still error

This commit is contained in:
Atsushi Sakai
2018-03-13 15:45:57 -07:00
parent 0d596ebba0
commit 3601bd187e

View File

@@ -12,8 +12,7 @@ import matplotlib.pyplot as plt
# EKF state covariance
Cx = np.diag([0.5, 0.5, math.radians(30.0)])**2
Cx = np.diag([1.0, 1.0, math.radians(30.0)])**2
# Simulation parameter
Qsim = np.diag([0.0, math.radians(0.0)])**2
@@ -46,7 +45,8 @@ class Particle:
def normalize_weight(particles):
sumw = sum([particles[ip].w for ip in range(N_PARTICLE)])
sumw = sum([p.w for p in particles])
# print(sumw)
# if sumw <= 0.0000001:
# for i in range(N_PARTICLE):
@@ -63,12 +63,16 @@ def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
# print(particles[i].x, particles[i].y, particles[i].yaw, particles[i].w)
xEst[2, 0] = pi_2_pi(xEst[2, 0])
# print(xEst)
return xEst
@@ -80,7 +84,7 @@ def predict_particles(particles, u):
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + np.matrix(np.random.randn(1, 2)) * Rsim # add noise
ud = u + (np.matrix(np.random.randn(1, 2)) * Rsim).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
@@ -112,38 +116,87 @@ def add_new_lm(particle, z):
return particle
def compute_jacobians(particle, xf, Pf, R):
dx = xf[0] - particle.x
dy = xf[1] - particle.y
d2 = dx**2 + dy**2
d = math.sqrt(d2)
zp = np.matrix([[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]])
Hv = np.matrix([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.matrix([[dx / d, -dy / d],
[-dy / d2, dx / d2]])
Sf = Hf * Pf * Hf.T + R
return zp, Hv, Hf, Sf
def KF_cholesky_update(xf, Pf, v, R, Hf):
PHt = Pf * Hf.T
S = Hf * PHt + R
S = (S + S.T) * 0.5
SChol = np.linalg.cholesky(S).T
SCholInv = np.linalg.inv(SChol)
W1 = PHt * SCholInv
W = W1 * SCholInv.T
x = xf + (W * v.T).T
P = Pf - W1 * W1.T
return x, P
def feature_update(particle, z, R):
lm_id = int(z[0, 2])
xf = particle.lm[lm_id, :]
Pf = particle.lmP[lm_id]
# print(xf)
# print(particle.lm)
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, R)
v = z[0, 0:2] - zp
v[0, 1] = pi_2_pi(v[0, 1])
# print(v)
xf, Pf = KF_cholesky_update(xf, Pf, v, R, Hf)
particle.lm[lm_id, :] = xf
particle.lmP[lm_id] = Pf
# print(xf)
# print(particle.lm)
# print(Pf)
# input()
return particle
def compute_weight(particle, z):
def compute_weight(particle, z, R):
lm_id = int(z[0, 2])
xf = particle.lm[lm_id, :]
Pf = particle.lmP[lm_id]
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, R)
lmxy = np.matrix(particle.lm[lm_id, :])
print(lmxy)
dx = z[0, 0:2] - zp
dx[0, 1] = pi_2_pi(dx[0, 1])
dx = dx.T
# calc landmark xy
r = z[0, 0]
b = z[0, 1]
lm_id = int(z[0, 2])
s = math.sin(particle.yaw + b)
c = math.cos(particle.yaw + b)
zxy = np.zeros((1, 2))
zxy[0, 0] = particle.x + r * c
zxy[0, 1] = particle.y + r * s
dx = (lmxy - zxy).T
S = particle.lmP[lm_id]
num = math.exp(-0.5 * dx.T * np.linalg.inv(S) * dx)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(S))
w = num / den
print(w)
return w
@@ -160,8 +213,9 @@ def update_with_observation(particles, z):
particles[ip] = add_new_lm(particles[ip], z[iz, :])
# known landmark
else:
w = compute_weight(particles[ip], z[iz, :]) # w = p(z_k | x_k)
particles[ip].w = particles[ip].w + w
# w = p(z_k | x_k)
w = compute_weight(particles[ip], z[iz, :], Cx[0:2, 0:2])
particles[ip].w = particles[ip].w * w
particles[ip] = feature_update(
particles[ip], z[iz, :], Cx[0:2, 0:2])
@@ -180,10 +234,9 @@ def resampling(particles):
pw.append(particles[i].w)
pw = np.matrix(pw)
# print(pw)
Neff = 1.0 / (pw * pw.T)[0, 0] # Effective particle number
# print(Neff)
print(Neff)
if Neff < NTH: # resampling
print("resamping")
@@ -198,11 +251,16 @@ def resampling(particles):
ind += 1
inds.append(ind)
# print(inds)
# print(pw)
tparticles = particles[:]
for i in range(len(inds)):
particles[i] = tparticles[inds[i]]
particles[i].w = 1.0 / N_PARTICLE
particles = normalize_weight(particles)
# input()
return particles
@@ -272,6 +330,8 @@ def motion_model(x, u):
x = F * x + B * u
x[2, 0] = pi_2_pi(x[2, 0])
return x
@@ -356,6 +416,10 @@ def main():
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
# for ii in range(N_LM):
# plt.plot(particles[i].lm[ii, 0],
# particles[i].lm[ii, 1], "xb")
# plot landmark
for i in range(calc_n_LM(xEst)):
plt.plot(xEst[STATE_SIZE + i * 2],