mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 02:08:03 -05:00
update docs
This commit is contained in:
@@ -11,7 +11,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
" ### Probabilistic Generative Laws\n",
|
||||
"### Probabilistic Generative Laws\n",
|
||||
" \n",
|
||||
"#### 1st Law:\n",
|
||||
"The belief representing the state $x_{t}$, is conditioned on all past states, measurements and controls. This can be shown mathematically by the conditional probability shown below:\n",
|
||||
|
||||
@@ -128,7 +128,7 @@
|
||||
"source": [
|
||||
"where\n",
|
||||
"\n",
|
||||
"$$\\begin{equation*}\n",
|
||||
"\\begin{equation*}\n",
|
||||
"A' =\n",
|
||||
"\\begin{bmatrix}\n",
|
||||
"\\frac{\\partial }{\\partial x}vcos(\\phi) & \n",
|
||||
@@ -156,7 +156,7 @@
|
||||
"0 & 0 & 0 & 0 \\\\\n",
|
||||
"0 & 0 &\\frac{tan(\\bar{\\delta})}{L} & 0 \\\\\n",
|
||||
"\\end{bmatrix}\n",
|
||||
"\\end{equation*}$$\n",
|
||||
"\\end{equation*}\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
@@ -164,7 +164,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"$$\\begin{equation*}\n",
|
||||
"\\begin{equation*}\n",
|
||||
"B' =\n",
|
||||
"\\begin{bmatrix}\n",
|
||||
"\\frac{\\partial }{\\partial a}vcos(\\phi) &\n",
|
||||
@@ -184,7 +184,7 @@
|
||||
"1 & 0 \\\\\n",
|
||||
"0 & \\frac{\\bar{v}}{Lcos^2(\\bar{\\delta})} \\\\\n",
|
||||
"\\end{bmatrix}\n",
|
||||
"\\end{equation*}$$\n",
|
||||
"\\end{equation*}\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
@@ -212,7 +212,7 @@
|
||||
"\n",
|
||||
"where,\n",
|
||||
"\n",
|
||||
"$$\\begin{equation*}\n",
|
||||
"\\begin{equation*}\n",
|
||||
"A = (I + dtA')\\\\\n",
|
||||
"=\n",
|
||||
"\\begin{bmatrix} \n",
|
||||
@@ -221,14 +221,14 @@
|
||||
"0 & 0 & 1 & 0 \\\\\n",
|
||||
"0 & 0 &\\frac{tan(\\bar{\\delta})}{L}dt & 1 \\\\\n",
|
||||
"\\end{bmatrix}\n",
|
||||
"\\end{equation*}$$"
|
||||
"\\end{equation*}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"$$\\begin{equation*}\n",
|
||||
"\\begin{equation*}\n",
|
||||
"B = dtB'\\\\\n",
|
||||
"=\n",
|
||||
"\\begin{bmatrix} \n",
|
||||
@@ -237,14 +237,14 @@
|
||||
"dt & 0 \\\\\n",
|
||||
"0 & \\frac{\\bar{v}}{Lcos^2(\\bar{\\delta})}dt \\\\\n",
|
||||
"\\end{bmatrix}\n",
|
||||
"\\end{equation*}$$"
|
||||
"\\end{equation*}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"$$\\begin{equation*}\n",
|
||||
"\\begin{equation*}\n",
|
||||
"C = (f(\\bar{z},\\bar{u})-A'\\bar{z}-B'\\bar{u})dt\\\\\n",
|
||||
"= dt(\n",
|
||||
"\\begin{bmatrix} \n",
|
||||
@@ -275,7 +275,7 @@
|
||||
"0\\\\\n",
|
||||
"-\\frac{\\bar{v}\\bar{\\delta}}{Lcos^2(\\bar{\\delta})}dt\\\\\n",
|
||||
"\\end{bmatrix}\n",
|
||||
"\\end{equation*}$$"
|
||||
"\\end{equation*}"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||
KF Basics - Part 2
|
||||
------------------
|
||||
|
||||
### Probabilistic Generative Laws
|
||||
Probabilistic Generative Laws
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
1st Law:
|
||||
^^^^^^^^
|
||||
|
||||
@@ -94,61 +94,57 @@ ODE is
|
||||
|
||||
where
|
||||
|
||||
.. math::
|
||||
:raw-latex:`\begin{equation*}
|
||||
A' =
|
||||
\begin{bmatrix}
|
||||
\frac{\partial }{\partial x}vcos(\phi) &
|
||||
\frac{\partial }{\partial y}vcos(\phi) &
|
||||
\frac{\partial }{\partial v}vcos(\phi) &
|
||||
\frac{\partial }{\partial \phi}vcos(\phi)\\
|
||||
\frac{\partial }{\partial x}vsin(\phi) &
|
||||
\frac{\partial }{\partial y}vsin(\phi) &
|
||||
\frac{\partial }{\partial v}vsin(\phi) &
|
||||
\frac{\partial }{\partial \phi}vsin(\phi)\\
|
||||
\frac{\partial }{\partial x}a&
|
||||
\frac{\partial }{\partial y}a&
|
||||
\frac{\partial }{\partial v}a&
|
||||
\frac{\partial }{\partial \phi}a\\
|
||||
\frac{\partial }{\partial x}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial y}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial v}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial \phi}\frac{vtan(\delta)}{L}\\
|
||||
\end{bmatrix}
|
||||
\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 & cos(\bar{\phi}) & -\bar{v}sin(\bar{\phi})\\
|
||||
0 & 0 & sin(\bar{\phi}) & \bar{v}cos(\bar{\phi}) \\
|
||||
0 & 0 & 0 & 0 \\
|
||||
0 & 0 &\frac{tan(\bar{\delta})}{L} & 0 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}`
|
||||
|
||||
\begin{equation*}
|
||||
A' =
|
||||
\begin{bmatrix}
|
||||
\frac{\partial }{\partial x}vcos(\phi) &
|
||||
\frac{\partial }{\partial y}vcos(\phi) &
|
||||
\frac{\partial }{\partial v}vcos(\phi) &
|
||||
\frac{\partial }{\partial \phi}vcos(\phi)\\
|
||||
\frac{\partial }{\partial x}vsin(\phi) &
|
||||
\frac{\partial }{\partial y}vsin(\phi) &
|
||||
\frac{\partial }{\partial v}vsin(\phi) &
|
||||
\frac{\partial }{\partial \phi}vsin(\phi)\\
|
||||
\frac{\partial }{\partial x}a&
|
||||
\frac{\partial }{\partial y}a&
|
||||
\frac{\partial }{\partial v}a&
|
||||
\frac{\partial }{\partial \phi}a\\
|
||||
\frac{\partial }{\partial x}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial y}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial v}\frac{vtan(\delta)}{L}&
|
||||
\frac{\partial }{\partial \phi}\frac{vtan(\delta)}{L}\\
|
||||
\end{bmatrix}
|
||||
\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 & cos(\bar{\phi}) & -\bar{v}sin(\bar{\phi})\\
|
||||
0 & 0 & sin(\bar{\phi}) & \bar{v}cos(\bar{\phi}) \\
|
||||
0 & 0 & 0 & 0 \\
|
||||
0 & 0 &\frac{tan(\bar{\delta})}{L} & 0 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{equation*}
|
||||
B' =
|
||||
\begin{bmatrix}
|
||||
\frac{\partial }{\partial a}vcos(\phi) &
|
||||
\frac{\partial }{\partial \delta}vcos(\phi)\\
|
||||
\frac{\partial }{\partial a}vsin(\phi) &
|
||||
\frac{\partial }{\partial \delta}vsin(\phi)\\
|
||||
\frac{\partial }{\partial a}a &
|
||||
\frac{\partial }{\partial \delta}a\\
|
||||
\frac{\partial }{\partial a}\frac{vtan(\delta)}{L} &
|
||||
\frac{\partial }{\partial \delta}\frac{vtan(\delta)}{L}\\
|
||||
\end{bmatrix}
|
||||
\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 \\
|
||||
0 & 0 \\
|
||||
1 & 0 \\
|
||||
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})} \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
:raw-latex:`\begin{equation*}
|
||||
B' =
|
||||
\begin{bmatrix}
|
||||
\frac{\partial }{\partial a}vcos(\phi) &
|
||||
\frac{\partial }{\partial \delta}vcos(\phi)\\
|
||||
\frac{\partial }{\partial a}vsin(\phi) &
|
||||
\frac{\partial }{\partial \delta}vsin(\phi)\\
|
||||
\frac{\partial }{\partial a}a &
|
||||
\frac{\partial }{\partial \delta}a\\
|
||||
\frac{\partial }{\partial a}\frac{vtan(\delta)}{L} &
|
||||
\frac{\partial }{\partial \delta}\frac{vtan(\delta)}{L}\\
|
||||
\end{bmatrix}
|
||||
\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 \\
|
||||
0 & 0 \\
|
||||
1 & 0 \\
|
||||
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})} \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}`
|
||||
|
||||
You can get a discrete-time mode with Forward Euler Discretization with
|
||||
sampling time dt.
|
||||
@@ -167,66 +163,60 @@ So,
|
||||
|
||||
where,
|
||||
|
||||
.. math::
|
||||
:raw-latex:`\begin{equation*}
|
||||
A = (I + dtA')\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1 & 0 & cos(\bar{\phi})dt & -\bar{v}sin(\bar{\phi})dt\\
|
||||
0 & 1 & sin(\bar{\phi})dt & \bar{v}cos(\bar{\phi})dt \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 &\frac{tan(\bar{\delta})}{L}dt & 1 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}`
|
||||
|
||||
\begin{equation*}
|
||||
A = (I + dtA')\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1 & 0 & cos(\bar{\phi})dt & -\bar{v}sin(\bar{\phi})dt\\
|
||||
0 & 1 & sin(\bar{\phi})dt & \bar{v}cos(\bar{\phi})dt \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 &\frac{tan(\bar{\delta})}{L}dt & 1 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
:raw-latex:`\begin{equation*}
|
||||
B = dtB'\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 \\
|
||||
0 & 0 \\
|
||||
dt & 0 \\
|
||||
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})}dt \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}`
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{equation*}
|
||||
B = dtB'\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
0 & 0 \\
|
||||
0 & 0 \\
|
||||
dt & 0 \\
|
||||
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})}dt \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{equation*}
|
||||
C = (f(\bar{z},\bar{u})-A'\bar{z}-B'\bar{u})dt\\
|
||||
= dt(
|
||||
\begin{bmatrix}
|
||||
\bar{v}cos(\bar{\phi})\\
|
||||
\bar{v}sin(\bar{\phi}) \\
|
||||
\bar{a}\\
|
||||
\frac{\bar{v}tan(\bar{\delta})}{L}\\
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
\bar{v}cos(\bar{\phi})-\bar{v}sin(\bar{\phi})\bar{\phi}\\
|
||||
\bar{v}sin(\bar{\phi})+\bar{v}cos(\bar{\phi})\bar{\phi}\\
|
||||
0\\
|
||||
\frac{\bar{v}tan(\bar{\delta})}{L}\\
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
0\\
|
||||
0 \\
|
||||
\bar{a}\\
|
||||
\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}\\
|
||||
\end{bmatrix}
|
||||
)\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
\bar{v}sin(\bar{\phi})\bar{\phi}dt\\
|
||||
-\bar{v}cos(\bar{\phi})\bar{\phi}dt\\
|
||||
0\\
|
||||
-\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}dt\\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
:raw-latex:`\begin{equation*}
|
||||
C = (f(\bar{z},\bar{u})-A'\bar{z}-B'\bar{u})dt\\
|
||||
= dt(
|
||||
\begin{bmatrix}
|
||||
\bar{v}cos(\bar{\phi})\\
|
||||
\bar{v}sin(\bar{\phi}) \\
|
||||
\bar{a}\\
|
||||
\frac{\bar{v}tan(\bar{\delta})}{L}\\
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
\bar{v}cos(\bar{\phi})-\bar{v}sin(\bar{\phi})\bar{\phi}\\
|
||||
\bar{v}sin(\bar{\phi})+\bar{v}cos(\bar{\phi})\bar{\phi}\\
|
||||
0\\
|
||||
\frac{\bar{v}tan(\bar{\delta})}{L}\\
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
0\\
|
||||
0 \\
|
||||
\bar{a}\\
|
||||
\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}\\
|
||||
\end{bmatrix}
|
||||
)\\
|
||||
=
|
||||
\begin{bmatrix}
|
||||
\bar{v}sin(\bar{\phi})\bar{\phi}dt\\
|
||||
-\bar{v}cos(\bar{\phi})\bar{\phi}dt\\
|
||||
0\\
|
||||
-\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}dt\\
|
||||
\end{bmatrix}
|
||||
\end{equation*}`
|
||||
|
||||
This equation is implemented at
|
||||
|
||||
|
||||
Reference in New Issue
Block a user