Files
InvokeAI/invokeai/frontend/web/src/features/nodes/util/graphBuilders/buildCanvasTextToImageGraph.ts
2023-08-13 00:51:10 +12:00

290 lines
7.5 KiB
TypeScript

import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { initialGenerationState } from 'features/parameters/store/generationSlice';
import {
DenoiseLatentsInvocation,
ONNXTextToLatentsInvocation,
} from 'services/api/types';
import { addControlNetToLinearGraph } from './addControlNetToLinearGraph';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addLoRAsToGraph } from './addLoRAsToGraph';
import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph';
import { addVAEToGraph } from './addVAEToGraph';
import { addWatermarkerToGraph } from './addWatermarkerToGraph';
import {
CANVAS_OUTPUT,
CANVAS_TEXT_TO_IMAGE_GRAPH,
CLIP_SKIP,
DENOISE_LATENTS,
MAIN_MODEL_LOADER,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
ONNX_MODEL_LOADER,
POSITIVE_CONDITIONING,
} from './constants';
/**
* Builds the Canvas tab's Text to Image graph.
*/
export const buildCanvasTextToImageGraph = (
state: RootState
): NonNullableGraph => {
const log = logger('nodes');
const {
positivePrompt,
negativePrompt,
model,
cfgScale: cfg_scale,
scheduler,
steps,
clipSkip,
shouldUseCpuNoise,
shouldUseNoiseSettings,
} = state.generation;
// The bounding box determines width and height, not the width and height params
const { width, height } = state.canvas.boundingBoxDimensions;
const { shouldAutoSave } = state.canvas;
if (!model) {
log.error('No model found in state');
throw new Error('No model found in state');
}
const use_cpu = shouldUseNoiseSettings
? shouldUseCpuNoise
: initialGenerationState.shouldUseCpuNoise;
const isUsingOnnxModel = model.model_type === 'onnx';
const modelLoaderNodeId = isUsingOnnxModel
? ONNX_MODEL_LOADER
: MAIN_MODEL_LOADER;
const modelLoaderNodeType = isUsingOnnxModel
? 'onnx_model_loader'
: 'main_model_loader';
const t2lNode: DenoiseLatentsInvocation | ONNXTextToLatentsInvocation =
isUsingOnnxModel
? {
type: 't2l_onnx',
id: DENOISE_LATENTS,
is_intermediate: true,
cfg_scale,
scheduler,
steps,
}
: {
type: 'denoise_latents',
id: DENOISE_LATENTS,
is_intermediate: true,
cfg_scale,
scheduler,
steps,
denoising_start: 0,
denoising_end: 1,
};
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node
* ids.
*
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
* the `fit` param. These are added to the graph at the end.
*/
// copy-pasted graph from node editor, filled in with state values & friendly node ids
// TODO: Actually create the graph correctly for ONNX
const graph: NonNullableGraph = {
id: CANVAS_TEXT_TO_IMAGE_GRAPH,
nodes: {
[modelLoaderNodeId]: {
type: modelLoaderNodeType,
id: modelLoaderNodeId,
is_intermediate: true,
model,
},
[CLIP_SKIP]: {
type: 'clip_skip',
id: CLIP_SKIP,
is_intermediate: true,
skipped_layers: clipSkip,
},
[POSITIVE_CONDITIONING]: {
type: isUsingOnnxModel ? 'prompt_onnx' : 'compel',
id: POSITIVE_CONDITIONING,
is_intermediate: true,
prompt: positivePrompt,
},
[NEGATIVE_CONDITIONING]: {
type: isUsingOnnxModel ? 'prompt_onnx' : 'compel',
id: NEGATIVE_CONDITIONING,
is_intermediate: true,
prompt: negativePrompt,
},
[NOISE]: {
type: 'noise',
id: NOISE,
is_intermediate: true,
width,
height,
use_cpu,
},
[t2lNode.id]: t2lNode,
[CANVAS_OUTPUT]: {
type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i',
id: CANVAS_OUTPUT,
is_intermediate: !shouldAutoSave,
},
},
edges: [
// Connect Model Loader to UNet & CLIP Skip
{
source: {
node_id: modelLoaderNodeId,
field: 'unet',
},
destination: {
node_id: DENOISE_LATENTS,
field: 'unet',
},
},
{
source: {
node_id: modelLoaderNodeId,
field: 'clip',
},
destination: {
node_id: CLIP_SKIP,
field: 'clip',
},
},
// Connect CLIP Skip to Conditioning
{
source: {
node_id: CLIP_SKIP,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: CLIP_SKIP,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
},
// Connect everything to Denoise Latents
{
source: {
node_id: POSITIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: DENOISE_LATENTS,
field: 'positive_conditioning',
},
},
{
source: {
node_id: NEGATIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: DENOISE_LATENTS,
field: 'negative_conditioning',
},
},
{
source: {
node_id: NOISE,
field: 'noise',
},
destination: {
node_id: DENOISE_LATENTS,
field: 'noise',
},
},
// Decode denoised latents to image
{
source: {
node_id: DENOISE_LATENTS,
field: 'latents',
},
destination: {
node_id: CANVAS_OUTPUT,
field: 'latents',
},
},
],
};
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'txt2img',
cfg_scale,
height,
width,
positive_prompt: '', // set in addDynamicPromptsToGraph
negative_prompt: negativePrompt,
model,
seed: 0, // set in addDynamicPromptsToGraph
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined, // option; set in addVAEToGraph
controlnets: [], // populated in addControlNetToLinearGraph
loras: [], // populated in addLoRAsToGraph
clip_skip: clipSkip,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: CANVAS_OUTPUT,
field: 'metadata',
},
});
// optionally add custom VAE
addVAEToGraph(state, graph, modelLoaderNodeId);
// add LoRA support
addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId);
// add dynamic prompts - also sets up core iteration and seed
addDynamicPromptsToGraph(state, graph);
// add controlnet, mutating `graph`
addControlNetToLinearGraph(state, graph, DENOISE_LATENTS);
// NSFW & watermark - must be last thing added to graph
if (state.system.shouldUseNSFWChecker) {
// must add before watermarker!
addNSFWCheckerToGraph(state, graph, CANVAS_OUTPUT);
}
if (state.system.shouldUseWatermarker) {
// must add after nsfw checker!
addWatermarkerToGraph(state, graph, CANVAS_OUTPUT);
}
return graph;
};