Maintenance.

This commit is contained in:
Marcel Keller
2023-05-09 14:49:52 +10:00
parent c62ab2ca1e
commit 6cc3fccef0
135 changed files with 1658 additions and 1062 deletions

114
Programs/Source/alex.mpc Normal file
View File

@@ -0,0 +1,114 @@
from Compiler.ml import keras
import Compiler.ml as tf
try:
n_epochs = int(program.args[1])
except (ValueError, IndexError):
n_epochs = 20
try:
batch_size = int(program.args[2])
except (ValueError, IndexError):
batch_size = 128
try:
n_threads = int(program.args[3])
except (ValueError, IndexError):
n_threads = 36
#Instantiation
AlexNet = []
padding = 1
batchnorm = 'batchnorm' in program.args
bn1 = 'bn1' in program.args
bn2 = 'bn2' in program.args
MultiArray.disable_index_checks()
#1st Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=64, input_shape=(32,32,3), kernel_size=3, strides=1, padding=2))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm:
AlexNet.append(keras.layers.BatchNormalization())
AlexNet.append(keras.layers.MaxPooling2D(pool_size=(2,2), strides=(2,2), padding=0))
#2nd Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=96, kernel_size=3, strides=1, padding=2))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm or bn2:
AlexNet.append(keras.layers.BatchNormalization())
AlexNet.append(keras.layers.MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'))
#3rd Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=96, kernel_size=(3,3), strides=(1,1), padding=padding))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm:
AlexNet.append(keras.layers.BatchNormalization())
#4th Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=padding))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm or bn1:
AlexNet.append(keras.layers.BatchNormalization())
#5th Convolutional Layer
AlexNet.append(keras.layers.Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding=padding))
AlexNet.append(keras.layers.Activation('relu'))
if batchnorm or bn2:
AlexNet.append(keras.layers.BatchNormalization())
AlexNet.append(keras.layers.MaxPooling2D(pool_size=(3,3), strides=(2,2), padding=0))
#Passing it to a Fully Connected layer
# 1st Fully Connected Layer
AlexNet.append(keras.layers.Dense(128))
AlexNet.append(keras.layers.Activation('relu'))
if 'dropout' in program.args:
AlexNet.append(keras.layers.Dropout(0.5))
#2nd Fully Connected Layer
AlexNet.append(keras.layers.Dense(256))
AlexNet.append(keras.layers.Activation('relu'))
if 'dropout' in program.args:
AlexNet.append(keras.layers.Dropout(0.5))
#Output Layer
AlexNet.append(keras.layers.Dense(10))
tf.set_n_threads(n_threads)
program.options_from_args()
sfix.set_precision_from_args(program, adapt_ring=True)
training_samples = MultiArray([50000, 32, 32, 3], sfix)
training_labels = MultiArray([50000, 10], sint)
test_samples = MultiArray([10000, 32, 32, 3], sfix)
test_labels = MultiArray([10000, 10], sint)
training_labels.input_from(0)
training_samples.input_from(0, binary='binary_samples' in program.args)
test_labels.input_from(0)
test_samples.input_from(0, binary='binary_samples' in program.args)
model = tf.keras.models.Sequential(AlexNet)
model.compile_by_args(program)
model.build(training_samples.sizes)
model.summary()
model.opt.output_diff = 'output_diff' in program.args
model.opt.output_grad = 'output_grad' in program.args
model.opt.output_stats = 100 if 'output_stats' in program.args else 0
model.opt.shuffle = not 'noshuffle' in program.args
opt = model.fit(
training_samples,
training_labels,
epochs=n_epochs,
batch_size=batch_size,
validation_data=(test_samples, test_labels)
)

View File

@@ -25,6 +25,9 @@ n_threads = 2
if len(program.args) > 1:
n_rounds = int(program.args[1])
if len(program.args) > 2:
program.active = bool(int(program.args[2]))
def accept_client():
client_socket_id = accept_client_connection(PORTNUM)
last = regint.read_from_socket(client_socket_id)

View File

@@ -4,7 +4,7 @@ import Compiler.ml as tf
try:
n_epochs = int(program.args[1])
except (ValueError, IndexError):
n_epochs = 10
n_epochs = 20
try:
batch_size = int(program.args[2])

View File

@@ -0,0 +1,72 @@
# this trains LeNet on MNIST with a dropout layer
# see https://github.com/csiro-mlai/mnist-mpc for data preparation
program.options_from_args()
if 'torch' in program.args:
import torchvision
data = []
for train in True, False:
ds = torchvision.datasets.MNIST(root='/tmp', train=train, download=True)
# normalize to [0,1] before input
samples = sfix.input_tensor_via(0, ds.data / 255., binary=True)
labels = sint.input_tensor_via(0, ds.targets, binary=True, one_hot=True)
data += [(labels, samples)]
(training_labels, training_samples), (test_labels, test_samples) = data
else:
training_samples = sfix.Tensor([60000, 28, 28])
training_labels = sint.Tensor([60000, 10])
test_samples = sfix.Tensor([10000, 28, 28])
test_labels = sint.Tensor([10000, 10])
training_labels.input_from(0)
training_samples.input_from(0)
test_labels.input_from(0)
test_samples.input_from(0)
from Compiler import ml
tf = ml
layers = [
tf.keras.layers.Conv2D(20, 5, 1, 'valid', activation='relu'),
]
if 'batchnorm' in program.args:
layers += [tf.keras.layers.BatchNormalization()]
layers += [
tf.keras.layers.AveragePooling2D(2),
tf.keras.layers.Conv2D(50, 5, 1, 'valid', activation='relu'),
]
if 'batchnorm' in program.args:
layers += [tf.keras.layers.BatchNormalization()]
layers += [
tf.keras.layers.AveragePooling2D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(500, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
]
model = tf.keras.models.Sequential(layers)
optim = tf.keras.optimizers.Adam(amsgrad=True)
model.compile(optimizer=optim)
opt = model.fit(
training_samples,
training_labels,
epochs=10,
batch_size=128,
validation_data=(test_samples, test_labels)
)
for var in model.trainable_variables:
var.write_to_file()

View File

@@ -0,0 +1,49 @@
# this trains a dense neural network on MNIST
program.options_from_args()
import torchvision
data = []
for train in True, False:
ds = torchvision.datasets.MNIST(root='/tmp', train=train, download=True)
# normalize to [0,1] before input
samples = sfix.input_tensor_via(0, ds.data / 255., binary=True)
labels = sint.input_tensor_via(0, ds.targets, binary=True, one_hot=True)
data += [(labels, samples)]
import torch
import torch.nn as nn
net = nn.Sequential(
nn.Conv2d(1, 20, 5),
nn.ReLU(),
nn.AvgPool2d(2),
nn.Conv2d(20, 50, 5),
nn.ReLU(),
nn.AvgPool2d(2),
nn.Flatten(),
nn.ReLU(),
nn.Linear(800, 500),
nn.ReLU(),
nn.Linear(500, 10)
)
# test network
ds = torchvision.datasets.MNIST(
root='/tmp', transform=torchvision.transforms.ToTensor())
inputs = next(iter(torch.utils.data.DataLoader(ds)))[0]
print(inputs.shape)
outputs = net(inputs)
from Compiler import ml
ml.set_n_threads(int(program.args[2]))
layers = ml.layers_from_torch(net, data[0][1].shape, 128)
layers[0].X = data[0][1]
layers[-1].Y = data[0][0]
optimizer = ml.SGD(layers)
optimizer.run_by_args(program, int(program.args[1]), 128,
data[1][1], data[1][0])