mirror of
https://github.com/jonkraft/PhaserRadarLabs.git
synced 2026-01-09 04:27:55 -05:00
Add files via upload
This commit is contained in:
@@ -79,8 +79,8 @@ except:
|
||||
sample_rate = 0.6e6
|
||||
center_freq = 2.1e9
|
||||
signal_freq = 100e3
|
||||
num_slices = 20 # this sets how much time will be displayed on the waterfall plot
|
||||
fft_size = 1024 * 4
|
||||
num_slices = 50 # this sets how much time will be displayed on the waterfall plot
|
||||
fft_size = 1024 * 8
|
||||
plot_freq = 100e3 # x-axis freq range to plot
|
||||
img_array = np.ones((num_slices, fft_size))*(-100)
|
||||
|
||||
@@ -170,7 +170,7 @@ default_chirp_bw = 500e6
|
||||
N_frame = fft_size
|
||||
freq = np.linspace(-fs / 2, fs / 2, int(N_frame))
|
||||
slope = BW / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (4 * slope)
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
|
||||
plot_threshold = False
|
||||
cfar_toggle = False
|
||||
@@ -443,7 +443,7 @@ class Window(QMainWindow):
|
||||
global dist, slope, signal_freq, plot_freq
|
||||
bw = self.bw_slider.value() * 1e6
|
||||
slope = bw / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (4 * slope)
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
my_phaser.freq_dev_range = int(bw / 4) # frequency deviation range in Hz
|
||||
my_phaser.enable = 0
|
||||
|
||||
|
||||
@@ -78,7 +78,7 @@ except:
|
||||
sample_rate = 0.6e6
|
||||
center_freq = 2.1e9
|
||||
signal_freq = 100e3
|
||||
num_slices = 400 # this sets how much time will be displayed on the waterfall plot
|
||||
num_slices = 600 # this sets how much time will be displayed on the waterfall plot
|
||||
fft_size = 1024 * 4
|
||||
plot_freq = 100e3 # x-axis freq range to plot
|
||||
img_array = np.ones((num_slices, fft_size))*(-100)
|
||||
@@ -169,7 +169,7 @@ default_chirp_bw = 500e6
|
||||
N_frame = fft_size
|
||||
freq = np.linspace(-fs / 2, fs / 2, int(N_frame))
|
||||
slope = BW / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (4 * slope)
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
|
||||
plot_dist = False
|
||||
|
||||
@@ -203,7 +203,7 @@ class Window(QMainWindow):
|
||||
layout.addWidget(control_label, 0, 0, 1, 2)
|
||||
|
||||
# Check boxes
|
||||
self.x_axis_check = QCheckBox("Toggle Range/Frequency x-axis")
|
||||
self.x_axis_check = QCheckBox("Convert to Distance")
|
||||
font = self.x_axis_check.font()
|
||||
font.setPointSize(10)
|
||||
self.x_axis_check.setFont(font)
|
||||
@@ -250,7 +250,7 @@ class Window(QMainWindow):
|
||||
self.low_slider = QSlider(Qt.Horizontal)
|
||||
self.low_slider.setMinimum(-100)
|
||||
self.low_slider.setMaximum(0)
|
||||
self.low_slider.setValue(-40)
|
||||
self.low_slider.setValue(-45)
|
||||
self.low_slider.setTickInterval(20)
|
||||
self.low_slider.setMaximumWidth(200)
|
||||
self.low_slider.setTickPosition(QSlider.TicksBelow)
|
||||
@@ -260,7 +260,7 @@ class Window(QMainWindow):
|
||||
self.high_slider = QSlider(Qt.Horizontal)
|
||||
self.high_slider.setMinimum(-100)
|
||||
self.high_slider.setMaximum(0)
|
||||
self.high_slider.setValue(-5)
|
||||
self.high_slider.setValue(-25)
|
||||
self.high_slider.setTickInterval(20)
|
||||
self.high_slider.setMaximumWidth(200)
|
||||
self.high_slider.setTickPosition(QSlider.TicksBelow)
|
||||
@@ -394,10 +394,10 @@ class Window(QMainWindow):
|
||||
global dist, slope, signal_freq, plot_freq
|
||||
bw = self.bw_slider.value() * 1e6
|
||||
slope = bw / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (4 * slope)
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
if self.x_axis_check.isChecked() == True:
|
||||
plot_dist = True
|
||||
range_x = (plot_freq) * c / (4 * slope)
|
||||
range_x = (plot_freq) * c / (2 * slope)
|
||||
self.fft_plot.setXRange(0, range_x)
|
||||
else:
|
||||
plot_dist = False
|
||||
@@ -424,7 +424,7 @@ class Window(QMainWindow):
|
||||
plot_state = win.fft_plot.getViewBox().state
|
||||
if state == QtCore.Qt.Checked:
|
||||
plot_dist = True
|
||||
range_x = (plot_freq) * c / (4 * slope)
|
||||
range_x = (plot_freq) * c / (2 * slope)
|
||||
self.fft_plot.setXRange(0, range_x)
|
||||
else:
|
||||
plot_dist = False
|
||||
|
||||
493
FMCW_Velocity_RADAR_Waterfall.py
Normal file
493
FMCW_Velocity_RADAR_Waterfall.py
Normal file
@@ -0,0 +1,493 @@
|
||||
#!/usr/bin/env python3
|
||||
# Must use Python 3
|
||||
# Copyright (C) 2022 Analog Devices, Inc.
|
||||
#
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without modification,
|
||||
# are permitted provided that the following conditions are met:
|
||||
# - Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# - Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
# - Neither the name of Analog Devices, Inc. nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
# - The use of this software may or may not infringe the patent rights
|
||||
# of one or more patent holders. This license does not release you
|
||||
# from the requirement that you obtain separate licenses from these
|
||||
# patent holders to use this software.
|
||||
# - Use of the software either in source or binary form, must be run
|
||||
# on or directly connected to an Analog Devices Inc. component.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
||||
# INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
||||
# PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
#
|
||||
# IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
|
||||
# RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||||
# THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
'''FMCW Radar Demo with Phaser (CN0566)
|
||||
Jon Kraft, Jan 20 2024'''
|
||||
|
||||
# Imports
|
||||
import adi
|
||||
|
||||
import sys
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pyqtgraph as pg
|
||||
from PyQt5.QtCore import Qt
|
||||
from PyQt5.QtWidgets import *
|
||||
from pyqtgraph.Qt import QtCore, QtGui
|
||||
|
||||
# Instantiate all the Devices
|
||||
rpi_ip = "ip:phaser.local" # IP address of the Raspberry Pi
|
||||
sdr_ip = "ip:192.168.2.1" # "192.168.2.1, or pluto.local" # IP address of the Transceiver Block
|
||||
my_sdr = adi.ad9361(uri=sdr_ip)
|
||||
my_phaser = adi.CN0566(uri=rpi_ip, sdr=my_sdr)
|
||||
|
||||
# Initialize both ADAR1000s, set gains to max, and all phases to 0
|
||||
my_phaser.configure(device_mode="rx")
|
||||
my_phaser.load_gain_cal()
|
||||
my_phaser.load_phase_cal()
|
||||
for i in range(0, 8):
|
||||
my_phaser.set_chan_phase(i, 0)
|
||||
|
||||
gain_list = [8, 34, 84, 127, 127, 84, 34, 8] # Blackman taper
|
||||
for i in range(0, len(gain_list)):
|
||||
my_phaser.set_chan_gain(i, gain_list[i], apply_cal=True)
|
||||
|
||||
# Setup Raspberry Pi GPIO states
|
||||
try:
|
||||
my_phaser._gpios.gpio_tx_sw = 0 # 0 = TX_OUT_2, 1 = TX_OUT_1
|
||||
my_phaser._gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=disable PLL and VCO, and set switch to use external LO input)
|
||||
my_phaser._gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path, and send LO to LO_OUT)
|
||||
except:
|
||||
my_phaser.gpios.gpio_tx_sw = 0 # 0 = TX_OUT_2, 1 = TX_OUT_1
|
||||
my_phaser.gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=disable PLL and VCO, and set switch to use external LO input)
|
||||
my_phaser.gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path, and send LO to LO_OUT)
|
||||
|
||||
sample_rate = 0.6e6
|
||||
center_freq = 2.1e9
|
||||
signal_freq = 100e3
|
||||
num_slices = 400 # this sets how much time will be displayed on the waterfall plot
|
||||
fft_size = 1024 * 4
|
||||
plot_freq = 100e3 # x-axis freq range to plot
|
||||
img_array = np.ones((num_slices, fft_size))*(-100)
|
||||
|
||||
# Configure SDR Rx
|
||||
my_sdr.sample_rate = int(sample_rate)
|
||||
my_sdr.rx_lo = int(center_freq) # set this to output_freq - (the freq of the HB100)
|
||||
my_sdr.rx_enabled_channels = [0, 1] # enable Rx1 (voltage0) and Rx2 (voltage1)
|
||||
my_sdr.rx_buffer_size = int(fft_size)
|
||||
my_sdr.gain_control_mode_chan0 = "manual" # manual or slow_attack
|
||||
my_sdr.gain_control_mode_chan1 = "manual" # manual or slow_attack
|
||||
my_sdr.rx_hardwaregain_chan0 = int(30) # must be between -3 and 70
|
||||
my_sdr.rx_hardwaregain_chan1 = int(30) # must be between -3 and 70
|
||||
# Configure SDR Tx
|
||||
my_sdr.tx_lo = int(center_freq)
|
||||
my_sdr.tx_enabled_channels = [0, 1]
|
||||
my_sdr.tx_cyclic_buffer = True # must set cyclic buffer to true for the tdd burst mode. Otherwise Tx will turn on and off randomly
|
||||
my_sdr.tx_hardwaregain_chan0 = -88 # must be between 0 and -88
|
||||
my_sdr.tx_hardwaregain_chan1 = -0 # must be between 0 and -88
|
||||
|
||||
# Configure the ADF4159 Rampling PLL
|
||||
output_freq = 12.145e9
|
||||
BW = 500e6
|
||||
num_steps = 500
|
||||
ramp_time = 0.5e3 # us
|
||||
my_phaser.frequency = int(output_freq / 4) # Output frequency divided by 4
|
||||
my_phaser.freq_dev_range = int(
|
||||
BW / 4
|
||||
) # frequency deviation range in Hz. This is the total freq deviation of the complete freq ramp
|
||||
my_phaser.freq_dev_step = int(
|
||||
(BW/4) / num_steps
|
||||
) # frequency deviation step in Hz. This is fDEV, in Hz. Can be positive or negative
|
||||
my_phaser.freq_dev_time = int(
|
||||
ramp_time
|
||||
) # total time (in us) of the complete frequency ramp
|
||||
print("requested freq dev time = ", ramp_time)
|
||||
ramp_time = my_phaser.freq_dev_time
|
||||
ramp_time_s = ramp_time / 1e6
|
||||
print("actual freq dev time = ", ramp_time)
|
||||
my_phaser.delay_word = 4095 # 12 bit delay word. 4095*PFD = 40.95 us. For sawtooth ramps, this is also the length of the Ramp_complete signal
|
||||
my_phaser.delay_clk = "PFD" # can be 'PFD' or 'PFD*CLK1'
|
||||
my_phaser.delay_start_en = 0 # delay start
|
||||
my_phaser.ramp_delay_en = 0 # delay between ramps.
|
||||
my_phaser.trig_delay_en = 0 # triangle delay
|
||||
my_phaser.ramp_mode = "continuous_triangular" # ramp_mode can be: "disabled", "continuous_sawtooth", "continuous_triangular", "single_sawtooth_burst", "single_ramp_burst"
|
||||
my_phaser.sing_ful_tri = (
|
||||
0 # full triangle enable/disable -- this is used with the single_ramp_burst mode
|
||||
)
|
||||
my_phaser.tx_trig_en = 0 # start a ramp with TXdata
|
||||
my_phaser.enable = 0 # 0 = PLL enable. Write this last to update all the registers
|
||||
|
||||
# Print config
|
||||
print(
|
||||
"""
|
||||
CONFIG:
|
||||
Sample rate: {sample_rate}MHz
|
||||
Num samples: 2^{Nlog2}
|
||||
Bandwidth: {BW}MHz
|
||||
Ramp time: {ramp_time}ms
|
||||
Output frequency: {output_freq}MHz
|
||||
IF: {signal_freq}kHz
|
||||
""".format(
|
||||
sample_rate=sample_rate / 1e6,
|
||||
Nlog2=int(np.log2(fft_size)),
|
||||
BW=BW / 1e6,
|
||||
ramp_time=ramp_time / 1e3,
|
||||
output_freq=output_freq / 1e6,
|
||||
signal_freq=signal_freq / 1e3,
|
||||
)
|
||||
)
|
||||
|
||||
# Create a sinewave waveform
|
||||
fs = int(my_sdr.sample_rate)
|
||||
N = int(my_sdr.rx_buffer_size)
|
||||
fc = int(signal_freq / (fs / N)) * (fs / N)
|
||||
ts = 1 / float(fs)
|
||||
t = np.arange(0, N * ts, ts)
|
||||
i = np.cos(2 * np.pi * t * fc) * 2 ** 14
|
||||
q = np.sin(2 * np.pi * t * fc) * 2 ** 14
|
||||
iq = 1 * (i + 1j * q)
|
||||
|
||||
# Send data
|
||||
my_sdr._ctx.set_timeout(0)
|
||||
my_sdr.tx([iq * 0.5, iq]) # only send data to the 2nd channel (that's all we need)
|
||||
|
||||
c = 3e8
|
||||
default_chirp_bw = 500e6
|
||||
N_frame = fft_size
|
||||
freq = np.linspace(-fs / 2, fs / 2, int(N_frame))
|
||||
slope = BW / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
|
||||
plot_dist = False
|
||||
|
||||
|
||||
class Window(QMainWindow):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.setWindowTitle("Interactive FFT")
|
||||
self.setGeometry(0, 0, 400, 400) # (x,y, width, height)
|
||||
#self.setFixedWidth(600)
|
||||
self.setWindowState(QtCore.Qt.WindowMaximized)
|
||||
self.num_rows = 12
|
||||
self.setWindowFlag(QtCore.Qt.WindowCloseButtonHint, False) #remove the window's close button
|
||||
self.UiComponents()
|
||||
self.show()
|
||||
|
||||
# method for components
|
||||
def UiComponents(self):
|
||||
widget = QWidget()
|
||||
|
||||
global layout, signal_freq
|
||||
layout = QGridLayout()
|
||||
|
||||
# Control Panel
|
||||
control_label = QLabel("PHASER Simple FMCW Radar")
|
||||
font = control_label.font()
|
||||
font.setPointSize(24)
|
||||
control_label.setFont(font)
|
||||
font.setPointSize(12)
|
||||
control_label.setAlignment(Qt.AlignHCenter) # | Qt.AlignVCenter)
|
||||
layout.addWidget(control_label, 0, 0, 1, 2)
|
||||
|
||||
# Check boxes
|
||||
self.x_axis_check = QCheckBox("Toggle Range/Frequency x-axis")
|
||||
font = self.x_axis_check.font()
|
||||
font.setPointSize(10)
|
||||
self.x_axis_check.setFont(font)
|
||||
|
||||
self.x_axis_check.stateChanged.connect(self.change_x_axis)
|
||||
layout.addWidget(self.x_axis_check, 2, 0)
|
||||
|
||||
# Range resolution
|
||||
# Changes with the Chirp BW slider
|
||||
self.range_res_label = QLabel(
|
||||
"B: %0.2f MHz - R<sub>res</sub>: %0.2f m"
|
||||
% (default_chirp_bw / 1e6, c / (2 * default_chirp_bw))
|
||||
)
|
||||
font = self.range_res_label.font()
|
||||
font.setPointSize(10)
|
||||
self.range_res_label.setFont(font)
|
||||
self.range_res_label.setAlignment(Qt.AlignLeft)
|
||||
self.range_res_label.setMaximumWidth(200)
|
||||
self.range_res_label.setMinimumWidth(100)
|
||||
layout.addWidget(self.range_res_label, 4, 1)
|
||||
|
||||
# Chirp bandwidth slider
|
||||
self.bw_slider = QSlider(Qt.Horizontal)
|
||||
self.bw_slider.setMinimum(100)
|
||||
self.bw_slider.setMaximum(500)
|
||||
self.bw_slider.setValue(int(default_chirp_bw / 1e6))
|
||||
self.bw_slider.setTickInterval(50)
|
||||
self.bw_slider.setMaximumWidth(200)
|
||||
self.bw_slider.setTickPosition(QSlider.TicksBelow)
|
||||
self.bw_slider.valueChanged.connect(self.get_range_res)
|
||||
layout.addWidget(self.bw_slider, 4, 0)
|
||||
|
||||
self.set_bw = QPushButton("Set Chirp Bandwidth")
|
||||
self.set_bw.setMaximumWidth(200)
|
||||
self.set_bw.pressed.connect(self.set_range_res)
|
||||
layout.addWidget(self.set_bw, 5, 0, 1, 1)
|
||||
|
||||
self.quit_button = QPushButton("Quit")
|
||||
self.quit_button.pressed.connect(self.end_program)
|
||||
layout.addWidget(self.quit_button, 30, 0, 4, 4)
|
||||
|
||||
|
||||
# waterfall level slider
|
||||
self.low_slider = QSlider(Qt.Horizontal)
|
||||
self.low_slider.setMinimum(-1000)
|
||||
self.low_slider.setMaximum(1000)
|
||||
self.low_slider.setValue(-500)
|
||||
self.low_slider.setTickInterval(50)
|
||||
self.low_slider.setMaximumWidth(200)
|
||||
self.low_slider.setTickPosition(QSlider.TicksBelow)
|
||||
self.low_slider.valueChanged.connect(self.get_water_levels)
|
||||
layout.addWidget(self.low_slider, 8, 0)
|
||||
|
||||
self.high_slider = QSlider(Qt.Horizontal)
|
||||
self.high_slider.setMinimum(-1000)
|
||||
self.high_slider.setMaximum(1000)
|
||||
self.high_slider.setValue(500)
|
||||
self.high_slider.setTickInterval(50)
|
||||
self.high_slider.setMaximumWidth(200)
|
||||
self.high_slider.setTickPosition(QSlider.TicksBelow)
|
||||
self.high_slider.valueChanged.connect(self.get_water_levels)
|
||||
layout.addWidget(self.high_slider, 10, 0)
|
||||
|
||||
self.water_label = QLabel("Waterfall Intensity Levels")
|
||||
self.water_label.setFont(font)
|
||||
self.water_label.setAlignment(Qt.AlignCenter)
|
||||
self.water_label.setMinimumWidth(100)
|
||||
self.water_label.setMaximumWidth(200)
|
||||
layout.addWidget(self.water_label, 7, 0,1,1)
|
||||
self.low_label = QLabel("LOW LEVEL: %0.0f" % (self.low_slider.value()))
|
||||
self.low_label.setFont(font)
|
||||
self.low_label.setAlignment(Qt.AlignLeft)
|
||||
self.low_label.setMinimumWidth(100)
|
||||
self.low_label.setMaximumWidth(200)
|
||||
layout.addWidget(self.low_label, 8, 1)
|
||||
self.high_label = QLabel("HIGH LEVEL: %0.0f" % (self.high_slider.value()))
|
||||
self.high_label.setFont(font)
|
||||
self.high_label.setAlignment(Qt.AlignLeft)
|
||||
self.high_label.setMinimumWidth(100)
|
||||
self.high_label.setMaximumWidth(200)
|
||||
layout.addWidget(self.high_label, 10, 1)
|
||||
|
||||
self.steer_slider = QSlider(Qt.Horizontal)
|
||||
self.steer_slider.setMinimum(-80)
|
||||
self.steer_slider.setMaximum(80)
|
||||
self.steer_slider.setValue(0)
|
||||
self.steer_slider.setTickInterval(20)
|
||||
self.steer_slider.setMaximumWidth(200)
|
||||
self.steer_slider.setTickPosition(QSlider.TicksBelow)
|
||||
self.steer_slider.valueChanged.connect(self.get_steer_angle)
|
||||
layout.addWidget(self.steer_slider, 14, 0)
|
||||
self.steer_title = QLabel("Receive Steering Angle")
|
||||
self.steer_title.setFont(font)
|
||||
self.steer_title.setAlignment(Qt.AlignCenter)
|
||||
self.steer_title.setMinimumWidth(100)
|
||||
self.steer_title.setMaximumWidth(200)
|
||||
layout.addWidget(self.steer_title, 13, 0)
|
||||
self.steer_label = QLabel("%0.0f DEG" % (self.steer_slider.value()))
|
||||
self.steer_label.setFont(font)
|
||||
self.steer_label.setAlignment(Qt.AlignLeft)
|
||||
self.steer_label.setMinimumWidth(100)
|
||||
self.steer_label.setMaximumWidth(200)
|
||||
layout.addWidget(self.steer_label, 14, 1,1,2)
|
||||
|
||||
# FFT plot
|
||||
self.fft_plot = pg.plot()
|
||||
self.fft_plot.setMinimumWidth(600)
|
||||
self.fft_curve = self.fft_plot.plot(freq, pen={'color':'y', 'width':2})
|
||||
title_style = {"size": "20pt"}
|
||||
label_style = {"color": "#FFF", "font-size": "14pt"}
|
||||
self.fft_plot.setLabel("bottom", text="Frequency", units="Hz", **label_style)
|
||||
self.fft_plot.setLabel("left", text="Magnitude", units="dB", **label_style)
|
||||
self.fft_plot.setTitle("Received Signal - Frequency Spectrum", **title_style)
|
||||
layout.addWidget(self.fft_plot, 0, 2, self.num_rows, 1)
|
||||
self.fft_plot.setYRange(-60, 0)
|
||||
self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
|
||||
|
||||
# Waterfall plot
|
||||
self.waterfall = pg.PlotWidget()
|
||||
self.imageitem = pg.ImageItem()
|
||||
self.waterfall.addItem(self.imageitem)
|
||||
# Use a viridis colormap
|
||||
pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
|
||||
color = np.array([[68, 1, 84,255], [59, 82, 139,255], [33, 145, 140,255], [94, 201, 98,255], [253, 231, 37,255]], dtype=np.ubyte)
|
||||
lut = pg.ColorMap(pos, color).getLookupTable(0.0, 1.0, 256)
|
||||
self.imageitem.setLookupTable(lut)
|
||||
self.imageitem.setLevels([0,1])
|
||||
# self.imageitem.scale(0.35, sample_rate / (N)) # this is deprecated -- we have to use setTransform instead
|
||||
tr = QtGui.QTransform()
|
||||
tr.translate(0,-sample_rate/2)
|
||||
tr.scale(0.35, sample_rate / (N))
|
||||
self.imageitem.setTransform(tr)
|
||||
zoom_freq = 35e3
|
||||
self.waterfall.setRange(yRange=(signal_freq, signal_freq + zoom_freq))
|
||||
self.waterfall.setTitle("Waterfall Spectrum", **title_style)
|
||||
self.waterfall.setLabel("left", "Frequency", units="Hz", **label_style)
|
||||
self.waterfall.setLabel("bottom", "Time", units="sec", **label_style)
|
||||
layout.addWidget(self.waterfall, 0 + self.num_rows + 1, 2, self.num_rows, 1)
|
||||
self.img_array = np.ones((num_slices, fft_size))*(-100)
|
||||
|
||||
widget.setLayout(layout)
|
||||
# setting this widget as central widget of the main window
|
||||
self.setCentralWidget(widget)
|
||||
|
||||
def get_range_res(self):
|
||||
""" Updates the slider bar label with RF bandwidth and range resolution
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
bw = self.bw_slider.value() * 1e6
|
||||
range_res = c / (2 * bw)
|
||||
self.range_res_label.setText(
|
||||
"B: %0.2f MHz - R<sub>res</sub>: %0.2f m"
|
||||
% (bw / 1e6, c / (2 * bw))
|
||||
)
|
||||
|
||||
def get_water_levels(self):
|
||||
""" Updates the waterfall intensity levels
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if self.low_slider.value() > self.high_slider.value():
|
||||
self.low_slider.setValue(self.high_slider.value())
|
||||
self.low_label.setText("LOW LEVEL: %0.0f" % (self.low_slider.value()))
|
||||
self.high_label.setText("HIGH LEVEL: %0.0f" % (self.high_slider.value()))
|
||||
|
||||
def get_steer_angle(self):
|
||||
""" Updates the steering angle readout
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.steer_label.setText("%0.0f DEG" % (self.steer_slider.value()))
|
||||
phase_delta = (
|
||||
2
|
||||
* 3.14159
|
||||
* 10.25e9
|
||||
* 0.014
|
||||
* np.sin(np.radians(self.steer_slider.value()))
|
||||
/ (3e8)
|
||||
)
|
||||
my_phaser.set_beam_phase_diff(np.degrees(phase_delta))
|
||||
|
||||
def set_range_res(self):
|
||||
""" Sets the Chirp bandwidth
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
global dist, slope, signal_freq, plot_freq
|
||||
bw = self.bw_slider.value() * 1e6
|
||||
slope = bw / ramp_time_s
|
||||
dist = (freq - signal_freq) * c / (2 * slope)
|
||||
if self.x_axis_check.isChecked() == True:
|
||||
plot_dist = True
|
||||
range_x = (plot_freq) * c / (2 * slope)
|
||||
self.fft_plot.setXRange(0, range_x)
|
||||
else:
|
||||
plot_dist = False
|
||||
self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
|
||||
my_phaser.freq_dev_range = int(bw / 4) # frequency deviation range in Hz
|
||||
my_phaser.enable = 0
|
||||
|
||||
def end_program(self):
|
||||
""" Gracefully shutsdown the program and Pluto
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
my_sdr.tx_destroy_buffer()
|
||||
self.close()
|
||||
|
||||
def change_x_axis(self, state):
|
||||
""" Toggles between showing frequency and range for the x-axis
|
||||
Args:
|
||||
state (QtCore.Qt.Checked) : State of check box
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
global plot_dist, slope, signal_freq, plot_freq
|
||||
plot_state = win.fft_plot.getViewBox().state
|
||||
if state == QtCore.Qt.Checked:
|
||||
plot_dist = True
|
||||
range_x = (plot_freq) * c / (2 * slope)
|
||||
self.fft_plot.setXRange(0, range_x)
|
||||
else:
|
||||
plot_dist = False
|
||||
self.fft_plot.setXRange(signal_freq, signal_freq+plot_freq)
|
||||
|
||||
|
||||
# create pyqt5 app
|
||||
App = QApplication(sys.argv)
|
||||
|
||||
# create the instance of our Window
|
||||
win = Window()
|
||||
index = 0
|
||||
|
||||
|
||||
def update():
|
||||
""" Updates the FFT in the window
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
global index, plot_dist, freq, dist, s_vel
|
||||
label_style = {"color": "#FFF", "font-size": "14pt"}
|
||||
|
||||
data = my_sdr.rx()
|
||||
data = data[0] + data[1]
|
||||
win_funct = np.blackman(len(data))
|
||||
y = data * win_funct
|
||||
sp = np.absolute(np.fft.fft(y))
|
||||
sp = np.fft.fftshift(sp)
|
||||
s_mag = np.abs(sp) / np.sum(win_funct)
|
||||
s_mag = np.maximum(s_mag, 10 ** (-15))
|
||||
s_dbfs = 20 * np.log10(s_mag / (2 ** 11))
|
||||
index_100 = int(N_frame/2+N_frame*signal_freq/sample_rate)
|
||||
vel_range = N_frame-index_100-1
|
||||
s_vel = np.zeros(N_frame)
|
||||
for i in range(vel_range):
|
||||
index_high = index_100 + i
|
||||
index_low = index_100 - i
|
||||
s_vel[i] = 0.03/4 * (s_dbfs[index_high]-s_dbfs[index_low])*1000
|
||||
s_vel = np.ones(N_frame)*abs(s_vel)
|
||||
|
||||
|
||||
|
||||
if plot_dist:
|
||||
win.fft_curve.setData(dist, s_dbfs)
|
||||
win.fft_plot.setLabel("bottom", text="Distance", units="m", **label_style)
|
||||
else:
|
||||
win.fft_curve.setData(freq, s_vel)
|
||||
win.fft_plot.setLabel("bottom", text="Frequency", units="Hz", **label_style)
|
||||
|
||||
win.img_array = np.roll(win.img_array, 1, axis=0)
|
||||
win.img_array[0] = s_vel
|
||||
win.imageitem.setLevels([win.low_slider.value(), win.high_slider.value()])
|
||||
win.imageitem.setImage(win.img_array, autoLevels=False)
|
||||
|
||||
if index == 1:
|
||||
win.fft_plot.enableAutoRange("xy", False)
|
||||
index = index + 1
|
||||
|
||||
|
||||
timer = QtCore.QTimer()
|
||||
timer.timeout.connect(update)
|
||||
timer.start(0)
|
||||
|
||||
# start the app
|
||||
sys.exit(App.exec())
|
||||
|
||||
Reference in New Issue
Block a user