keep coding

This commit is contained in:
Atsushi Sakai
2018-03-23 22:05:43 -07:00
parent 25430ec6ad
commit 6011cb3a80

View File

@@ -9,12 +9,10 @@ author: Atsushi Sakai (@Atsushi_twi)
import numpy as np
import math
import copy
import itertools
import matplotlib.pyplot as plt
# EKF state covariance
Cx = np.diag([0.5, 0.5, math.radians(30.0)])**2
# Simulation parameter
Qsim = np.diag([0.2, math.radians(1.0)])**2
Rsim = np.diag([1.0, math.radians(10.0)])**2
@@ -31,19 +29,57 @@ MAX_ITR = 20
show_animation = True
class Edge():
def __init__(self):
self.e = np.zeros((3, 1))
def calc_edges(xlist, zlist):
edges = []
zids = list(itertools.combinations(range(len(zlist)), 2))
# print(zids)
for (t, td) in zids:
xt = xlist[0, t]
yt = xlist[1, t]
yawt = xlist[2, t]
xtd = xlist[0, td]
ytd = xlist[1, td]
yawtd = xlist[2, td]
dt = zlist[t][0, 0]
anglet = zlist[t][1, 0]
phit = zlist[t][2, 0]
dtd = zlist[td][0, 0]
angletd = zlist[td][0, 0]
phitd = zlist[td][2, 0]
edge = Edge()
t1 = dt * math.cos(yawt + anglet)
t2 = dtd * math.cos(yawtd + angletd)
t3 = dt * math.sin(yawt + anglet)
t4 = dtd * math.sin(yawtd + angletd)
edge.e[0, 0] = xtd - xt - t1 + t2
edge.e[1, 0] = ytd - yt - t3 + t4
edge.e[2, 0] = yawtd - yawt - phit + phitd
edges.append(edge)
return edges
def graph_based_slam(xEst, PEst, u, z, hxDR, hz):
x_opt = copy.deepcopy(hxDR)
for itr in range(20):
# pos_edges = []
# # このfor文では、HalfEdgeからグラフの辺を作っていきます。
# for i in range(len(actual_landmarks.positions)): # ランドマークごとにHalfEdgeからEdgeを作る
# es = list(filter(lambda e: e.landmark_id == i, obs_edges)) # 同じランドマークIDを持つHalfEdgeの抽出
# ps = list(itertools.combinations(es,2)) # esの要素のペアを全通り作る
# for p in ps:
# pos_edges.append(Edge(p[0],p[1])) # エッジを登録
edges = calc_edges(x_opt, hz)
print("nedges:", len(edges))
n = len(hz) * 3
H = np.zeros((n, n))
@@ -87,18 +123,19 @@ def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 3)))
z = np.matrix(np.zeros((0, 4)))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx))
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
phi = angle - xTrue[2, 0]
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, anglen, i])
zi = np.matrix([dn, anglen, phi, i])
z = np.vstack((z, zi))
# add noise to input
@@ -141,11 +178,11 @@ def main():
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[3.0, 15.0],
[-5.0, 20.0]])
# RFID positions [x, y, yaw]
RFID = np.array([[10.0, -2.0, 0.0],
[15.0, 10.0, 0.0],
[3.0, 15.0, 0.0],
[-5.0, 20.0, 0.0]])
# State Vector [x y yaw v]'
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))