mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
@@ -271,6 +271,7 @@ def main():
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(rx, ry, "-r")
|
||||
plt.show()
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
342
PathPlanning/BidirectionalAStar/bidirectional_a_star.py
Normal file
342
PathPlanning/BidirectionalAStar/bidirectional_a_star.py
Normal file
@@ -0,0 +1,342 @@
|
||||
"""
|
||||
|
||||
Bidirectional A* grid planning
|
||||
|
||||
author: Erwin Lejeune (@spida_rwin)
|
||||
|
||||
See Wikipedia article (https://en.wikipedia.org/wiki/Bidirectional_search)
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
class BidirectionalAStarPlanner:
|
||||
|
||||
def __init__(self, ox, oy, reso, rr):
|
||||
"""
|
||||
Initialize grid map for a star planning
|
||||
|
||||
ox: x position list of Obstacles [m]
|
||||
oy: y position list of Obstacles [m]
|
||||
reso: grid resolution [m]
|
||||
rr: robot radius[m]
|
||||
"""
|
||||
|
||||
self.reso = reso
|
||||
self.rr = rr
|
||||
self.calc_obstacle_map(ox, oy)
|
||||
self.motion = self.get_motion_model()
|
||||
|
||||
class Node:
|
||||
def __init__(self, x, y, cost, pind):
|
||||
self.x = x # index of grid
|
||||
self.y = y # index of grid
|
||||
self.cost = cost
|
||||
self.pind = pind
|
||||
|
||||
def __str__(self):
|
||||
return str(self.x) + "," + str(self.y) + "," + str(
|
||||
self.cost) + "," + str(self.pind)
|
||||
|
||||
def planning(self, sx, sy, gx, gy):
|
||||
"""
|
||||
Bidirectional A star path search
|
||||
|
||||
input:
|
||||
sx: start x position [m]
|
||||
sy: start y position [m]
|
||||
gx: goal x position [m]
|
||||
gy: goal y position [m]
|
||||
|
||||
output:
|
||||
rx: x position list of the final path
|
||||
ry: y position list of the final path
|
||||
"""
|
||||
|
||||
nstart = self.Node(self.calc_xyindex(sx, self.minx),
|
||||
self.calc_xyindex(sy, self.miny), 0.0, -1)
|
||||
ngoal = self.Node(self.calc_xyindex(gx, self.minx),
|
||||
self.calc_xyindex(gy, self.miny), 0.0, -1)
|
||||
|
||||
open_set_A, closed_set_A = dict(), dict()
|
||||
open_set_B, closed_set_B = dict(), dict()
|
||||
open_set_A[self.calc_grid_index(nstart)] = nstart
|
||||
open_set_B[self.calc_grid_index(ngoal)] = ngoal
|
||||
|
||||
current_A = nstart
|
||||
current_B = ngoal
|
||||
|
||||
while 1:
|
||||
if len(open_set_A) == 0:
|
||||
print("Open set A is empty..")
|
||||
break
|
||||
|
||||
if len(open_set_B) == 0:
|
||||
print("Open set B is empty..")
|
||||
break
|
||||
|
||||
c_id_A = min(
|
||||
open_set_A,
|
||||
key=lambda o: self.find_total_cost(open_set_A, o, current_B))
|
||||
|
||||
current_A = open_set_A[c_id_A]
|
||||
|
||||
c_id_B = min(
|
||||
open_set_B,
|
||||
key=lambda o: self.find_total_cost(open_set_B, o, current_A))
|
||||
|
||||
current_B = open_set_B[c_id_B]
|
||||
|
||||
# show graph
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(self.calc_grid_position(current_A.x, self.minx),
|
||||
self.calc_grid_position(current_A.y, self.miny), "xc")
|
||||
plt.plot(self.calc_grid_position(current_B.x, self.minx),
|
||||
self.calc_grid_position(current_B.y, self.miny), "xc")
|
||||
# for stopping simulation with the esc key.
|
||||
plt.gcf().canvas.mpl_connect('key_release_event',
|
||||
lambda event: [exit(
|
||||
0) if event.key == 'escape' else None])
|
||||
if len(closed_set_A.keys()) % 10 == 0:
|
||||
plt.pause(0.001)
|
||||
|
||||
if current_A.x == current_B.x and current_A.y == current_B.y:
|
||||
print("Found goal")
|
||||
meetpointA = current_A
|
||||
meetpointB = current_B
|
||||
break
|
||||
|
||||
# Remove the item from the open set
|
||||
del open_set_A[c_id_A]
|
||||
del open_set_B[c_id_B]
|
||||
|
||||
# Add it to the closed set
|
||||
closed_set_A[c_id_A] = current_A
|
||||
closed_set_B[c_id_B] = current_B
|
||||
|
||||
# expand_grid search grid based on motion model
|
||||
for i, _ in enumerate(self.motion):
|
||||
continue_A = False
|
||||
continue_B = False
|
||||
|
||||
child_node_A = self.Node(current_A.x + self.motion[i][0],
|
||||
current_A.y + self.motion[i][1],
|
||||
current_A.cost + self.motion[i][2],
|
||||
c_id_A)
|
||||
|
||||
child_node_B = self.Node(current_B.x + self.motion[i][0],
|
||||
current_B.y + self.motion[i][1],
|
||||
current_B.cost + self.motion[i][2],
|
||||
c_id_B)
|
||||
|
||||
n_id_A = self.calc_grid_index(child_node_A)
|
||||
n_id_B = self.calc_grid_index(child_node_B)
|
||||
|
||||
# If the node is not safe, do nothing
|
||||
if not self.verify_node(child_node_A):
|
||||
continue_A = True
|
||||
|
||||
if not self.verify_node(child_node_B):
|
||||
continue_B = True
|
||||
|
||||
if n_id_A in closed_set_A:
|
||||
continue_A = True
|
||||
|
||||
if n_id_B in closed_set_B:
|
||||
continue_B = True
|
||||
|
||||
if not continue_A:
|
||||
if n_id_A not in open_set_A:
|
||||
# discovered a new node
|
||||
open_set_A[n_id_A] = child_node_A
|
||||
else:
|
||||
if open_set_A[n_id_A].cost > child_node_A.cost:
|
||||
# This path is the best until now. record it
|
||||
open_set_A[n_id_A] = child_node_A
|
||||
|
||||
if not continue_B:
|
||||
if n_id_B not in open_set_B:
|
||||
# discovered a new node
|
||||
open_set_B[n_id_B] = child_node_B
|
||||
else:
|
||||
if open_set_B[n_id_B].cost > child_node_B.cost:
|
||||
# This path is the best until now. record it
|
||||
open_set_B[n_id_B] = child_node_B
|
||||
|
||||
rx, ry = self.calc_final_bidirectional_path(
|
||||
meetpointA, meetpointB, closed_set_A, closed_set_B)
|
||||
|
||||
return rx, ry
|
||||
|
||||
def calc_final_bidirectional_path(self, meetnode_A, meetnode_B, closed_set_A, closed_set_B):
|
||||
rx_A, ry_A = self.calc_final_path(meetnode_A, closed_set_A)
|
||||
rx_B, ry_B = self.calc_final_path(meetnode_B, closed_set_B)
|
||||
|
||||
rx_A.reverse()
|
||||
ry_A.reverse()
|
||||
|
||||
rx = rx_A + rx_B
|
||||
ry = ry_A + ry_B
|
||||
|
||||
return rx, ry
|
||||
|
||||
def calc_final_path(self, ngoal, closedset):
|
||||
# generate final course
|
||||
rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [
|
||||
self.calc_grid_position(ngoal.y, self.miny)]
|
||||
pind = ngoal.pind
|
||||
while pind != -1:
|
||||
n = closedset[pind]
|
||||
rx.append(self.calc_grid_position(n.x, self.minx))
|
||||
ry.append(self.calc_grid_position(n.y, self.miny))
|
||||
pind = n.pind
|
||||
|
||||
return rx, ry
|
||||
|
||||
@staticmethod
|
||||
def calc_heuristic(n1, n2):
|
||||
w = 1.0 # weight of heuristic
|
||||
d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
|
||||
return d
|
||||
|
||||
def find_total_cost(self, open_set, lambda_, n1):
|
||||
g_cost = open_set[lambda_].cost
|
||||
h_cost = self.calc_heuristic(n1, open_set[lambda_])
|
||||
f_cost = g_cost + h_cost
|
||||
return f_cost
|
||||
|
||||
def calc_grid_position(self, index, minp):
|
||||
"""
|
||||
calc grid position
|
||||
|
||||
:param index:
|
||||
:param minp:
|
||||
:return:
|
||||
"""
|
||||
pos = index * self.reso + minp
|
||||
return pos
|
||||
|
||||
def calc_xyindex(self, position, min_pos):
|
||||
return round((position - min_pos) / self.reso)
|
||||
|
||||
def calc_grid_index(self, node):
|
||||
return (node.y - self.miny) * self.xwidth + (node.x - self.minx)
|
||||
|
||||
def verify_node(self, node):
|
||||
px = self.calc_grid_position(node.x, self.minx)
|
||||
py = self.calc_grid_position(node.y, self.miny)
|
||||
|
||||
if px < self.minx:
|
||||
return False
|
||||
elif py < self.miny:
|
||||
return False
|
||||
elif px >= self.maxx:
|
||||
return False
|
||||
elif py >= self.maxy:
|
||||
return False
|
||||
|
||||
# collision check
|
||||
if self.obmap[node.x][node.y]:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def calc_obstacle_map(self, ox, oy):
|
||||
|
||||
self.minx = round(min(ox))
|
||||
self.miny = round(min(oy))
|
||||
self.maxx = round(max(ox))
|
||||
self.maxy = round(max(oy))
|
||||
print("minx:", self.minx)
|
||||
print("miny:", self.miny)
|
||||
print("maxx:", self.maxx)
|
||||
print("maxy:", self.maxy)
|
||||
|
||||
self.xwidth = round((self.maxx - self.minx) / self.reso)
|
||||
self.ywidth = round((self.maxy - self.miny) / self.reso)
|
||||
print("xwidth:", self.xwidth)
|
||||
print("ywidth:", self.ywidth)
|
||||
|
||||
# obstacle map generation
|
||||
self.obmap = [[False for _ in range(self.ywidth)]
|
||||
for _ in range(self.xwidth)]
|
||||
for ix in range(self.xwidth):
|
||||
x = self.calc_grid_position(ix, self.minx)
|
||||
for iy in range(self.ywidth):
|
||||
y = self.calc_grid_position(iy, self.miny)
|
||||
for iox, ioy in zip(ox, oy):
|
||||
d = math.hypot(iox - x, ioy - y)
|
||||
if d <= self.rr:
|
||||
self.obmap[ix][iy] = True
|
||||
break
|
||||
|
||||
@staticmethod
|
||||
def get_motion_model():
|
||||
# dx, dy, cost
|
||||
motion = [[1, 0, 1],
|
||||
[0, 1, 1],
|
||||
[-1, 0, 1],
|
||||
[0, -1, 1],
|
||||
[-1, -1, math.sqrt(2)],
|
||||
[-1, 1, math.sqrt(2)],
|
||||
[1, -1, math.sqrt(2)],
|
||||
[1, 1, math.sqrt(2)]]
|
||||
|
||||
return motion
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
# start and goal position
|
||||
sx = 10.0 # [m]
|
||||
sy = 10.0 # [m]
|
||||
gx = 50.0 # [m]
|
||||
gy = 50.0 # [m]
|
||||
grid_size = 2.0 # [m]
|
||||
robot_radius = 1.0 # [m]
|
||||
|
||||
# set obstacle positions
|
||||
ox, oy = [], []
|
||||
for i in range(-10, 60):
|
||||
ox.append(i)
|
||||
oy.append(-10.0)
|
||||
for i in range(-10, 60):
|
||||
ox.append(60.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 61):
|
||||
ox.append(i)
|
||||
oy.append(60.0)
|
||||
for i in range(-10, 61):
|
||||
ox.append(-10.0)
|
||||
oy.append(i)
|
||||
for i in range(-10, 40):
|
||||
ox.append(20.0)
|
||||
oy.append(i)
|
||||
for i in range(0, 40):
|
||||
ox.append(40.0)
|
||||
oy.append(60.0 - i)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(ox, oy, ".k")
|
||||
plt.plot(sx, sy, "og")
|
||||
plt.plot(gx, gy, "ob")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
|
||||
bidir_a_star = BidirectionalAStarPlanner(ox, oy, grid_size, robot_radius)
|
||||
rx, ry = bidir_a_star.planning(sx, sy, gx, gy)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.plot(rx, ry, "-r")
|
||||
plt.pause(.0001)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user