mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 04:28:04 -05:00
m sample generation
This commit is contained in:
@@ -8,8 +8,9 @@ Reference: https://arxiv.org/abs/1405.5848
|
||||
|
||||
import random
|
||||
import numpy as np
|
||||
from math import cos, sin, atan2, pi
|
||||
import copy
|
||||
import operator
|
||||
from math import cos, sin, atan2, pi
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
show_animation = True
|
||||
@@ -35,20 +36,52 @@ class BITStar():
|
||||
self.goalSampleRate = goalSampleRate
|
||||
self.maxIter = maxIter
|
||||
self.obstacleList = obstacleList
|
||||
self.vertex_queue = []
|
||||
self.edge_queue = []
|
||||
self.samples = dict()
|
||||
self.g_scores = dict()
|
||||
self.f_scores = dict()
|
||||
self.r = float('inf')
|
||||
self.eta = eta # tunable parameter
|
||||
self.unit_ball_measure = #TODO
|
||||
self.old_vertices = []
|
||||
|
||||
def plan(self, animation=True):
|
||||
|
||||
self.nodeList = [self.start]
|
||||
plan = None
|
||||
iterations = 0
|
||||
# max length we expect to find in our 'informed' sample space, starts as infinite
|
||||
cBest = float('inf')
|
||||
pathLen = float('inf')
|
||||
solutionSet = set()
|
||||
path = None
|
||||
|
||||
# Computing the sampling space
|
||||
cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) +
|
||||
pow(self.start.y - self.goal.y, 2))
|
||||
xCenter = np.matrix([[(self.start.x + self.goal.x) / 2.0],
|
||||
[(self.start.y + self.goal.y) / 2.0], [0]])
|
||||
a1 = np.matrix([[(self.goal.x - self.start.x) / cMin],
|
||||
[(self.goal.y - self.start.y) / cMin], [0]])
|
||||
etheta = math.atan2(a1[1], a1[0])
|
||||
# first column of idenity matrix transposed
|
||||
id1_t = np.matrix([1.0, 0.0, 0.0])
|
||||
M = np.dot(a1, id1_t)
|
||||
U, S, Vh = np.linalg.svd(M, 1, 1)
|
||||
C = np.dot(np.dot(U, np.diag(
|
||||
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh)
|
||||
|
||||
# while (iterations < self.maxIter):
|
||||
|
||||
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
|
||||
print("Batch: ", iterations)
|
||||
samples = self.informedSample(100, cBest, cMin, xCenter, C)
|
||||
# prune the tree
|
||||
|
||||
if animation:
|
||||
self.drawGraph(xCenter=xCenter, cBest=cBest,
|
||||
cMin=cMin, etheta=etheta, rnd=samples)
|
||||
|
||||
|
||||
|
||||
@@ -68,10 +101,44 @@ class BITStar():
|
||||
def getNearestSample(self):
|
||||
|
||||
# Sample free space confined in the radius of ball R
|
||||
def sample(self, m, cMax):
|
||||
def informedSample(self, m, cMax, cMin, xCenter, C):
|
||||
if cMax < float('inf'):
|
||||
samples = []
|
||||
for i in range(m):
|
||||
r = [cMax / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0]
|
||||
L = np.diag(r)
|
||||
xBall = self.sampleUnitBall()
|
||||
rnd = np.dot(np.dot(C, L), xBall) + xCenter
|
||||
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
|
||||
samples.append(rnd)
|
||||
else:
|
||||
for i in range(m):
|
||||
rnd = self.sampleFreeSpace()
|
||||
samples.append(rnd)
|
||||
|
||||
|
||||
# Sample point in a unit ball
|
||||
def sampleUnitBall(self, m):
|
||||
def sampleUnitBall(self):
|
||||
a = random.random()
|
||||
b = random.random()
|
||||
|
||||
if b < a:
|
||||
a, b = b, a
|
||||
|
||||
sample = (b * math.cos(2 * math.pi * a / b),
|
||||
b * math.sin(2 * math.pi * a / b))
|
||||
return np.array([[sample[0]], [sample[1]], [0]])
|
||||
|
||||
def sampleFreeSpace(self):
|
||||
if random.randint(0, 100) > self.goalSampleRate:
|
||||
rnd = [random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(self.minrand, self.maxrand)]
|
||||
else:
|
||||
rnd = [self.goal.x, self.goal.y]
|
||||
|
||||
return rnd
|
||||
|
||||
def bestVertexQueueValue(self):
|
||||
|
||||
@@ -81,4 +148,65 @@ class BITStar():
|
||||
|
||||
def bestInVertexQueue(self):
|
||||
|
||||
def updateGraph(self):
|
||||
def updateGraph(self):
|
||||
|
||||
def drawGraph(self, xCenter=None, cBest=None, cMin=None, etheta=None, rnd=None):
|
||||
|
||||
plt.clf()
|
||||
for rnd in samples:
|
||||
if rnd is not None:
|
||||
plt.plot(rnd[0], rnd[1], "^k")
|
||||
if cBest != float('inf'):
|
||||
self.plot_ellipse(xCenter, cBest, cMin, etheta)
|
||||
|
||||
# for node in self.nodeList:
|
||||
# if node.parent is not None:
|
||||
# if node.x or node.y is not None:
|
||||
# plt.plot([node.x, self.nodeList[node.parent].x], [
|
||||
# node.y, self.nodeList[node.parent].y], "-g")
|
||||
|
||||
for (ox, oy, size) in self.obstacleList:
|
||||
plt.plot(ox, oy, "ok", ms=30 * size)
|
||||
|
||||
plt.plot(self.start.x, self.start.y, "xr")
|
||||
plt.plot(self.goal.x, self.goal.y, "xr")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
|
||||
def plot_ellipse(self, xCenter, cBest, cMin, etheta):
|
||||
|
||||
a = math.sqrt(cBest**2 - cMin**2) / 2.0
|
||||
b = cBest / 2.0
|
||||
angle = math.pi / 2.0 - etheta
|
||||
cx = xCenter[0]
|
||||
cy = xCenter[1]
|
||||
|
||||
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
|
||||
x = [a * math.cos(it) for it in t]
|
||||
y = [b * math.sin(it) for it in t]
|
||||
R = np.matrix([[math.cos(angle), math.sin(angle)],
|
||||
[-math.sin(angle), math.cos(angle)]])
|
||||
fx = R * np.matrix([x, y])
|
||||
px = np.array(fx[0, :] + cx).flatten()
|
||||
py = np.array(fx[1, :] + cy).flatten()
|
||||
plt.plot(cx, cy, "xc")
|
||||
plt.plot(px, py, "--c")
|
||||
|
||||
def main():
|
||||
print("Starting Batch Informed Trees Star planning")
|
||||
obstacleList = [
|
||||
(5, 5, 0.5),
|
||||
(9, 6, 1),
|
||||
(7, 5, 1),
|
||||
(1, 5, 1),
|
||||
(3, 6, 1),
|
||||
(7, 9, 1)
|
||||
]
|
||||
|
||||
bitStar = BITStar(start=[0, 0], goal=[5, 10],
|
||||
randArea=[-2, 15], obstacleList=obstacleList)
|
||||
path = bitStar.plan(animation=show_animation)
|
||||
|
||||
if show_animation:
|
||||
bitStar.drawGraph()
|
||||
|
||||
Reference in New Issue
Block a user