Add TestGenEval benchmark (#5534)

Co-authored-by: Kush Dave Jain <kdjain@pit.isri.cmu.edu>
Co-authored-by: openhands <openhands@all-hands.dev>
Co-authored-by: Graham Neubig <neubig@gmail.com>
This commit is contained in:
kjain14
2025-03-17 16:16:45 -04:00
committed by GitHub
parent 1a755c3fdb
commit 507afd7f06
35 changed files with 7437 additions and 3 deletions

View File

@@ -0,0 +1,12 @@
codamosa_ids = ['pydata__xarray-4750-16496', 'pydata__xarray-3239-16458', 'pydata__xarray-4966-16515', 'pydata__xarray-3302-16459', 'pydata__xarray-5126-16518', 'pydata__xarray-4994-16516', 'pydata__xarray-3905-16478', 'pydata__xarray-4182-16484', 'pydata__xarray-5131-16520', 'pydata__xarray-5662-16532', 'pydata__xarray-3364-16461', 'pydata__xarray-5731-16534', 'pydata__xarray-3239-16457', 'pydata__xarray-7203-16577', 'pydata__xarray-3156-16454', 'pydata__xarray-5126-16519', 'pydata__xarray-5365-16529', 'pydata__xarray-4629-16492', 'pydata__xarray-4248-16486', 'pydata__xarray-4339-16487', 'pydata__xarray-3151-16453', 'pydata__xarray-3114-16452', 'pydata__xarray-5033-16517', 'pydata__xarray-4802-16505', 'pydata__xarray-5455-16530', 'pydata__xarray-6400-16539', 'pydata__xarray-3239-16456', 'pydata__xarray-4419-16488']
pynguin_ids = ['pydata__xarray-6548-16541', 'pydata__xarray-7003-16557', 'pydata__xarray-3114-16452', 'pydata__xarray-4339-16487', 'pydata__xarray-6889-16549', 'pydata__xarray-3239-16458', 'pydata__xarray-3364-16461', 'pydata__xarray-3239-16457', 'pydata__xarray-5365-16529', 'pydata__xarray-5131-16520', 'pydata__xarray-7229-16578', 'pydata__xarray-6461-16540', 'pydata__xarray-4419-16488', 'pydata__xarray-7147-16571', 'pydata__xarray-3151-16453', 'pydata__xarray-4966-16515', 'pydata__xarray-4629-16492', 'pydata__xarray-3239-16456', 'pydata__xarray-7400-16582', 'pydata__xarray-4994-16516', 'pydata__xarray-3302-16459', 'pydata__xarray-6601-16544', 'pydata__xarray-6882-16548', 'pydata__xarray-6135-16535', 'pydata__xarray-7393-16581', 'pydata__xarray-5731-16534', 'pydata__xarray-7203-16577']
ids = ['pydata__xarray-3114-16452', 'pydata__xarray-3151-16453', 'pydata__xarray-3156-16454', 'pydata__xarray-3239-16456', 'pydata__xarray-3239-16457', 'pydata__xarray-3239-16458', 'pydata__xarray-3302-16459', 'pydata__xarray-3364-16461', 'pydata__xarray-3677-16471', 'pydata__xarray-3905-16478', 'pydata__xarray-4182-16484', 'pydata__xarray-4248-16486', 'pydata__xarray-4339-16487', 'pydata__xarray-4419-16488', 'pydata__xarray-4629-16492', 'pydata__xarray-4750-16496', 'pydata__xarray-4802-16505', 'pydata__xarray-4966-16515', 'pydata__xarray-4994-16516', 'pydata__xarray-5033-16517', 'pydata__xarray-5126-16518', 'pydata__xarray-5126-16519', 'pydata__xarray-5131-16520', 'pydata__xarray-5365-16529', 'pydata__xarray-5455-16530', 'pydata__xarray-5662-16532', 'pydata__xarray-5731-16534', 'pydata__xarray-6135-16535', 'pydata__xarray-6135-16536', 'pydata__xarray-6386-16537', 'pydata__xarray-6394-16538', 'pydata__xarray-6400-16539', 'pydata__xarray-6461-16540', 'pydata__xarray-6548-16541', 'pydata__xarray-6599-16543', 'pydata__xarray-6601-16544', 'pydata__xarray-6882-16548', 'pydata__xarray-6889-16549', 'pydata__xarray-7003-16557', 'pydata__xarray-7147-16571', 'pydata__xarray-7150-16572', 'pydata__xarray-7203-16577', 'pydata__xarray-7229-16578', 'pydata__xarray-7393-16581', 'pydata__xarray-7400-16582']
Command eval (our approach):
poetry run ./evaluation/benchmarks/testgeneval/scripts/eval_infer_remote.sh evaluation/evaluation_outputs/outputs/kjain14__testgeneval-test/CodeActAgent/gpt-4o_maxiter_25_N_v0.20.0-no-hint-run_1/output.jsonl 10 kjain14/testgeneval test true
Command run (our approach):
./evaluation/benchmarks/testgeneval/scripts/run_infer.sh llm.eval_gpt HEAD CodeActAgent -1 25 10 kjain14/testgeneval test 1 ../TestGenEval/results/testgeneval/preds/gpt-4o-2024-08-06__testgeneval__0.2__test.jsonl

View File

@@ -0,0 +1,80 @@
# TestGenEval Benchmark Evaluation
This folder contains the evaluation harness for the TestGenEval benchmark, which is based on the original TestGenEval benchmark ([paper](https://arxiv.org/abs/2410.00752)). TestGenEval is designed to evaluate the ability of language models to generate unit tests for given Python functions.
## Setup Environment and LLM Configuration
1. Follow the instructions [here](../../README.md#setup) to set up your local development environment and configure your LLM.
2. Install the TestGenEval dependencies:
```bash
poetry install --with testgeneval
```
## Run Inference
To generate tests using your model, run the following command:
```bash
./evaluation/benchmarks/testgeneval/scripts/run_infer.sh [model_config] [git-version] [agent] [eval_limit] [max_iter] [num_workers] [dataset] [dataset_split]
# Example
./evaluation/benchmarks/testgeneval/scripts/run_infer.sh llm.eval_gpt4_1106_preview HEAD CodeActAgent 100 30 1 kjain14/testgenevallite test
```
Parameters:
- `model_config`: The config group name for your LLM settings (e.g., `eval_gpt4_1106_preview`)
- `git-version`: The git commit hash or release tag of OpenHands to evaluate (e.g., `HEAD` or `0.6.2`)
- `agent`: The name of the agent for benchmarks (default: `CodeActAgent`)
- `eval_limit`: Limit the evaluation to the first N instances (optional)
- `max_iter`: Maximum number of iterations for the agent to run (default: 30)
- `num_workers`: Number of parallel workers for evaluation (default: 1)
- `dataset`: HuggingFace dataset name (default: `kjain14/testgenevallite`)
- `dataset_split`: Dataset split to use (default: `test`)
After running the inference, you will obtain an `output.jsonl` file (by default saved to `evaluation/evaluation_outputs`).
## Evaluate Generated Tests
To evaluate the generated tests, use the `eval_infer.sh` script:
```bash
./evaluation/benchmarks/testgeneval/scripts/eval_infer.sh $YOUR_OUTPUT_JSONL [instance_id] [dataset_name] [split] [num_workers] [skip_mutation]
# Example
./evaluation/benchmarks/testgeneval/scripts/eval_infer.sh evaluation/evaluation_outputs/outputs/kjain14__testgenevallite-test/CodeActAgent/gpt-4-1106-preview_maxiter_50_N_v1.0/output.jsonl
```
Optional arguments:
- `instance_id`: Evaluate a single instance (optional)
- `dataset_name`: Name of the dataset to use (default: `kjain14/testgenevallite`)
- `split`: Dataset split to use (default: `test`)
- `num_workers`: Number of workers for running docker (default: 1)
- `skip_mutation`: Skip mutation testing (enter `true` if desired)
The evaluation results will be saved to `evaluation/evaluation_outputs/outputs/kjain14__testgenevallite-test/CodeActAgent/gpt-4-1106-preview_maxiter_50_N_v1.0/` with `output.testgeneval.jsonl` containing the metrics.
## Metrics
The TestGenEval benchmark evaluates generated tests based on the following metrics:
1. Correctness: Measures if the generated tests are syntactically correct and run without errors.
2. Coverage: Assesses the code coverage achieved by the generated tests.
3. Mutation Score: Evaluates the effectiveness of the tests in detecting intentionally introduced bugs (mutations).
4. Readability: Analyzes the readability of the generated tests using various metrics.
## Submit Your Evaluation Results
To contribute your evaluation results:
1. Fork [our HuggingFace evaluation outputs](https://huggingface.co/spaces/OpenHands/evaluation).
2. Add your results to the forked repository.
3. Submit a Pull Request with your evaluation results following the guide [here](https://huggingface.co/docs/hub/en/repositories-pull-requests-discussions#pull-requests-and-discussions).
## Additional Resources
- [TestGenEval Paper](https://arxiv.org/abs/2410.00752)
- [OpenHands Documentation](https://github.com/All-Hands-AI/OpenHands)
- [HuggingFace Datasets](https://huggingface.co/datasets)
For any questions or issues, please open an issue in the [OpenHands repository](https://github.com/All-Hands-AI/OpenHands/issues).

View File

@@ -0,0 +1,351 @@
import math
import os
from pathlib import Path
from tree_sitter import Language, Parser
def total_byte_entropy_stats(python_code):
# Count the occurrence of each byte (character for simplicity)
byte_counts = {}
for byte in python_code.encode('utf-8'):
byte_counts[byte] = byte_counts.get(byte, 0) + 1
total_bytes = sum(byte_counts.values())
entropy = -sum(
(count / total_bytes) * math.log2(count / total_bytes)
for count in byte_counts.values()
)
return {'total_byte_entropy': entropy}
def average_nulls_stats(tree, num_lines):
total_nulls = 0
nulls_per_line = {} # Dictionary to count nulls per line
def traverse(node):
nonlocal total_nulls
if node.type == 'null_literal':
total_nulls += 1
line_number = node.start_point[0] # Get line number
if line_number in nulls_per_line:
nulls_per_line[line_number] += 1
else:
nulls_per_line[line_number] = 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
# Calculate average nulls per line
avg_nulls = total_nulls / num_lines if num_lines > 0 else 0
# Calculate max nulls on any line
max_nulls_on_any_line = max(nulls_per_line.values()) if nulls_per_line else 0
return {
'avg_nulls': avg_nulls,
'total_nulls': total_nulls,
'max_nulls': max_nulls_on_any_line,
'has_nulls': 1 if total_nulls > 0 else 0,
}
def arithmetic_operations_stats(tree, num_lines):
# Dictionary to hold counts of each arithmetic operation
op_counts = {'+': 0, '-': 0, '*': 0, '/': 0, '%': 0}
total_ops = 0
# Function to traverse the AST and update operation counts
def traverse(node):
nonlocal total_ops
if node.type == 'binary_expression' or node.type == 'update_expression':
for child in node.children:
if child.type == 'operator':
op = child.text.decode('utf8')
if op in op_counts:
op_counts[op] += 1
total_ops += 1
else:
for child in node.children:
traverse(child)
traverse(tree.root_node)
return {
'total_arithmetic_operations': total_ops,
'avg_arithmetic_operations': total_ops / num_lines,
}
def numbers_floats_stats(tree, num_lines):
total_numbers = 0
total_floats = 0
def traverse(node):
nonlocal total_numbers, total_floats
if node.type in ['integer_literal', 'decimal_literal']:
total_numbers += 1
if (
'.' in node.text.decode('utf8')
or 'e' in node.text.decode('utf8').lower()
):
total_floats += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
return {'total_numbers': total_numbers, 'total_floats': total_floats}
def code_stats(python_code):
lines = python_code.strip().split('\n')
total_line_length = sum(len(line) for line in lines)
max_line_length = max(len(line) for line in lines)
return {
'total_line_length': total_line_length,
'max_line_length': max_line_length,
'avg_characters': total_line_length / len(lines),
}
def assertions_stats(tree, num_lines):
total_assertions = 0
def traverse(node):
nonlocal total_assertions
if node.type == 'assert_statement':
total_assertions += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
return {
'total_assertions': total_assertions,
'total_has_assertions': 1 if total_assertions > 0 else 0,
}
def class_instances_stats(tree, num_lines):
total_class_instances = 0
def traverse(node):
nonlocal total_class_instances
if node.type == 'object_creation_expression':
total_class_instances += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
return {'total_class_instances': total_class_instances}
def has_execeptions(tree, num_lines):
total_has_exceptions = 0
def traverse(node):
nonlocal total_has_exceptions
if node.type == 'try_statement':
total_has_exceptions += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
return {'total_has_exceptions': 1 if total_has_exceptions > 0 else 0}
def distinct_methods_stats(tree, num_lines):
method_names = set()
total_nodes = 0
def traverse(node):
nonlocal total_nodes
if node.type == 'method_declaration':
for child in node.children:
if child.type == 'identifier':
method_names.add(child.text.decode('utf8'))
break
total_nodes += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
total_distinct_methods = len(method_names)
total_method_ratio = (
total_distinct_methods / (total_nodes - total_distinct_methods)
if total_nodes > total_distinct_methods
else 0
)
return {
'total_distinct_methods': total_distinct_methods,
'total_method_ratio': total_method_ratio,
}
def loops_stats(tree, num_lines):
"""
Calculate the average number of loops.
"""
total_loops = 0
def traverse(node):
nonlocal total_loops
if node.type in ['for_statement', 'while_statement', 'do_statement']:
total_loops += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
avg_loops = total_loops / num_lines
return {'avg_loops': avg_loops}
def branches_stats(tree, num_lines):
"""
Calculate the average number of branches (conditional statements).
"""
total_branches = 0
def traverse(node):
nonlocal total_branches
if node.type in ['if_statement', 'switch_statement']:
total_branches += 1
for child in node.children:
traverse(child)
traverse(tree.root_node)
# Assuming each branch is its own, this might need refinement based on definition
avg_branches = total_branches / num_lines
return {'avg_branches': avg_branches}
def string_stats(tree, num_lines):
string_literals = []
# Function to traverse the AST and collect string literals
def traverse(node):
if node.type == 'string_literal':
# Extracting the string literal, excluding the quotation marks
literal_text = node.text.decode('utf8')[1:-1]
string_literals.append(literal_text)
for child in node.children:
traverse(child)
traverse(tree.root_node)
# Calculate the average string length
total_length = sum(len(s) for s in string_literals)
avg_length = total_length / num_lines
return {'avg_str_length': avg_length}
def identifier_stats(tree, num_lines):
root_node = tree.root_node
identifier_counts = {} # Dictionary to count occurrences of each identifier
total_nodes = 0 # Counter for all nodes
# Function to recursively count identifiers and all nodes, gathering their stats
def count(node):
nonlocal identifier_counts, total_nodes
iden_count = 0
max_length = 0
total_nodes += 1 # Increment total nodes for every node visited
if node.type == 'identifier':
identifier = node.text.decode('utf8') # Assuming UTF-8 encoding
iden_count += 1
identifier_counts[identifier] = identifier_counts.get(identifier, 0) + 1
iden_length = len(identifier)
if iden_length > max_length:
max_length = iden_length
for child in node.children:
child_count, child_max_length = count(child)
iden_count += child_count
if child_max_length > max_length:
max_length = child_max_length
return iden_count, max_length
total_identifiers, max_identifier_length = count(root_node)
total_unique_identifiers = len(identifier_counts)
total_identifier_length = sum(len(k) * v for k, v in identifier_counts.items())
avg_identifier_length = total_identifier_length / num_lines
# Calculate the identifier ratio as total identifiers over total nodes
identifier_ratio = total_identifiers / total_nodes if total_nodes > 0 else 0
return {
'total_identifiers': total_identifiers,
'total_identifier_length': total_identifier_length,
'max_identifier_length': max_identifier_length,
'avg_identifier_length': avg_identifier_length,
'total_unique_identifiers': total_unique_identifiers,
'total_identifier_ratio': identifier_ratio, # Include the new ratio in the returned dictionary
'total_nodes': total_nodes, # Include total node count for reference or further calculations
}
def compute_regression(results):
components = {
'total_line_length': -0.0001,
'max_line_length': -0.0021,
'total_identifiers': 0.0076,
'total_identifier_length': -0.0004,
'max_identifier_length': -0.0067,
'avg_identifier_length': -0.005,
'avg_arithmetic_operations': 0.0225,
'avg_branches': 0.9886,
'avg_loops': 0.1572,
'total_assertions': 0.0119,
'total_has_assertions': -0.0147,
'avg_characters': 0.1242,
'total_class_instances': -0.043,
'total_distinct_methods': -0.0127,
'avg_str_length': 0.0026,
'total_has_exceptions': 0.1206,
'total_unique_identifiers': -0.019,
'max_nulls': -0.0712,
'total_numbers': -0.0078,
'avg_nulls': 0.1444,
'total_identifier_ratio': 0.334,
'total_method_ratio': 0.0406,
'total_floats': -0.0174,
'total_byte_entropy': -0.3917,
}
test_score = 0
for component in components:
test_score += components[component] * results[component]
test_score += 5.7501
return test_score
def compute_readability(python_code):
# Create parser and set up language
import tree_sitter_python
from tree_sitter import Parser, Language
parser = Parser(Language(tree_sitter_python.language()))
results = code_stats(python_code)
num_lines = len(python_code.strip().split('\n'))
results.update(total_byte_entropy_stats(python_code))
tree = parser.parse(bytes(python_code, 'utf8'))
results.update(identifier_stats(tree, num_lines))
results.update(loops_stats(tree, num_lines))
results.update(branches_stats(tree, num_lines))
results.update(distinct_methods_stats(tree, num_lines))
results.update(has_execeptions(tree, num_lines))
results.update(class_instances_stats(tree, num_lines))
results.update(assertions_stats(tree, num_lines))
results.update(numbers_floats_stats(tree, num_lines))
results.update(average_nulls_stats(tree, num_lines))
results.update(arithmetic_operations_stats(tree, num_lines))
results.update(string_stats(tree, num_lines))
score = compute_regression(results)
return score

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,629 @@
import os
import tempfile
import time
from functools import partial
import pandas as pd
from report_utils import (
check_coverage,
check_mutation,
count_methods,
get_lines_of_code,
)
from evaluation.benchmarks.testgeneval.compute_readability import compute_readability
from evaluation.benchmarks.testgeneval.constants import (
COVERAGE_PREFIX,
MUTATION_BUFFER,
MUTATION_TEMPLATE,
MUTATION_TIMEOUT,
TESTS_SUFFIX,
)
from evaluation.benchmarks.testgeneval.metrics import (
bleu,
edit_sim,
exact_match,
rouge_l,
)
from evaluation.benchmarks.testgeneval.pygments_utils import tokenize_code
from evaluation.benchmarks.testgeneval.run_infer import get_instance_docker_image
from evaluation.benchmarks.testgeneval.test_filter import filter_tests
from evaluation.benchmarks.testgeneval.test_spec import (
TestGenEvalInstance,
TestSpec,
make_test_spec,
)
from evaluation.benchmarks.testgeneval.utils import load_testgeneval_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.core.config import AppConfig, SandboxConfig, get_parser
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime
from openhands.events.action import CmdRunAction
from openhands.events.observation import CmdOutputObservation
from openhands.utils.async_utils import call_async_from_sync
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/kdjain/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def get_config(instance: pd.Series) -> AppConfig:
base_container_image = get_instance_docker_image(instance['instance_id_swebench'])
assert (
base_container_image
), f"Invalid container image for instance {instance['instance_id_swebench']}."
logger.info(f'Using instance container image: {base_container_image}.')
return AppConfig(
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'eventstream'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
use_host_network=False,
timeout=1800,
api_key=os.environ.get('ALLHANDS_API_KEY'),
remote_runtime_api_url=os.environ.get(
'SANDBOX_REMOTE_RUNTIME_API_URL', 'http://localhost:8000'
),
),
workspace_base=None,
workspace_mount_path=None,
)
def compute_lexical_metrics(pred_suite, gold_suite):
pred_loc = get_lines_of_code(pred_suite)
gold_loc = get_lines_of_code(gold_suite)
pred_methods = count_methods(pred_suite)
gold_methods = count_methods(gold_suite)
readability_pred = compute_readability(pred_suite)
readability_gold = compute_readability(gold_suite)
preds = tokenize_code(pred_suite)
golds = tokenize_code(gold_suite)
return {
'pred_loc': pred_loc,
'gold_loc': gold_loc,
'pred_readability': readability_pred,
'gold_readability': readability_gold,
'pred_methods': pred_methods,
'gold_methods': gold_methods,
'bleu': bleu(preds, golds),
'xmatch': exact_match(preds, golds),
'edit_sim': edit_sim(preds, golds),
'rouge_f': rouge_l(golds, preds)['f'],
'rouge_p': rouge_l(golds, preds)['p'],
'rouge_r': rouge_l(golds, preds)['r'],
}
def run_command(runtime, command, timeout=600):
action = CmdRunAction(command=command)
action.set_hard_timeout(timeout)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
return obs
def run_tests(runtime, instance, test_script, log_file='/tmp/test_output.log'):
action = CmdRunAction(command=f'bash {test_script} > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(60)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation), 'Failed to start test script.'
pid = obs.content.split()[-1].strip()
logger.info(f'[{instance.instance_id}] Test process started with PID: {pid}')
start_time = time.time()
timeout = 1800
while True:
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
logger.info(f'[{instance.instance_id}] Test process timed out.')
instance['test_result']['report']['test_timeout'] = True
break
check_action = CmdRunAction(command=f'ps -p {pid} > /dev/null; echo $?')
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and len(check_obs.content.split()) > 0
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(f'[{instance.instance_id}] Test process completed.')
break
time.sleep(30)
test_action = CmdRunAction(command=f'cat {log_file}')
test_action.set_hard_timeout(300)
test_obs = runtime.run_action(test_action)
assert isinstance(test_obs, CmdOutputObservation), 'Failed to retrieve test output.'
return test_obs.exit_code, test_obs.content, elapsed_time
def run_mutation_testing(
runtime, instance, mutation_script, log_file='/tmp/mutation_output.log'
):
action = CmdRunAction(command=f'bash {mutation_script} > {log_file} 2>&1 & echo $!')
action.set_hard_timeout(60)
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation), 'Failed to start test script.'
pid = obs.content.split()[-1].strip()
logger.info(f'[{instance.instance_id}] Mutation process started with PID: {pid}')
start_time = time.time()
timeout = 4000
while True:
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
logger.info(f'[{instance.instance_id}] Mutation process timed out.')
instance['test_result']['report']['mutation_timeout'] = True
break
check_action = CmdRunAction(command=f'ps -p {pid} > /dev/null; echo $?')
check_obs = runtime.run_action(check_action)
if (
isinstance(check_obs, CmdOutputObservation)
and len(check_obs.content.split()) > 0
and check_obs.content.split()[-1].strip() == '1'
):
logger.info(f'[{instance.instance_id}] Mutation process completed.')
break
time.sleep(30)
assert isinstance(obs, CmdOutputObservation), 'Failed to run mutation script.'
mutation_action = CmdRunAction(command=f'cat {log_file}')
mutation_action.set_hard_timeout(300)
mutation_obs = runtime.run_action(mutation_action)
assert isinstance(
mutation_obs, CmdOutputObservation
), 'Failed to retrieve mutation output.'
return mutation_obs.exit_code, mutation_obs.content
def grade_test_output(
test_suite: str, instance: pd.Series, test_output: str, test_spec: TestSpec, runtime
):
"""
Two-pass test grading with short-circuiting:
1. Run all tests to identify passing/failing tests
2. If no failing tests, evaluate coverage immediately
3. Otherwise, run only passing tests for coverage analysis
"""
unit_test_output, coverage_output = '', ''
if TESTS_SUFFIX in test_output:
unit_test_output = test_output.split(TESTS_SUFFIX)[0]
if not unit_test_output:
return (
False,
0,
'',
'',
{
'total_tests': 0,
'passing_tests': 0,
'failing_tests': 0,
'any_pass': False,
'all_pass': False,
'passing_test_names': [],
'failing_test_names': [],
},
)
logger.info('Calling filter unit tests')
filtered_content, passing_tests, failing_tests = filter_tests(
test_suite, unit_test_output, test_spec.repo
)
total_tests = len(passing_tests) + len(failing_tests)
test_stats = {
'total_tests': total_tests,
'passing_tests': len(passing_tests),
'failing_tests': len(failing_tests),
'any_pass': len(passing_tests) > 0,
'all_pass': len(failing_tests) == 0 and total_tests > 0,
'passing_test_names': passing_tests,
'failing_test_names': failing_tests,
}
if not passing_tests:
return False, 0, unit_test_output, coverage_output, test_stats
# If all tests pass, evaluate coverage immediately
if not failing_tests:
coverage = 0
cov_success = False
if COVERAGE_PREFIX in test_output:
coverage_output = test_output.split(COVERAGE_PREFIX)[1]
_, coverage = check_coverage(coverage_output, test_spec.code_file)
cov_success = True
# test_stats['filtered_suite'] = test_suite
return cov_success, coverage, unit_test_output, coverage_output, test_stats
cov_success = False
coverage = 0
# Second pass - run coverage on passing tests
if filtered_content:
with tempfile.TemporaryDirectory() as temp_dir:
test_suite_path = os.path.join(temp_dir, 'test_suite.py')
with open(test_suite_path, 'w') as f:
f.write(filtered_content)
runtime.copy_to(test_suite_path, '/tmp')
run_command(runtime, f'cp /tmp/test_suite.py /testbed/{test_spec.test_file}')
_, test_output_second_pass, _ = run_tests(runtime, instance, '/tmp/test.sh')
coverage, coverage_output, unit_test_output = 0, '', test_output_second_pass
if COVERAGE_PREFIX in test_output_second_pass:
coverage_output = test_output_second_pass.split(COVERAGE_PREFIX)[1]
unit_test_output = test_output_second_pass.split(TESTS_SUFFIX)[0]
_, coverage = check_coverage(coverage_output, test_spec.code_file)
cov_success = True
# test_stats['filtered_suite'] = filtered_content
return cov_success, coverage, unit_test_output, coverage_output, test_stats
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
log_dir: str | None = None,
) -> EvalOutput:
"""
Evaluate agent performance on a TestGenEval problem instance.
Note that this signature differs from the expected input to `run_evaluation`. Use
`functools.partial` to provide optional arguments before passing to the evaluation harness.
Args:
log_dir (str | None, default=None): Path to directory where log files will be written. Must
be provided if `reset_logger` is set.
Raises:
AssertionError: if the `reset_logger` flag is set without a provided log directory.
"""
if reset_logger:
assert (
log_dir is not None
), "Can't reset logger without a provided log directory."
os.makedirs(log_dir, exist_ok=True)
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
config = get_config(instance)
id = instance.instance_id
logger.info(f'Starting evaluation for instance {id}.')
instance['test_result']['id'] = id
instance['test_result']['report'] = {
'test_output': '',
# 'coverage_output': '',
# 'mutation_output': '',
'empty_generation': False,
'error_eval': False,
'all_tests_pass': False,
'tests_pass': False,
'test_timeout': False,
'mutation_timeout': False,
'coverage_success': False,
'mutation_success': False,
'coverage': 0,
'mutation_score': 0,
'mutation_error_interval': -1,
'num_mutants': -1,
}
instance['test_result']['lexical'] = {
'pred_loc': -1,
'gold_loc': -1,
'pred_readability': -1,
'gold_readability': -1,
'pred_methods': -1,
'gold_methods': -1,
'bleu': -1,
'xmatch': -1,
'edit_sim': -1,
'rouge_f': -1,
'rouge_p': -1,
'rouge_r': -1,
}
if instance['test_suite'] == '' or instance['test_suite'] is None:
instance['test_result']['report']['empty_generation'] = True
return EvalOutput(
instance_id=instance.instance_id, test_result=instance['test_result']
)
if not args.skip_lexical:
lexical_metrics = compute_lexical_metrics(
instance['test_suite'], instance['instance']['test_src']
)
instance['test_result']['lexical'] = lexical_metrics
test_suite = instance['test_suite']
test_spec: TestSpec = instance['test_spec']
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
with tempfile.TemporaryDirectory() as temp_dir:
test_suite_path = os.path.join(temp_dir, 'test_suite.py')
with open(test_suite_path, 'w') as f:
f.write(test_suite)
runtime.copy_to(test_suite_path, '/tmp')
test_script_path = os.path.join(temp_dir, 'test.sh')
with open(test_script_path, 'w') as f:
f.write(test_spec.test_script)
runtime.copy_to(test_script_path, '/tmp')
mutation_script_path = os.path.join(temp_dir, 'mutation.sh')
with open(mutation_script_path, 'w') as f:
f.write(test_spec.mutation_script)
runtime.copy_to(mutation_script_path, '/tmp')
try:
run_command(runtime, 'chmod +x /tmp/test.sh /tmp/mutation.sh')
run_command(runtime, f'cp /tmp/test_suite.py /testbed/{test_spec.test_file}')
# First pass - run all tests
_, test_output, test_time = run_tests(runtime, instance, '/tmp/test.sh')
# Grade tests with two-pass approach
coverage_success, coverage, unit_test_output, coverage_output, test_stats = (
grade_test_output(test_suite, instance, test_output, test_spec, runtime)
)
# Update report with test statistics
instance['test_result']['report'].update(
{
'test_output': unit_test_output,
# 'coverage_output': coverage_output,
'tests_pass': test_stats['any_pass'], # Changed to use any_pass
'all_tests_pass': test_stats['all_pass'], # Added all_pass metric
'coverage_success': coverage_success,
'coverage': coverage if coverage_success else 0,
'test_stats': test_stats,
}
)
# Only run mutation testing if we have passing tests and coverage
if (
not args.skip_mutation
and coverage_success
and test_stats['any_pass']
and coverage > 0
):
mutation_timeout = max(10, 1.5 * test_time)
mutation_toml = MUTATION_TEMPLATE.format(
test_cmd=test_spec.test_cmd,
source_fp=test_spec.code_file,
timeout=mutation_timeout,
)
with tempfile.TemporaryDirectory() as temp_dir:
mutation_toml_path = os.path.join(temp_dir, 'mutation.toml')
with open(mutation_toml_path, 'w') as f:
f.write(mutation_toml)
runtime.copy_to(mutation_toml_path, '/tmp')
run_command(runtime, 'cp /tmp/mutation.toml /testbed/mutation.toml')
mutation_code, mutation_output = run_mutation_testing(
runtime, instance, '/tmp/mutation.sh'
)
# instance['test_result']['report']['mutation_output'] = mutation_output
if mutation_output and mutation_code == 0:
(
mutation_success,
num_mutants,
mutation_score,
mutation_confidence_interval,
) = check_mutation(mutation_output)
instance['test_result']['report']['num_mutants'] = num_mutants
instance['test_result']['report']['mutation_success'] = mutation_success
instance['test_result']['report']['mutation_score'] = mutation_score
instance['test_result']['report']['mutation_error_interval'] = (
mutation_confidence_interval
)
return EvalOutput(
instance_id=instance.instance_id, test_result=instance['test_result']
)
except Exception as e:
logger.error(f'Error processing instance {instance.instance_id}: {e}')
raise RuntimeError(
instance.instance_id,
'Unexpected output...',
logger,
)
finally:
runtime.close()
def count_and_log_fields(evaluated_predictions, fields, key):
"""
Count and log the sum of specified fields in the evaluated predictions,
ignoring fields with a value of -1. If all values for a field are -1,
return -1.
:param evaluated_predictions: DataFrame containing evaluation results
:param fields: List of field names to count
:param key: Key to access the field values ('report' or 'lexical')
"""
def count_field(row, field):
value = row['test_result'][key][field]
return (
value if value != -1 else None
) # Ignore -1 fields by treating them as None
for field in fields:
# Extract the valid values for the field, ignoring -1
valid_values = evaluated_predictions.apply(
count_field, args=(field,), axis=1
).dropna()
if valid_values.empty: # If all values are -1
logger.info(f'# {field}: -1 (All values are -1)')
else:
count = valid_values.sum() # Sum of valid values
length = len(valid_values) # Count of valid entries
logger.info(f'# {field}: {length}. ({count / length:.2f})')
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--input-file', type=str, required=True, help='Path to input predictions file'
)
parser.add_argument(
'--dataset',
type=str,
default='kjain14/testgeneval',
help='Dataset to evaluate on',
)
parser.add_argument(
'--split', type=str, default='test', help='Split to evaluate on'
)
parser.add_argument(
'--skip_mutation', action='store_true', help='Skip mutation testing'
)
parser.add_argument(
'--skip_lexical', action='store_true', help='Skip lexical metrics'
)
parser.add_argument(
'--mutation_timeout',
type=int,
default=MUTATION_TIMEOUT,
help='Mutation timeout',
)
parser.add_argument(
'--mutation_buffer',
type=int,
default=MUTATION_BUFFER,
help='Mutation buffer',
)
args, _ = parser.parse_known_args()
dataset: list[TestGenEvalInstance] = load_testgeneval_dataset(
args.dataset, args.split
)
logger.info(
f'Loaded dataset {args.dataset} with split {args.split} to run inference on.'
)
# Load predictions
assert args.input_file.endswith('.jsonl'), 'Input file must be a jsonl file.'
predictions = pd.read_json(args.input_file, lines=True)
assert (
'instance_id' in predictions.columns
), 'Input file must contain instance_id column.'
if 'test_suite' not in predictions.columns and (
'test_result' in predictions.columns
and 'test_suite' in predictions['test_result'].iloc(0)
):
raise ValueError(
'Input file must contain test_suite column OR test_result column with test_suite field.'
)
if 'instance_id_swebench' not in predictions.columns:
predictions['instance_id_swebench'] = predictions['instance'].apply(
lambda x: x['instance_id_swebench']
)
if 'instance_id' not in predictions.columns and (
'instance_id' in predictions['instance'].iloc(0)
):
raise ValueError(
'Input file must contain id column OR instance column with id field.'
)
if 'instance_id' not in predictions.columns:
predictions['instance_id'] = predictions['instance'].apply(
lambda x: x['instance_id']
)
if 'test_suite' not in predictions.columns:
predictions['test_suite'] = predictions['test_result'].apply(
lambda x: x['test_suite']
)
assert len(predictions['instance_id'].unique()) == len(
predictions
), 'instance_id column must be unique.'
assert {'instance_id_swebench', 'test_suite', 'instance_id'}.issubset(
set(predictions.columns)
), 'Input file must contain id, instance_id and test_suite columns.'
predictions['test_spec'] = predictions['instance'].apply(
lambda x: make_test_spec(x, args.mutation_timeout, args.mutation_buffer)
)
output_file = args.input_file.replace('.jsonl', '.testgeneval.jsonl')
instances = prepare_dataset(predictions, output_file, args.eval_n_limit)
# If possible, load the relevant metadata to avoid issues with `run_evaluation`.
metadata: EvalMetadata | None = None
metadata_filepath = os.path.join(os.path.dirname(args.input_file), 'metadata.json')
if os.path.exists(metadata_filepath):
with open(metadata_filepath, 'r') as metadata_file:
data = metadata_file.read()
metadata = EvalMetadata.model_validate_json(data)
# The evaluation harness constrains the signature of `process_instance_func` but we need to
# pass extra information. Build a new function object to avoid issues with multiprocessing.
process_instance_func = partial(
process_instance, log_dir=output_file.replace('.jsonl', '.logs')
)
run_evaluation(
instances,
metadata=None,
output_file=output_file,
num_workers=args.eval_num_workers,
process_instance_func=process_instance_func,
)
# Load evaluated predictions & print number of resolved predictions
evaluated_predictions = pd.read_json(output_file, lines=True)
report_fields = [
'coverage',
'mutation_score',
'tests_pass',
'all_tests_pass',
'empty_generation',
'coverage_success',
'test_timeout',
'error_eval',
]
lexical_fields = [
'pred_loc',
'gold_loc',
'pred_methods',
'gold_methods',
'bleu',
'xmatch',
'edit_sim',
'rouge_f',
'rouge_p',
'rouge_r',
]
# Log report and lexical fields
count_and_log_fields(evaluated_predictions, report_fields, key='report')
count_and_log_fields(evaluated_predictions, lexical_fields, key='lexical')

View File

@@ -0,0 +1,291 @@
import re
from evaluation.benchmarks.testgeneval.constants import TestStatus
def parse_log_pytest(log: str) -> dict[str, str]:
"""
Parser for test logs generated with PyTest framework
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
for line in log.split('\n'):
if any([line.startswith(x.value) for x in TestStatus]):
# Additional parsing for FAILED status
if line.startswith(TestStatus.FAILED.value):
line = line.replace(' - ', ' ')
test_case = line.split()
if len(test_case) <= 1:
continue
test_status_map[test_case[1]] = test_case[0]
return test_status_map
def parse_log_pytest_options(log: str) -> dict[str, str]:
"""
Parser for test logs generated with PyTest framework with options
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
option_pattern = re.compile(r'(.*?)\[(.*)\]')
test_status_map = {}
for line in log.split('\n'):
if any([line.startswith(x.value) for x in TestStatus]):
# Additional parsing for FAILED status
if line.startswith(TestStatus.FAILED.value):
line = line.replace(' - ', ' ')
test_case = line.split()
if len(test_case) <= 1:
continue
has_option = option_pattern.search(test_case[1])
if has_option:
main, option = has_option.groups()
if (
option.startswith('/')
and not option.startswith('//')
and '*' not in option
):
option = '/' + option.split('/')[-1]
test_name = f'{main}[{option}]'
else:
test_name = test_case[1]
test_status_map[test_name] = test_case[0]
return test_status_map
def parse_log_django(log: str) -> dict[str, str]:
"""
Parser for test logs generated with Django tester framework
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
lines = log.split('\n')
prev_test = None
for line in lines:
line = line.strip()
# This isn't ideal but the test output spans multiple lines
if '--version is equivalent to version' in line:
test_status_map['--version is equivalent to version'] = (
TestStatus.PASSED.value
)
# Log it in case of error
if ' ... ' in line:
prev_test = line.split(' ... ')[0]
pass_suffixes = (' ... ok', ' ... OK', ' ... OK')
for suffix in pass_suffixes:
if line.endswith(suffix):
# TODO: Temporary, exclusive fix for django__django-7188
# The proper fix should involve somehow getting the test results to
# print on a separate line, rather than the same line
if line.strip().startswith(
'Applying sites.0002_alter_domain_unique...test_no_migrations'
):
line = line.split('...', 1)[-1].strip()
test = line.rsplit(suffix, 1)[0]
test_status_map[test] = TestStatus.PASSED.value
break
if ' ... skipped' in line:
test = line.split(' ... skipped')[0]
test_status_map[test] = TestStatus.SKIPPED.value
if line.endswith(' ... FAIL'):
test = line.split(' ... FAIL')[0]
test_status_map[test] = TestStatus.FAILED.value
if line.startswith('FAIL:'):
test = line.split()[1].strip()
test_status_map[test] = TestStatus.FAILED.value
if line.endswith(' ... ERROR'):
test = line.split(' ... ERROR')[0]
test_status_map[test] = TestStatus.ERROR.value
if line.startswith('ERROR:'):
test = line.split()[1].strip()
test_status_map[test] = TestStatus.ERROR.value
if line.lstrip().startswith('ok') and prev_test is not None:
# It means the test passed, but there's some additional output (including new lines)
# between "..." and "ok" message
test = prev_test
test_status_map[test] = TestStatus.PASSED.value
# TODO: This is very brittle, we should do better
# There's a bug in the django logger, such that sometimes a test output near the end gets
# interrupted by a particular long multiline print statement.
# We have observed this in one of 3 forms:
# - "{test_name} ... Testing against Django installed in {*} silenced.\nok"
# - "{test_name} ... Internal Server Error: \/(.*)\/\nok"
# - "{test_name} ... System check identified no issues (0 silenced).\nok"
patterns = [
r'^(.*?)\s\.\.\.\sTesting\ against\ Django\ installed\ in\ ((?s:.*?))\ silenced\)\.\nok$',
r'^(.*?)\s\.\.\.\sInternal\ Server\ Error:\ \/(.*)\/\nok$',
r'^(.*?)\s\.\.\.\sSystem check identified no issues \(0 silenced\)\nok$',
]
for pattern in patterns:
for match in re.finditer(pattern, log, re.MULTILINE):
test_name = match.group(1)
test_status_map[test_name] = TestStatus.PASSED.value
return test_status_map
def parse_log_pytest_v2(log: str) -> dict[str, str]:
"""
Parser for test logs generated with PyTest framework (Later Version)
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
escapes = ''.join([chr(char) for char in range(1, 32)])
for line in log.split('\n'):
line = re.sub(r'\[(\d+)m', '', line)
translator = str.maketrans('', '', escapes)
line = line.translate(translator)
if any([line.startswith(x.value) for x in TestStatus]):
if line.startswith(TestStatus.FAILED.value):
line = line.replace(' - ', ' ')
test_case = line.split()
if len(test_case) >= 2:
test_status_map[test_case[1]] = test_case[0]
# Support older pytest versions by checking if the line ends with the test status
elif any([line.endswith(x.value) for x in TestStatus]):
test_case = line.split()
if len(test_case) >= 2:
test_status_map[test_case[0]] = test_case[1]
return test_status_map
def parse_log_seaborn(log: str) -> dict[str, str]:
"""
Parser for test logs generated with seaborn testing framework
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
for line in log.split('\n'):
if line.startswith(TestStatus.FAILED.value):
test_case = line.split()[1]
test_status_map[test_case] = TestStatus.FAILED.value
elif f' {TestStatus.PASSED.value} ' in line:
parts = line.split()
if parts[1] == TestStatus.PASSED.value:
test_case = parts[0]
test_status_map[test_case] = TestStatus.PASSED.value
elif line.startswith(TestStatus.PASSED.value):
parts = line.split()
test_case = parts[1]
test_status_map[test_case] = TestStatus.PASSED.value
return test_status_map
def parse_log_sympy(log: str) -> dict[str, str]:
"""
Parser for test logs generated with Sympy framework
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
pattern = r'(_*) (.*)\.py:(.*) (_*)'
matches = re.findall(pattern, log)
for match in matches:
test_case = f'{match[1]}.py:{match[2]}'
test_status_map[test_case] = TestStatus.FAILED.value
for line in log.split('\n'):
line = line.strip()
if line.startswith('test_'):
if line.endswith('[FAIL]') or line.endswith('[OK]'):
line = line[: line.rfind('[')]
line = line.strip()
if line.endswith(' E'):
test = line.split()[0]
test_status_map[test] = TestStatus.ERROR.value
if line.endswith(' F'):
test = line.split()[0]
test_status_map[test] = TestStatus.FAILED.value
if line.endswith(' ok'):
test = line.split()[0]
test_status_map[test] = TestStatus.PASSED.value
return test_status_map
def parse_log_matplotlib(log: str) -> dict[str, str]:
"""
Parser for test logs generated with PyTest framework
Args:
log (str): log content
Returns:
dict: test case to test status mapping
"""
test_status_map = {}
for line in log.split('\n'):
line = line.replace('MouseButton.LEFT', '1')
line = line.replace('MouseButton.RIGHT', '3')
if any([line.startswith(x.value) for x in TestStatus]):
# Additional parsing for FAILED status
if line.startswith(TestStatus.FAILED.value):
line = line.replace(' - ', ' ')
test_case = line.split()
if len(test_case) <= 1:
continue
test_status_map[test_case[1]] = test_case[0]
return test_status_map
parse_log_astroid = parse_log_pytest
parse_log_flask = parse_log_pytest
parse_log_marshmallow = parse_log_pytest
parse_log_pvlib = parse_log_pytest
parse_log_pyvista = parse_log_pytest
parse_log_sqlfluff = parse_log_pytest
parse_log_xarray = parse_log_pytest
parse_log_pydicom = parse_log_pytest_options
parse_log_requests = parse_log_pytest_options
parse_log_pylint = parse_log_pytest_options
parse_log_astropy = parse_log_pytest_v2
parse_log_scikit = parse_log_pytest_v2
parse_log_sphinx = parse_log_pytest_v2
MAP_REPO_TO_PARSER = {
'astropy/astropy': parse_log_astropy,
'django/django': parse_log_django,
'marshmallow-code/marshmallow': parse_log_marshmallow,
'matplotlib/matplotlib': parse_log_matplotlib,
'mwaskom/seaborn': parse_log_seaborn,
'pallets/flask': parse_log_flask,
'psf/requests': parse_log_requests,
'pvlib/pvlib-python': parse_log_pvlib,
'pydata/xarray': parse_log_xarray,
'pydicom/pydicom': parse_log_pydicom,
'pylint-dev/astroid': parse_log_astroid,
'pylint-dev/pylint': parse_log_pylint,
'pytest-dev/pytest': parse_log_pytest,
'pyvista/pyvista': parse_log_pyvista,
'scikit-learn/scikit-learn': parse_log_scikit,
'sqlfluff/sqlfluff': parse_log_sqlfluff,
'sphinx-doc/sphinx': parse_log_sphinx,
'sympy/sympy': parse_log_sympy,
}

View File

@@ -0,0 +1,311 @@
import sys
from typing import Callable, Dict, List, Optional, Sequence, TypeVar, Union
import nltk
import numpy as np
from fuzzywuzzy import fuzz
from rouge import Rouge
# increase recursion depth to ensure ROUGE can be calculated for long sentences
if sys.getrecursionlimit() < 10_000:
sys.setrecursionlimit(10_000)
def bleu(gold: List[str], pred: List[str]) -> float:
"""
Calculate BLEU score, using smoothing method 2 with auto reweighting, in the range of 0~100.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:return: BLEU score
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 * nltk.translate.bleu_score.sentence_bleu(
[gold],
pred,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def batch_bleu(golds: List[List[str]], preds: List[List[str]]) -> List[float]:
"""
Calculate BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of BLEU scores
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
return [bleu(gold, pred) for gold, pred in zip(golds, preds)]
def corpus_bleu(golds: List[List[str]], preds: List[List[str]]) -> float:
"""
Calculate corpus-level BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: corpus-level BLEU score
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
return 100.0 * nltk.translate.bleu_score.corpus_bleu(
[[gold] for gold in golds],
preds,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def edit_sim(
gold: Union[str, List[str]], pred: Union[str, List[str]], sep: str = " "
) -> float:
"""
Calculate char-level edit similarity, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:param sep: separator between tokens
:return: char-level edit similarity
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
return fuzz.ratio(gold, pred)
def batch_edit_sim(
golds: List[Union[str, List[str]]],
preds: List[Union[str, List[str]]],
sep: str = " ",
) -> List[float]:
"""
Calculate char-level edit similarity for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of char-level edit similarity
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
return [edit_sim(gold, pred, sep) for gold, pred in zip(golds, preds)]
T = TypeVar("T")
def exact_match(gold: T, pred: T) -> float:
"""
Calculate exact match accuracy, in the range of {0, 100}.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: exact match accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 if gold == pred else 0.0
def batch_exact_match(golds: List[T], preds: List[T]) -> List[float]:
"""
Calculate exact match accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of exact match accuracy
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
return [exact_match(gold, pred) for gold, pred in zip(golds, preds)]
def rouge_l(
gold: Union[str, List[str]], pred: Union[str, List[str]], sep: str = " "
) -> Dict[str, float]:
"""
Calculate ROUGE-L F1, precision, and recall scores, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: {"p": precision, "r": recall, "f": F1}
"""
if len(pred) == 0 or len(gold) == 0:
return {"p": 0.0, "r": 0.0, "f": 0.0}
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
try:
rouge = Rouge()
scores = rouge.get_scores(hyps=pred, refs=gold, avg=True)
return {x: scores["rouge-l"][x] * 100.0 for x in ["p", "r", "f"]}
except ValueError:
return {"p": 0.0, "r": 0.0, "f": 0.0}
def batch_rouge_l(
golds: List[Union[str, List[str]]],
preds: List[Union[str, List[str]]],
sep: str = " ",
) -> Dict[str, List[float]]:
"""
Calculate ROUGE-L F1, precision, and recall scores for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of {"p": precision, "r": recall, "f": F1}
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
scores = [rouge_l(gold, pred, sep) for gold, pred in zip(golds, preds)]
return {x: [score[x] for score in scores] for x in ["p", "r", "f"]}
def accuracy(
gold: List[str],
pred: List[str],
ignore: Optional[Sequence[str]] = None,
) -> float:
"""
Calculate token-level accuracy, in the range of 0~100.
If gold and pred are not the same length, the longer one would be truncated.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:param ignore: list of (gold) tokens to ignore
:return: accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if ignore is None:
ignore = []
i = 0
total = 0
match = 0
while i < len(gold) and i < len(pred):
if gold[i] in ignore:
i += 1
continue
total += 1
if gold[i] == pred[i]:
match += 1
i += 1
if total == 0:
return 0.0
return 100.0 * match / total
def batch_accuracy(
golds: List[List[str]],
preds: List[List[str]],
ignore: Optional[Sequence[str]] = None,
) -> List[float]:
"""
Calculate token-level accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param ignore: list of (gold) tokens to ignore
:return: list of accuracy
"""
if len(golds) != len(preds):
raise ValueError("golds and preds must have the same length")
return [accuracy(gold, pred, ignore) for gold, pred in zip(golds, preds)]
def first_match_to_topk(
first_match_list: List[int], k_values: List[int]
) -> Dict[int, List[float]]:
"""
Calculate top-k accuracy with the first match ranks (1-indexed).
:param first_match: first match ranks (1-indexed)
:param k_values: k values to consider
:return: a mapping from k to top-k accuracies (ranging from 0~100)
"""
return {k: [100.0 if x <= k else 0.0 for x in first_match_list] for k in k_values}
def pass_at_k(n: int, c: int, k: int) -> float:
"""
Sample pass@k metric according to the Codex paper, but in the scale of 0~100.
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n < k or (n - c) < k:
# fallback to the (1 - (1-p)^k) formula
return (1 - (1 - (c / n)) ** k) * 100
else:
return (1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)).item()) * 100
def self_bleu(samples: List[List[str]]) -> float:
"""
Calculate self-BLEU among the samples.
:param samples: the chosen m samples
:return: self-BLEU
"""
if len(samples) == 0:
return 100.0
scores = []
for i in range(len(samples)):
scores.append(
100.0
* nltk.translate.bleu_score.sentence_bleu(
[samples[j] for j in range(len(samples)) if j != i],
samples[i],
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
)
return np.mean(scores).item()
def self_edit_distance(samples: List[Union[str, List[str]]], sep=" ") -> float:
"""
Calculate self-edit-distance among the samples.
:param samples: the chosen m samples
:param sep: the separator between tokens
:return: self-edit-distance
"""
if len(samples) == 0:
return 0.0
scores = []
for i in range(len(samples)):
sample_i = samples[i]
if not isinstance(sample_i, str):
sample_i = sep.join(sample_i)
for j in range(len(samples)):
if i == j:
continue
sample_j = samples[j]
if not isinstance(sample_j, str):
sample_j = sep.join(sample_j)
scores.append(100 - fuzz.ratio(sample_i, sample_j))
return np.mean(scores).item()
QUALITY_METRICS: Dict[str, Callable[[List[str], List[str]], float]] = {
"bleu": bleu,
"xmatch": exact_match,
"edit-sim": edit_sim,
"rouge-f": lambda g, p: rouge_l(g, p)["f"],
"rouge-p": lambda g, p: rouge_l(g, p)["p"],
"rouge-r": lambda g, p: rouge_l(g, p)["r"],
}

View File

@@ -0,0 +1,114 @@
CODEACT_TESTGEN_PROMPT_OLD = """Your goal is to generate a high-quality test suite (at least 20+ passing tests) for the code file: {code_file}. Output the test suite at {test_file}\n'
[current directory: /workspace/{workspace_dir_name}]
IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP
IMPORTANT: Follow instructions, if you have < 80 tests you should generate more tests rather than trying to fix the ones you have.
IMPORTANT: Code file to test:
```python
{code_src}
```
Here are additional imports that you may need:
{imports}
Look at code dependencies (NOT {code_file} since you already have contents) and test files you need context for to write a complete test suite.
Aim for 20+ test functions with asserts. Do not hestitate to use the Python interpreter to understand the input output behavior of the code you are testing.
Output your test suite at {test_file}. Each unit test must be a function starting with test_. Include all your test imports and setup before your first test. Do not include a main method to run the tests. Make sure to make it as comprehensive as possible, try to execute all the methods you saw.
When you think you've successfully generated a test suite, run it on for the current project using {coverage_command}.
If you have few tests GENERATE MORE TESTS rather than trying to fix the ones you have (it is possible to filter out failing tests later).
Then run coverage report -m --include {code_file} to see how well your test suite covers the code under test.
When you are trying to improve coverage pick a part of the code that is not covered (indicated by lines on coverage report), examine the code and then
try to generate a test for it. Feel free to use a code interpreter to understand the input output behavior. ONLY add tests
not remove them.
If you are unable to see passing and failing tests, FIX YOUR IMPORTS to use the same style as other test files.
You should NOT modify any existing test case files. You SHOULD add new test in a NEW file to reproduce the issue.
You should NEVER use web browsing or any other web-based tools.
You should NEVER install new packages, use existing packages only.
You should ALWAYS use the default Python interpreter available in the <execute_bash> environment to run code related to the provided issue and/or repository.
You should ALWAYS use local imports DO NOT import the general library.
When you think you have a fully adequate test suite, please run the following command: <execute_bash> exit </execute_bash>.
"""
CODEACT_TESTGEN_PROMPT = """
Your goal is to generate a comprehensive, **broad-coverage** test suite for the code below, ensuring you test as many lines and branches as possible on the first attempt.
Place your test suite in a new file named {test_file}.
IMPORTANT REQUIREMENTS:
1. **No external help or resources**—use only the snippet below.
2. **Focus on breadth over depth**: cover all major functions, classes, and code paths early to minimize coverage iterations.
3. Each test function must start with `test_` and use `assert` to verify behavior.
4. Include only necessary imports (standard library or local).
5. Do **not** modify existing test files—create a brand new one. No `main()` or other non-test code.
6. Produce **at least 20 test functions**; if coverage is lacking, add more tests rather than removing or changing existing ones.
7. Use the following commands to check coverage:
<execute_bash> {coverage_command} </execute_bash>
<execute_bash> coverage report -m --include {code_file} </execute_bash>
If lines remain uncovered, add new tests targeting them specifically.
8. When you're satisfied with coverage, finalize by running:
<execute_bash> exit </execute_bash>
Below is the **complete code snippet** to test:
<START_OF_CODE>
{code_src}
<END_OF_CODE>
NOTE: if you are testing django, you must use from django.test import SimpleTestCase and class based tests (i.e. class TestSomething(SimpleTestCase)).
NOTE: if there is an error executing tests you MUST fix it before exiting. DO NOT install new packages.
NOTE: if outputting a revised test suite REPLACE {test_file} with the revised suite
**Output the final test suite** (20+ tests) for {test_file} in a single code block, no extra commentary. MAKE SURE you run the tests and ensure you can see which tests passed and failed BEFORE exiting.
"""
CODEACT_TESTGEN_PROMPT_ITERATE = """
Your goal is to improve the test suite at {test_file} to achieve **broad-coverage** of the code below.
First run the test suite.
If no tests run, then remove {test_file} and create {test_file} with a new suite.
Otherwise, improve it aiming to improve code coverage.
IMPORTANT REQUIREMENTS:
1. Use the following commands to check coverage (RUN THIS FIRST):
<execute_bash> {coverage_command} </execute_bash>
<execute_bash> coverage report -m --include {code_file} </execute_bash>
If lines remain uncovered, add new tests targeting them specifically.
2. **No external help or resources**—use only the snippet below.
3. **Focus on breadth over depth**: cover all major functions, classes, and code paths early to minimize coverage iterations.
4. Each test function must use `assert` to verify behavior.
5. Include only necessary imports (standard library or local).
6. Do **not** modify other test files in the repository. No `main()` or other non-test code.
7. Produce **at least 20 test functions**; if coverage is lacking, add more tests rather than removing or changing existing ones.
8. When you're satisfied with coverage, finalize by running:
<execute_bash> exit </execute_bash>
Below is the **complete code snippet** to test:
<START_OF_CODE>
{code_src}
<END_OF_CODE>
NOTE: if you are testing django, you must use from django.test import SimpleTestCase and class based tests (i.e. class TestSomething(SimpleTestCase)).
NOTE: if there is an error executing tests you MUST fix it before exiting. DO NOT install new packages.
NOTE: if outputting a revised test suite REPLACE {test_file} with the revised suite
**Output the final test suite** (20+ tests) for {test_file} in a single code block, no extra commentary. MAKE SURE you run the tests and ensure you can see which tests passed and failed BEFORE exiting.
"""

View File

@@ -0,0 +1,31 @@
import re
from pygments.lexers.python import PythonLexer
def tokenize_code(code):
lexer = PythonLexer()
tokens = process_pygments_tokens(lexer.get_tokens(code))
return tokens
def process_pygments_tokens(tokens):
new_tokens = []
for token in tokens:
if str(token[0]) == "Token.Text" and re.match(r'\s+', token[1]) or str(token[0]) == "Token.Text.Whitespace":
continue
new_tokens.append(token[1])
new_tokens_final = []
i = 0
while i < len(new_tokens)-2:
if new_tokens[i] == '"' and new_tokens[i+1]=='STR' and new_tokens[i+2] == '"':
new_tokens_final.append("\"STR\"")
i = i + 3
else:
new_tokens_final.append(new_tokens[i])
i = i + 1
for i in range(len(new_tokens)-2, len(new_tokens)):
if i >= 0:
new_tokens_final.append(new_tokens[i])
return new_tokens_final

View File

@@ -0,0 +1,58 @@
import json
import re
def check_coverage(coverage_output, code_file):
json_cov = json.loads(coverage_output)
if code_file in json_cov['files'].keys():
file_data = json_cov['files'][code_file]
return True, file_data['summary']['percent_covered']
return False, 0
def check_mutation(mutation_output):
if 'total jobs: ' in mutation_output:
num_mutants = int(mutation_output.split('total jobs: ')[1].split('\n')[0])
final_conf = mutation_output.split('\n')[-1]
if len(final_conf.strip().split(' ')) == 3:
low, val, high = final_conf.split(' ')
low = float(low)
val = float(val)
high = float(high)
confidence_range = high - val
mutation_score = 100 - val
return True, num_mutants, mutation_score, confidence_range
return False, -1, 0, -1
def count_methods(code_str):
"""
Counts the number of methods/functions in a given string of code.
Args:
code_str (str): A string containing code.
Returns:
int: The number of methods/functions found.
"""
# Regular expression to find Python function definitions
pattern = r'\bdef\b\s+\w+\s*\('
matches = re.findall(pattern, code_str)
return len(matches)
def get_lines_of_code(code_str):
"""
Extracts lines of code from a given string.
Args:
code_str (str): A string containing code.
Returns:
list: A list of lines of code.
"""
return len(code_str.strip().split('\n'))

View File

@@ -0,0 +1,578 @@
import asyncio
import json
import os
import tempfile
import time
import traceback
from typing import Any
import numpy as np
import pandas as pd
import toml
from datasets import load_dataset
import openhands.agenthub
from evaluation.benchmarks.testgeneval.constants import MAP_REPO_VERSION_TO_SPECS
from evaluation.benchmarks.testgeneval.prompt import (
CODEACT_TESTGEN_PROMPT,
CODEACT_TESTGEN_PROMPT_ITERATE,
)
from evaluation.benchmarks.testgeneval.utils import get_test_directives
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
codeact_user_response,
get_metrics,
is_fatal_evaluation_error,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation, ErrorObservation
from openhands.events.serialization.event import event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
def _preprocess_instance(d):
for key, value in d.items():
if isinstance(value, np.ndarray):
d[key] = value.tolist()
return d
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo}__{instance.version}'.replace('/', '__')
def get_instruction(instance: pd.Series, metadata: EvalMetadata):
# workspace_dir_name = _get_swebench_workspace_dir_name(instance)
# Prepare instruction
coverage_command = ' '.join(
[
MAP_REPO_VERSION_TO_SPECS[instance['repo']][instance['version']][
'test_cmd'
],
*get_test_directives(instance),
]
)
# Testing general agents
prompt_to_use = (
CODEACT_TESTGEN_PROMPT_ITERATE
if instance['full_pred'] is not None
else CODEACT_TESTGEN_PROMPT
)
instruction = prompt_to_use.format(
code_file=os.path.join('/testbed', instance.code_file),
test_file=os.path.join('/testbed', instance.test_file),
coverage_command=coverage_command,
code_src=instance['code_src'],
imports='\n'.join(instance.local_imports),
workspace_dir_name=_get_swebench_workspace_dir_name(instance),
)
if RUN_WITH_BROWSING:
instruction += (
'<IMPORTANT!>\n'
'You SHOULD NEVER attempt to browse the web. '
'</IMPORTANT!>\n'
)
return instruction
# TODO: migrate all swe-bench docker to ghcr.io/openhands
DOCKER_IMAGE_PREFIX = os.environ.get('EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/kdjain/')
logger.info(f'Using docker image prefix: {DOCKER_IMAGE_PREFIX}')
def get_instance_docker_image(instance_id: str) -> str:
image_name = 'sweb.eval.x86_64.' + instance_id
image_name = image_name.replace(
'__', '_s_'
) # to comply with docker image naming convention
return DOCKER_IMAGE_PREFIX.rstrip('/') + '/' + image_name
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> AppConfig:
# We use a different instance image for the each instance of TestGenEval
base_container_image = get_instance_docker_image(instance['instance_id_swebench'])
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
runtime=os.environ.get('RUNTIME', 'eventstream'),
sandbox=SandboxConfig(
base_container_image=base_container_image,
enable_auto_lint=True,
use_host_network=False,
# large enough timeout, since some testcases take very long to run
timeout=300,
# Add platform to the sandbox config to solve issue 4401
platform='linux/amd64',
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get(
'SANDBOX_REMOTE_RUNTIME_API_URL', 'http://localhost:8000'
),
keep_runtime_alive=False,
remote_runtime_init_timeout=3600,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['id']
)
)
agent_config = AgentConfig(
codeact_enable_jupyter=False,
codeact_enable_browsing=RUN_WITH_BROWSING,
codeact_enable_llm_editor=False,
condenser=metadata.condenser_config,
enable_prompt_extensions=False,
)
config.set_agent_config(agent_config)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
obs: CmdOutputObservation
instance['instance_id'] = instance['instance_id_swebench']
# Set instance id
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id_swebench']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc"""
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0, f'Failed to export SWE_INSTANCE_ID: {str(obs)}'
)
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
)
swe_instance_json_name = 'swe-bench-instance.json'
swe_prediction = 'test_suite.py'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
preprocessed_instance = _preprocess_instance(instance.to_dict())
json.dump([preprocessed_instance], f)
else:
preprocessed_instance = _preprocess_instance(instance)
json.dump([preprocessed_instance], f)
# Copy the file to the desired location
runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
if instance['full_pred'] is not None:
temp_file_path_pred = os.path.join(temp_dir, swe_prediction)
with open(temp_file_path_pred, 'w') as f:
f.write(instance['full_pred'])
runtime.copy_to(temp_file_path_pred, '/tmp')
# Copy the file to the desired location
action = CmdRunAction(
command=f"cp /tmp/test_suite.py /testbed/{instance['test_file']}"
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0, f'Failed to copy test file: {str(obs)}'
)
action = CmdRunAction(
command='git -C /testbed add . && git -C /testbed commit -m "Add test file"'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
# inject the instance swe entry
runtime.copy_to(
str(os.path.join(script_dir, 'scripts/setup/instance_swe_entry.sh')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, ErrorObservation):
logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source /swe_util/instance_swe_entry.sh')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to source /swe_util/instance_swe_entry.sh: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git reset --hard')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
try:
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command=f'cat {instance.test_file}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to find file: {instance.test_file} in /workspace/{workspace_dir_name}',
)
test_suite = obs.content.strip()
except Exception:
# Print stack trace
print('Skipping, exception in complete_runtime')
print(traceback.format_exc())
test_suite = instance['full_pred'] if instance['full_pred'] is not None else ''
# action = CmdRunAction(command='git add -A')
# action.set_hard_timeout(600)
# logger.info(action, extra={'msg_type': 'ACTION'})
# obs = runtime.run_action(action)
# logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# assert_and_raise(obs.exit_code == 0, f'Failed to git add -A: {str(obs)}')
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {
'test_suite': test_suite,
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(instance, metadata)
start_time = time.time() # Track start time
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.id}.')
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance)
instruction = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if is_fatal_evaluation_error(state.last_error):
raise EvalException('Fatal error detected: ' + state.last_error)
# ======= THIS IS SWE-Bench specific =======
return_val = complete_runtime(runtime, instance)
test_suite = return_val['test_suite']
logger.info(
f'Got test suite for instance {instance.instance_id}:\n--------\n{test_suite}\n--------'
)
finally:
runtime.close()
end_time = time.time()
elapsed_time = end_time - start_time
logger.info(
f'Evaluation for instance {instance.instance_id} took {elapsed_time:.2f} seconds.'
)
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'test_suite': test_suite,
'elapsed_time': elapsed_time,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
histories = [event_to_dict(event) for event in state.history]
metrics = get_metrics(state)
# Save the output
output = EvalOutput(
instance_id=instance.id,
instruction=instruction,
instance=_preprocess_instance(instance.to_dict()), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
# print(output)
return output
def prepare_dataset_pre(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
subset['instance_id_swebench'] = subset['instance_id']
subset['instance_id'] = subset['id']
return subset
dataset['instance_id_swebench'] = dataset['instance_id']
dataset['instance_id'] = dataset['id']
return dataset
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='kjain/testgenevallite',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
parser.add_argument(
'--testfile_start',
action='store_true',
help='Whether to start from the 0 shot test file',
)
parser.add_argument(
'--zero_shot_path',
type=str,
help='Path to the zero shot test file predictions',
)
args, _ = parser.parse_known_args()
if args.testfile_start and not args.zero_shot_path:
raise ValueError(
'If you want to start from the 0 shot test file, you must provide the path to the zero shot test file predictions'
)
preds_map = {}
if args.testfile_start:
with open(args.zero_shot_path, 'r') as f:
for line in f:
pred = json.loads(line)
preds_map[pred['id']] = pred['preds']['full'][0]
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, split=args.split)
logger.info(f'Loaded dataset {args.dataset} with split {args.split}')
testgeneval_filepairs = prepare_dataset_pre(dataset.to_pandas(), 'id')
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
details = {}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(testgeneval_filepairs, output_file, args.eval_n_limit)
if not instances.empty:
instances['full_pred'] = (
instances['instance_id']
.map(preds_map)
.apply(lambda x: x if pd.notna(x) else None)
)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)

View File

@@ -0,0 +1,128 @@
import argparse
import os
import subprocess
from datasets import load_dataset
# Function to run shell commands
def run_command(command):
try:
subprocess.run(command, check=True, shell=True)
except subprocess.CalledProcessError as e:
print(f'An error occurred: {e}')
# Function to log in to Docker Hub
def docker_login():
print('Logging into Docker Hub...')
run_command('docker login')
# Function to generate Dockerfile content based on image type
def generate_dockerfile_content(
base_image, dependencies, datum, patch_path, test_patch_path
):
dockerfile_content = f"""
FROM {base_image}
SHELL ["/bin/bash", "-c"]
RUN source /opt/miniconda3/bin/activate && conda activate testbed && pip install {' '.join(dependencies)}
COPY {patch_path} /app/patch.diff
RUN git apply /app/patch.diff
RUN rm /app/patch.diff
COPY {test_patch_path} /app/patch.diff
RUN git apply /app/patch.diff
RUN git config --global user.email ""
RUN git config --global user.name "TestGenEval"
RUN rm /app/patch.diff
RUN rm {datum['test_file']}
"""
# Add specific content based on image type
dockerfile_content += 'RUN git add .\nRUN git commit -m "Testing fixes"'
return dockerfile_content
# Function to build, push, and clean up Docker images
def build_and_push_image(dockerfile_content, image_name):
with open('Dockerfile.temp', 'w') as dockerfile:
dockerfile.write(dockerfile_content)
run_command(f'docker build -f Dockerfile.temp -t {image_name} .')
run_command(f'docker push {image_name}')
run_command(f'docker rmi {image_name}')
os.remove('Dockerfile.temp')
# Function to process images with .eval in the name
def process_images(dataset, original_namespace, new_namespace, start_instance_id):
dependencies = ['coverage', 'cosmic-ray']
found_start = len(start_instance_id) == 0
for datum in dataset:
if not found_start and datum['instance_id'] == start_instance_id:
found_start = True
elif found_start:
full_image_name = f'{original_namespace}/sweb.eval.x86_64.{datum["instance_id"].replace("__", "_s_")}:latest'
print(f'Processing image: {full_image_name}')
run_command(f'docker pull {full_image_name}')
# Save patches and preds_context to regular files
patch_file_path = 'patch.diff'
test_patch_file_path = 'test_patch.diff'
with open(patch_file_path, 'w') as patch_file, open(
test_patch_file_path, 'w'
) as test_patch_file:
patch_file.write(datum['patch'])
test_patch_file.write(datum['test_patch'])
# Define image types and corresponding tags
new_image_name = f'{new_namespace}/sweb.eval.x86_64.{datum["instance_id"].replace("__", "_s_")}:latest'
dockerfile_content = generate_dockerfile_content(
full_image_name,
dependencies,
datum,
patch_file_path,
test_patch_file_path,
)
build_and_push_image(dockerfile_content, new_image_name)
# Cleanup regular files and images
os.remove(patch_file_path)
os.remove(test_patch_file_path)
run_command(f'docker rmi {full_image_name}')
run_command('docker system prune -f') # Clean up dangling resources
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Process Docker images with .eval in the name.'
)
parser.add_argument('--dataset', type=str, default='kjain14/testgeneval')
parser.add_argument('--split', type=str, default='test')
parser.add_argument(
'--new_namespace',
type=str,
default='kdjain',
help='The new Docker Hub namespace to push the images',
)
parser.add_argument(
'--original_namespace',
type=str,
default='xingyaoww',
help='The original Docker Hub namespace',
)
parser.add_argument(
'--start_instance_id',
type=str,
default='',
help='The instance_id to start processing from',
)
args = parser.parse_args()
dataset = load_dataset(args.dataset)[args.split]
docker_login()
process_images(
dataset, args.original_namespace, args.new_namespace, args.start_instance_id
)

View File

@@ -0,0 +1,196 @@
sweb.base.x86_64:latest
sweb.env.x86_64.088a7e628bda9770f9757b:latest
sweb.env.x86_64.0d80c7dec81ee2f2f513e2:latest
sweb.env.x86_64.0f99bce2750f3109957bec:latest
sweb.env.x86_64.1b3b218535da0abf4469cb:latest
sweb.env.x86_64.1c1a6945f732f9391228c5:latest
sweb.env.x86_64.1f92e6d7cef88badc4f744:latest
sweb.env.x86_64.27dd9791e13f5c857a09f9:latest
sweb.env.x86_64.297af196949a2a635bce66:latest
sweb.env.x86_64.2baaea72acc974f6c02079:latest
sweb.env.x86_64.2e50125951bc69cddd7421:latest
sweb.env.x86_64.2f217c8b4490bfa0e2ba14:latest
sweb.env.x86_64.31244378a92e3bcce809ac:latest
sweb.env.x86_64.428468730904ff6b4232aa:latest
sweb.env.x86_64.5d1fda9d55d65d8a4e5bdb:latest
sweb.env.x86_64.6b007979cf533f0f3016e8:latest
sweb.env.x86_64.7037e8c448a4b8ebfe9b13:latest
sweb.env.x86_64.71498c7426dbf05599642f:latest
sweb.env.x86_64.756beac07713d7e8dc1129:latest
sweb.env.x86_64.78278ae2cf880e395f1337:latest
sweb.env.x86_64.8f1f7b974f0c57c7aeba39:latest
sweb.env.x86_64.934a137824256b612e9dc5:latest
sweb.env.x86_64.a0efca7a0fe6719dbf65c2:latest
sweb.env.x86_64.a18371b03f944585b4f08c:latest
sweb.env.x86_64.a33dddf55cdff5d8e23374:latest
sweb.env.x86_64.aa92880033da20ca313928:latest
sweb.env.x86_64.b649f0ff62fad147f7f073:latest
sweb.env.x86_64.b7ce4be3b3c35f68c61248:latest
sweb.env.x86_64.c70909fdac4897d1c685df:latest
sweb.env.x86_64.c795f4b88616b8462021ed:latest
sweb.env.x86_64.cc47cc71483942d0c3a15e:latest
sweb.env.x86_64.dc5ff4c0e3fe8db5afc4da:latest
sweb.env.x86_64.e3afd7f04b325a4de4982d:latest
sweb.env.x86_64.e5bb89bf78258a7d14c34b:latest
sweb.env.x86_64.e83e37f52c09532c62acfb:latest
sweb.env.x86_64.efa6065ed5bf204410fd53:latest
sweb.eval.x86_64.django_s_django-17087:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-10508:latest
sweb.eval.x86_64.django_s_django-14017:latest
sweb.eval.x86_64.django_s_django-11422:latest
sweb.eval.x86_64.sympy_s_sympy-14774:latest
sweb.eval.x86_64.django_s_django-14915:latest
sweb.eval.x86_64.sympy_s_sympy-22005:latest
sweb.eval.x86_64.pytest-dev_s_pytest-5221:latest
sweb.eval.x86_64.sympy_s_sympy-17022:latest
sweb.eval.x86_64.django_s_django-15996:latest
sweb.eval.x86_64.django_s_django-15252:latest
sweb.eval.x86_64.sympy_s_sympy-21171:latest
sweb.eval.x86_64.django_s_django-11797:latest
sweb.eval.x86_64.django_s_django-16046:latest
sweb.eval.x86_64.django_s_django-11583:latest
sweb.eval.x86_64.django_s_django-15738:latest
sweb.eval.x86_64.sympy_s_sympy-21612:latest
sweb.eval.x86_64.astropy_s_astropy-12907:latest
sweb.eval.x86_64.django_s_django-11620:latest
sweb.eval.x86_64.sympy_s_sympy-16792:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-13779:latest
sweb.eval.x86_64.django_s_django-16041:latest
sweb.eval.x86_64.sympy_s_sympy-13471:latest
sweb.eval.x86_64.sympy_s_sympy-20442:latest
sweb.eval.x86_64.sympy_s_sympy-20049:latest
sweb.eval.x86_64.django_s_django-14411:latest
sweb.eval.x86_64.django_s_django-13447:latest
sweb.eval.x86_64.django_s_django-12856:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-10949:latest
sweb.eval.x86_64.django_s_django-14787:latest
sweb.eval.x86_64.django_s_django-11815:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-13584:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-14087:latest
sweb.eval.x86_64.django_s_django-15388:latest
sweb.eval.x86_64.django_s_django-11179:latest
sweb.eval.x86_64.sympy_s_sympy-24102:latest
sweb.eval.x86_64.sympy_s_sympy-24213:latest
sweb.eval.x86_64.django_s_django-15781:latest
sweb.eval.x86_64.pytest-dev_s_pytest-8906:latest
sweb.eval.x86_64.django_s_django-13710:latest
sweb.eval.x86_64.django_s_django-13925:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-14092:latest
sweb.eval.x86_64.pytest-dev_s_pytest-7373:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-25498:latest
sweb.eval.x86_64.pytest-dev_s_pytest-5227:latest
sweb.eval.x86_64.sympy_s_sympy-15678:latest
sweb.eval.x86_64.django_s_django-13551:latest
sweb.eval.x86_64.django_s_django-14155:latest
sweb.eval.x86_64.django_s_django-13933:latest
sweb.eval.x86_64.sympy_s_sympy-21055:latest
sweb.eval.x86_64.django_s_django-13660:latest
sweb.eval.x86_64.django_s_django-16527:latest
sweb.eval.x86_64.pytest-dev_s_pytest-5692:latest
sweb.eval.x86_64.mwaskom_s_seaborn-3010:latest
sweb.eval.x86_64.django_s_django-12700:latest
sweb.eval.x86_64.sympy_s_sympy-11400:latest
sweb.eval.x86_64.sympy_s_sympy-23117:latest
sweb.eval.x86_64.sympy_s_sympy-20639:latest
sweb.eval.x86_64.sympy_s_sympy-23262:latest
sweb.eval.x86_64.django_s_django-15498:latest
sweb.eval.x86_64.django_s_django-12453:latest
sweb.eval.x86_64.django_s_django-14999:latest
sweb.eval.x86_64.sympy_s_sympy-13480:latest
sweb.eval.x86_64.sympy_s_sympy-21847:latest
sweb.eval.x86_64.sympy_s_sympy-15011:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-25570:latest
sweb.eval.x86_64.sphinx-doc_s_sphinx-7975:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-14983:latest
sweb.eval.x86_64.django_s_django-14534:latest
sweb.eval.x86_64.sympy_s_sympy-14396:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-25442:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-15535:latest
sweb.eval.x86_64.sympy_s_sympy-22714:latest
sweb.eval.x86_64.django_s_django-15789:latest
sweb.eval.x86_64.sympy_s_sympy-21627:latest
sweb.eval.x86_64.sympy_s_sympy-24066:latest
sweb.eval.x86_64.pylint-dev_s_pylint-7993:latest
sweb.eval.x86_64.django_s_django-14752:latest
sweb.eval.x86_64.sympy_s_sympy-18835:latest
sweb.eval.x86_64.django_s_django-17051:latest
sweb.eval.x86_64.sympy_s_sympy-12171:latest
sweb.eval.x86_64.pydata_s_xarray-3364:latest
sweb.eval.x86_64.mwaskom_s_seaborn-3190:latest
sweb.eval.x86_64.pytest-dev_s_pytest-7168:latest
sweb.eval.x86_64.django_s_django-12747:latest
sweb.eval.x86_64.django_s_django-15695:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-22835:latest
sweb.eval.x86_64.sympy_s_sympy-12481:latest
sweb.eval.x86_64.django_s_django-15851:latest
sweb.eval.x86_64.sympy_s_sympy-14024:latest
sweb.eval.x86_64.django_s_django-14608:latest
sweb.eval.x86_64.pytest-dev_s_pytest-9359:latest
sweb.eval.x86_64.django_s_django-16873:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-25433:latest
sweb.eval.x86_64.sympy_s_sympy-13031:latest
sweb.eval.x86_64.pytest-dev_s_pytest-7432:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-25747:latest
sweb.eval.x86_64.django_s_django-12286:latest
sweb.eval.x86_64.django_s_django-11910:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-12471:latest
sweb.eval.x86_64.pylint-dev_s_pylint-5859:latest
sweb.eval.x86_64.django_s_django-11133:latest
sweb.eval.x86_64.astropy_s_astropy-14365:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-13496:latest
sweb.eval.x86_64.sympy_s_sympy-19487:latest
sweb.eval.x86_64.sympy_s_sympy-13895:latest
sweb.eval.x86_64.sympy_s_sympy-15345:latest
sweb.eval.x86_64.django_s_django-13590:latest
sweb.eval.x86_64.django_s_django-13757:latest
sweb.eval.x86_64.django_s_django-16379:latest
sweb.eval.x86_64.django_s_django-13768:latest
sweb.eval.x86_64.pytest-dev_s_pytest-8365:latest
sweb.eval.x86_64.django_s_django-14580:latest
sweb.eval.x86_64.sympy_s_sympy-20154:latest
sweb.eval.x86_64.sympy_s_sympy-12419:latest
sweb.eval.x86_64.django_s_django-12125:latest
sweb.eval.x86_64.sympy_s_sympy-24152:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-15512:latest
sweb.eval.x86_64.sympy_s_sympy-18621:latest
sweb.eval.x86_64.pydata_s_xarray-4248:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-11040:latest
sweb.eval.x86_64.django_s_django-11099:latest
sweb.eval.x86_64.django_s_django-16816:latest
sweb.eval.x86_64.django_s_django-13265:latest
sweb.eval.x86_64.django_s_django-16139:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-10297:latest
sweb.eval.x86_64.django_s_django-14016:latest
sweb.eval.x86_64.pallets_s_flask-5063:latest
sweb.eval.x86_64.astropy_s_astropy-7746:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-24265:latest
sweb.eval.x86_64.django_s_django-13448:latest
sweb.eval.x86_64.django_s_django-12908:latest
sweb.eval.x86_64.sphinx-doc_s_sphinx-8627:latest
sweb.eval.x86_64.sympy_s_sympy-14317:latest
sweb.eval.x86_64.pytest-dev_s_pytest-6116:latest
sweb.eval.x86_64.sympy_s_sympy-23191:latest
sweb.eval.x86_64.pydata_s_xarray-5131:latest
sweb.eval.x86_64.django_s_django-11019:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-23913:latest
sweb.eval.x86_64.django_s_django-15790:latest
sweb.eval.x86_64.django_s_django-12497:latest
sweb.eval.x86_64.matplotlib_s_matplotlib-26020:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-25638:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-25500:latest
sweb.eval.x86_64.sympy_s_sympy-19007:latest
sweb.eval.x86_64.django_s_django-12308:latest
sweb.eval.x86_64.pytest-dev_s_pytest-7220:latest
sweb.eval.x86_64.django_s_django-11848:latest
sweb.eval.x86_64.django_s_django-15347:latest
sweb.eval.x86_64.pytest-dev_s_pytest-7490:latest
sweb.eval.x86_64.sympy_s_sympy-18532:latest
sweb.eval.x86_64.django_s_django-14997:latest
sweb.eval.x86_64.sympy_s_sympy-24909:latest
sweb.eval.x86_64.django_s_django-13220:latest
sweb.eval.x86_64.sympy_s_sympy-21614:latest
sweb.eval.x86_64.django_s_django-15902:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-13497:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-13439:latest
sweb.eval.x86_64.scikit-learn_s_scikit-learn-14894:latest
sweb.eval.x86_64.django_s_django-12983:latest

View File

@@ -0,0 +1,31 @@
def print_diff_ignore_order(file1, file2):
with open(file1, 'r') as f1, open(file2, 'r') as f2:
file1_lines = set(f1.readlines())
file2_lines = set(f2.readlines())
only_in_file1 = file1_lines - file2_lines
only_in_file2 = file2_lines - file1_lines
if only_in_file1:
print(f'Lines in {file1} but not in {file2}:')
for line in sorted(only_in_file1):
print(f'- {line.strip()}')
# if only_in_file2:
# print(f"Lines in {file2} but not in {file1}:")
# for line in sorted(only_in_file2):
# print(f"+ {line.strip()}")
if not only_in_file1 and not only_in_file2:
print('The files have the same content (ignoring line order).')
if __name__ == '__main__':
# Usage
lite1 = 'all-swebench-lite-instance-images.txt' # Replace with the path to your first file
lite2 = '../../swe_bench/scripts/docker/all-swebench-lite-instance-images.txt' # Replace with the path to your second file
print_diff_ignore_order(lite1, lite2)
full1 = 'all-swebench-full-instance-images.txt' # Replace with the path to your first file
full2 = '../../swe_bench/scripts/docker/all-swebench-full-instance-images.txt' # Replace with the path to your second file
print_diff_ignore_order(full1, full2)

View File

@@ -0,0 +1,48 @@
#!/bin/bash
# Script will delete all repositories and tags in your Docker Hub account
set -e
# Set username and password from command-line arguments
UNAME=$1
UPASS=$2
# Get token to interact with Docker Hub
TOKEN=$(curl -s -H "Content-Type: application/json" -X POST -d '{"username": "'${UNAME}'", "password": "'${UPASS}'"}' https://hub.docker.com/v2/users/login/ | jq -r .token)
# Ensure token retrieval was successful
if [[ -z "$TOKEN" ]]; then
echo "Failed to obtain authentication token. Please check your credentials."
exit 1
fi
# Get list of repositories for that user account
echo "Listing repositories in Docker Hub account '${UNAME}':"
REPO_LIST=$(curl -s -H "Authorization: JWT ${TOKEN}" "https://hub.docker.com/v2/repositories/${UNAME}/?page_size=10000" | jq -r '.results|.[]|.name')
if [[ -z "$REPO_LIST" ]]; then
echo "No repositories found for user '${UNAME}' or failed to fetch repositories."
exit 1
fi
# Loop through each repository and delete its tags and the repository itself
for rep in ${REPO_LIST}; do
echo "Processing repository: ${UNAME}/${rep}"
# Get all tags for the repository
IMAGES=$(curl -s -H "Authorization: JWT ${TOKEN}" "https://hub.docker.com/v2/repositories/${UNAME}/${rep}/tags/?page_size=100")
IMAGE_TAGS=$(echo $IMAGES | jq -r '.results|.[]|.name')
# Delete each tag
for tag in ${IMAGE_TAGS}; do
echo "Deleting tag: ${UNAME}/${rep}:${tag}"
curl -s -X DELETE -H "Authorization: JWT ${TOKEN}" "https://hub.docker.com/v2/repositories/${UNAME}/${rep}/tags/${tag}/"
done
# Delete the repository itself
echo "Deleting repository: ${UNAME}/${rep}"
curl -s -X DELETE -H "Authorization: JWT ${TOKEN}" "https://hub.docker.com/v2/repositories/${UNAME}/${rep}/" || {
echo "Failed to delete repository '${UNAME}/${rep}'. Please check permissions or API limits."
}
sleep 1
done
echo "Script execution completed."

View File

@@ -0,0 +1,18 @@
from datasets import load_dataset
def dataset_to_txt(dataset, txt_file, split='test'):
with open(txt_file, 'w') as f:
for datum in dataset[split]:
instance_id = datum['instance_id'].replace('__', '_s_')
f.write(f'sweb.eval.x86_64.{instance_id}:latest\n')
if __name__ == '__main__':
# Load the private dataset
dataset = load_dataset('kjain14/testgeneval')
dataset_lite = load_dataset('kjain14/testgenevallite')
dataset_to_txt(dataset_lite, 'all-swebench-lite-instance-images.txt', lite=True)
dataset_to_txt(dataset, 'all-swebench-full-instance-images.txt')

View File

@@ -0,0 +1,173 @@
import argparse
import copy
import difflib
import json
import os
import traceback
def insert_line_in_string(input_string, new_str, insert_line):
"""
Inserts a new line into a string at the specified line number.
:param input_string: The original string.
:param new_str: The string to insert.
:param insert_line: The line number at which to insert (1-based index).
:return: The modified string.
"""
file_text = input_string.expandtabs()
new_str = new_str.expandtabs()
file_text_lines = file_text.split('\n')
new_str_lines = new_str.split('\n')
new_file_text_lines = (
file_text_lines[:insert_line] + new_str_lines + file_text_lines[insert_line:]
)
return '\n'.join(new_file_text_lines)
def print_string_diff(original, modified):
"""
Prints the differences between two strings line by line.
:param original: The original string.
:param modified: The modified string.
"""
original_lines = original.splitlines(keepends=True)
modified_lines = modified.splitlines(keepends=True)
diff = difflib.unified_diff(
original_lines,
modified_lines,
fromfile='original',
tofile='modified',
lineterm='',
)
print(''.join(diff))
def parse_json_files(root_dir, output_dir, metadata_objs, preds_objs):
final_output = {i: [] for i in range(25)}
for subdir in sorted(os.listdir(root_dir)): # Sorting ensures consistent order
subdir_path = os.path.join(root_dir, subdir)
# subdir_instance = subdir.rsplit('-', 1)[0]
metadata = metadata_objs[subdir]
orig_test_suite = metadata['test_result']['test_suite']
if os.path.isdir(subdir_path): # Check if it's a directory
print(f'Processing subdirectory: {subdir}')
# Now loop through the JSON files in this subdirectory
i = 0
test_suite = preds_objs[subdir] if subdir in preds_objs else ''
for file in sorted(
os.listdir(subdir_path)
): # Sorting ensures consistent order
metadata_copy = copy.deepcopy(metadata)
if file.endswith('.json'): # Check for JSON files
file_path = os.path.join(subdir_path, file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f) # Load JSON data
try:
tool_calls = data['response']['choices'][0]['message'][
'tool_calls'
]
if tool_calls is not None:
for tool_call in tool_calls:
tool_call_dict = eval(
tool_call['function']['arguments']
)
if (
tool_call_dict is not None
and tool_call_dict != {}
):
command = tool_call_dict['command']
if command == 'create':
test_suite = tool_call_dict['file_text']
if (
command != 'str_replace'
and command != 'insert'
and 'coverage' not in command
):
print(command)
if command == 'insert':
test_suite_new = insert_line_in_string(
test_suite,
tool_call_dict['new_str'],
tool_call_dict['insert_line'],
)
test_suite = test_suite_new
if command == 'str_replace':
if (
test_suite.count(
tool_call_dict['old_str']
)
== 1
):
test_suite_new = test_suite.replace(
tool_call_dict['old_str'],
tool_call_dict['new_str'],
)
else:
continue
test_suite = test_suite_new
except Exception:
print(traceback.format_exc())
continue
metadata_copy['test_result']['test_suite'] = test_suite
if i < 25:
final_output[i].append(metadata_copy)
i += 1
except Exception as e:
print(traceback.format_exc())
print(f' Error loading {file_path}: {e}')
for j in range(i, 24):
final_output[j].append(metadata_copy)
metadata_orig = copy.deepcopy(metadata)
metadata_orig['test_result']['test_suite'] = orig_test_suite
final_output[24].append(metadata_orig)
for i in range(25):
output_file = os.path.join(output_dir, f'output_{i}.jsonl')
with open(output_file, 'w') as f:
for metadata in final_output[i]:
f.write(json.dumps(metadata) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parse JSON file')
parser.add_argument('--root_dir', type=str, help='Root directory', required=True)
parser.add_argument(
'--output_dir', type=str, help='Output directory', required=True
)
parser.add_argument(
'--starting_preds_file', type=str, help='Starting predictions', default=None
)
args = parser.parse_args()
output_file = os.path.join(args.output_dir, 'output.jsonl')
metadata_objs = {}
with open(output_file, 'r') as f:
content = f.readlines()
for line in content:
metadata = json.loads(line)
metadata_objs[metadata['instance_id']] = metadata
starting_preds_file = args.starting_preds_file
preds_objs = {}
if starting_preds_file is not None:
with open(starting_preds_file, 'r') as f:
content = f.readlines()
for line in content:
pred = json.loads(line)
preds_objs[pred['id']] = pred['preds']['full'][0]
parse_json_files(args.root_dir, args.output_dir, metadata_objs, preds_objs)

View File

@@ -0,0 +1,67 @@
#!/usr/bin/env python3
import argparse
import pandas as pd
parser = argparse.ArgumentParser(
description='Compare two TestGenEval output JSONL files and print the resolved diff'
)
parser.add_argument('input_file_1', type=str)
parser.add_argument('input_file_2', type=str)
args = parser.parse_args()
df1 = pd.read_json(args.input_file_1, orient='records', lines=True)
df2 = pd.read_json(args.input_file_2, orient='records', lines=True)
# Get the intersection of the ids
df = pd.merge(df1, df2, on='id', how='inner')
def _get_coverage(report):
if report is None:
return False
if isinstance(report, float):
return False
else:
return report.get('test_pass', False)
df['test_pass_x'] = df['test_pass_x'].apply(_get_coverage)
df['test_pass_y'] = df['test_pass_y'].apply(_get_coverage)
df['diff'] = df.apply(lambda x: x['test_pass_x'] != x['test_pass_y'], axis=1)
df_diff = df[df['diff']].sort_values(
by=['test_pass_x', 'test_pass_y'], ascending=[False, False]
)
# skip if any of the pass is nan, which means one of the eval is not finished yet
df_diff = df_diff[df_diff['test_pass_x'].notna() & df_diff['test_pass_y'].notna()]
print(f'X={args.input_file_1}')
print(f'Y={args.input_file_2}')
print(f'# diff={df_diff.shape[0]}')
df_diff = df_diff[['id', 'test_pass_x', 'test_pass_y', 'report_x', 'report_y']]
# x pass but y not
print('-' * 100)
df_diff_x_only = df_diff[df_diff['test_pass_x'] & ~df_diff['test_pass_y']].sort_values(
by='id'
)
print(f'# x pass but y not={df_diff_x_only.shape[0]}')
print(df_diff_x_only[['id', 'report_x', 'report_y']])
# y pass but x not
print('-' * 100)
df_diff_y_only = df_diff[~df_diff['test_pass_x'] & df_diff['test_pass_y']].sort_values(
by='id'
)
print(f'# y pass but x not={df_diff_y_only.shape[0]}')
print(df_diff_y_only[['id', 'report_x', 'report_y']])
# get instance_id from df_diff_y_only
print('-' * 100)
print('Instances that x pass but y not:')
print(df_diff_x_only['id'].tolist())
print('-' * 100)
print('Instances that y pass but x not:')
print(df_diff_y_only['id'].tolist())

View File

@@ -0,0 +1,28 @@
#!/bin/bash
FOLDER_PATH=$1
NEW_FOLDER_PATH=${FOLDER_PATH}.swebench_submission
mkdir -p $NEW_FOLDER_PATH
# Build all_preds.jsonl
poetry run python evaluation/testgeneval/scripts/eval/convert_oh_output_to_swe_json.py $FOLDER_PATH/output.jsonl
mv $FOLDER_PATH/output.swebench.jsonl $NEW_FOLDER_PATH/all_preds.jsonl
# Build trajs/
mkdir -p $NEW_FOLDER_PATH/trajs
for instance_dir in $FOLDER_PATH/llm_completions/*/; do
instance_id=$(basename "$instance_dir")
latest_json=$(ls -t "$instance_dir"/*.json | head -n1)
if [ -n "$latest_json" ]; then
cat "$latest_json" | jq -r '.messages' > "$NEW_FOLDER_PATH/trajs/$instance_id.json"
fi
done
# Build logs/
# check if $FOLDER_PATH/eval_outputs exists, if so copy over - else raise error
if [ -d "$FOLDER_PATH/eval_outputs" ]; then
cp -r $FOLDER_PATH/eval_outputs $NEW_FOLDER_PATH/logs
else
echo "Error: $FOLDER_PATH/eval_outputs does not exist. You should run the local docker eval_infer.sh first."
exit 1
fi

View File

@@ -0,0 +1,91 @@
#!/usr/bin/env python3
"""Convert OpenHands output to a readable markdown format for visualization."""
import argparse
import json
import os
import pandas as pd
from tqdm import tqdm
from evaluation.testgeneval.eval_infer import process_test_suite
from openhands.events.serialization import event_from_dict
tqdm.pandas()
parser = argparse.ArgumentParser()
parser.add_argument('oh_output_file', type=str)
args = parser.parse_args()
output_md_folder = args.oh_output_file.replace('.jsonl', '.viz')
print(f'Converting {args.oh_output_file} to markdown files in {output_md_folder}')
oh_format = pd.read_json(args.oh_output_file, orient='records', lines=True)
# model name is the folder name of oh_output_file
model_name = os.path.basename(os.path.dirname(args.oh_output_file))
def convert_history_to_str(history):
ret = ''
separator = '\n\n' + '-' * 100 + '\n'
for i, event in enumerate(history):
if i != 0:
ret += separator
if isinstance(event, list):
# "event" is a legacy pair of (action, observation)
event_obj = event_from_dict(event[0])
ret += f'## {i+1}| {event_obj.__class__.__name__}\n\n'
ret += str(event_obj)
ret += separator
event_obj = event_from_dict(event[1])
ret += f'## {i+1}| {event_obj.__class__.__name__}\n\n'
ret += str(event_obj)
else:
# "event" is a single event
event_obj = event_from_dict(event)
ret += f'## {i+1}| {event_obj.__class__.__name__}\n\n'
ret += str(event_obj)
return ret
def write_row_to_md_file(row):
if 'test_suite' in row:
test_suite = row['test_suite']
elif 'test_result' in row and 'test_suite' in row['test_result']:
test_suite = row['test_result']['test_suite']
else:
raise ValueError(f'Row {row} does not have a test_suite')
if 'report' in row:
coverage = row['report'].get('coverage', 0)
mutation = row['report'].get('mutation_score', 0)
else:
coverage = None
mutation = None
id = row['id']
filename = f'{id}.md'
os.makedirs(output_md_folder, exist_ok=True)
filepath = os.path.join(output_md_folder, filename)
with open(filepath, 'w') as f:
f.write(f'# {id} (coverage: {coverage})\n')
f.write(f'# {id} (mutation score: {mutation})\n')
# MetaData
f.write('## MetaData\n')
f.write('```json\n')
f.write(json.dumps(row['metadata'], indent=2))
f.write('\n```\n')
# Trajectory
f.write('## History\n')
f.write(convert_history_to_str(row['history']))
f.write('## Test Suite\n')
f.write(f'{test_suite}\n')
oh_format.progress_apply(write_row_to_md_file, axis=1)

View File

@@ -0,0 +1,35 @@
import argparse
import os
import pandas as pd
from evaluation.swe_bench.eval_infer import process_git_patch
parser = argparse.ArgumentParser()
parser.add_argument('oh_output_file', type=str)
args = parser.parse_args()
output_filepath = args.oh_output_file.replace('.jsonl', '.swebench.jsonl')
print(f'Converting {args.oh_output_file} to {output_filepath}')
oh_format = pd.read_json(args.oh_output_file, orient='records', lines=True)
# model name is the folder name of oh_output_file
model_name = os.path.basename(os.path.dirname(args.oh_output_file))
def convert_row_to_swebench_format(row):
if 'git_patch' in row:
model_patch = row['git_patch']
elif 'test_result' in row and 'git_patch' in row['test_result']:
model_patch = row['test_result']['git_patch']
else:
raise ValueError(f'Row {row} does not have a git_patch')
return {
'instance_id': row['instance_id'],
'model_patch': process_git_patch(model_patch),
'model_name_or_path': model_name,
}
swebench_format = oh_format.apply(convert_row_to_swebench_format, axis=1)
swebench_format.to_json(output_filepath, lines=True, orient='records')

View File

@@ -0,0 +1,27 @@
import argparse
import pandas as pd
from datasets import load_dataset
parser = argparse.ArgumentParser()
parser.add_argument('output_filepath', type=str, help='Path to save the output file')
parser.add_argument(
'--dataset_name',
type=str,
help='Name of the dataset to download',
default='kjain14/testgeneval',
)
parser.add_argument('--split', type=str, help='Split to download', default='test')
args = parser.parse_args()
dataset = load_dataset(args.dataset_name, split=args.split)
output_filepath = args.output_filepath
print(
f'Downloading gold test suites from {args.dataset_name} (split: {args.split}) to {output_filepath}'
)
test_suites = [
{'instance_id': row['instance_id'], 'test_suite': row['test_src']} for row in dataset
]
print(f'{len(test_suites)} test suites loaded')
pd.DataFrame(test_suites).to_json(output_filepath, lines=True, orient='records')
print(f'Test suites saved to {output_filepath}')

View File

@@ -0,0 +1,122 @@
#!/usr/bin/env python3
import argparse
import json
from collections import Counter
from openhands.events.serialization import event_from_dict
from openhands.events.utils import get_pairs_from_events
ERROR_KEYWORDS = [
'Agent encountered an error while processing the last action',
'APIError',
'Action execution failed',
]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('output_file', type=str, help='The file to summarize')
args = parser.parse_args()
with open(args.output_file, 'r') as file:
lines = file.readlines()
num_lines = len(lines)
num_error_lines = 0
num_agent_stuck_in_loop = 0
coverage = 0
mutation_score = 0
num_empty_suite = 0
error_counter = Counter()
main_agent_cost = []
editor_cost = []
num_turns = []
for line in lines:
_d = json.loads(line)
# Cost
costs = _d['metrics'].get('costs', [])
_cur_main_agent_cost = 0
_cur_editor_cost = 0
for cost in costs:
if isinstance(cost, float):
# backward compatible
_cur_main_agent_cost += cost
else:
if 'draft_editor' in cost['model']:
_cur_editor_cost += cost['cost']
else:
_cur_main_agent_cost += cost['cost']
main_agent_cost.append(_cur_main_agent_cost)
editor_cost.append(_cur_editor_cost)
# Turn status
history = _d.get('history', [])
events = [event_from_dict(event) for event in history]
pairs = get_pairs_from_events(events)
num_turns.append(len(pairs))
# Suite & resolve status
suite = _d.get('test_result', {}).get('test_suite', '')
if suite == '':
num_empty_suite += 1
continue
report = _d.get('report', {}) or {}
coverage += report.get('coverage', 0)
mutation_score += report.get('mutation_score', 0)
# Error
error = _d.get('error', None)
if error is not None and isinstance(error, str):
agent_stuck_in_loop = 'Agent got stuck in a loop' in error
contains_error = bool(error) and not agent_stuck_in_loop
if agent_stuck_in_loop:
error_counter['Agent got stuck in a loop'] += 1
num_agent_stuck_in_loop += 1
elif contains_error:
error_counter[error] += 1
continue
for keyword in ERROR_KEYWORDS:
if keyword in line:
error_counter[keyword] += 1
num_error_lines += 1
break
# print the error counter (with percentage)
print(
f'Average coverage for {num_lines} ({coverage / num_lines * 100:.2f}%)'
)
print(
f'Average mutation score for {num_lines} ({mutation_score / num_lines * 100:.2f}%)'
)
print(
f'Number of empty suite: {num_empty_suite} / {num_lines} ({num_empty_suite / num_lines * 100:.2f}%)'
)
print(
f'Number of error lines: {num_error_lines} / {num_lines} ({num_error_lines / num_lines * 100:.2f}%)'
)
print(
f'Number of agent stuck in loop: {num_agent_stuck_in_loop} / {num_lines} ({num_agent_stuck_in_loop / num_lines * 100:.2f}%)'
)
assert len(num_turns) == num_lines
assert len(main_agent_cost) == num_lines
assert len(editor_cost) == num_lines
print('## Statistics')
print(f'Avg. num of turns per instance: {sum(num_turns) / num_lines:.2f}')
print(f'Avg. agent cost per instance: {sum(main_agent_cost) / num_lines:.2f} USD')
print(f'Avg. editor cost per instance: {sum(editor_cost) / num_lines:.2f} USD')
print(
f'Avg. total cost per instance: {(sum(main_agent_cost) + sum(editor_cost)) / num_lines:.2f} USD'
)
print('## Detailed error breakdown:')
for error, count in error_counter.items():
print(f'{error}: {count} ({count / num_lines * 100:.2f}%)')

View File

@@ -0,0 +1,53 @@
#!/bin/bash
set -eo pipefail
INPUT_FILE=$1
NUM_WORKERS=$2
DATASET=$3
SPLIT=$4
SKIP_MUTATION=$5
if [ -z "$INPUT_FILE" ]; then
echo "INPUT_FILE not specified (should be a path to a jsonl file)"
exit 1
fi
if [ -z "$DATASET" ]; then
echo "DATASET not specified, use default kjain14/testgenevallite"
DATASET="kjain14/testgenevallite"
fi
if [ -z "$SPLIT" ]; then
echo "SPLIT not specified, use default test"
SPLIT="test"
fi
if [ -z "$NUM_WORKERS" ]; then
echo "NUM_WORKERS not specified, use default 1"
NUM_WORKERS=1
fi
echo "... Evaluating on $INPUT_FILE ..."
COMMAND="poetry run python evaluation/benchmarks/testgeneval/eval_infer.py \
--eval-num-workers $NUM_WORKERS \
--input-file $INPUT_FILE \
--dataset $DATASET \
--split $SPLIT"
if [ "$SKIP_MUTATION" == "true" ]; then
echo "Skipping mutation evaluation"
COMMAND="$COMMAND --skip_mutation"
fi
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
echo $COMMAND
# Run the command
eval $COMMAND
# update the output with evaluation results
# poetry run python evaluation/benchmarks/testgeneval/scripts/eval/update_output_with_eval.py $INPUT_FILE

View File

@@ -0,0 +1,122 @@
#!/bin/bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
MAX_ITER=$5
NUM_WORKERS=$6
DATASET=$7
SPLIT=$8
N_RUNS=$9
ZERO_SHOT_PATH=${10} # New argument for zero-shot path
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
if [ -z "$MAX_ITER" ]; then
echo "MAX_ITER not specified, use default 100"
MAX_ITER=100
fi
if [ -z "$USE_INSTANCE_IMAGE" ]; then
echo "USE_INSTANCE_IMAGE not specified, use default true"
USE_INSTANCE_IMAGE=true
fi
if [ -z "$RUN_WITH_BROWSING" ]; then
echo "RUN_WITH_BROWSING not specified, use default false"
RUN_WITH_BROWSING=false
fi
if [ -z "$DATASET" ]; then
echo "DATASET not specified, use default princeton-nlp/SWE-bench_Lite"
DATASET="princeton-nlp/SWE-bench_Lite"
fi
if [ -z "$SPLIT" ]; then
echo "SPLIT not specified, use default test"
SPLIT="test"
fi
export USE_INSTANCE_IMAGE=$USE_INSTANCE_IMAGE
echo "USE_INSTANCE_IMAGE: $USE_INSTANCE_IMAGE"
export RUN_WITH_BROWSING=$RUN_WITH_BROWSING
echo "RUN_WITH_BROWSING: $RUN_WITH_BROWSING"
get_openhands_version
echo "AGENT: $AGENT"
echo "OPENHANDS_VERSION: $OPENHANDS_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
echo "DATASET: $DATASET"
echo "SPLIT: $SPLIT"
# Default to NOT use Hint
if [ -z "$USE_HINT_TEXT" ]; then
export USE_HINT_TEXT=false
fi
echo "USE_HINT_TEXT: $USE_HINT_TEXT"
EVAL_NOTE="$OPENHANDS_VERSION"
# if not using Hint, add -no-hint to the eval note
if [ "$USE_HINT_TEXT" = false ]; then
EVAL_NOTE="$EVAL_NOTE-no-hint"
fi
if [ "$RUN_WITH_BROWSING" = true ]; then
EVAL_NOTE="$EVAL_NOTE-with-browsing"
fi
if [ -n "$EXP_NAME" ]; then
EVAL_NOTE="$EVAL_NOTE-$EXP_NAME"
fi
function run_eval() {
local eval_note=$1
COMMAND="poetry run python evaluation/benchmarks/testgeneval/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations $MAX_ITER \
--eval-num-workers $NUM_WORKERS \
--eval-note $eval_note \
--dataset $DATASET \
--split $SPLIT"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
if [ -n "$ZERO_SHOT_PATH" ]; then
echo "ZERO_SHOT_PATH: $ZERO_SHOT_PATH"
COMMAND="$COMMAND --testfile_start --zero_shot_path $ZERO_SHOT_PATH"
fi
eval $COMMAND
}
unset SANDBOX_ENV_GITHUB_TOKEN # prevent the agent from using the github token to push
if [ -z "$N_RUNS" ]; then
N_RUNS=1
echo "N_RUNS not specified, use default $N_RUNS"
fi
for i in $(seq 1 $N_RUNS); do
current_eval_note="$EVAL_NOTE-run_$i"
echo "EVAL_NOTE: $current_eval_note"
run_eval $current_eval_note
done
checkout_original_branch

View File

@@ -0,0 +1,40 @@
#!/bin/bash
source ~/.bashrc
SWEUTIL_DIR=/swe_util
# FIXME: Cannot read SWE_INSTANCE_ID from the environment variable
# SWE_INSTANCE_ID=django__django-11099
if [ -z "$SWE_INSTANCE_ID" ]; then
echo "Error: SWE_INSTANCE_ID is not set." >&2
exit 1
fi
# Read the swe-bench-test-lite.json file and extract the required item based on instance_id
item=$(jq --arg INSTANCE_ID "$SWE_INSTANCE_ID" '.[] | select(.instance_id == $INSTANCE_ID)' $SWEUTIL_DIR/eval_data/instances/swe-bench-instance.json)
if [[ -z "$item" ]]; then
echo "No item found for the provided instance ID."
exit 1
fi
WORKSPACE_NAME=$(echo "$item" | jq -r '(.repo | tostring) + "__" + (.version | tostring) | gsub("/"; "__")')
echo "WORKSPACE_NAME: $WORKSPACE_NAME"
# Clear the workspace
if [ -d /workspace ]; then
rm -rf /workspace/*
else
mkdir /workspace
fi
# Copy repo to workspace
if [ -d /workspace/$WORKSPACE_NAME ]; then
rm -rf /workspace/$WORKSPACE_NAME
fi
mkdir -p /workspace
ln -s /testbed /workspace/$WORKSPACE_NAME
# Activate instance-specific environment
. /opt/miniconda3/etc/profile.d/conda.sh
conda activate testbed

View File

@@ -0,0 +1,27 @@
#!/bin/bash
set -e
EVAL_WORKSPACE="evaluation/swe_bench/eval_workspace"
mkdir -p $EVAL_WORKSPACE
# 1. Prepare REPO
echo "==== Prepare SWE-bench repo ===="
OH_SWE_BENCH_REPO_PATH="https://github.com/All-Hands-AI/SWE-bench.git"
OH_SWE_BENCH_REPO_BRANCH="eval"
git clone -b $OH_SWE_BENCH_REPO_BRANCH $OH_SWE_BENCH_REPO_PATH $EVAL_WORKSPACE/OH-SWE-bench
# 2. Prepare DATA
echo "==== Prepare SWE-bench data ===="
EVAL_IMAGE=ghcr.io/all-hands-ai/eval-swe-bench:builder_with_conda
EVAL_WORKSPACE=$(realpath $EVAL_WORKSPACE)
chmod +x $EVAL_WORKSPACE/OH-SWE-bench/swebench/harness/prepare_data.sh
if [ -d $EVAL_WORKSPACE/eval_data ]; then
rm -r $EVAL_WORKSPACE/eval_data
fi
docker run \
-v $EVAL_WORKSPACE:/workspace \
-w /workspace \
-u $(id -u):$(id -g) \
-e HF_DATASETS_CACHE="/tmp" \
--rm -it $EVAL_IMAGE \
bash -c "cd OH-SWE-bench/swebench/harness && /swe_util/miniforge3/bin/conda run -n swe-bench-eval ./prepare_data.sh && mv eval_data /workspace/"

View File

@@ -0,0 +1,96 @@
#!/bin/bash
set -e
# assert user name is `root`
if [ "$USER" != "root" ]; then
echo "Error: This script is intended to be run by the 'root' user only." >&2
exit 1
fi
source ~/.bashrc
SWEUTIL_DIR=/swe_util
# Create logs directory
LOG_DIR=/openhands/logs
mkdir -p $LOG_DIR && chmod 777 $LOG_DIR
# FIXME: Cannot read SWE_INSTANCE_ID from the environment variable
# SWE_INSTANCE_ID=django__django-11099
if [ -z "$SWE_INSTANCE_ID" ]; then
echo "Error: SWE_INSTANCE_ID is not set." >&2
exit 1
fi
# Read the swe-bench-test-lite.json file and extract the required item based on instance_id
item=$(jq --arg INSTANCE_ID "$SWE_INSTANCE_ID" '.[] | select(.instance_id == $INSTANCE_ID)' $SWEUTIL_DIR/eval_data/instances/swe-bench-test-lite.json)
if [[ -z "$item" ]]; then
echo "No item found for the provided instance ID."
exit 1
fi
CONDA_ENV_NAME=$(echo "$item" | jq -r '.repo + "__" + .version | gsub("/"; "__")')
echo "CONDA_ENV_NAME: $CONDA_ENV_NAME"
SWE_TASK_DIR=/openhands/swe_tasks
mkdir -p $SWE_TASK_DIR
# Dump test_patch to /workspace/test.patch
echo "$item" | jq -r '.test_patch' > $SWE_TASK_DIR/test.patch
# Dump patch to /workspace/gold.patch
echo "$item" | jq -r '.patch' > $SWE_TASK_DIR/gold.patch
# Dump the item to /workspace/instance.json except for the "test_patch" and "patch" fields
echo "$item" | jq 'del(.test_patch, .patch)' > $SWE_TASK_DIR/instance.json
# Clear the workspace
rm -rf /workspace/*
# Copy repo to workspace
if [ -d /workspace/$CONDA_ENV_NAME ]; then
rm -rf /workspace/$CONDA_ENV_NAME
fi
cp -r $SWEUTIL_DIR/eval_data/testbeds/$CONDA_ENV_NAME /workspace
# Reset swe-bench testbed and install the repo
. $SWEUTIL_DIR/miniforge3/etc/profile.d/conda.sh
conda config --set changeps1 False
conda config --append channels conda-forge
conda activate swe-bench-eval
mkdir -p $SWE_TASK_DIR/reset_testbed_temp
mkdir -p $SWE_TASK_DIR/reset_testbed_log_dir
SWE_BENCH_DIR=/swe_util/OH-SWE-bench
output=$(
export PYTHONPATH=$SWE_BENCH_DIR && \
cd $SWE_BENCH_DIR && \
python swebench/harness/reset_swe_env.py \
--swe_bench_tasks $SWEUTIL_DIR/eval_data/instances/swe-bench-test.json \
--temp_dir $SWE_TASK_DIR/reset_testbed_temp \
--testbed /workspace \
--conda_path $SWEUTIL_DIR/miniforge3 \
--instance_id $SWE_INSTANCE_ID \
--log_dir $SWE_TASK_DIR/reset_testbed_log_dir \
--timeout 900 \
--verbose
)
REPO_PATH=$(echo "$output" | awk -F': ' '/repo_path:/ {print $2}')
TEST_CMD=$(echo "$output" | awk -F': ' '/test_cmd:/ {print $2}')
echo "Repo Path: $REPO_PATH"
echo "Test Command: $TEST_CMD"
echo "export SWE_BENCH_DIR=\"$SWE_BENCH_DIR\"" >> ~/.bashrc
echo "export REPO_PATH=\"$REPO_PATH\"" >> ~/.bashrc
echo "export TEST_CMD=\"$TEST_CMD\"" >> ~/.bashrc
if [[ "$REPO_PATH" == "None" ]]; then
echo "Error: Failed to retrieve repository path. Tests may not have passed or output was not as expected." >&2
exit 1
fi
# Activate instance-specific environment
. $SWEUTIL_DIR/miniforge3/etc/profile.d/conda.sh
conda activate $CONDA_ENV_NAME
set +e

View File

@@ -0,0 +1,327 @@
import ast
import re
from typing import List, Tuple
from evaluation.benchmarks.testgeneval.constants import TestStatus
from evaluation.benchmarks.testgeneval.log_parsers import (
MAP_REPO_TO_PARSER,
parse_log_pytest,
)
def indent_text(text, indent_level):
return '\n'.join(
' ' * indent_level + line if line.strip() else line for line in text.split('\n')
)
def extract_preamble_classes_and_functions(code):
class_pattern = re.compile(
r'(?P<decorators>(?:^@[^\r\n]*(?:\r?\n(?:[ \t]+[^\r\n]*|^\)[^\r\n]*)*)*\r?\n)*?)'
r'^class\s+([\w]+)(?:\([^)]*\))?:', # the class line
re.MULTILINE,
)
# Capture methods with or without decorators
method_pattern = re.compile(r'(^(\s*@.*\s*)*^\s*def\s+[\w_]+\(.*\):)', re.MULTILINE)
# Capture functions with or without decorators
function_pattern = re.compile(
r'(?P<decorators>(?:^@[^\r\n]*(?:\r?\n(?:[ \t]+[^\r\n]*|^\)[^\r\n]*)*)*\r?\n)*?)'
r'^def\s+([\w_]+)\(.*\):', # the function line
re.MULTILINE,
)
preamble = ''
classes = []
test_functions = []
current_position = 0
def extract_class_body(code: str, start_index: int) -> Tuple[str, int]:
"""
Extracts the body of a class from the given code starting from the specified index.
Returns the class body and the end index of the class body.
"""
if not code or start_index < 0 or start_index >= len(code):
raise ValueError('Invalid code or start index')
# Split the code into lines
lines = code[start_index:].split('\n')
class_body_lines = []
# Find the starting indentation level of the class definition
class_start_line = lines[0]
start_indent = len(class_start_line) - len(class_start_line.lstrip())
inside_multiline_comment = False
end_index = start_index
for i, line in enumerate(lines[1:], start=1):
stripped_line = line.strip()
current_indent = len(line) - len(line.lstrip())
# Handle multiline comments or docstrings
if stripped_line.startswith('"""') or stripped_line.startswith("'''"):
if inside_multiline_comment:
inside_multiline_comment = False
else:
inside_multiline_comment = True
if not inside_multiline_comment:
# Stop when we reach a line with less indentation than the class definition
if current_indent <= start_indent and stripped_line:
break
# Add lines that are part of the class body
class_body_lines.append(line)
# Update the end index to the current line end
end_index = start_index + len('\n'.join(lines[: i + 1])) + 1
return code[start_index:end_index], end_index
while current_position < len(code):
class_match = class_pattern.search(code, current_position)
method_match = method_pattern.search(code, current_position)
if class_match and (
not method_match or class_match.start() < method_match.start()
):
class_name = class_match.group(0)
class_body, end_idx = extract_class_body(code, class_match.end())
current_position = end_idx
methods = []
class_prefix = class_name
set_prefix = False
for method_match in method_pattern.finditer(class_body):
method_name = method_match.group()
method_start = method_match.start()
if not set_prefix:
class_prefix = class_name + class_body[:method_start]
set_prefix = True
next_method = method_pattern.search(
class_body, method_start + len(method_name)
)
method_body = (
class_body[method_start : next_method.start()]
if next_method
else class_body[method_start:]
)
methods.append((method_name, method_body))
classes.append((class_prefix, methods, class_match.start()))
elif method_match:
function_name = method_match.group(0)
start_idx = method_match.start()
# Extract the current function's indentation level
lines = code[start_idx:].split('\n')
current_indent = len(lines[0]) - len(lines[0].lstrip())
next_function = function_pattern.search(
code, start_idx + len(function_name)
)
while next_function and (
class_match is None or next_function.start() < class_match.start()
):
# Calculate the indentation of the next function
next_function_start = next_function.start()
next_line = code[next_function_start:].split('\n', 1)[0]
next_indent = len(next_line) - len(next_line.lstrip())
# Check if the next function is top-level
if next_indent <= current_indent:
break
# Continue searching for the next top-level function
next_function = function_pattern.search(
code, next_function.start() + len(next_function.group(0))
)
if next_function:
next_function_start = next_function.start()
if class_match and next_function_start > class_match.start():
next_function_start = class_match.start()
function_body = code[start_idx:next_function_start]
else:
function_body = code[start_idx:]
test_functions.append((function_body, start_idx))
current_position = start_idx + len(function_body)
else:
break
if classes and test_functions:
preamble = code[: min(classes[0][2], test_functions[0][1])]
else:
preamble = (
code[: classes[0][2]]
if classes
else code[: test_functions[0][1]]
if test_functions
else code
)
return preamble.strip(), classes, test_functions
def filter_passing_tests(
test_content: str, test_output: str, repo: str
) -> Tuple[str, List[str], List[str]]:
"""
Filter tests based on their execution results.
Returns:
Tuple containing:
- Modified test content with only passing tests
- List of passing test names
- List of failing test names
"""
# Parse test results using appropriate parser
parser = MAP_REPO_TO_PARSER.get(repo, parse_log_pytest)
test_results = parser(test_output)
# Get passing and failing tests
passing_tests = []
failing_tests = []
for test_name, status in test_results.items():
if status == TestStatus.PASSED.value:
passing_tests.append(test_name)
else:
failing_tests.append(test_name)
if not passing_tests:
return '', passing_tests, failing_tests
# Extract test components
preamble, classes, functions = extract_preamble_classes_and_functions(test_content)
# Filter classes to only include passing methods
filtered_classes = []
for class_name, methods, start_idx in classes:
non_fail_methods = []
for method_name, method_body in methods:
# Extract the base method name for matching
method_full_name = (
method_name.split('.')[-1].split('(')[0].strip().split(' ')[-1]
)
# Check if the method name is in failing_tests or if any failing_test is in the method name
if not (
any(method_full_name in failing_test for failing_test in failing_tests)
or any(
failing_test in method_full_name for failing_test in failing_tests
)
):
non_fail_methods.append((method_name, method_body))
if non_fail_methods:
filtered_classes.append((class_name, non_fail_methods, start_idx))
# Filter standalone functions
filtered_functions = []
for func_body, start_idx in functions:
func_name = func_body.split('def ')[1].split('(')[0].strip()
if any(func_name in failing_test for failing_test in failing_tests) or any(
failing_test in func_name for failing_test in failing_tests
):
continue
filtered_functions.append((func_body, start_idx))
# Reconstruct test content with only passing tests
content_parts = [preamble]
# Add filtered classes
for class_name, methods, _ in filtered_classes:
class_content = class_name + '\n'
for _, method_body in methods:
class_content += method_body + '\n'
content_parts.append(class_content)
# Add filtered functions
for func_body, _ in filtered_functions:
content_parts.append(func_body)
return '\n\n'.join(content_parts), passing_tests, failing_tests
def filter_tests(
test_content: str, test_output: str, repo: str
) -> Tuple[str, List[str], List[str]]:
"""
Filter tests using AST parsing to remove failing test functions from the test file.
Non-test functions (e.g. setup or helper methods) and classes (even if all test methods are failing)
are preserved.
If AST processing fails (for example, because the test file cannot be parsed),
this function falls back on the existing regex-based filtering (filter_passing_tests).
Returns:
Tuple containing:
- Modified test content (as a string) containing only passing tests.
- List of passing test names.
- List of failing test names.
"""
try:
# Attempt to parse the test file using the AST.
tree = ast.parse(test_content)
# Parse test results using the appropriate parser.
parser = MAP_REPO_TO_PARSER.get(repo, parse_log_pytest)
test_results = parser(test_output)
passing_tests = [
name
for name, status in test_results.items()
if status == TestStatus.PASSED.value
]
failing_tests = [
name
for name, status in test_results.items()
if status != TestStatus.PASSED.value
]
# Helper function to decide if a test name should be considered failing.
def is_failing(name: str) -> bool:
for ft in failing_tests:
if name in ft or ft in name:
return True
return False
new_body = []
for node in tree.body:
# For top-level function definitions, only filter those that look like tests.
if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
if node.name.startswith('test') and is_failing(node.name):
continue
new_body.append(node)
# For classes, filter out failing test methods but preserve other methods (e.g. setup).
elif isinstance(node, ast.ClassDef):
new_class_body = []
for subnode in node.body:
if isinstance(subnode, (ast.FunctionDef, ast.AsyncFunctionDef)):
# Only consider filtering if the method is a test.
qualified_name = f'{node.name}.{subnode.name}'
if is_failing(subnode.name) or is_failing(qualified_name):
continue
new_class_body.append(subnode)
else:
new_class_body.append(subnode)
# Always include the class even if no test methods remain, as it might contain
# setup, teardown, or other necessary logic.
if new_class_body:
node.body = new_class_body
new_body.append(node)
else:
new_body.append(node)
tree.body = new_body
# Reconstruct the source code from the filtered AST.
# (Requires Python 3.9+ for ast.unparse; otherwise an exception will trigger the fallback.)
new_test_content = ast.unparse(tree)
return new_test_content, passing_tests, failing_tests
except Exception:
print('AST processing failed; falling back on regex-based filtering.')
# If AST processing fails for any reason, fall back on the original regex-based filtering.
return filter_passing_tests(test_content, test_output, repo)

View File

@@ -0,0 +1,166 @@
from __future__ import annotations
from dataclasses import dataclass
from evaluation.benchmarks.testgeneval.constants import (
COVERAGE_PREFIX,
KEY_INSTANCE_ID,
MAP_REPO_VERSION_TO_SPECS,
TESTS_FAILED,
TESTS_SUFFIX,
UPDATE_TOX,
TestGenEvalInstance,
)
from evaluation.benchmarks.testgeneval.utils import (
get_test_directives,
)
DIFF_MODIFIED_FILE_REGEX = r'--- a/(.*)'
@dataclass
class TestSpec:
"""
A dataclass that represents a test specification for a single instance of SWE-bench.
"""
instance_id: str
id: str
repo: str
version: str
test_cmd: str
code_file: str
test_file: str
baseline_covs: dict
local_imports: list[str]
test_script_list: list[str]
mutation_script_list: list[str]
@property
def test_script(self):
return (
'\n'.join(['#!/bin/bash', 'set -uo pipefail'] + self.test_script_list)
+ '\n'
)
# Don't exit early because we need to revert tests at the end
@property
def mutation_script(self):
return (
'\n'.join(['#!/bin/bash', 'set -uo pipefail'] + self.mutation_script_list)
+ '\n'
)
# Don't exit early because we need to revert tests at the end
def make_test_setup(specs, env_name, repo_directory, includes_tox=False):
eval_commands = []
if includes_tox:
eval_commands.append(UPDATE_TOX)
eval_commands += [
'source /opt/miniconda3/bin/activate',
f'conda activate {env_name}',
f'cd {repo_directory}',
]
if 'eval_commands' in specs:
eval_commands += specs['eval_commands']
eval_commands += [
f'git config --global --add safe.directory {repo_directory}', # for nonroot user
f'cd {repo_directory}',
# This is just informational, so we have a record
'git status',
'git show',
'source /opt/miniconda3/bin/activate',
f'conda activate {env_name}',
]
if 'install' in specs:
eval_commands.append(specs['install'])
if includes_tox:
eval_commands.append('add_coverage_tox "tox.ini"')
eval_commands.append('[ -f ".coveragerc" ] && rm ".coveragerc"')
return eval_commands
def make_test_script_list(test_cmd, specs, env_name, repo_directory):
"""
Runs the tests.
"""
includes_tox = 'tox' in test_cmd
eval_commands = make_test_setup(specs, env_name, repo_directory, includes_tox)
eval_commands += [
f'{test_cmd} || {{ echo "{TESTS_FAILED}\n{TESTS_SUFFIX}\n" && exit 1; }}',
f'echo "{TESTS_SUFFIX}"\n',
'coverage json -o coverage.json',
f'echo "{COVERAGE_PREFIX}"\n',
'cat coverage.json',
]
return eval_commands
def make_mutation_script_list(specs, env_name, repo_directory, mutation_timeout):
"""
Runs the tests.
"""
eval_commands = make_test_setup(specs, env_name, repo_directory)
eval_commands += [
'cosmic-ray init mutation.toml mutation.sqlite',
f'timeout {mutation_timeout}s cosmic-ray exec mutation.toml mutation.sqlite',
'cr-report mutation.sqlite',
'cr-rate mutation.sqlite --estimate --confidence 95.0',
]
return eval_commands
def make_test_spec(
instance: TestGenEvalInstance, mutation_timeout: int, buffer: int
) -> TestSpec:
if isinstance(instance, TestSpec):
return instance
instance_id = instance[KEY_INSTANCE_ID]
id = instance['id']
repo = instance['repo']
version = instance['version']
baseline_covs = instance['baseline_covs']
code_file = instance['code_file']
test_file = instance['test_file']
local_imports = instance['local_imports']
env_name = 'testbed'
repo_directory = f'/{env_name}'
specs = MAP_REPO_VERSION_TO_SPECS[repo][version]
test_cmd = ' '.join(
[
MAP_REPO_VERSION_TO_SPECS[instance['repo']][instance['version']][
'test_cmd'
],
*get_test_directives(instance),
]
)
test_script_list = make_test_script_list(test_cmd, specs, env_name, repo_directory)
mutation_script_list = make_mutation_script_list(
specs, env_name, repo_directory, mutation_timeout - buffer
)
return TestSpec(
instance_id=instance_id,
id=id,
repo=repo,
test_script_list=test_script_list,
test_cmd=test_cmd,
local_imports=local_imports,
mutation_script_list=mutation_script_list,
code_file=code_file,
test_file=test_file,
baseline_covs=baseline_covs,
version=version,
)

View File

@@ -0,0 +1,73 @@
import json
from pathlib import Path
from typing import cast
from datasets import Dataset, load_dataset
from evaluation.benchmarks.testgeneval.constants import (
KEY_INSTANCE_ID,
TestGenEvalInstance,
)
def get_test_directives(instance: TestGenEvalInstance) -> list:
"""
Get test directives from the test_patch of a task instance
Args:
instance (dict): task instance
Returns:
directives (list): List of test directives
"""
# For seq2seq code repos, testing command is fixed
if instance['repo'] == 'swe-bench/humaneval':
return ['test.py']
# Get test directives from test patch and remove non-test files
directives = [f"/testbed/{instance['test_file']}"]
# For Django tests, remove extension + "tests/" prefix and convert slashes to dots (module referencing)
if instance['repo'] == 'django/django':
directives = [instance['test_file']]
directives_transformed = []
for d in directives:
d = d[: -len('.py')] if d.endswith('.py') else d
d = d[len('tests/') :] if d.startswith('tests/') else d
d = d.replace('/', '.')
directives_transformed.append(d)
directives = directives_transformed
return directives
def load_testgeneval_dataset(
name='kjain14/testgeneval', split='test', ids=None
) -> list[TestGenEvalInstance]:
"""
Load SWE-bench dataset from Hugging Face Datasets or local .json/.jsonl file
"""
# check that all instance IDs are in the dataset
if ids:
ids = set(ids)
# Load from local .json/.jsonl file
if name.endswith('.json') or name.endswith('.jsonl'):
dataset = json.loads(Path(name).read_text())
dataset_ids = {instance[KEY_INSTANCE_ID] for instance in dataset}
else:
# Load from Hugging Face Datasets
if name.lower() in {'testgeneval'}:
name = 'kjain14/testgeneval'
elif name.lower() in {'testgeneval-lite', 'testgenevallite', 'lite'}:
name = 'kjain14/testgenevallite'
dataset = cast(Dataset, load_dataset(name, split=split))
dataset_ids = {instance['id'] for instance in dataset}
if ids:
if ids - dataset_ids:
raise ValueError(
(
"Some instance IDs not found in dataset!"
f"\nMissing IDs:\n{' '.join(ids - dataset_ids)}"
)
)
dataset = [instance for instance in dataset if instance['id'] in ids]
return [cast(TestGenEvalInstance, instance) for instance in dataset]

259
poetry.lock generated
View File

@@ -2008,6 +2008,21 @@ files = [
{file = "func_timeout-4.3.5.tar.gz", hash = "sha256:74cd3c428ec94f4edfba81f9b2f14904846d5ffccc27c92433b8b5939b5575dd"},
]
[[package]]
name = "fuzzywuzzy"
version = "0.18.0"
description = "Fuzzy string matching in python"
optional = false
python-versions = "*"
groups = ["testgeneval"]
files = [
{file = "fuzzywuzzy-0.18.0-py2.py3-none-any.whl", hash = "sha256:928244b28db720d1e0ee7587acf660ea49d7e4c632569cad4f1cd7e68a5f0993"},
{file = "fuzzywuzzy-0.18.0.tar.gz", hash = "sha256:45016e92264780e58972dca1b3d939ac864b78437422beecebb3095f8efd00e8"},
]
[package.extras]
speedup = ["python-levenshtein (>=0.12)"]
[[package]]
name = "gdown"
version = "5.2.0"
@@ -3739,6 +3754,107 @@ dev = ["changelist (==0.5)"]
lint = ["pre-commit (==3.7.0)"]
test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"]
[[package]]
name = "levenshtein"
version = "0.26.1"
description = "Python extension for computing string edit distances and similarities."
optional = false
python-versions = ">=3.9"
groups = ["testgeneval"]
files = [
{file = "levenshtein-0.26.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8dc4a4aecad538d944a1264c12769c99e3c0bf8e741fc5e454cc954913befb2e"},
{file = "levenshtein-0.26.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec108f368c12b25787c8b1a4537a1452bc53861c3ee4abc810cc74098278edcd"},
{file = "levenshtein-0.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69229d651c97ed5b55b7ce92481ed00635cdbb80fbfb282a22636e6945dc52d5"},
{file = "levenshtein-0.26.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79dcd157046d62482a7719b08ba9e3ce9ed3fc5b015af8ea989c734c702aedd4"},
{file = "levenshtein-0.26.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f53f9173ae21b650b4ed8aef1d0ad0c37821f367c221a982f4d2922b3044e0d"},
{file = "levenshtein-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3956f3c5c229257dbeabe0b6aacd2c083ebcc1e335842a6ff2217fe6cc03b6b"},
{file = "levenshtein-0.26.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1e83af732726987d2c4cd736f415dae8b966ba17b7a2239c8b7ffe70bfb5543"},
{file = "levenshtein-0.26.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4f052c55046c2a9c9b5f742f39e02fa6e8db8039048b8c1c9e9fdd27c8a240a1"},
{file = "levenshtein-0.26.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9895b3a98f6709e293615fde0dcd1bb0982364278fa2072361a1a31b3e388b7a"},
{file = "levenshtein-0.26.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a3777de1d8bfca054465229beed23994f926311ce666f5a392c8859bb2722f16"},
{file = "levenshtein-0.26.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:81c57e1135c38c5e6e3675b5e2077d8a8d3be32bf0a46c57276c092b1dffc697"},
{file = "levenshtein-0.26.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:91d5e7d984891df3eff7ea9fec8cf06fdfacc03cd074fd1a410435706f73b079"},
{file = "levenshtein-0.26.1-cp310-cp310-win32.whl", hash = "sha256:f48abff54054b4142ad03b323e80aa89b1d15cabc48ff49eb7a6ff7621829a56"},
{file = "levenshtein-0.26.1-cp310-cp310-win_amd64.whl", hash = "sha256:79dd6ad799784ea7b23edd56e3bf94b3ca866c4c6dee845658ee75bb4aefdabf"},
{file = "levenshtein-0.26.1-cp310-cp310-win_arm64.whl", hash = "sha256:3351ddb105ef010cc2ce474894c5d213c83dddb7abb96400beaa4926b0b745bd"},
{file = "levenshtein-0.26.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:44c51f5d33b3cfb9db518b36f1288437a509edd82da94c4400f6a681758e0cb6"},
{file = "levenshtein-0.26.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56b93203e725f9df660e2afe3d26ba07d71871b6d6e05b8b767e688e23dfb076"},
{file = "levenshtein-0.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:270d36c5da04a0d89990660aea8542227cbd8f5bc34e9fdfadd34916ff904520"},
{file = "levenshtein-0.26.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:480674c05077eeb0b0f748546d4fcbb386d7c737f9fff0010400da3e8b552942"},
{file = "levenshtein-0.26.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13946e37323728695ba7a22f3345c2e907d23f4600bc700bf9b4352fb0c72a48"},
{file = "levenshtein-0.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ceb673f572d1d0dc9b1cd75792bb8bad2ae8eb78a7c6721e23a3867d318cb6f2"},
{file = "levenshtein-0.26.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42d6fa242e3b310ce6bfd5af0c83e65ef10b608b885b3bb69863c01fb2fcff98"},
{file = "levenshtein-0.26.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b8b68295808893a81e0a1dbc2274c30dd90880f14d23078e8eb4325ee615fc68"},
{file = "levenshtein-0.26.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b01061d377d1944eb67bc40bef5d4d2f762c6ab01598efd9297ce5d0047eb1b5"},
{file = "levenshtein-0.26.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:9d12c8390f156745e533d01b30773b9753e41d8bbf8bf9dac4b97628cdf16314"},
{file = "levenshtein-0.26.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:48825c9f967f922061329d1481b70e9fee937fc68322d6979bc623f69f75bc91"},
{file = "levenshtein-0.26.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d8ec137170b95736842f99c0e7a9fd8f5641d0c1b63b08ce027198545d983e2b"},
{file = "levenshtein-0.26.1-cp311-cp311-win32.whl", hash = "sha256:798f2b525a2e90562f1ba9da21010dde0d73730e277acaa5c52d2a6364fd3e2a"},
{file = "levenshtein-0.26.1-cp311-cp311-win_amd64.whl", hash = "sha256:55b1024516c59df55f1cf1a8651659a568f2c5929d863d3da1ce8893753153bd"},
{file = "levenshtein-0.26.1-cp311-cp311-win_arm64.whl", hash = "sha256:e52575cbc6b9764ea138a6f82d73d3b1bc685fe62e207ff46a963d4c773799f6"},
{file = "levenshtein-0.26.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cc741ca406d3704dc331a69c04b061fc952509a069b79cab8287413f434684bd"},
{file = "levenshtein-0.26.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:821ace3b4e1c2e02b43cf5dc61aac2ea43bdb39837ac890919c225a2c3f2fea4"},
{file = "levenshtein-0.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92694c9396f55d4c91087efacf81297bef152893806fc54c289fc0254b45384"},
{file = "levenshtein-0.26.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51ba374de7a1797d04a14a4f0ad3602d2d71fef4206bb20a6baaa6b6a502da58"},
{file = "levenshtein-0.26.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f7aa5c3327dda4ef952769bacec09c09ff5bf426e07fdc94478c37955681885b"},
{file = "levenshtein-0.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e2517e8d3c221de2d1183f400aed64211fcfc77077b291ed9f3bb64f141cdc"},
{file = "levenshtein-0.26.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9092b622765c7649dd1d8af0f43354723dd6f4e570ac079ffd90b41033957438"},
{file = "levenshtein-0.26.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fc16796c85d7d8b259881d59cc8b5e22e940901928c2ff6924b2c967924e8a0b"},
{file = "levenshtein-0.26.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4370733967f5994ceeed8dc211089bedd45832ee688cecea17bfd35a9eb22b9"},
{file = "levenshtein-0.26.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3535ecfd88c9b283976b5bc61265855f59bba361881e92ed2b5367b6990c93fe"},
{file = "levenshtein-0.26.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:90236e93d98bdfd708883a6767826fafd976dac8af8fc4a0fb423d4fa08e1bf0"},
{file = "levenshtein-0.26.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:04b7cabb82edf566b1579b3ed60aac0eec116655af75a3c551fee8754ffce2ea"},
{file = "levenshtein-0.26.1-cp312-cp312-win32.whl", hash = "sha256:ae382af8c76f6d2a040c0d9ca978baf461702ceb3f79a0a3f6da8d596a484c5b"},
{file = "levenshtein-0.26.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd091209798cfdce53746f5769987b4108fe941c54fb2e058c016ffc47872918"},
{file = "levenshtein-0.26.1-cp312-cp312-win_arm64.whl", hash = "sha256:7e82f2ea44a81ad6b30d92a110e04cd3c8c7c6034b629aca30a3067fa174ae89"},
{file = "levenshtein-0.26.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:790374a9f5d2cbdb30ee780403a62e59bef51453ac020668c1564d1e43438f0e"},
{file = "levenshtein-0.26.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7b05c0415c386d00efda83d48db9db68edd02878d6dbc6df01194f12062be1bb"},
{file = "levenshtein-0.26.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3114586032361722ddededf28401ce5baf1cf617f9f49fb86b8766a45a423ff"},
{file = "levenshtein-0.26.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2532f8a13b68bf09f152d906f118a88da2063da22f44c90e904b142b0a53d534"},
{file = "levenshtein-0.26.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:219c30be6aa734bf927188d1208b7d78d202a3eb017b1c5f01ab2034d2d4ccca"},
{file = "levenshtein-0.26.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:397e245e77f87836308bd56305bba630010cd8298c34c4c44bd94990cdb3b7b1"},
{file = "levenshtein-0.26.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aeff6ea3576f72e26901544c6c55c72a7b79b9983b6f913cba0e9edbf2f87a97"},
{file = "levenshtein-0.26.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a19862e3539a697df722a08793994e334cd12791e8144851e8a1dee95a17ff63"},
{file = "levenshtein-0.26.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:dc3b5a64f57c3c078d58b1e447f7d68cad7ae1b23abe689215d03fc434f8f176"},
{file = "levenshtein-0.26.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bb6c7347424a91317c5e1b68041677e4c8ed3e7823b5bbaedb95bffb3c3497ea"},
{file = "levenshtein-0.26.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:b817376de4195a207cc0e4ca37754c0e1e1078c2a2d35a6ae502afde87212f9e"},
{file = "levenshtein-0.26.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7b50c3620ff47c9887debbb4c154aaaac3e46be7fc2e5789ee8dbe128bce6a17"},
{file = "levenshtein-0.26.1-cp313-cp313-win32.whl", hash = "sha256:9fb859da90262eb474c190b3ca1e61dee83add022c676520f5c05fdd60df902a"},
{file = "levenshtein-0.26.1-cp313-cp313-win_amd64.whl", hash = "sha256:8adcc90e3a5bfb0a463581d85e599d950fe3c2938ac6247b29388b64997f6e2d"},
{file = "levenshtein-0.26.1-cp313-cp313-win_arm64.whl", hash = "sha256:c2599407e029865dc66d210b8804c7768cbdbf60f061d993bb488d5242b0b73e"},
{file = "levenshtein-0.26.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dc54ced948fc3feafce8ad4ba4239d8ffc733a0d70e40c0363ac2a7ab2b7251e"},
{file = "levenshtein-0.26.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e6516f69213ae393a220e904332f1a6bfc299ba22cf27a6520a1663a08eba0fb"},
{file = "levenshtein-0.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4cfea4eada1746d0c75a864bc7e9e63d4a6e987c852d6cec8d9cb0c83afe25b"},
{file = "levenshtein-0.26.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a323161dfeeac6800eb13cfe76a8194aec589cd948bcf1cdc03f66cc3ec26b72"},
{file = "levenshtein-0.26.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c23e749b68ebc9a20b9047317b5cd2053b5856315bc8636037a8adcbb98bed1"},
{file = "levenshtein-0.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f80dd7432d4b6cf493d012d22148db7af769017deb31273e43406b1fb7f091c"},
{file = "levenshtein-0.26.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ae7cd6e4312c6ef34b2e273836d18f9fff518d84d823feff5ad7c49668256e0"},
{file = "levenshtein-0.26.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dcdad740e841d791b805421c2b20e859b4ed556396d3063b3aa64cd055be648c"},
{file = "levenshtein-0.26.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e07afb1613d6f5fd99abd4e53ad3b446b4efaa0f0d8e9dfb1d6d1b9f3f884d32"},
{file = "levenshtein-0.26.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:f1add8f1d83099a98ae4ac472d896b7e36db48c39d3db25adf12b373823cdeff"},
{file = "levenshtein-0.26.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:1010814b1d7a60833a951f2756dfc5c10b61d09976ce96a0edae8fecdfb0ea7c"},
{file = "levenshtein-0.26.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:33fa329d1bb65ce85e83ceda281aea31cee9f2f6e167092cea54f922080bcc66"},
{file = "levenshtein-0.26.1-cp39-cp39-win32.whl", hash = "sha256:488a945312f2f16460ab61df5b4beb1ea2254c521668fd142ce6298006296c98"},
{file = "levenshtein-0.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:9f942104adfddd4b336c3997050121328c39479f69de702d7d144abb69ea7ab9"},
{file = "levenshtein-0.26.1-cp39-cp39-win_arm64.whl", hash = "sha256:c1d8f85b2672939f85086ed75effcf768f6077516a3e299c2ba1f91bc4644c22"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:6cf8f1efaf90ca585640c5d418c30b7d66d9ac215cee114593957161f63acde0"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d5b2953978b8c158dd5cd93af8216a5cfddbf9de66cf5481c2955f44bb20767a"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b952b3732c4631c49917d4b15d78cb4a2aa006c1d5c12e2a23ba8e18a307a055"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07227281e12071168e6ae59238918a56d2a0682e529f747b5431664f302c0b42"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8191241cd8934feaf4d05d0cc0e5e72877cbb17c53bbf8c92af9f1aedaa247e9"},
{file = "levenshtein-0.26.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9e70d7ee157a9b698c73014f6e2b160830e7d2d64d2e342fefc3079af3c356fc"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:0eb3059f826f6cb0a5bca4a85928070f01e8202e7ccafcba94453470f83e49d4"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:6c389e44da12d6fb1d7ba0a709a32a96c9391e9be4160ccb9269f37e040599ee"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e9de292f2c51a7d34a0ae23bec05391b8f61f35781cd3e4c6d0533e06250c55"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d87215113259efdca8716e53b6d59ab6d6009e119d95d45eccc083148855f33"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18f00a3eebf68a82fb651d8d0e810c10bfaa60c555d21dde3ff81350c74fb4c2"},
{file = "levenshtein-0.26.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b3554c1b59de63d05075577380340c185ff41b028e541c0888fddab3c259a2b4"},
{file = "levenshtein-0.26.1.tar.gz", hash = "sha256:0d19ba22330d50609b2349021ec3cf7d905c6fe21195a2d0d876a146e7ed2575"},
]
[package.dependencies]
rapidfuzz = ">=3.9.0,<4.0.0"
[[package]]
name = "libtmux"
version = "0.39.0"
@@ -6217,6 +6333,21 @@ files = [
[package.extras]
dev = ["backports.zoneinfo", "black", "build", "freezegun", "mdx_truly_sane_lists", "mike", "mkdocs", "mkdocs-awesome-pages-plugin", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-material (>=8.5)", "mkdocstrings[python]", "msgspec", "mypy", "orjson", "pylint", "pytest", "tzdata", "validate-pyproject[all]"]
[[package]]
name = "python-levenshtein"
version = "0.26.1"
description = "Python extension for computing string edit distances and similarities."
optional = false
python-versions = ">=3.9"
groups = ["testgeneval"]
files = [
{file = "python_Levenshtein-0.26.1-py3-none-any.whl", hash = "sha256:8ef5e529dd640fb00f05ee62d998d2ee862f19566b641ace775d5ae16167b2ef"},
{file = "python_levenshtein-0.26.1.tar.gz", hash = "sha256:24ba578e28058ebb4afa2700057e1678d7adf27e43cd1f17700c09a9009d5d3a"},
]
[package.dependencies]
Levenshtein = "0.26.1"
[[package]]
name = "python-multipart"
version = "0.0.20"
@@ -6555,6 +6686,113 @@ packaging = "*"
[package.extras]
test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"]
[[package]]
name = "rapidfuzz"
version = "3.12.2"
description = "rapid fuzzy string matching"
optional = false
python-versions = ">=3.9"
groups = ["testgeneval"]
files = [
{file = "rapidfuzz-3.12.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0b9a75e0385a861178adf59e86d6616cbd0d5adca7228dc9eeabf6f62cf5b0b1"},
{file = "rapidfuzz-3.12.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6906a7eb458731e3dd2495af1d0410e23a21a2a2b7ced535e6d5cd15cb69afc5"},
{file = "rapidfuzz-3.12.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4b3334a8958b689f292d5ce8a928140ac98919b51e084f04bf0c14276e4c6ba"},
{file = "rapidfuzz-3.12.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:85a54ce30345cff2c79cbcffa063f270ad1daedd0d0c3ff6e541d3c3ba4288cf"},
{file = "rapidfuzz-3.12.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:acb63c5072c08058f8995404201a52fc4e1ecac105548a4d03c6c6934bda45a3"},
{file = "rapidfuzz-3.12.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5385398d390c6571f0f2a7837e6ddde0c8b912dac096dc8c87208ce9aaaa7570"},
{file = "rapidfuzz-3.12.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5032cbffa245b4beba0067f8ed17392ef2501b346ae3c1f1d14b950edf4b6115"},
{file = "rapidfuzz-3.12.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:195adbb384d89d6c55e2fd71e7fb262010f3196e459aa2f3f45f31dd7185fe72"},
{file = "rapidfuzz-3.12.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f43b773a4d4950606fb25568ecde5f25280daf8f97b87eb323e16ecd8177b328"},
{file = "rapidfuzz-3.12.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:55a43be0e0fa956a919043c19d19bd988991d15c59f179d413fe5145ed9deb43"},
{file = "rapidfuzz-3.12.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:71cf1ea16acdebe9e2fb62ee7a77f8f70e877bebcbb33b34e660af2eb6d341d9"},
{file = "rapidfuzz-3.12.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a3692d4ab36d44685f61326dca539975a4eda49b2a76f0a3df177d8a2c0de9d2"},
{file = "rapidfuzz-3.12.2-cp310-cp310-win32.whl", hash = "sha256:09227bd402caa4397ba1d6e239deea635703b042dd266a4092548661fb22b9c6"},
{file = "rapidfuzz-3.12.2-cp310-cp310-win_amd64.whl", hash = "sha256:0f05b7b95f9f87254b53fa92048367a8232c26cee7fc8665e4337268c3919def"},
{file = "rapidfuzz-3.12.2-cp310-cp310-win_arm64.whl", hash = "sha256:6938738e00d9eb6e04097b3f565097e20b0c398f9c58959a2bc64f7f6be3d9da"},
{file = "rapidfuzz-3.12.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e9c4d984621ae17404c58f8d06ed8b025e167e52c0e6a511dfec83c37e9220cd"},
{file = "rapidfuzz-3.12.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9f9132c55d330f0a1d34ce6730a76805323a6250d97468a1ca766a883d6a9a25"},
{file = "rapidfuzz-3.12.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b343b6cb4b2c3dbc8d2d4c5ee915b6088e3b144ddf8305a57eaab16cf9fc74"},
{file = "rapidfuzz-3.12.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:24081077b571ec4ee6d5d7ea0e49bc6830bf05b50c1005028523b9cd356209f3"},
{file = "rapidfuzz-3.12.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c988a4fc91856260355773bf9d32bebab2083d4c6df33fafeddf4330e5ae9139"},
{file = "rapidfuzz-3.12.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:780b4469ee21cf62b1b2e8ada042941fd2525e45d5fb6a6901a9798a0e41153c"},
{file = "rapidfuzz-3.12.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:edd84b0a323885493c893bad16098c5e3b3005d7caa995ae653da07373665d97"},
{file = "rapidfuzz-3.12.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:efa22059c765b3d8778083805b199deaaf643db070f65426f87d274565ddf36a"},
{file = "rapidfuzz-3.12.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:095776b11bb45daf7c2973dd61cc472d7ea7f2eecfa454aef940b4675659b92f"},
{file = "rapidfuzz-3.12.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7e2574cf4aa86065600b664a1ac7b8b8499107d102ecde836aaaa403fc4f1784"},
{file = "rapidfuzz-3.12.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:d5a3425a6c50fd8fbd991d8f085ddb504791dae6ef9cc3ab299fea2cb5374bef"},
{file = "rapidfuzz-3.12.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:97fb05e1ddb7b71a054040af588b0634214ee87cea87900d309fafc16fd272a4"},
{file = "rapidfuzz-3.12.2-cp311-cp311-win32.whl", hash = "sha256:b4c5a0413589aef936892fbfa94b7ff6f7dd09edf19b5a7b83896cc9d4e8c184"},
{file = "rapidfuzz-3.12.2-cp311-cp311-win_amd64.whl", hash = "sha256:58d9ae5cf9246d102db2a2558b67fe7e73c533e5d769099747921232d88b9be2"},
{file = "rapidfuzz-3.12.2-cp311-cp311-win_arm64.whl", hash = "sha256:7635fe34246cd241c8e35eb83084e978b01b83d5ef7e5bf72a704c637f270017"},
{file = "rapidfuzz-3.12.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:1d982a651253ffe8434d9934ff0c1089111d60502228464721a2a4587435e159"},
{file = "rapidfuzz-3.12.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02e6466caa0222d5233b1f05640873671cd99549a5c5ba4c29151634a1e56080"},
{file = "rapidfuzz-3.12.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e956b3f053e474abae69ac693a52742109d860ac2375fe88e9387d3277f4c96c"},
{file = "rapidfuzz-3.12.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2dee7d740a2d5418d4f964f39ab8d89923e6b945850db833e798a1969b19542a"},
{file = "rapidfuzz-3.12.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a057cdb0401e42c84b6516c9b1635f7aedd5e430c6e388bd5f6bcd1d6a0686bb"},
{file = "rapidfuzz-3.12.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dccf8d4fb5b86d39c581a59463c596b1d09df976da26ff04ae219604223d502f"},
{file = "rapidfuzz-3.12.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21d5b3793c6f5aecca595cd24164bf9d3c559e315ec684f912146fc4e769e367"},
{file = "rapidfuzz-3.12.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:46a616c0e13cff2de1761b011e0b14bb73b110182f009223f1453d505c9a975c"},
{file = "rapidfuzz-3.12.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:19fa5bc4301a1ee55400d4a38a8ecf9522b0391fc31e6da5f4d68513fe5c0026"},
{file = "rapidfuzz-3.12.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:544a47190a0d25971658a9365dba7095397b4ce3e897f7dd0a77ca2cf6fa984e"},
{file = "rapidfuzz-3.12.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f21af27c5e001f0ba1b88c36a0936437dfe034c452548d998891c21125eb640f"},
{file = "rapidfuzz-3.12.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b63170d9db00629b5b3f2862114d8d6ee19127eaba0eee43762d62a25817dbe0"},
{file = "rapidfuzz-3.12.2-cp312-cp312-win32.whl", hash = "sha256:6c7152d77b2eb6bfac7baa11f2a9c45fd5a2d848dbb310acd0953b3b789d95c9"},
{file = "rapidfuzz-3.12.2-cp312-cp312-win_amd64.whl", hash = "sha256:1a314d170ee272ac87579f25a6cf8d16a031e1f7a7b07663434b41a1473bc501"},
{file = "rapidfuzz-3.12.2-cp312-cp312-win_arm64.whl", hash = "sha256:d41e8231326e94fd07c4d8f424f6bed08fead6f5e6688d1e6e787f1443ae7631"},
{file = "rapidfuzz-3.12.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:941f31038dba5d3dedcfcceba81d61570ad457c873a24ceb13f4f44fcb574260"},
{file = "rapidfuzz-3.12.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:fe2dfc454ee51ba168a67b1e92b72aad251e45a074972cef13340bbad2fd9438"},
{file = "rapidfuzz-3.12.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78fafaf7f5a48ee35ccd7928339080a0136e27cf97396de45259eca1d331b714"},
{file = "rapidfuzz-3.12.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0c7989ff32c077bb8fd53253fd6ca569d1bfebc80b17557e60750e6909ba4fe"},
{file = "rapidfuzz-3.12.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96fa00bc105caa34b6cd93dca14a29243a3a7f0c336e4dcd36348d38511e15ac"},
{file = "rapidfuzz-3.12.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bccfb30c668620c5bc3490f2dc7d7da1cca0ead5a9da8b755e2e02e2ef0dff14"},
{file = "rapidfuzz-3.12.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f9b0adc3d894beb51f5022f64717b6114a6fabaca83d77e93ac7675911c8cc5"},
{file = "rapidfuzz-3.12.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:32691aa59577f42864d5535cb6225d0f47e2c7bff59cf4556e5171e96af68cc1"},
{file = "rapidfuzz-3.12.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:758b10380ad34c1f51753a070d7bb278001b5e6fcf544121c6df93170952d705"},
{file = "rapidfuzz-3.12.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:50a9c54c0147b468363119132d514c5024fbad1ed8af12bd8bd411b0119f9208"},
{file = "rapidfuzz-3.12.2-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e3ceb87c11d2d0fbe8559bb795b0c0604b84cfc8bb7b8720b5c16e9e31e00f41"},
{file = "rapidfuzz-3.12.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f7c9a003002434889255ff5676ca0f8934a478065ab5e702f75dc42639505bba"},
{file = "rapidfuzz-3.12.2-cp313-cp313-win32.whl", hash = "sha256:cf165a76870cd875567941cf861dfd361a0a6e6a56b936c5d30042ddc9def090"},
{file = "rapidfuzz-3.12.2-cp313-cp313-win_amd64.whl", hash = "sha256:55bcc003541f5f16ec0a73bf6de758161973f9e8d75161954380738dd147f9f2"},
{file = "rapidfuzz-3.12.2-cp313-cp313-win_arm64.whl", hash = "sha256:69f6ecdf1452139f2b947d0c169a605de578efdb72cbb2373cb0a94edca1fd34"},
{file = "rapidfuzz-3.12.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4c852cd8bed1516a64fd6e2d4c6f270d4356196ee03fda2af1e5a9e13c34643"},
{file = "rapidfuzz-3.12.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:42e7f747b55529a6d0d1588695d71025e884ab48664dca54b840413dea4588d8"},
{file = "rapidfuzz-3.12.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a749fd2690f24ef256b264a781487746bbb95344364fe8fe356f0eef7ef206ba"},
{file = "rapidfuzz-3.12.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a11e1d036170bbafa43a9e63d8c309273564ec5bdfc5439062f439d1a16965a"},
{file = "rapidfuzz-3.12.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dfb337f1832c1231e3d5621bd0ebebb854e46036aedae3e6a49c1fc08f16f249"},
{file = "rapidfuzz-3.12.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e88c6e68fca301722fa3ab7fd3ca46998012c14ada577bc1e2c2fc04f2067ca6"},
{file = "rapidfuzz-3.12.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17e1a3a8b4b5125cfb63a6990459b25b87ea769bdaf90d05bb143f8febef076a"},
{file = "rapidfuzz-3.12.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:b9f8177b24ccc0a843e85932b1088c5e467a7dd7a181c13f84c684b796bea815"},
{file = "rapidfuzz-3.12.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6c506bdc2f304051592c0d3b0e82eed309248ec10cdf802f13220251358375ea"},
{file = "rapidfuzz-3.12.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:30bf15c1ecec2798b713d551df17f23401a3e3653ad9ed4e83ad1c2b06e86100"},
{file = "rapidfuzz-3.12.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:bd9a67cfc83e8453ef17ddd1c2c4ce4a74d448a197764efb54c29f29fb41f611"},
{file = "rapidfuzz-3.12.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7a6eaec2ef658dd650c6eb9b36dff7a361ebd7d8bea990ce9d639b911673b2cb"},
{file = "rapidfuzz-3.12.2-cp39-cp39-win32.whl", hash = "sha256:d7701769f110332cde45c41759cb2a497de8d2dca55e4c519a46aed5fbb19d1a"},
{file = "rapidfuzz-3.12.2-cp39-cp39-win_amd64.whl", hash = "sha256:296bf0fd4f678488670e262c87a3e4f91900b942d73ae38caa42a417e53643b1"},
{file = "rapidfuzz-3.12.2-cp39-cp39-win_arm64.whl", hash = "sha256:7957f5d768de14f6b2715303ccdf224b78416738ee95a028a2965c95f73afbfb"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5fd3ce849b27d063755829cda27a9dab6dbd63be3801f2a40c60ec563a4c90f"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:54e53662d71ed660c83c5109127c8e30b9e607884b7c45d2aff7929bbbd00589"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b9e43cf2213e524f3309d329f1ad8dbf658db004ed44f6ae1cd2919aa997da5"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:29ca445e320e5a8df3bd1d75b4fa4ecfa7c681942b9ac65b55168070a1a1960e"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83eb7ef732c2f8533c6b5fbe69858a722c218acc3e1fc190ab6924a8af7e7e0e"},
{file = "rapidfuzz-3.12.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:648adc2dd2cf873efc23befcc6e75754e204a409dfa77efd0fea30d08f22ef9d"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:9b1e6f48e1ffa0749261ee23a1c6462bdd0be5eac83093f4711de17a42ae78ad"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:1ae9ded463f2ca4ba1eb762913c5f14c23d2e120739a62b7f4cc102eab32dc90"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dda45f47b559be72ecbce45c7f71dc7c97b9772630ab0f3286d97d2c3025ab71"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3745c6443890265513a3c8777f2de4cb897aeb906a406f97741019be8ad5bcc"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36d3ef4f047ed1bc96fa29289f9e67a637ddca5e4f4d3dc7cb7f50eb33ec1664"},
{file = "rapidfuzz-3.12.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:54bb69ebe5ca0bd7527357e348f16a4c0c52fe0c2fcc8a041010467dcb8385f7"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3f2ddd5b99b254039a8c82be5749d4d75943f62eb2c2918acf6ffd586852834f"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:8117dab9b26a1aaffab59b4e30f80ac4d55e61ad4139a637c149365960933bee"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40c0f16d62d6553527de3dab2fb69709c4383430ea44bce8fb4711ed4cbc6ae3"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f177e1eb6e4f5261a89c475e21bce7a99064a8f217d2336fb897408f46f0ceaf"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5df0cecc2852fcb078ed1b4482fac4fc2c2e7787f3edda8920d9a4c0f51b1c95"},
{file = "rapidfuzz-3.12.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b3c4df0321df6f8f0b61afbaa2ced9622750ee1e619128db57a18533d139820"},
{file = "rapidfuzz-3.12.2.tar.gz", hash = "sha256:b0ba1ccc22fff782e7152a3d3d0caca44ec4e32dc48ba01c560b8593965b5aa3"},
]
[package.extras]
all = ["numpy"]
[[package]]
name = "redis"
version = "5.2.1"
@@ -6817,6 +7055,21 @@ pygments = ">=2.13.0,<3.0.0"
[package.extras]
jupyter = ["ipywidgets (>=7.5.1,<9)"]
[[package]]
name = "rouge"
version = "1.0.1"
description = "Full Python ROUGE Score Implementation (not a wrapper)"
optional = false
python-versions = "*"
groups = ["testgeneval"]
files = [
{file = "rouge-1.0.1-py3-none-any.whl", hash = "sha256:28d118536e8c774dc47d1d15ec266479b4dd0914c4672ce117d4002789bdc644"},
{file = "rouge-1.0.1.tar.gz", hash = "sha256:12b48346ca47d6bcf3c45061f315452b9ccec0620ee895ec85b7efc3d54aae34"},
]
[package.dependencies]
six = "*"
[[package]]
name = "rpds-py"
version = "0.22.3"
@@ -7354,7 +7607,7 @@ version = "1.17.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
groups = ["main", "evaluation", "runtime", "test"]
groups = ["main", "evaluation", "runtime", "test", "testgeneval"]
files = [
{file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"},
{file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"},
@@ -8112,7 +8365,7 @@ version = "0.23.6"
description = "Python grammar for tree-sitter"
optional = false
python-versions = ">=3.9"
groups = ["main"]
groups = ["main", "testgeneval"]
files = [
{file = "tree_sitter_python-0.23.6-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:28fbec8f74eeb2b30292d97715e60fac9ccf8a8091ce19b9d93e9b580ed280fb"},
{file = "tree_sitter_python-0.23.6-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:680b710051b144fedf61c95197db0094f2245e82551bf7f0c501356333571f7a"},
@@ -9056,4 +9309,4 @@ testing = ["coverage[toml]", "zope.event", "zope.testing"]
[metadata]
lock-version = "2.1"
python-versions = "^3.12"
content-hash = "9b74f62a4afa719a1f7167e0b3b45cdaf282c2e18fd2931da91c0f1b22776178"
content-hash = "31c10902e2e52ca3ef7e3b0c7239f1ffa65f68a51fabaaa6b175124318a51d7b"

View File

@@ -154,3 +154,9 @@ style = "semver"
[tool.poetry.scripts]
openhands = "openhands.core.cli:main"
[tool.poetry.group.testgeneval.dependencies]
fuzzywuzzy = "^0.18.0"
rouge = "^1.0.1"
python-levenshtein = "^0.26.1"
tree-sitter-python = "^0.23.6"