Files
OpenHands/docs/modules/usage/agents.md
Graham Neubig 3a21198424 Remove monologue agent (#3036)
* Remove monologue agent

* Fixes
2024-07-19 19:25:05 +00:00

94 lines
4.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
sidebar_position: 3
---
# 🧠 Agents and Capabilities
## CodeAct Agent
### Description
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents **act**ions into a unified **code** action space for both _simplicity_ and _performance_ (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/OpenDevin/OpenDevin/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
### Plugin System
To make the CodeAct agent more powerful with only access to `bash` action space, CodeAct agent leverages OpenDevin's plugin system:
- [Jupyter plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/jupyter): for IPython execution via bash command
- [SWE-agent tool plugin](https://github.com/OpenDevin/OpenDevin/tree/main/opendevin/runtime/plugins/swe_agent_commands): Powerful bash command line tools for software development tasks introduced by [swe-agent](https://github.com/princeton-nlp/swe-agent).
### Demo
https://github.com/OpenDevin/OpenDevin/assets/38853559/f592a192-e86c-4f48-ad31-d69282d5f6ac
_Example of CodeActAgent with `gpt-4-turbo-2024-04-09` performing a data science task (linear regression)_
### Actions
`Action`,
`CmdRunAction`,
`IPythonRunCellAction`,
`AgentEchoAction`,
`AgentFinishAction`,
`AgentTalkAction`
### Observations
`CmdOutputObservation`,
`IPythonRunCellObservation`,
`AgentMessageObservation`,
`UserMessageObservation`
### Methods
| Method | Description |
| --------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- |
| `__init__` | Initializes an agent with `llm` and a list of messages `list[Mapping[str, str]]` |
| `step` | Performs one step using the CodeAct Agent. This includes gathering info on previous steps and prompting the model to make a command to execute. |
## Planner Agent
### Description
The planner agent utilizes a special prompting strategy to create long term plans for solving problems.
The agent is given its previous action-observation pairs, current task, and hint based on last action taken at every step.
### Actions
`NullAction`,
`CmdRunAction`,
`BrowseURLAction`,
`GithubPushAction`,
`FileReadAction`,
`FileWriteAction`,
`AgentThinkAction`,
`AgentFinishAction`,
`AgentSummarizeAction`,
`AddTaskAction`,
`ModifyTaskAction`,
### Observations
`Observation`,
`NullObservation`,
`CmdOutputObservation`,
`FileReadObservation`,
`BrowserOutputObservation`
### Methods
| Method | Description |
| --------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `__init__` | Initializes an agent with `llm` |
| `step` | Checks to see if current step is completed, returns `AgentFinishAction` if True. Otherwise, creates a plan prompt and sends to model for inference, adding the result as the next action. |