mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 03:17:59 -05:00
release cgmres nmpc
This commit is contained in:
BIN
PathTracking/cgmres/animation.gif
Normal file
BIN
PathTracking/cgmres/animation.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 11 MiB |
@@ -5,6 +5,8 @@ Nonlinear MPC simulation with CGMRES
|
||||
author Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
Ref:
|
||||
- 非線形モデル予測制御におけるCGMRES法をpythonで実装する - Qiita https://qiita.com/MENDY/items/4108190a579395053924 (in Japanese)
|
||||
|
||||
- Shunichi09/nonlinear_control: Implementing the nonlinear model predictive control, sliding mode control https://github.com/Shunichi09/nonlinear_control
|
||||
|
||||
"""
|
||||
@@ -13,105 +15,122 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
|
||||
U_A_MAX = 1.0
|
||||
U_OMEGA_MAX = math.radians(45.0)
|
||||
PHI_V = 0.01
|
||||
PHI_OMEGA = 0.01
|
||||
WB = 0.25 # [m] wheel base
|
||||
|
||||
def differential_model(yaw, u_1, u_2):
|
||||
show_animation = True
|
||||
|
||||
dx = math.cos(yaw) * u_1
|
||||
dy = math.sin(yaw) * u_1
|
||||
dyaw = u_2
|
||||
|
||||
return dx, dy, dyaw
|
||||
def differential_model(v, yaw, u_1, u_2):
|
||||
|
||||
dx = math.cos(yaw) * v
|
||||
dy = math.sin(yaw) * v
|
||||
dv = u_1
|
||||
dyaw = v / WB * math.sin(u_2) # tan is not good for nonlinear optimization
|
||||
|
||||
return dx, dy, dyaw, dv
|
||||
|
||||
|
||||
class TwoWheeledSystem():
|
||||
|
||||
def __init__(self, init_x, init_y, init_yaw):
|
||||
def __init__(self, init_x, init_y, init_yaw, init_v):
|
||||
|
||||
self.x_1 = init_x
|
||||
self.x_2 = init_y
|
||||
self.x_3 = init_yaw
|
||||
self.history_x_1 = [init_x]
|
||||
self.history_x_2 = [init_y]
|
||||
self.history_x_3 = [init_yaw]
|
||||
self.x = init_x
|
||||
self.y = init_y
|
||||
self.yaw = init_yaw
|
||||
self.v = init_v
|
||||
self.history_x = [init_x]
|
||||
self.history_y = [init_y]
|
||||
self.history_yaw = [init_yaw]
|
||||
self.history_v = [init_v]
|
||||
|
||||
def update_state(self, u_1, u_2, dt=0.01):
|
||||
|
||||
dx, dy, dyaw = differential_model(self.x_3, u_1, u_2)
|
||||
dx, dy, dyaw, dv = differential_model(self.v, self.yaw, u_1, u_2)
|
||||
|
||||
self.x_1 += dt * dx
|
||||
self.x_2 += dt * dy
|
||||
self.x_3 += dt * dyaw
|
||||
self.x += dt * dx
|
||||
self.y += dt * dy
|
||||
self.yaw += dt * dyaw
|
||||
self.v += dt * dv
|
||||
|
||||
# save
|
||||
self.history_x_1.append(self.x_1)
|
||||
self.history_x_2.append(self.x_2)
|
||||
self.history_x_3.append(self.x_3)
|
||||
self.history_x.append(self.x)
|
||||
self.history_y.append(self.y)
|
||||
self.history_yaw.append(self.yaw)
|
||||
self.history_v.append(self.v)
|
||||
|
||||
|
||||
class NMPCSimulatorSystem():
|
||||
|
||||
def calc_predict_and_adjoint_state(self, x_1, x_2, x_3, u_1s, u_2s, N, dt):
|
||||
x_1s, x_2s, x_3s = self._calc_predict_states(
|
||||
x_1, x_2, x_3, u_1s, u_2s, N, dt) # by using state equation
|
||||
lam_1s, lam_2s, lam_3s = self._calc_adjoint_states(
|
||||
x_1s, x_2s, x_3s, u_1s, u_2s, N, dt) # by using adjoint equation
|
||||
def calc_predict_and_adjoint_state(self, x, y, yaw, v, u_1s, u_2s, N, dt):
|
||||
x_s, y_s, yaw_s, v_s = self._calc_predict_states(
|
||||
x, y, yaw, v, u_1s, u_2s, N, dt) # by using state equation
|
||||
lam_1s, lam_2s, lam_3s, lam_4s = self._calc_adjoint_states(
|
||||
x_s, y_s, yaw_s, v_s, u_1s, u_2s, N, dt) # by using adjoint equation
|
||||
|
||||
return x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s
|
||||
return x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s
|
||||
|
||||
def _calc_predict_states(self, x_1, x_2, x_3, u_1s, u_2s, N, dt):
|
||||
x_1s = [x_1]
|
||||
x_2s = [x_2]
|
||||
x_3s = [x_3]
|
||||
def _calc_predict_states(self, x, y, yaw, v, u_1s, u_2s, N, dt):
|
||||
x_s = [x]
|
||||
y_s = [y]
|
||||
yaw_s = [yaw]
|
||||
v_s = [v]
|
||||
|
||||
for i in range(N):
|
||||
temp_x_1, temp_x_2, temp_x_3 = self._predict_state_with_oylar(
|
||||
x_1s[i], x_2s[i], x_3s[i], u_1s[i], u_2s[i], dt)
|
||||
x_1s.append(temp_x_1)
|
||||
x_2s.append(temp_x_2)
|
||||
x_3s.append(temp_x_3)
|
||||
temp_x_1, temp_x_2, temp_x_3, temp_x_4 = self._predict_state_with_oylar(
|
||||
x_s[i], y_s[i], yaw_s[i], v_s[i], u_1s[i], u_2s[i], dt)
|
||||
x_s.append(temp_x_1)
|
||||
y_s.append(temp_x_2)
|
||||
yaw_s.append(temp_x_3)
|
||||
v_s.append(temp_x_4)
|
||||
|
||||
return x_1s, x_2s, x_3s
|
||||
return x_s, y_s, yaw_s, v_s
|
||||
|
||||
def _calc_adjoint_states(self, x_1s, x_2s, x_3s, u_1s, u_2s, N, dt):
|
||||
lam_1s = [x_1s[-1]]
|
||||
lam_2s = [x_2s[-1]]
|
||||
lam_3s = [x_3s[-1]]
|
||||
def _calc_adjoint_states(self, x_s, y_s, yaw_s, v_s, u_1s, u_2s, N, dt):
|
||||
lam_1s = [x_s[-1]]
|
||||
lam_2s = [y_s[-1]]
|
||||
lam_3s = [yaw_s[-1]]
|
||||
lam_4s = [v_s[-1]]
|
||||
|
||||
# backward adjoint state calc
|
||||
for i in range(N - 1, 0, -1):
|
||||
temp_lam_1, temp_lam_2, temp_lam_3 = self._adjoint_state_with_oylar(
|
||||
x_1s[i], x_2s[i], x_3s[i], lam_1s[0], lam_2s[0], lam_3s[0], u_1s[i], u_2s[i], dt)
|
||||
temp_lam_1, temp_lam_2, temp_lam_3, temp_lam_4 = self._adjoint_state_with_oylar(
|
||||
x_s[i], y_s[i], yaw_s[i], v_s[i], lam_1s[0], lam_2s[0], lam_3s[0], lam_4s[0],
|
||||
u_1s[i], u_2s[i], dt)
|
||||
lam_1s.insert(0, temp_lam_1)
|
||||
lam_2s.insert(0, temp_lam_2)
|
||||
lam_3s.insert(0, temp_lam_3)
|
||||
lam_4s.insert(0, temp_lam_4)
|
||||
|
||||
return lam_1s, lam_2s, lam_3s
|
||||
return lam_1s, lam_2s, lam_3s, lam_4s
|
||||
|
||||
def final_state_func(self):
|
||||
"""this func usually need
|
||||
"""
|
||||
pass
|
||||
def _predict_state_with_oylar(self, x, y, yaw, v, u_1, u_2, dt):
|
||||
|
||||
def _predict_state_with_oylar(self, x_1, x_2, x_3, u_1, u_2, dt):
|
||||
dx, dy, dyaw, dv = differential_model(
|
||||
v, yaw, u_1, u_2)
|
||||
|
||||
dx, dy, dyaw = differential_model(
|
||||
x_3, u_1, u_2)
|
||||
next_x_1 = x + dt * dx
|
||||
next_x_2 = y + dt * dy
|
||||
next_x_3 = yaw + dt * dyaw
|
||||
next_x_4 = v + dt * dv
|
||||
|
||||
next_x_1 = x_1 + dt * dx
|
||||
next_x_2 = x_2 + dt * dy
|
||||
next_x_3 = x_3 + dt * dyaw
|
||||
return next_x_1, next_x_2, next_x_3, next_x_4
|
||||
|
||||
return next_x_1, next_x_2, next_x_3
|
||||
|
||||
def _adjoint_state_with_oylar(self, x_1, x_2, x_3, lam_1, lam_2, lam_3, u_1, u_2, dt):
|
||||
def _adjoint_state_with_oylar(self, x, y, yaw, v, lam_1, lam_2, lam_3, lam_4, u_1, u_2, dt):
|
||||
|
||||
# ∂H/∂x
|
||||
pre_lam_1 = lam_1 + dt * 0.0
|
||||
pre_lam_2 = lam_2 + dt * 0.0
|
||||
pre_lam_3 = lam_3 + dt * \
|
||||
(- lam_1 * math.sin(x_3) * u_1 + lam_2 * math.cos(x_3) * u_1)
|
||||
(- lam_1 * math.sin(yaw) * v + lam_2 * math.cos(yaw) * v)
|
||||
pre_lam_4 = lam_4 + dt * \
|
||||
(lam_1 * math.cos(yaw) + lam_2 *
|
||||
math.sin(yaw) + lam_3 * math.sin(u_2) / WB)
|
||||
|
||||
return pre_lam_1, pre_lam_2, pre_lam_3
|
||||
return pre_lam_1, pre_lam_2, pre_lam_3, pre_lam_4
|
||||
|
||||
|
||||
class NMPCController_with_CGMRES():
|
||||
@@ -167,7 +186,7 @@ class NMPCController_with_CGMRES():
|
||||
# parameters
|
||||
self.zeta = 100. # stability gain
|
||||
self.ht = 0.01 # difference approximation tick
|
||||
self.tf = 1. # final time
|
||||
self.tf = 3.0 # final time
|
||||
self.alpha = 0.5 # time gain
|
||||
self.N = 10 # division number
|
||||
self.threshold = 0.001
|
||||
@@ -193,32 +212,33 @@ class NMPCController_with_CGMRES():
|
||||
self.history_raw_2 = []
|
||||
self.history_f = []
|
||||
|
||||
def calc_input(self, x_1, x_2, x_3, time):
|
||||
def calc_input(self, x, y, yaw, v, time):
|
||||
|
||||
# calculating sampling time
|
||||
dt = self.tf * (1. - np.exp(-self.alpha * time)) / float(self.N)
|
||||
|
||||
# x_dot
|
||||
x_1_dot, x_2_dot, x_3_dot = differential_model(
|
||||
x_3, self.u_1s[0], self.u_2s[0])
|
||||
x_1_dot, x_2_dot, x_3_dot, x_4_dot = differential_model(
|
||||
v, yaw, self.u_1s[0], self.u_2s[0])
|
||||
|
||||
dx_1 = x_1_dot * self.ht
|
||||
dx_2 = x_2_dot * self.ht
|
||||
dx_3 = x_3_dot * self.ht
|
||||
dx_4 = x_4_dot * self.ht
|
||||
|
||||
x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s, self.u_2s, self.N, dt)
|
||||
x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x + dx_1, y + dx_2, yaw + dx_3, v + dx_4, self.u_1s, self.u_2s, self.N, dt)
|
||||
|
||||
# Fxt:F(U,x+hx˙,t+h)
|
||||
Fxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
Fxt = self._calc_f(x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s,
|
||||
self.raw_1s, self.raw_2s, self.N, dt)
|
||||
|
||||
# F:F(U,x,t)
|
||||
x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x_1, x_2, x_3, self.u_1s, self.u_2s, self.N, dt)
|
||||
x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x, y, yaw, v, self.u_1s, self.u_2s, self.N, dt)
|
||||
|
||||
F = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
F = self._calc_f(x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s,
|
||||
self.raw_1s, self.raw_2s, self.N, dt)
|
||||
|
||||
@@ -231,11 +251,11 @@ class NMPCController_with_CGMRES():
|
||||
draw_1 = self.raw_1s * self.ht
|
||||
draw_2 = self.raw_2s * self.ht
|
||||
|
||||
x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s + du_1, self.u_2s + du_2, self.N, dt)
|
||||
x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x + dx_1, y + dx_2, yaw + dx_3, v + dx_4, self.u_1s + du_1, self.u_2s + du_2, self.N, dt)
|
||||
|
||||
# Fuxt:F(U+hdU(0),x+hx˙,t+h)
|
||||
Fuxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
Fuxt = self._calc_f(x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
self.u_1s + du_1, self.u_2s + du_2,
|
||||
self.dummy_u_1s + ddummy_u_1, self.dummy_u_2s + ddummy_u_2,
|
||||
self.raw_1s + draw_1, self.raw_2s + draw_2, self.N, dt)
|
||||
@@ -263,10 +283,10 @@ class NMPCController_with_CGMRES():
|
||||
draw_1 = vs[4::self.input_num, i] * self.ht
|
||||
draw_2 = vs[5::self.input_num, i] * self.ht
|
||||
|
||||
x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s + du_1, self.u_2s + du_2, self.N, dt)
|
||||
x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x + dx_1, y + dx_2, yaw + dx_3, v + dx_4, self.u_1s + du_1, self.u_2s + du_2, self.N, dt)
|
||||
|
||||
Fuxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
Fuxt = self._calc_f(x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
self.u_1s + du_1, self.u_2s + du_2,
|
||||
self.dummy_u_1s + ddummy_u_1, self.dummy_u_2s + ddummy_u_2,
|
||||
self.raw_1s + draw_1, self.raw_2s + draw_2, self.N, dt)
|
||||
@@ -311,14 +331,14 @@ class NMPCController_with_CGMRES():
|
||||
self.raw_1s += draw_1_new * self.ht
|
||||
self.raw_2s += draw_2_new * self.ht
|
||||
|
||||
x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x_1, x_2, x_3, self.u_1s, self.u_2s, self.N, dt)
|
||||
x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s = self.simulator.calc_predict_and_adjoint_state(
|
||||
x, y, yaw, v, self.u_1s, self.u_2s, self.N, dt)
|
||||
|
||||
F = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
F = self._calc_f(x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s,
|
||||
self.raw_1s, self.raw_2s, self.N, dt)
|
||||
|
||||
print("check F = {0}".format(np.linalg.norm(F)))
|
||||
print("norm(F) = {0}".format(np.linalg.norm(F)))
|
||||
|
||||
# for save
|
||||
self.history_f.append(np.linalg.norm(F))
|
||||
@@ -331,21 +351,21 @@ class NMPCController_with_CGMRES():
|
||||
|
||||
return self.u_1s, self.u_2s
|
||||
|
||||
def _calc_f(self, x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s,
|
||||
def _calc_f(self, x_s, y_s, yaw_s, v_s, lam_1s, lam_2s, lam_3s, lam_4s,
|
||||
u_1s, u_2s, dummy_u_1s, dummy_u_2s, raw_1s, raw_2s, N, dt):
|
||||
|
||||
F = []
|
||||
for i in range(N):
|
||||
# ∂H/∂u(xi, ui, λi)
|
||||
F.append(u_1s[i] + lam_1s[i] * math.cos(x_3s[i]) +
|
||||
lam_2s[i] * math.sin(x_3s[i]) + 2 * raw_1s[i] * u_1s[i])
|
||||
F.append(u_2s[i] + lam_3s[i] + 2 * raw_2s[i] * u_2s[i])
|
||||
F.append(-0.01 + 2. * raw_1s[i] * dummy_u_1s[i])
|
||||
F.append(-0.01 + 2. * raw_2s[i] * dummy_u_2s[i])
|
||||
F.append(u_1s[i] + lam_4s[i] + 2.0 * raw_1s[i] * u_1s[i])
|
||||
F.append(u_2s[i] + lam_3s[i] * v_s[i] /
|
||||
WB * math.cos(u_2s[i])**2 + 2.0 * raw_2s[i] * u_2s[i])
|
||||
F.append(-PHI_V + 2.0 * raw_1s[i] * dummy_u_1s[i])
|
||||
F.append(-PHI_OMEGA + 2.0 * raw_2s[i] * dummy_u_2s[i])
|
||||
|
||||
# C(xi, ui, λi)
|
||||
F.append(u_1s[i]**2 + dummy_u_1s[i]**2 - 1.**2)
|
||||
F.append(u_2s[i]**2 + dummy_u_2s[i]**2 - 1.5**2)
|
||||
F.append(u_1s[i]**2 + dummy_u_1s[i]**2 - U_A_MAX**2)
|
||||
F.append(u_2s[i]**2 + dummy_u_2s[i]**2 - U_OMEGA_MAX**2)
|
||||
|
||||
return np.array(F)
|
||||
|
||||
@@ -362,9 +382,10 @@ def plot_figures(plant_system, controller, iteration_num, dt):
|
||||
fig_traj = fig_t.add_subplot(111)
|
||||
fig_traj.set_aspect('equal')
|
||||
|
||||
x_1_fig = fig_p.add_subplot(311)
|
||||
x_2_fig = fig_p.add_subplot(312)
|
||||
x_3_fig = fig_p.add_subplot(313)
|
||||
x_1_fig = fig_p.add_subplot(411)
|
||||
x_2_fig = fig_p.add_subplot(412)
|
||||
x_3_fig = fig_p.add_subplot(413)
|
||||
x_4_fig = fig_p.add_subplot(414)
|
||||
|
||||
u_1_fig = fig_u.add_subplot(411)
|
||||
u_2_fig = fig_u.add_subplot(412)
|
||||
@@ -375,21 +396,25 @@ def plot_figures(plant_system, controller, iteration_num, dt):
|
||||
raw_2_fig = fig_f.add_subplot(312)
|
||||
f_fig = fig_f.add_subplot(313)
|
||||
|
||||
x_1_fig.plot(np.arange(iteration_num) * dt, plant_system.history_x_1)
|
||||
x_1_fig.plot(np.arange(iteration_num) * dt, plant_system.history_x)
|
||||
x_1_fig.set_xlabel("time [s]")
|
||||
x_1_fig.set_ylabel("x_1")
|
||||
x_1_fig.set_ylabel("x")
|
||||
|
||||
x_2_fig.plot(np.arange(iteration_num) * dt, plant_system.history_x_2)
|
||||
x_2_fig.plot(np.arange(iteration_num) * dt, plant_system.history_y)
|
||||
x_2_fig.set_xlabel("time [s]")
|
||||
x_2_fig.set_ylabel("x_2")
|
||||
x_2_fig.set_ylabel("y")
|
||||
|
||||
x_3_fig.plot(np.arange(iteration_num) * dt, plant_system.history_x_3)
|
||||
x_3_fig.plot(np.arange(iteration_num) * dt, plant_system.history_yaw)
|
||||
x_3_fig.set_xlabel("time [s]")
|
||||
x_3_fig.set_ylabel("x_3")
|
||||
x_3_fig.set_ylabel("yaw")
|
||||
|
||||
x_4_fig.plot(np.arange(iteration_num) * dt, plant_system.history_v)
|
||||
x_4_fig.set_xlabel("time [s]")
|
||||
x_4_fig.set_ylabel("v")
|
||||
|
||||
u_1_fig.plot(np.arange(iteration_num - 1) * dt, controller.history_u_1)
|
||||
u_1_fig.set_xlabel("time [s]")
|
||||
u_1_fig.set_ylabel("u_v")
|
||||
u_1_fig.set_ylabel("u_a")
|
||||
|
||||
u_2_fig.plot(np.arange(iteration_num - 1) * dt, controller.history_u_2)
|
||||
u_2_fig.set_xlabel("time [s]")
|
||||
@@ -417,26 +442,134 @@ def plot_figures(plant_system, controller, iteration_num, dt):
|
||||
f_fig.set_xlabel("time [s]")
|
||||
f_fig.set_ylabel("optimal error")
|
||||
|
||||
fig_traj.plot(plant_system.history_x_1,
|
||||
plant_system.history_x_2, color="b", linestyle="dashed")
|
||||
fig_traj.plot(plant_system.history_x,
|
||||
plant_system.history_y, "-r")
|
||||
fig_traj.set_xlabel("x [m]")
|
||||
fig_traj.set_ylabel("y [m]")
|
||||
fig_traj.axis("equal")
|
||||
|
||||
# start state
|
||||
plot_car(plant_system.history_x[0],
|
||||
plant_system.history_y[0],
|
||||
plant_system.history_yaw[0],
|
||||
controller.history_u_2[0],
|
||||
)
|
||||
|
||||
# goal state
|
||||
plot_car(0.0, 0.0, 0.0, 0.0)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_car(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"):
|
||||
|
||||
# Vehicle parameters
|
||||
LENGTH = 0.4 # [m]
|
||||
WIDTH = 0.2 # [m]
|
||||
BACKTOWHEEL = 0.1 # [m]
|
||||
WHEEL_LEN = 0.03 # [m]
|
||||
WHEEL_WIDTH = 0.02 # [m]
|
||||
TREAD = 0.07 # [m]
|
||||
|
||||
outline = np.array([[-BACKTOWHEEL, (LENGTH - BACKTOWHEEL), (LENGTH - BACKTOWHEEL),
|
||||
-BACKTOWHEEL, -BACKTOWHEEL],
|
||||
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
|
||||
|
||||
fr_wheel = np.array([[WHEEL_LEN, -WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
|
||||
[-WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD, WHEEL_WIDTH
|
||||
- TREAD, WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD]])
|
||||
|
||||
rr_wheel = np.copy(fr_wheel)
|
||||
|
||||
fl_wheel = np.copy(fr_wheel)
|
||||
fl_wheel[1, :] *= -1
|
||||
rl_wheel = np.copy(rr_wheel)
|
||||
rl_wheel[1, :] *= -1
|
||||
|
||||
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
|
||||
[-math.sin(yaw), math.cos(yaw)]])
|
||||
Rot2 = np.array([[math.cos(steer), math.sin(steer)],
|
||||
[-math.sin(steer), math.cos(steer)]])
|
||||
|
||||
fr_wheel = (fr_wheel.T.dot(Rot2)).T
|
||||
fl_wheel = (fl_wheel.T.dot(Rot2)).T
|
||||
fr_wheel[0, :] += WB
|
||||
fl_wheel[0, :] += WB
|
||||
|
||||
fr_wheel = (fr_wheel.T.dot(Rot1)).T
|
||||
fl_wheel = (fl_wheel.T.dot(Rot1)).T
|
||||
|
||||
outline = (outline.T.dot(Rot1)).T
|
||||
rr_wheel = (rr_wheel.T.dot(Rot1)).T
|
||||
rl_wheel = (rl_wheel.T.dot(Rot1)).T
|
||||
|
||||
outline[0, :] += x
|
||||
outline[1, :] += y
|
||||
fr_wheel[0, :] += x
|
||||
fr_wheel[1, :] += y
|
||||
rr_wheel[0, :] += x
|
||||
rr_wheel[1, :] += y
|
||||
fl_wheel[0, :] += x
|
||||
fl_wheel[1, :] += y
|
||||
rl_wheel[0, :] += x
|
||||
rl_wheel[1, :] += y
|
||||
|
||||
plt.plot(np.array(outline[0, :]).flatten(),
|
||||
np.array(outline[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(fr_wheel[0, :]).flatten(),
|
||||
np.array(fr_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(rr_wheel[0, :]).flatten(),
|
||||
np.array(rr_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(fl_wheel[0, :]).flatten(),
|
||||
np.array(fl_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(rl_wheel[0, :]).flatten(),
|
||||
np.array(rl_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(x, y, "*")
|
||||
|
||||
|
||||
def animation(plant, controller, dt):
|
||||
|
||||
skip = 2 # skip index for animation
|
||||
|
||||
for t in range(1, len(controller.history_u_1), skip):
|
||||
x = plant.history_x[t]
|
||||
y = plant.history_y[t]
|
||||
yaw = plant.history_yaw[t]
|
||||
v = plant.history_v[t]
|
||||
accel = controller.history_u_1[t]
|
||||
time = t * dt
|
||||
|
||||
if abs(v) <= 0.01:
|
||||
steer = 0.0
|
||||
else:
|
||||
steer = math.atan2(controller.history_u_2[t] * WB / v, 1.0)
|
||||
|
||||
plt.cla()
|
||||
plt.plot(plant.history_x, plant.history_y, "-r", label="trajectory")
|
||||
plot_car(x, y, yaw, steer=steer)
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.title("Time[s]:" + str(round(time, 2)) +
|
||||
", accel[m/s]:" + str(round(accel, 2)) +
|
||||
", speed[km/h]:" + str(round(v * 3.6, 2)))
|
||||
plt.pause(0.0001)
|
||||
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def main():
|
||||
# simulation time
|
||||
dt = 0.01
|
||||
iteration_time = 15.0 # [s]
|
||||
dt = 0.1
|
||||
iteration_time = 150.0 # [s]
|
||||
|
||||
init_x = -4.5
|
||||
init_y = -2.5
|
||||
init_yaw = math.radians(45.0)
|
||||
init_v = -1.0
|
||||
|
||||
# plant
|
||||
plant_system = TwoWheeledSystem(
|
||||
init_x, init_y, init_yaw)
|
||||
init_x, init_y, init_yaw, init_v)
|
||||
|
||||
# controller
|
||||
controller = NMPCController_with_CGMRES()
|
||||
@@ -446,10 +579,13 @@ def main():
|
||||
time = float(i) * dt
|
||||
# make input
|
||||
u_1s, u_2s = controller.calc_input(
|
||||
plant_system.x_1, plant_system.x_2, plant_system.x_3, time)
|
||||
plant_system.x, plant_system.y, plant_system.yaw, plant_system.v, time)
|
||||
# update state
|
||||
plant_system.update_state(u_1s[0], u_2s[0])
|
||||
|
||||
if show_animation:
|
||||
animation(plant_system, controller, dt)
|
||||
|
||||
plot_figures(plant_system, controller, iteration_num, dt)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user