } from 'dockview';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import type { DockviewPanelParameters } from './auto-layout-context';
import type { PanelParameters } from './auto-layout-context';
export const DockviewTab = memo((props: IDockviewPanelHeaderProps<DockviewPanelParameters>) => {
const { t } = useTranslation();
export const DockviewTab = memo((props: IDockviewPanelHeaderProps<PanelParameters>) => {
const ref = useRef<HTMLDivElement>(null);
const setActive = useCallback(() => {
if (!props.api.isActive) {
@@ -25,7 +23,7 @@ export const DockviewTab = memo((props: IDockviewPanelHeaderProps<DockviewPanelP
return (
<Flex ref={ref} alignItems="center" h="full" onPointerDown={onPointerDown}>
<Text userSelect="none" px={4}>
{t(props.params.i18nKey)}
{props.api.title ?? props.api.id}
</Text>
</Flex>
);

View File

@@ -5,13 +5,11 @@ import type { IDockviewPanelHeaderProps } from 'dockview';
import { useCurrentQueueItemDestination } from 'features/queue/hooks/useCurrentQueueItemDestination';
import ProgressBar from 'features/system/components/ProgressBar';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { useIsGenerationInProgress } from 'services/api/endpoints/queue';
import type { DockviewPanelParameters } from './auto-layout-context';
import type { PanelParameters } from './auto-layout-context';
export const DockviewTabCanvasViewer = memo((props: IDockviewPanelHeaderProps<DockviewPanelParameters>) => {
const { t } = useTranslation();
export const DockviewTabCanvasViewer = memo((props: IDockviewPanelHeaderProps<PanelParameters>) => {
const isGenerationInProgress = useIsGenerationInProgress();
const currentQueueItemDestination = useCurrentQueueItemDestination();
@@ -31,7 +29,7 @@ export const DockviewTabCanvasViewer = memo((props: IDockviewPanelHeaderProps<Do
return (
<Flex ref={ref} position="relative" alignItems="center" h="full" onPointerDown={onPointerDown}>
<Text userSelect="none" px={4}>
{t(props.params.i18nKey)}
{props.api.title ?? props.api.id}
</Text>
{currentQueueItemDestination === 'canvas' && isGenerationInProgress && (
<ProgressBar position="absolute" bottom={0} left={0} right={0} h={1} borderRadius="none" />

View File

@@ -7,13 +7,11 @@ import { selectCanvasSessionId } from 'features/controlLayers/store/canvasStagin
import { useCurrentQueueItemDestination } from 'features/queue/hooks/useCurrentQueueItemDestination';
import ProgressBar from 'features/system/components/ProgressBar';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { useIsGenerationInProgress } from 'services/api/endpoints/queue';
import type { DockviewPanelParameters } from './auto-layout-context';
import type { PanelParameters } from './auto-layout-context';
export const DockviewTabCanvasWorkspace = memo((props: IDockviewPanelHeaderProps<DockviewPanelParameters>) => {
const { t } = useTranslation();
export const DockviewTabCanvasWorkspace = memo((props: IDockviewPanelHeaderProps<PanelParameters>) => {
const isGenerationInProgress = useIsGenerationInProgress();
const canvasSessionId = useAppSelector(selectCanvasSessionId);
const currentQueueItemDestination = useCurrentQueueItemDestination();
@@ -34,7 +32,7 @@ export const DockviewTabCanvasWorkspace = memo((props: IDockviewPanelHeaderProps
return (
<Flex ref={ref} position="relative" alignItems="center" h="full" onPointerDown={onPointerDown}>
<Text userSelect="none" px={4}>
{t(props.params.i18nKey)}
{props.api.title ?? props.api.id}
</Text>
{currentQueueItemDestination === canvasSessionId && isGenerationInProgress && (
<ProgressBar position="absolute" bottom={0} left={0} right={0} h={1} borderRadius="none" />

View File

@@ -6,7 +6,6 @@ import type { IDockviewPanelHeaderProps } from 'dockview';
import { selectActiveTab } from 'features/ui/store/uiSelectors';
import type { TabName } from 'features/ui/store/uiTypes';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import type { IconType } from 'react-icons';
import {
PiBoundingBoxBold,
@@ -17,8 +16,6 @@ import {
PiTextAaBold,
} from 'react-icons/pi';
import type { DockviewPanelParameters } from './auto-layout-context';
const TAB_ICONS: Record<TabName, IconType> = {
generate: PiTextAaBold,
canvas: PiBoundingBoxBold,
@@ -28,8 +25,7 @@ const TAB_ICONS: Record<TabName, IconType> = {
queue: PiQueueBold,
};
export const DockviewTabLaunchpad = memo((props: IDockviewPanelHeaderProps<DockviewPanelParameters>) => {
const { t } = useTranslation();
export const DockviewTabLaunchpad = memo((props: IDockviewPanelHeaderProps) => {
const ref = useRef<HTMLDivElement>(null);
const activeTab = useAppSelector(selectActiveTab);
@@ -48,7 +44,7 @@ export const DockviewTabLaunchpad = memo((props: IDockviewPanelHeaderProps<Dockv
return (
<Flex ref={ref} alignItems="center" h="full" px={4} gap={3} onPointerDown={onPointerDown}>
<Icon as={TAB_ICONS[activeTab]} color="invokeYellow.300" boxSize={5} />
<Text userSelect="none">{t(props.params.i18nKey)}</Text>
<Text userSelect="none">{props.api.title ?? props.api.id}</Text>
</Flex>
);
});

View File

@@ -4,13 +4,11 @@ import { useCallbackOnDragEnter } from 'common/hooks/useCallbackOnDragEnter';
import type { IDockviewPanelHeaderProps } from 'dockview';
import ProgressBar from 'features/system/components/ProgressBar';
import { memo, useCallback, useRef } from 'react';
import { useTranslation } from 'react-i18next';
import { useIsGenerationInProgress } from 'services/api/endpoints/queue';
import type { DockviewPanelParameters } from './auto-layout-context';
import type { PanelParameters } from './auto-layout-context';
export const DockviewTabProgress = memo((props: IDockviewPanelHeaderProps<DockviewPanelParameters>) => {
const { t } = useTranslation();
export const DockviewTabProgress = memo((props: IDockviewPanelHeaderProps<PanelParameters>) => {
const isGenerationInProgress = useIsGenerationInProgress();
const ref = useRef<HTMLDivElement>(null);
@@ -29,7 +27,7 @@ export const DockviewTabProgress = memo((props: IDockviewPanelHeaderProps<Dockvi
return (
<Flex ref={ref} position="relative" alignItems="center" h="full" onPointerDown={onPointerDown}>
<Text userSelect="none" px={4}>
{t(props.params.i18nKey)}
{props.api.title ?? props.api.id}
</Text>
{isGenerationInProgress && (
<ProgressBar position="absolute" bottom={0} left={0} right={0} h={1} borderRadius="none" />

View File

@@ -4,14 +4,12 @@ import { InformationalPopover } from 'common/components/InformationalPopover/Inf
import { ModelPicker } from 'features/parameters/components/ModelPicker';
import { modelSelected } from 'features/parameters/store/actions';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
import { MdMoneyOff } from 'react-icons/md';
import { useMainModels } from 'services/api/hooks/modelsByType';
import { useSelectedModelConfig } from 'services/api/hooks/useSelectedModelConfig';
import { type AnyModelConfig, isCheckpointMainModelConfig } from 'services/api/types';
export const InitialStateMainModelPicker = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const [modelConfigs] = useMainModels();
const selectedModelConfig = useSelectedModelConfig();
@@ -33,7 +31,7 @@ export const InitialStateMainModelPicker = memo(() => {
return (
<FormControl orientation="vertical" alignItems="unset">
<FormLabel display="flex" fontSize="md" gap={2}>
{t('common.selectYourModel')}{' '}
Select your Model{' '}
{isFluxDevSelected && (
<InformationalPopover feature="fluxDevLicense" hideDisable={true}>
<Flex justifyContent="flex-start">

View File

@@ -27,30 +27,15 @@ export const useAutoLayoutContext = () => {
return value;
};
export type DockviewPanelParameters = {
tab: TabName;
focusRegion: FocusRegionName;
i18nKey: string;
};
export type GridviewPanelParameters = {
export type PanelParameters = {
tab: TabName;
focusRegion: FocusRegionName;
};
export type AutoLayoutGridviewComponents = Record<
string,
FunctionComponent<IGridviewPanelProps<GridviewPanelParameters>>
>;
export type AutoLayoutDockviewComponents = Record<
string,
FunctionComponent<IDockviewPanelProps<DockviewPanelParameters>>
>;
export type RootLayoutGridviewComponents = Record<
string,
FunctionComponent<IGridviewPanelProps<GridviewPanelParameters>>
>;
type PanelProps = IDockviewPanelProps<DockviewPanelParameters> | IGridviewPanelProps<GridviewPanelParameters>;
export type AutoLayoutGridviewComponents = Record<string, FunctionComponent<IGridviewPanelProps<PanelParameters>>>;
export type AutoLayoutDockviewComponents = Record<string, FunctionComponent<IDockviewPanelProps<PanelParameters>>>;
export type RootLayoutGridviewComponents = Record<string, FunctionComponent<IGridviewPanelProps<PanelParameters>>>;
type PanelProps = IDockviewPanelProps<PanelParameters> | IGridviewPanelProps<PanelParameters>;
export const withPanelContainer = (Component: FunctionComponent) =>
/* eslint-disable-next-line react/display-name */

View File

@@ -9,8 +9,7 @@ import { FloatingRightPanelButtons } from 'features/ui/components/FloatingRightP
import type {
AutoLayoutDockviewComponents,
AutoLayoutGridviewComponents,
DockviewPanelParameters,
GridviewPanelParameters,
PanelParameters,
RootLayoutGridviewComponents,
} from 'features/ui/layouts/auto-layout-context';
import { AutoLayoutProvider, useAutoLayoutContext, withPanelContainer } from 'features/ui/layouts/auto-layout-context';
@@ -64,7 +63,7 @@ const mainPanelComponents: AutoLayoutDockviewComponents = {
const initializeCenterPanelLayout = (tab: TabName, api: DockviewApi) => {
navigationApi.registerContainer(tab, 'main', api, () => {
const launchpad = api.addPanel<DockviewPanelParameters>({
const launchpad = api.addPanel<PanelParameters>({
id: LAUNCHPAD_PANEL_ID,
component: LAUNCHPAD_PANEL_ID,
title: t('ui.panels.launchpad'),
@@ -72,11 +71,10 @@ const initializeCenterPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'launchpad',
i18nKey: 'ui.panels.launchpad',
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: WORKSPACE_PANEL_ID,
component: WORKSPACE_PANEL_ID,
title: t('ui.panels.canvas'),
@@ -84,7 +82,6 @@ const initializeCenterPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'canvas',
i18nKey: 'ui.panels.canvas',
},
position: {
direction: 'within',
@@ -92,7 +89,7 @@ const initializeCenterPanelLayout = (tab: TabName, api: DockviewApi) => {
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: VIEWER_PANEL_ID,
component: VIEWER_PANEL_ID,
title: t('ui.panels.imageViewer'),
@@ -100,7 +97,6 @@ const initializeCenterPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'viewer',
i18nKey: 'ui.panels.imageViewer',
},
position: {
direction: 'within',
@@ -149,7 +145,7 @@ const rightPanelComponents: AutoLayoutGridviewComponents = {
const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'right', api, () => {
const gallery = api.addPanel<GridviewPanelParameters>({
const gallery = api.addPanel<PanelParameters>({
id: GALLERY_PANEL_ID,
component: GALLERY_PANEL_ID,
minimumWidth: RIGHT_PANEL_MIN_SIZE_PX,
@@ -160,7 +156,7 @@ const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
const boards = api.addPanel<GridviewPanelParameters>({
const boards = api.addPanel<PanelParameters>({
id: BOARDS_PANEL_ID,
component: BOARDS_PANEL_ID,
minimumHeight: BOARD_PANEL_MIN_HEIGHT_PX,
@@ -174,7 +170,7 @@ const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
api.addPanel<GridviewPanelParameters>({
api.addPanel<PanelParameters>({
id: LAYERS_PANEL_ID,
component: LAYERS_PANEL_ID,
minimumHeight: LAYERS_PANEL_MIN_HEIGHT_PX,
@@ -219,7 +215,7 @@ const leftPanelComponents: AutoLayoutGridviewComponents = {
const initializeLeftPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'left', api, () => {
api.addPanel<GridviewPanelParameters>({
api.addPanel<PanelParameters>({
id: SETTINGS_PANEL_ID,
component: SETTINGS_PANEL_ID,
params: {

View File

@@ -8,8 +8,7 @@ import { FloatingRightPanelButtons } from 'features/ui/components/FloatingRightP
import type {
AutoLayoutDockviewComponents,
AutoLayoutGridviewComponents,
DockviewPanelParameters,
GridviewPanelParameters,
PanelParameters,
RootLayoutGridviewComponents,
} from 'features/ui/layouts/auto-layout-context';
import { AutoLayoutProvider, useAutoLayoutContext, withPanelContainer } from 'features/ui/layouts/auto-layout-context';
@@ -58,7 +57,7 @@ const mainPanelComponents: AutoLayoutDockviewComponents = {
const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
navigationApi.registerContainer(tab, 'main', api, () => {
const launchpad = api.addPanel<DockviewPanelParameters>({
const launchpad = api.addPanel<PanelParameters>({
id: LAUNCHPAD_PANEL_ID,
component: LAUNCHPAD_PANEL_ID,
title: t('ui.panels.launchpad'),
@@ -66,11 +65,10 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'launchpad',
i18nKey: 'ui.panels.launchpad',
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: VIEWER_PANEL_ID,
component: VIEWER_PANEL_ID,
title: t('ui.panels.imageViewer'),
@@ -78,7 +76,6 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'viewer',
i18nKey: 'ui.panels.imageViewer',
},
position: {
direction: 'within',
@@ -126,7 +123,7 @@ const rightPanelComponents: AutoLayoutGridviewComponents = {
const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'right', api, () => {
const gallery = api.addPanel<GridviewPanelParameters>({
const gallery = api.addPanel<PanelParameters>({
id: GALLERY_PANEL_ID,
component: GALLERY_PANEL_ID,
minimumWidth: RIGHT_PANEL_MIN_SIZE_PX,
@@ -137,7 +134,7 @@ const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
const boards = api.addPanel<GridviewPanelParameters>({
const boards = api.addPanel<PanelParameters>({
id: BOARDS_PANEL_ID,
component: BOARDS_PANEL_ID,
minimumHeight: BOARD_PANEL_MIN_HEIGHT_PX,
@@ -182,7 +179,7 @@ const leftPanelComponents: AutoLayoutGridviewComponents = {
const initializeLeftPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'left', api, () => {
api.addPanel<GridviewPanelParameters>({
api.addPanel<PanelParameters>({
id: SETTINGS_PANEL_ID,
component: SETTINGS_PANEL_ID,
params: {
@@ -221,13 +218,13 @@ const rootPanelComponents: RootLayoutGridviewComponents = {
const initializeRootPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'root', api, () => {
const main = api.addPanel<GridviewPanelParameters>({
const main = api.addPanel<PanelParameters>({
id: MAIN_PANEL_ID,
component: MAIN_PANEL_ID,
priority: LayoutPriority.High,
});
const left = api.addPanel<GridviewPanelParameters>({
const left = api.addPanel<PanelParameters>({
id: LEFT_PANEL_ID,
component: LEFT_PANEL_ID,
minimumWidth: LEFT_PANEL_MIN_SIZE_PX,
@@ -237,7 +234,7 @@ const initializeRootPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
const right = api.addPanel<GridviewPanelParameters>({
const right = api.addPanel<PanelParameters>({
id: RIGHT_PANEL_ID,
component: RIGHT_PANEL_ID,
minimumWidth: RIGHT_PANEL_MIN_SIZE_PX,

View File

@@ -448,35 +448,6 @@ export class NavigationApi {
return this.panels.get(key);
};
/**
* Expand the left panel in the currently active tab.
*
* This method will not wait for the panel to be registered.
*
* @returns True if the panel was expanded, false if it was not found or an error occurred
*/
expandLeftPanel = (): boolean => {
const activeTab = this._app?.activeTab.get() ?? null;
if (!activeTab) {
log.warn('No active tab found to expand left panel');
return false;
}
const leftPanel = this.getPanel(activeTab, LEFT_PANEL_ID);
if (!leftPanel) {
log.warn(`Left panel not found in active tab "${activeTab}"`);
return false;
}
if (!(leftPanel instanceof GridviewPanel)) {
log.error(`Right panels must be instances of GridviewPanel`);
return false;
}
this._expandPanel(leftPanel, LEFT_PANEL_MIN_SIZE_PX);
return true;
};
/**
* Toggle the left panel in the currently active tab.
*
@@ -510,35 +481,6 @@ export class NavigationApi {
return true;
};
/**
* Expand the right panel in the currently active tab.
*
* This method will not wait for the panel to be registered.
*
* @returns True if the panel was expanded, false if it was not found or an error occurred
*/
expandRightPanel = (): boolean => {
const activeTab = this._app?.activeTab.get() ?? null;
if (!activeTab) {
log.warn('No active tab found to expand right panel');
return false;
}
const rightPanel = this.getPanel(activeTab, RIGHT_PANEL_ID);
if (!rightPanel) {
log.warn(`Right panel not found in active tab "${activeTab}"`);
return false;
}
if (!(rightPanel instanceof GridviewPanel)) {
log.error(`Right panels must be instances of GridviewPanel`);
return false;
}
this._expandPanel(rightPanel, RIGHT_PANEL_MIN_SIZE_PX);
return true;
};
/**
* Toggle the right panel in the currently active tab.
*

View File

@@ -8,8 +8,7 @@ import { FloatingRightPanelButtons } from 'features/ui/components/FloatingRightP
import type {
AutoLayoutDockviewComponents,
AutoLayoutGridviewComponents,
DockviewPanelParameters,
GridviewPanelParameters,
PanelParameters,
RootLayoutGridviewComponents,
} from 'features/ui/layouts/auto-layout-context';
import { AutoLayoutProvider, useAutoLayoutContext, withPanelContainer } from 'features/ui/layouts/auto-layout-context';
@@ -58,7 +57,7 @@ const mainPanelComponents: AutoLayoutDockviewComponents = {
const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
navigationApi.registerContainer(tab, 'main', api, () => {
const launchpad = api.addPanel<DockviewPanelParameters>({
const launchpad = api.addPanel<PanelParameters>({
id: LAUNCHPAD_PANEL_ID,
component: LAUNCHPAD_PANEL_ID,
title: t('ui.panels.launchpad'),
@@ -66,11 +65,10 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'launchpad',
i18nKey: 'ui.panels.launchpad',
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: VIEWER_PANEL_ID,
component: VIEWER_PANEL_ID,
title: t('ui.panels.imageViewer'),
@@ -78,7 +76,6 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'viewer',
i18nKey: 'ui.panels.imageViewer',
},
position: {
direction: 'within',
@@ -124,7 +121,7 @@ const rightPanelComponents: AutoLayoutGridviewComponents = {
const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'right', api, () => {
const gallery = api.addPanel<GridviewPanelParameters>({
const gallery = api.addPanel<PanelParameters>({
id: GALLERY_PANEL_ID,
component: GALLERY_PANEL_ID,
minimumWidth: RIGHT_PANEL_MIN_SIZE_PX,
@@ -135,7 +132,7 @@ const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
const boards = api.addPanel<GridviewPanelParameters>({
const boards = api.addPanel<PanelParameters>({
id: BOARDS_PANEL_ID,
component: BOARDS_PANEL_ID,
minimumHeight: BOARD_PANEL_MIN_HEIGHT_PX,
@@ -180,7 +177,7 @@ const leftPanelComponents: AutoLayoutGridviewComponents = {
const initializeLeftPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'left', api, () => {
api.addPanel<GridviewPanelParameters>({
api.addPanel<PanelParameters>({
id: SETTINGS_PANEL_ID,
component: SETTINGS_PANEL_ID,
params: {

View File

@@ -28,12 +28,8 @@ export const useCollapsibleGridviewPanel = (
const lastExpandedSizeRef = useRef<number>(0);
const collapse = useCallback(() => {
const panel = navigationApi.getPanel(tab, panelId);
if (!panel || !(panel instanceof GridviewPanel)) {
return;
}
const isCollapsed = getIsCollapsed(panel, orientation, collapsedSize);
if (isCollapsed) {
if (!panel || !(panel instanceof GridviewPanel)) {
return;
}
@@ -52,11 +48,6 @@ export const useCollapsibleGridviewPanel = (
return;
}
const isCollapsed = getIsCollapsed(panel, orientation, collapsedSize);
if (!isCollapsed) {
return;
}
let newSize = lastExpandedSizeRef.current || defaultSize;
if (minExpandedSize && newSize < minExpandedSize) {
newSize = minExpandedSize;
@@ -67,7 +58,7 @@ export const useCollapsibleGridviewPanel = (
} else {
panel.api.setSize({ width: newSize });
}
}, [defaultSize, minExpandedSize, orientation, collapsedSize, panelId, tab]);
}, [defaultSize, minExpandedSize, orientation, panelId, tab]);
const toggle = useCallback(() => {
const panel = navigationApi.getPanel(tab, panelId);
@@ -75,7 +66,6 @@ export const useCollapsibleGridviewPanel = (
return;
}
const isCollapsed = getIsCollapsed(panel, orientation, collapsedSize);
if (isCollapsed) {
expand();
} else {

View File

@@ -1,20 +0,0 @@
import type { TabName } from 'features/ui/store/uiTypes';
import {
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
GALLERY_PANEL_ID,
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX,
GALLERY_PANEL_MIN_HEIGHT_PX,
} from './shared';
import { useCollapsibleGridviewPanel } from './use-collapsible-gridview-panel';
export const useGalleryPanel = (tab: TabName) => {
return useCollapsibleGridviewPanel(
tab,
GALLERY_PANEL_ID,
'vertical',
GALLERY_PANEL_DEFAULT_HEIGHT_PX,
GALLERY_PANEL_MIN_HEIGHT_PX,
GALLERY_PANEL_MIN_EXPANDED_HEIGHT_PX
);
};

View File

@@ -10,8 +10,7 @@ import { FloatingRightPanelButtons } from 'features/ui/components/FloatingRightP
import type {
AutoLayoutDockviewComponents,
AutoLayoutGridviewComponents,
DockviewPanelParameters,
GridviewPanelParameters,
PanelParameters,
RootLayoutGridviewComponents,
} from 'features/ui/layouts/auto-layout-context';
import { AutoLayoutProvider, useAutoLayoutContext, withPanelContainer } from 'features/ui/layouts/auto-layout-context';
@@ -61,7 +60,7 @@ const mainPanelComponents: AutoLayoutDockviewComponents = {
const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
navigationApi.registerContainer(tab, 'main', api, () => {
const launchpad = api.addPanel<DockviewPanelParameters>({
const launchpad = api.addPanel<PanelParameters>({
id: LAUNCHPAD_PANEL_ID,
component: LAUNCHPAD_PANEL_ID,
title: t('ui.panels.launchpad'),
@@ -69,11 +68,10 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'launchpad',
i18nKey: 'ui.panels.launchpad',
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: WORKSPACE_PANEL_ID,
component: WORKSPACE_PANEL_ID,
title: t('ui.panels.workflowEditor'),
@@ -81,7 +79,6 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'workflows',
i18nKey: 'ui.panels.workflowEditor',
},
position: {
direction: 'within',
@@ -89,7 +86,7 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
},
});
api.addPanel<DockviewPanelParameters>({
api.addPanel<PanelParameters>({
id: VIEWER_PANEL_ID,
component: VIEWER_PANEL_ID,
title: t('ui.panels.imageViewer'),
@@ -97,7 +94,6 @@ const initializeMainPanelLayout = (tab: TabName, api: DockviewApi) => {
params: {
tab,
focusRegion: 'viewer',
i18nKey: 'ui.panels.imageViewer',
},
position: {
direction: 'within',
@@ -145,7 +141,7 @@ const rightPanelComponents: AutoLayoutGridviewComponents = {
const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'right', api, () => {
const gallery = api.addPanel<GridviewPanelParameters>({
const gallery = api.addPanel<PanelParameters>({
id: GALLERY_PANEL_ID,
component: GALLERY_PANEL_ID,
minimumWidth: RIGHT_PANEL_MIN_SIZE_PX,
@@ -156,7 +152,7 @@ const initializeRightPanelLayout = (tab: TabName, api: GridviewApi) => {
},
});
const boards = api.addPanel<GridviewPanelParameters>({
const boards = api.addPanel<PanelParameters>({
id: BOARDS_PANEL_ID,
component: BOARDS_PANEL_ID,
minimumHeight: BOARD_PANEL_MIN_HEIGHT_PX,
@@ -201,7 +197,7 @@ const leftPanelComponents: AutoLayoutGridviewComponents = {
const initializeLeftPanelLayout = (tab: TabName, api: GridviewApi) => {
navigationApi.registerContainer(tab, 'left', api, () => {
api.addPanel<GridviewPanelParameters>({
api.addPanel<PanelParameters>({
id: SETTINGS_PANEL_ID,
component: SETTINGS_PANEL_ID,
params: {

View File

@@ -105,10 +105,6 @@ export const uiSliceConfig: SliceConfig<typeof slice> = {
state.activeTab = 'canvas';
state._version = 3;
}
if (state._version === 3) {
state.panels = {};
state._version = 4;
}
return zUIState.parse(state);
},
persistDenylist: ['shouldShowImageDetails'],

View File

@@ -13,7 +13,7 @@ const zSerializable = z.any().refine(isPlainObject);
export type Serializable = z.infer<typeof zSerializable>;
export const zUIState = z.object({
_version: z.literal(4),
_version: z.literal(3),
activeTab: zTabName,
shouldShowImageDetails: z.boolean(),
shouldShowProgressInViewer: z.boolean(),
@@ -26,7 +26,7 @@ export const zUIState = z.object({
});
export type UIState = z.infer<typeof zUIState>;
export const getInitialUIState = (): UIState => ({
_version: 4 as const,
_version: 3 as const,
activeTab: 'generate' as const,
shouldShowImageDetails: false,
shouldShowProgressInViewer: true,

View File

@@ -31,7 +31,7 @@ import {
export { default as InvokeAIUI } from './app/components/InvokeAIUI';
export type { StudioInitAction } from './app/hooks/useStudioInitAction';
export type { LoggingOverrides } from './app/logging/logger';
export type { NumericalParameterConfig, PartialAppConfig } from './app/types/invokeai';
export type { PartialAppConfig } from './app/types/invokeai';
export { default as Loading } from './common/components/Loading/Loading';
export { default as HotkeysModal } from './features/system/components/HotkeysModal/HotkeysModal';
export { default as InvokeAiLogoComponent } from './features/system/components/InvokeAILogoComponent';

View File

@@ -5,7 +5,6 @@ import {
selectAutoSwitch,
selectGalleryView,
selectGetImageNamesQueryArgs,
selectListBoardsQueryArgs,
selectSelectedBoardId,
} from 'features/gallery/store/gallerySelectors';
import { boardIdSelected, galleryViewChanged, imageSelected } from 'features/gallery/store/gallerySlice';
@@ -77,14 +76,6 @@ export const buildOnInvocationComplete = (
}
dispatch(boardsApi.util.upsertQueryEntries(entries));
dispatch(
boardsApi.util.updateQueryData('listAllBoards', selectListBoardsQueryArgs(getState()), (draft) => {
for (const board of draft) {
board.image_count = board.image_count + (boardTotalAdditions[board.board_id] ?? 0);
}
})
);
/**
* Optimistic update and cache invalidation for image names queries that match this image's board and categories.
* - Optimistic update for the cache that does not have a search term (we cannot derive the correct insertion

View File

@@ -1 +1 @@
__version__ = "6.4.0"
__version__ = "6.3.0"

View File

@@ -46,7 +46,7 @@ def fetch_commits_between_tags(
commit_info: list[CommitInfo] = []
headers = {"Authorization": f"token {token}"} if token else None
# Get the total number of pages w/ an initial request - a bit hacky but it works...
# Get the total number of pages w/ an intial request - a bit hacky but it works...
response = requests.get(
f"https://api.github.com/repos/{org_name}/{repo_name}/compare/{from_ref}...{to_ref}?page=1&per_page=100",
headers=headers,

View File

@@ -1,5 +1,3 @@
import os
import pytest
import torch
@@ -22,17 +20,11 @@ class DummyModule(torch.nn.Module):
return x
is_github_ci = os.getenv("GITHUB_ACTIONS") == "true"
parameterize_mps_and_cuda = pytest.mark.parametrize(
("device"),
[
pytest.param(
"mps",
marks=pytest.mark.skipif(
is_github_ci or not torch.backends.mps.is_available(),
reason="MPS is very flaky in CI" if is_github_ci else "MPS is not available.",
),
"mps", marks=pytest.mark.skipif(not torch.backends.mps.is_available(), reason="MPS is not available.")
),
pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA is not available.")),
],

View File

@@ -1,766 +0,0 @@
# A sample state dict in the Diffusers FLUX LoRA format with base_model.model prefix.
# These keys are based on the LoRA model in peft_adapter_model.safetensors
state_dict_keys = {
"base_model.model.proj_out.lora_A.weight": [4, 3072],
"base_model.model.proj_out.lora_B.weight": [64, 4],
"base_model.model.single_transformer_blocks.0.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.0.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.0.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.0.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.0.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.0.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.0.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.0.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.0.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.1.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.1.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.1.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.1.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.1.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.1.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.1.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.1.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.1.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.1.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.10.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.10.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.10.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.10.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.10.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.10.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.10.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.10.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.10.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.10.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.11.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.11.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.11.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.11.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.11.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.11.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.11.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.11.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.11.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.11.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.12.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.12.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.12.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.12.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.12.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.12.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.12.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.12.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.12.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.12.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.13.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.13.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.13.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.13.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.13.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.13.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.13.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.13.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.13.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.13.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.14.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.14.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.14.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.14.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.14.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.14.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.14.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.14.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.14.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.14.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.15.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.15.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.15.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.15.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.15.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.15.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.15.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.15.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.15.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.15.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.16.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.16.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.16.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.16.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.16.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.16.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.16.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.16.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.16.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.16.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.17.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.17.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.17.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.17.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.17.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.17.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.17.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.17.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.17.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.17.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.18.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.18.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.18.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.18.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.18.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.18.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.18.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.18.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.18.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.18.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.19.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.19.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.19.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.19.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.19.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.19.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.19.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.19.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.19.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.19.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.2.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.2.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.2.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.2.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.2.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.2.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.2.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.2.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.2.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.2.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.20.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.20.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.20.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.20.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.20.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.20.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.20.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.20.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.20.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.20.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.21.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.21.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.21.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.21.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.21.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.21.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.21.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.21.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.21.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.21.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.22.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.22.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.22.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.22.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.22.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.22.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.22.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.22.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.22.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.22.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.23.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.23.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.23.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.23.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.23.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.23.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.23.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.23.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.23.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.23.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.24.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.24.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.24.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.24.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.24.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.24.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.24.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.24.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.24.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.24.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.25.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.25.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.25.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.25.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.25.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.25.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.25.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.25.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.25.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.25.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.26.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.26.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.26.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.26.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.26.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.26.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.26.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.26.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.26.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.26.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.27.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.27.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.27.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.27.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.27.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.27.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.27.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.27.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.27.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.27.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.28.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.28.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.28.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.28.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.28.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.28.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.28.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.28.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.28.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.28.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.29.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.29.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.29.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.29.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.29.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.29.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.29.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.29.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.29.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.29.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.3.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.3.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.3.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.3.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.3.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.3.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.3.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.3.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.3.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.3.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.30.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.30.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.30.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.30.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.30.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.30.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.30.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.30.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.30.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.30.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.31.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.31.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.31.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.31.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.31.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.31.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.31.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.31.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.31.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.31.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.32.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.32.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.32.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.32.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.32.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.32.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.32.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.32.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.32.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.32.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.33.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.33.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.33.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.33.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.33.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.33.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.33.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.33.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.33.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.33.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.34.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.34.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.34.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.34.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.34.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.34.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.34.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.34.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.34.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.34.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.35.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.35.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.35.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.35.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.35.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.35.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.35.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.35.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.35.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.35.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.36.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.36.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.36.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.36.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.36.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.36.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.36.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.36.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.36.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.36.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.37.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.37.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.37.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.37.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.37.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.37.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.37.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.37.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.37.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.37.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.4.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.4.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.4.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.4.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.4.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.4.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.4.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.4.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.4.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.4.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.5.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.5.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.5.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.5.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.5.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.5.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.5.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.5.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.5.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.5.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.6.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.6.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.6.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.6.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.6.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.6.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.6.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.6.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.6.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.6.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.7.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.7.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.7.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.7.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.7.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.7.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.7.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.7.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.7.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.7.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.8.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.8.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.8.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.8.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.8.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.8.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.8.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.8.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.8.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.8.proj_out.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.9.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.9.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.9.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.9.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.9.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.9.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.single_transformer_blocks.9.proj_mlp.lora_A.weight": [4, 3072],
"base_model.model.single_transformer_blocks.9.proj_mlp.lora_B.weight": [12288, 4],
"base_model.model.single_transformer_blocks.9.proj_out.lora_A.weight": [4, 15360],
"base_model.model.single_transformer_blocks.9.proj_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.0.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.1.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.1.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.1.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.1.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.10.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.10.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.10.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.10.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.11.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.11.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.11.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.11.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.12.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.12.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.12.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.12.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.13.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.13.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.13.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.13.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.14.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.14.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.14.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.14.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.15.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.15.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.15.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.15.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.16.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.16.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.16.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.16.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.17.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.17.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.17.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.17.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.18.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.18.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.18.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.18.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.2.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.2.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.2.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.2.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.3.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.3.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.3.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.3.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.4.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.4.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.4.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.4.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.5.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.5.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.5.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.5.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.6.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.6.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.6.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.6.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.7.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.7.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.7.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.7.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.8.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.8.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.8.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.8.ff_context.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.9.attn.add_k_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.add_k_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.add_q_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.add_q_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.add_v_proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.add_v_proj.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.to_add_out.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.to_add_out.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.to_k.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.to_k.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.to_out.0.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.to_out.0.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.to_q.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.to_q.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.attn.to_v.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.attn.to_v.lora_B.weight": [3072, 4],
"base_model.model.transformer_blocks.9.ff.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.ff.net.0.proj.lora_B.weight": [12288, 4],
"base_model.model.transformer_blocks.9.ff_context.net.0.proj.lora_A.weight": [4, 3072],
"base_model.model.transformer_blocks.9.ff_context.net.0.proj.lora_B.weight": [12288, 4],
}

Some files were not shown because too many files have changed in this diff Show More