Merge branch 'master' of github.com:AtsushiSakai/PythonRobotics

This commit is contained in:
Atsushi Sakai
2019-12-07 20:24:05 +09:00
7 changed files with 264 additions and 6 deletions

View File

@@ -0,0 +1,196 @@
"""
Class of n-link arm in 3D
Author: Takayuki Murooka (takayuki5168)
"""
import numpy as np
import math
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
class Link:
def __init__(self, dh_params):
self.dh_params_ = dh_params
def transformation_matrix(self):
theta = self.dh_params_[0]
alpha = self.dh_params_[1]
a = self.dh_params_[2]
d = self.dh_params_[3]
st = math.sin(theta)
ct = math.cos(theta)
sa = math.sin(alpha)
ca = math.cos(alpha)
trans = np.array([[ct, -st * ca, st * sa, a * ct],
[st, ct * ca, -ct * sa, a * st],
[0, sa, ca, d],
[0, 0, 0, 1]])
return trans
def basic_jacobian(self, trans_prev, ee_pos):
pos_prev = np.array([trans_prev[0, 3], trans_prev[1, 3], trans_prev[2, 3]])
z_axis_prev = np.array([trans_prev[0, 2], trans_prev[1, 2], trans_prev[2, 2]])
basic_jacobian = np.hstack((np.cross(z_axis_prev, ee_pos - pos_prev), z_axis_prev))
return basic_jacobian
class NLinkArm:
def __init__(self, dh_params_list):
self.link_list = []
for i in range(len(dh_params_list)):
self.link_list.append(Link(dh_params_list[i]))
def transformation_matrix(self):
trans = np.identity(4)
for i in range(len(self.link_list)):
trans = np.dot(trans, self.link_list[i].transformation_matrix())
return trans
def forward_kinematics(self, plot=False):
trans = self.transformation_matrix()
x = trans[0, 3]
y = trans[1, 3]
z = trans[2, 3]
alpha, beta, gamma = self.euler_angle()
if plot:
self.fig = plt.figure()
self.ax = Axes3D(self.fig)
x_list = []
y_list = []
z_list = []
trans = np.identity(4)
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
for i in range(len(self.link_list)):
trans = np.dot(trans, self.link_list[i].transformation_matrix())
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
self.ax.plot(x_list, y_list, z_list, "o-", color="#00aa00", ms=4, mew=0.5)
self.ax.plot([0], [0], [0], "o")
self.ax.set_xlim(-1, 1)
self.ax.set_ylim(-1, 1)
self.ax.set_zlim(-1, 1)
plt.show()
return [x, y, z, alpha, beta, gamma]
def basic_jacobian(self):
ee_pos = self.forward_kinematics()[0:3]
basic_jacobian_mat = []
trans = np.identity(4)
for i in range(len(self.link_list)):
basic_jacobian_mat.append(self.link_list[i].basic_jacobian(trans, ee_pos))
trans = np.dot(trans, self.link_list[i].transformation_matrix())
return np.array(basic_jacobian_mat).T
def inverse_kinematics(self, ref_ee_pose, plot=False):
for cnt in range(500):
ee_pose = self.forward_kinematics()
diff_pose = np.array(ref_ee_pose) - ee_pose
basic_jacobian_mat = self.basic_jacobian()
alpha, beta, gamma = self.euler_angle()
K_zyz = np.array([[0, -math.sin(alpha), math.cos(alpha) * math.sin(beta)],
[0, math.cos(alpha), math.sin(alpha) * math.sin(beta)],
[1, 0, math.cos(beta)]])
K_alpha = np.identity(6)
K_alpha[3:, 3:] = K_zyz
theta_dot = np.dot(np.dot(np.linalg.pinv(basic_jacobian_mat), K_alpha), np.array(diff_pose))
self.update_joint_angles(theta_dot / 100.)
if plot:
self.fig = plt.figure()
self.ax = Axes3D(self.fig)
x_list = []
y_list = []
z_list = []
trans = np.identity(4)
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
for i in range(len(self.link_list)):
trans = np.dot(trans, self.link_list[i].transformation_matrix())
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
self.ax.plot(x_list, y_list, z_list, "o-", color="#00aa00", ms=4, mew=0.5)
self.ax.plot([0], [0], [0], "o")
self.ax.set_xlim(-1, 1)
self.ax.set_ylim(-1, 1)
self.ax.set_zlim(-1, 1)
self.ax.plot([ref_ee_pose[0]], [ref_ee_pose[1]], [ref_ee_pose[2]], "o")
plt.show()
def euler_angle(self):
trans = self.transformation_matrix()
alpha = math.atan2(trans[1][2], trans[0][2])
if not (-math.pi / 2 <= alpha and alpha <= math.pi / 2):
alpha = math.atan2(trans[1][2], trans[0][2]) + math.pi
if not (-math.pi / 2 <= alpha and alpha <= math.pi / 2):
alpha = math.atan2(trans[1][2], trans[0][2]) - math.pi
beta = math.atan2(trans[0][2] * math.cos(alpha) + trans[1][2] * math.sin(alpha), trans[2][2])
gamma = math.atan2(-trans[0][0] * math.sin(alpha) + trans[1][0] * math.cos(alpha), -trans[0][1] * math.sin(alpha) + trans[1][1] * math.cos(alpha))
return alpha, beta, gamma
def set_joint_angles(self, joint_angle_list):
for i in range(len(self.link_list)):
self.link_list[i].dh_params_[0] = joint_angle_list[i]
def update_joint_angles(self, diff_joint_angle_list):
for i in range(len(self.link_list)):
self.link_list[i].dh_params_[0] += diff_joint_angle_list[i]
def plot(self):
self.fig = plt.figure()
self.ax = Axes3D(self.fig)
x_list = []
y_list = []
z_list = []
trans = np.identity(4)
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
for i in range(len(self.link_list)):
trans = np.dot(trans, self.link_list[i].transformation_matrix())
x_list.append(trans[0, 3])
y_list.append(trans[1, 3])
z_list.append(trans[2, 3])
self.ax.plot(x_list, y_list, z_list, "o-", color="#00aa00", ms=4, mew=0.5)
self.ax.plot([0], [0], [0], "o")
self.ax.set_xlabel("x")
self.ax.set_ylabel("y")
self.ax.set_zlabel("z")
self.ax.set_xlim(-1, 1)
self.ax.set_ylim(-1, 1)
self.ax.set_zlim(-1, 1)
plt.show()

View File

@@ -0,0 +1,30 @@
"""
Forward Kinematics for an n-link arm in 3D
Author: Takayuki Murooka (takayuki5168)
"""
import math
from NLinkArm import NLinkArm
import random
def random_val(min_val, max_val):
return min_val + random.random() * (max_val - min_val)
if __name__ == "__main__":
print("Start solving Forward Kinematics 10 times")
# init NLinkArm with Denavit-Hartenberg parameters of PR2
n_link_arm = NLinkArm([[0., -math.pi/2, .1, 0.],
[math.pi/2, math.pi/2, 0., 0.],
[0., -math.pi/2, 0., .4],
[0., math.pi/2, 0., 0.],
[0., -math.pi/2, 0., .321],
[0., math.pi/2, 0., 0.],
[0., 0., 0., 0.]])
# execute FK 10 times
for i in range(10):
n_link_arm.set_joint_angles([random_val(-1, 1) for j in range(len(n_link_arm.link_list))])
ee_pose = n_link_arm.forward_kinematics(plot=True)

View File

@@ -0,0 +1,32 @@
"""
Inverse Kinematics for an n-link arm in 3D
Author: Takayuki Murooka (takayuki5168)
"""
import math
from NLinkArm import NLinkArm
import random
def random_val(min_val, max_val):
return min_val + random.random() * (max_val - min_val)
if __name__ == "__main__":
print("Start solving Inverse Kinematics 10 times")
# init NLinkArm with Denavit-Hartenberg parameters of PR2
n_link_arm = NLinkArm([[0., -math.pi/2, .1, 0.],
[math.pi/2, math.pi/2, 0., 0.],
[0., -math.pi/2, 0., .4],
[0., math.pi/2, 0., 0.],
[0., -math.pi/2, 0., .321],
[0., math.pi/2, 0., 0.],
[0., 0., 0., 0.]])
# execute IK 10 times
for i in range(10):
n_link_arm.inverse_kinematics([random_val(-0.5, 0.5),
random_val(-0.5, 0.5),
random_val(-0.5, 0.5),
random_val(-0.5, 0.5),
random_val(-0.5, 0.5),
random_val(-0.5, 0.5)], plot=True)

View File

@@ -228,7 +228,7 @@
"\n",
"#### Central Limit Theorem\n",
"\n",
"According to this theorem, the average of n samples of random and independant variables tends to follow a normal distribution as we increase the sample size.(Generally, for n>=30)"
"According to this theorem, the average of n samples of random and independent variables tends to follow a normal distribution as we increase the sample size.(Generally, for n>=30)"
]
},
{

View File

@@ -309,7 +309,7 @@
" G, Fx = jacob_motion(xEst[0:S], u)\n",
" # Fx is an an identity matrix of size (STATE_SIZE)\n",
" # sigma = G*sigma*G.T + Noise\n",
" PEst[0:S, 0:S] = G.T * PEst[0:S, 0:S] * G + Fx.T * Cx * Fx\n",
" PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx\n",
" return xEst, PEst, G, Fx"
]
},
@@ -584,7 +584,7 @@
" [0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],\n",
" [0.0, 0.0, 0.0]])\n",
"\n",
" G = np.eye(STATE_SIZE) + Fx.T * jF * Fx\n",
" G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx\n",
" if calc_n_LM(x) > 0:\n",
" print(Fx.shape)\n",
" return G, Fx,\n",

View File

@@ -31,7 +31,7 @@ def ekf_slam(xEst, PEst, u, z):
S = STATE_SIZE
xEst[0:S] = motion_model(xEst[0:S], u)
G, Fx = jacob_motion(xEst[0:S], u)
PEst[0:S, 0:S] = G.T * PEst[0:S, 0:S] * G + Fx.T * Cx * Fx
PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx
initP = np.eye(2)
# Update
@@ -119,7 +119,7 @@ def jacob_motion(x, u):
[0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],
[0.0, 0.0, 0.0]])
G = np.eye(STATE_SIZE) + Fx.T * jF * Fx
G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx
return G, Fx,

View File

@@ -180,7 +180,7 @@ Central Limit Theorem
^^^^^^^^^^^^^^^^^^^^^
According to this theorem, the average of n samples of random and
independant variables tends to follow a normal distribution as we
independent variables tends to follow a normal distribution as we
increase the sample size.(Generally, for n>=30)
.. code-block:: ipython3