mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-12 08:28:05 -05:00
keep coding
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
"""
|
||||
|
||||
Graph SLAM example
|
||||
Graph based SLAM example
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
@@ -14,11 +14,11 @@ import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.2, math.radians(1.0)])**2
|
||||
Rsim = np.diag([1.0, math.radians(10.0)])**2
|
||||
Qsim = np.diag([0.0, math.radians(0.0)])**2
|
||||
Rsim = np.diag([0.0, math.radians(00.0)])**2
|
||||
|
||||
DT = 1.0 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
SIM_TIME = 20.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||||
|
||||
@@ -37,12 +37,12 @@ class Edge():
|
||||
def __init__(self):
|
||||
self.e = np.zeros((3, 1))
|
||||
self.omega = np.zeros((3, 3)) # information matrix
|
||||
self.d_t = 0.0
|
||||
self.d_td = 0.0
|
||||
self.yaw_t = 0.0
|
||||
self.yaw_td = 0.0
|
||||
self.angle_t = 0.0
|
||||
self.angle_td = 0.0
|
||||
self.d1 = 0.0
|
||||
self.d2 = 0.0
|
||||
self.yaw1 = 0.0
|
||||
self.yaw2 = 0.0
|
||||
self.angle1 = 0.0
|
||||
self.angle2 = 0.0
|
||||
self.id1 = 0
|
||||
self.id2 = 0
|
||||
|
||||
@@ -65,32 +65,32 @@ def calc_rotational_matrix(angle):
|
||||
return Rt
|
||||
|
||||
|
||||
def calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
|
||||
anglet, phit, dtd, angletd, phitd, t, td):
|
||||
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
|
||||
angle1, phi1, d2, angle2, phi2, t1, t2):
|
||||
edge = Edge()
|
||||
|
||||
tangle1 = pi_2_pi(yawt + anglet)
|
||||
tangle2 = pi_2_pi(yawt + anglet)
|
||||
t1 = dt * math.cos(tangle1)
|
||||
t2 = dtd * math.cos(tangle2)
|
||||
t3 = dt * math.sin(tangle1)
|
||||
t4 = dtd * math.sin(tangle2)
|
||||
tangle1 = pi_2_pi(yaw1 + angle1)
|
||||
tangle2 = pi_2_pi(yaw2 + angle2)
|
||||
tmp1 = d1 * math.cos(tangle1)
|
||||
tmp2 = d2 * math.cos(tangle2)
|
||||
tmp3 = d1 * math.sin(tangle1)
|
||||
tmp4 = d2 * math.sin(tangle2)
|
||||
|
||||
edge.e[0, 0] = xtd - xt - t1 + t2
|
||||
edge.e[1, 0] = ytd - yt - t3 + t4
|
||||
edge.e[2, 0] = pi_2_pi(yawtd - yawt - phit + phitd)
|
||||
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
|
||||
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
|
||||
edge.e[2, 0] = pi_2_pi(yaw2 - yaw1 - phi1 + phi2)
|
||||
|
||||
sig_t = cal_observation_sigma(dt)
|
||||
sig_td = cal_observation_sigma(dtd)
|
||||
sig_t = cal_observation_sigma(d1)
|
||||
sig_td = cal_observation_sigma(d2)
|
||||
|
||||
Rt = calc_rotational_matrix(tangle1)
|
||||
Rtd = calc_rotational_matrix(tangle2)
|
||||
|
||||
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
|
||||
edge.d_t, edge.d_td = dt, dtd
|
||||
edge.yaw_t, edge.yaw_td = yawt, yawtd
|
||||
edge.angle_t, edge.angle_td = anglet, angletd
|
||||
edge.id1, edge.id2 = t, td
|
||||
edge.d1, edge.d2 = d1, d2
|
||||
edge.yaw1, edge.yaw2 = yaw1, yaw2
|
||||
edge.angle1, edge.angle2 = angle1, angle2
|
||||
edge.id1, edge.id2 = t1, t2
|
||||
|
||||
return edge
|
||||
|
||||
@@ -100,40 +100,35 @@ def calc_edges(xlist, zlist):
|
||||
edges = []
|
||||
zids = list(itertools.combinations(range(len(zlist)), 2))
|
||||
|
||||
for (t, td) in zids:
|
||||
# print(xlist)
|
||||
# print(zlist)
|
||||
xt, yt, yawt = xlist[0, t], xlist[1, t], xlist[2, t]
|
||||
xtd, ytd, yawtd = xlist[0, td], xlist[1, td], xlist[2, td]
|
||||
# print(zlist[t])
|
||||
# print(zlist[td])
|
||||
for (t1, t2) in zids:
|
||||
x1, y1, yaw1 = xlist[0, t1], xlist[1, t1], xlist[2, t1]
|
||||
x2, y2, yaw2 = xlist[0, t2], xlist[1, t2], xlist[2, t2]
|
||||
|
||||
for iz1 in range(len(zlist[t][:, 0])):
|
||||
for iz2 in range(len(zlist[td][:, 0])):
|
||||
if zlist[t][iz1, 3] == zlist[td][iz2, 3]:
|
||||
dt, anglet, phit = zlist[t][iz1,
|
||||
0], zlist[t][iz1, 1], zlist[t][iz1, 2]
|
||||
dtd, angletd, phitd = zlist[td][iz2,
|
||||
0], zlist[td][iz2, 1], zlist[td][iz2, 2]
|
||||
for iz1 in range(len(zlist[t1][:, 0])):
|
||||
for iz2 in range(len(zlist[t2][:, 0])):
|
||||
if zlist[t1][iz1, 3] == zlist[t2][iz2, 3]:
|
||||
d1 = zlist[t1][iz1, 0]
|
||||
angle1, phi1 = zlist[t1][iz1, 1], zlist[t1][iz1, 2]
|
||||
d2 = zlist[t2][iz2, 0]
|
||||
angle2, phi2 = zlist[t2][iz2, 1], zlist[t2][iz2, 2]
|
||||
|
||||
edge = calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
|
||||
anglet, phit, dtd, angletd, phitd, t, td)
|
||||
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
|
||||
angle1, phi1, d2, angle2, phi2, t1, t2)
|
||||
|
||||
edges.append(edge)
|
||||
break
|
||||
|
||||
return edges
|
||||
|
||||
|
||||
def calc_jacobian(edge):
|
||||
t = edge.yaw_t + edge.angle_t
|
||||
A = np.matrix([[-1.0, 0, edge.d_t * math.sin(t)],
|
||||
[0, -1.0, -edge.d_t * math.cos(t)],
|
||||
t1 = edge.yaw1 + edge.angle1
|
||||
A = np.matrix([[-1.0, 0, edge.d1 * math.sin(t1)],
|
||||
[0, -1.0, -edge.d1 * math.cos(t1)],
|
||||
[0, 0, -1.0]])
|
||||
|
||||
td = edge.yaw_td + edge.angle_td
|
||||
B = np.matrix([[1.0, 0, -edge.d_td * math.sin(td)],
|
||||
[0, 1.0, edge.d_td * math.cos(td)],
|
||||
t2 = edge.yaw2 + edge.angle2
|
||||
B = np.matrix([[1.0, 0, -edge.d2 * math.sin(t2)],
|
||||
[0, 1.0, edge.d2 * math.cos(t2)],
|
||||
[0, 0, 1.0]])
|
||||
|
||||
return A, B
|
||||
@@ -143,27 +138,25 @@ def fill_H_and_b(H, b, edge):
|
||||
|
||||
A, B = calc_jacobian(edge)
|
||||
|
||||
id1 = edge.id1 * 3
|
||||
id2 = edge.id2 * 3
|
||||
id1 = edge.id1 * STATE_SIZE
|
||||
id2 = edge.id2 * STATE_SIZE
|
||||
|
||||
H[id1:id1 + 3, id1:id1 + 3] += A.T * edge.omega * A
|
||||
H[id1:id1 + 3, id2:id2 + 3] += A.T * edge.omega * B
|
||||
H[id2:id2 + 3, id1:id1 + 3] += B.T * edge.omega * A
|
||||
H[id2:id2 + 3, id2:id2 + 3] += B.T * edge.omega * B
|
||||
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T * edge.omega * A
|
||||
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T * edge.omega * B
|
||||
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T * edge.omega * A
|
||||
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T * edge.omega * B
|
||||
|
||||
b[id1:id1 + 3, 0] += (A.T * edge.omega * edge.e)
|
||||
b[id2:id2 + 3, 0] += (B.T * edge.omega * edge.e)
|
||||
b[id1:id1 + STATE_SIZE, 0] += (A.T * edge.omega * edge.e)
|
||||
b[id2:id2 + STATE_SIZE, 0] += (B.T * edge.omega * edge.e)
|
||||
|
||||
return H, b
|
||||
|
||||
|
||||
def graph_based_slam(u, z, hxDR, hz):
|
||||
def graph_based_slam(x_init, hz):
|
||||
print("start graph based slam")
|
||||
|
||||
x_opt = copy.deepcopy(hxDR)
|
||||
n = len(hz) * 3
|
||||
|
||||
# return x_opt
|
||||
x_opt = copy.deepcopy(x_init)
|
||||
n = len(hz) * STATE_SIZE
|
||||
|
||||
for itr in range(MAX_ITR):
|
||||
edges = calc_edges(x_opt, hz)
|
||||
@@ -175,10 +168,10 @@ def graph_based_slam(u, z, hxDR, hz):
|
||||
for edge in edges:
|
||||
H, b = fill_H_and_b(H, b, edge)
|
||||
|
||||
H[0:3, 0:3] += np.identity(3) * 10000 # to fix origin
|
||||
# to fix origin
|
||||
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
|
||||
|
||||
dx = - np.linalg.inv(H).dot(b)
|
||||
# print(dx)
|
||||
|
||||
for i in range(len(hz)):
|
||||
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
|
||||
@@ -268,13 +261,14 @@ def main():
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
|
||||
|
||||
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
|
||||
|
||||
# history
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
hz = []
|
||||
hz = [np.matrix(np.zeros((1, 4)))]
|
||||
hz[0][0, 3] = -1
|
||||
# hz = []
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
@@ -283,12 +277,10 @@ def main():
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
hz.append(z)
|
||||
|
||||
# store data history
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
x_opt = graph_based_slam(ud, z, hxDR, hz)
|
||||
x_opt = graph_based_slam(hxDR, hz)
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
|
||||
Reference in New Issue
Block a user