keep coding

This commit is contained in:
Atsushi Sakai
2018-03-26 22:55:19 -07:00
parent 4523d28bc0
commit 6e68ec934a

View File

@@ -1,6 +1,6 @@
"""
Graph SLAM example
Graph based SLAM example
author: Atsushi Sakai (@Atsushi_twi)
@@ -14,11 +14,11 @@ import matplotlib.pyplot as plt
# Simulation parameter
Qsim = np.diag([0.2, math.radians(1.0)])**2
Rsim = np.diag([1.0, math.radians(10.0)])**2
Qsim = np.diag([0.0, math.radians(0.0)])**2
Rsim = np.diag([0.0, math.radians(00.0)])**2
DT = 1.0 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
SIM_TIME = 20.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
STATE_SIZE = 3 # State size [x,y,yaw]
@@ -37,12 +37,12 @@ class Edge():
def __init__(self):
self.e = np.zeros((3, 1))
self.omega = np.zeros((3, 3)) # information matrix
self.d_t = 0.0
self.d_td = 0.0
self.yaw_t = 0.0
self.yaw_td = 0.0
self.angle_t = 0.0
self.angle_td = 0.0
self.d1 = 0.0
self.d2 = 0.0
self.yaw1 = 0.0
self.yaw2 = 0.0
self.angle1 = 0.0
self.angle2 = 0.0
self.id1 = 0
self.id2 = 0
@@ -65,32 +65,32 @@ def calc_rotational_matrix(angle):
return Rt
def calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
anglet, phit, dtd, angletd, phitd, t, td):
def calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, phi1, d2, angle2, phi2, t1, t2):
edge = Edge()
tangle1 = pi_2_pi(yawt + anglet)
tangle2 = pi_2_pi(yawt + anglet)
t1 = dt * math.cos(tangle1)
t2 = dtd * math.cos(tangle2)
t3 = dt * math.sin(tangle1)
t4 = dtd * math.sin(tangle2)
tangle1 = pi_2_pi(yaw1 + angle1)
tangle2 = pi_2_pi(yaw2 + angle2)
tmp1 = d1 * math.cos(tangle1)
tmp2 = d2 * math.cos(tangle2)
tmp3 = d1 * math.sin(tangle1)
tmp4 = d2 * math.sin(tangle2)
edge.e[0, 0] = xtd - xt - t1 + t2
edge.e[1, 0] = ytd - yt - t3 + t4
edge.e[2, 0] = pi_2_pi(yawtd - yawt - phit + phitd)
edge.e[0, 0] = x2 - x1 - tmp1 + tmp2
edge.e[1, 0] = y2 - y1 - tmp3 + tmp4
edge.e[2, 0] = pi_2_pi(yaw2 - yaw1 - phi1 + phi2)
sig_t = cal_observation_sigma(dt)
sig_td = cal_observation_sigma(dtd)
sig_t = cal_observation_sigma(d1)
sig_td = cal_observation_sigma(d2)
Rt = calc_rotational_matrix(tangle1)
Rtd = calc_rotational_matrix(tangle2)
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
edge.d_t, edge.d_td = dt, dtd
edge.yaw_t, edge.yaw_td = yawt, yawtd
edge.angle_t, edge.angle_td = anglet, angletd
edge.id1, edge.id2 = t, td
edge.d1, edge.d2 = d1, d2
edge.yaw1, edge.yaw2 = yaw1, yaw2
edge.angle1, edge.angle2 = angle1, angle2
edge.id1, edge.id2 = t1, t2
return edge
@@ -100,40 +100,35 @@ def calc_edges(xlist, zlist):
edges = []
zids = list(itertools.combinations(range(len(zlist)), 2))
for (t, td) in zids:
# print(xlist)
# print(zlist)
xt, yt, yawt = xlist[0, t], xlist[1, t], xlist[2, t]
xtd, ytd, yawtd = xlist[0, td], xlist[1, td], xlist[2, td]
# print(zlist[t])
# print(zlist[td])
for (t1, t2) in zids:
x1, y1, yaw1 = xlist[0, t1], xlist[1, t1], xlist[2, t1]
x2, y2, yaw2 = xlist[0, t2], xlist[1, t2], xlist[2, t2]
for iz1 in range(len(zlist[t][:, 0])):
for iz2 in range(len(zlist[td][:, 0])):
if zlist[t][iz1, 3] == zlist[td][iz2, 3]:
dt, anglet, phit = zlist[t][iz1,
0], zlist[t][iz1, 1], zlist[t][iz1, 2]
dtd, angletd, phitd = zlist[td][iz2,
0], zlist[td][iz2, 1], zlist[td][iz2, 2]
for iz1 in range(len(zlist[t1][:, 0])):
for iz2 in range(len(zlist[t2][:, 0])):
if zlist[t1][iz1, 3] == zlist[t2][iz2, 3]:
d1 = zlist[t1][iz1, 0]
angle1, phi1 = zlist[t1][iz1, 1], zlist[t1][iz1, 2]
d2 = zlist[t2][iz2, 0]
angle2, phi2 = zlist[t2][iz2, 1], zlist[t2][iz2, 2]
edge = calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
anglet, phit, dtd, angletd, phitd, t, td)
edge = calc_edge(x1, y1, yaw1, x2, y2, yaw2, d1,
angle1, phi1, d2, angle2, phi2, t1, t2)
edges.append(edge)
break
return edges
def calc_jacobian(edge):
t = edge.yaw_t + edge.angle_t
A = np.matrix([[-1.0, 0, edge.d_t * math.sin(t)],
[0, -1.0, -edge.d_t * math.cos(t)],
t1 = edge.yaw1 + edge.angle1
A = np.matrix([[-1.0, 0, edge.d1 * math.sin(t1)],
[0, -1.0, -edge.d1 * math.cos(t1)],
[0, 0, -1.0]])
td = edge.yaw_td + edge.angle_td
B = np.matrix([[1.0, 0, -edge.d_td * math.sin(td)],
[0, 1.0, edge.d_td * math.cos(td)],
t2 = edge.yaw2 + edge.angle2
B = np.matrix([[1.0, 0, -edge.d2 * math.sin(t2)],
[0, 1.0, edge.d2 * math.cos(t2)],
[0, 0, 1.0]])
return A, B
@@ -143,27 +138,25 @@ def fill_H_and_b(H, b, edge):
A, B = calc_jacobian(edge)
id1 = edge.id1 * 3
id2 = edge.id2 * 3
id1 = edge.id1 * STATE_SIZE
id2 = edge.id2 * STATE_SIZE
H[id1:id1 + 3, id1:id1 + 3] += A.T * edge.omega * A
H[id1:id1 + 3, id2:id2 + 3] += A.T * edge.omega * B
H[id2:id2 + 3, id1:id1 + 3] += B.T * edge.omega * A
H[id2:id2 + 3, id2:id2 + 3] += B.T * edge.omega * B
H[id1:id1 + STATE_SIZE, id1:id1 + STATE_SIZE] += A.T * edge.omega * A
H[id1:id1 + STATE_SIZE, id2:id2 + STATE_SIZE] += A.T * edge.omega * B
H[id2:id2 + STATE_SIZE, id1:id1 + STATE_SIZE] += B.T * edge.omega * A
H[id2:id2 + STATE_SIZE, id2:id2 + STATE_SIZE] += B.T * edge.omega * B
b[id1:id1 + 3, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + 3, 0] += (B.T * edge.omega * edge.e)
b[id1:id1 + STATE_SIZE, 0] += (A.T * edge.omega * edge.e)
b[id2:id2 + STATE_SIZE, 0] += (B.T * edge.omega * edge.e)
return H, b
def graph_based_slam(u, z, hxDR, hz):
def graph_based_slam(x_init, hz):
print("start graph based slam")
x_opt = copy.deepcopy(hxDR)
n = len(hz) * 3
# return x_opt
x_opt = copy.deepcopy(x_init)
n = len(hz) * STATE_SIZE
for itr in range(MAX_ITR):
edges = calc_edges(x_opt, hz)
@@ -175,10 +168,10 @@ def graph_based_slam(u, z, hxDR, hz):
for edge in edges:
H, b = fill_H_and_b(H, b, edge)
H[0:3, 0:3] += np.identity(3) * 10000 # to fix origin
# to fix origin
H[0:STATE_SIZE, 0:STATE_SIZE] += np.identity(STATE_SIZE)
dx = - np.linalg.inv(H).dot(b)
# print(dx)
for i in range(len(hz)):
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
@@ -268,13 +261,14 @@ def main():
# State Vector [x y yaw v]'
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
# history
hxTrue = xTrue
hxDR = xTrue
hz = []
hz = [np.matrix(np.zeros((1, 4)))]
hz[0][0, 3] = -1
# hz = []
while SIM_TIME >= time:
time += DT
@@ -283,12 +277,10 @@ def main():
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
hz.append(z)
# store data history
hxTrue = np.hstack((hxTrue, xTrue))
x_opt = graph_based_slam(ud, z, hxDR, hz)
x_opt = graph_based_slam(hxDR, hz)
if show_animation:
plt.cla()