mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 01:28:23 -05:00
add reeds_shepp_path_planning code
This commit is contained in:
@@ -0,0 +1,59 @@
|
||||
"""
|
||||
A simple Python module for recording matplotlib animation
|
||||
|
||||
This tool use convert command of ImageMagick
|
||||
|
||||
author: Atsushi Sakai
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import subprocess
|
||||
|
||||
iframe = 0
|
||||
donothing = False
|
||||
|
||||
|
||||
def save_frame():
|
||||
"""
|
||||
Save a frame for movie
|
||||
"""
|
||||
|
||||
if not donothing:
|
||||
global iframe
|
||||
plt.savefig("recoder" + '{0:04d}'.format(iframe) + '.png')
|
||||
iframe += 1
|
||||
|
||||
|
||||
def save_movie(fname, d_pause):
|
||||
"""
|
||||
Save movie as gif
|
||||
"""
|
||||
if not donothing:
|
||||
cmd = "convert -delay " + str(int(d_pause * 100)) + \
|
||||
" recoder*.png " + fname
|
||||
subprocess.call(cmd, shell=True)
|
||||
cmd = "rm recoder*.png"
|
||||
subprocess.call(cmd, shell=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("A sample recording start")
|
||||
import math
|
||||
|
||||
time = range(50)
|
||||
|
||||
x1 = [math.cos(t / 10.0) for t in time]
|
||||
y1 = [math.sin(t / 10.0) for t in time]
|
||||
x2 = [math.cos(t / 10.0) + 2 for t in time]
|
||||
y2 = [math.sin(t / 10.0) + 2 for t in time]
|
||||
|
||||
for ix1, iy1, ix2, iy2 in zip(x1, y1, x2, y2):
|
||||
plt.plot(ix1, iy1, "xr")
|
||||
plt.plot(ix2, iy2, "xb")
|
||||
plt.axis("equal")
|
||||
plt.pause(0.1)
|
||||
|
||||
save_frame() # save each frame
|
||||
|
||||
save_movie("animation.gif", 0.1)
|
||||
# save_movie("animation.mp4", 0.1)
|
||||
@@ -0,0 +1,90 @@
|
||||
#! /usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
|
||||
Reeds Shepp path planner sample code
|
||||
|
||||
author Atsushi Sakai(@Atsushi_twi)
|
||||
|
||||
License MIT
|
||||
|
||||
"""
|
||||
import reeds_shepp
|
||||
import math
|
||||
|
||||
|
||||
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
|
||||
u"""
|
||||
Plot arrow
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if not isinstance(x, float):
|
||||
for (ix, iy, iyaw) in zip(x, y, yaw):
|
||||
plot_arrow(ix, iy, iyaw)
|
||||
else:
|
||||
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
|
||||
fc=fc, ec=ec, head_width=width, head_length=width)
|
||||
plt.plot(x, y)
|
||||
|
||||
|
||||
def reeds_shepp_path_planning(start_x, start_y, start_yaw,
|
||||
end_x, end_y, end_yaw, curvature):
|
||||
q0 = [start_x, start_y, start_yaw]
|
||||
q1 = [end_x, end_y, end_yaw]
|
||||
step_size = 0.1
|
||||
qs = reeds_shepp.path_sample(q0, q1, curvature, step_size)
|
||||
xs = [q[0] for q in qs]
|
||||
ys = [q[1] for q in qs]
|
||||
yaw = [q[2] for q in qs]
|
||||
|
||||
xs.append(end_x)
|
||||
ys.append(end_y)
|
||||
yaw.append(end_yaw)
|
||||
|
||||
clen = reeds_shepp.path_length(q0, q1, curvature)
|
||||
pathtypeTuple = reeds_shepp.path_type(q0, q1, curvature)
|
||||
|
||||
ptype = ""
|
||||
for t in pathtypeTuple:
|
||||
if t == 1:
|
||||
ptype += "L"
|
||||
elif t == 2:
|
||||
ptype += "S"
|
||||
elif t == 3:
|
||||
ptype += "R"
|
||||
|
||||
return xs, ys, yaw, ptype, clen
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("Reeds Shepp path planner sample start!!")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
start_x = 1.0 # [m]
|
||||
start_y = 1.0 # [m]
|
||||
start_yaw = math.radians(0.0) # [rad]
|
||||
|
||||
end_x = -0.0 # [m]
|
||||
end_y = -3.0 # [m]
|
||||
end_yaw = math.radians(-45.0) # [rad]
|
||||
|
||||
curvature = 1.0
|
||||
|
||||
px, py, pyaw, mode, clen = reeds_shepp_path_planning(
|
||||
start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature)
|
||||
|
||||
plt.plot(px, py, label="final course " + str(mode))
|
||||
|
||||
# plotting
|
||||
plot_arrow(start_x, start_y, start_yaw)
|
||||
plot_arrow(end_x, end_y, end_yaw)
|
||||
|
||||
for (ix, iy, iyaw) in zip(px, py, pyaw):
|
||||
plot_arrow(ix, iy, iyaw, fc="b")
|
||||
# print(clen)
|
||||
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.show()
|
||||
309
scripts/PathPlanning/RRTStarCar_reeds_sheep/rrt_star_car.py
Normal file
309
scripts/PathPlanning/RRTStarCar_reeds_sheep/rrt_star_car.py
Normal file
@@ -0,0 +1,309 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
@brief: Path Planning Sample Code with RRT for car like robot.
|
||||
|
||||
@author: AtsushiSakai(@Atsushi_twi)
|
||||
|
||||
@license: MIT
|
||||
|
||||
"""
|
||||
|
||||
import random
|
||||
import math
|
||||
import copy
|
||||
import numpy as np
|
||||
import reeds_shepp_path_planning
|
||||
|
||||
|
||||
class RRT():
|
||||
u"""
|
||||
Class for RRT Planning
|
||||
"""
|
||||
|
||||
def __init__(self, start, goal, obstacleList, randArea,
|
||||
goalSampleRate=10, maxIter=1000):
|
||||
u"""
|
||||
Setting Parameter
|
||||
|
||||
start:Start Position [x,y]
|
||||
goal:Goal Position [x,y]
|
||||
obstacleList:obstacle Positions [[x,y,size],...]
|
||||
randArea:Ramdom Samping Area [min,max]
|
||||
|
||||
"""
|
||||
self.start = Node(start[0], start[1], start[2])
|
||||
self.end = Node(goal[0], goal[1], goal[2])
|
||||
self.minrand = randArea[0]
|
||||
self.maxrand = randArea[1]
|
||||
self.goalSampleRate = goalSampleRate
|
||||
self.maxIter = maxIter
|
||||
|
||||
def Planning(self, animation=True):
|
||||
u"""
|
||||
Pathplanning
|
||||
|
||||
animation: flag for animation on or off
|
||||
"""
|
||||
|
||||
self.nodeList = [self.start]
|
||||
for i in range(self.maxIter):
|
||||
rnd = self.get_random_point()
|
||||
nind = self.GetNearestListIndex(self.nodeList, rnd)
|
||||
|
||||
newNode = self.steer(rnd, nind)
|
||||
# print(newNode.cost)
|
||||
|
||||
if self.CollisionCheck(newNode, obstacleList):
|
||||
nearinds = self.find_near_nodes(newNode)
|
||||
newNode = self.choose_parent(newNode, nearinds)
|
||||
self.nodeList.append(newNode)
|
||||
self.rewire(newNode, nearinds)
|
||||
|
||||
if animation and i % 5 == 0:
|
||||
self.DrawGraph(rnd=rnd)
|
||||
matplotrecorder.save_frame() # save each frame
|
||||
|
||||
# generate coruse
|
||||
lastIndex = self.get_best_last_index()
|
||||
# print(lastIndex)
|
||||
path = self.gen_final_course(lastIndex)
|
||||
return path
|
||||
|
||||
def choose_parent(self, newNode, nearinds):
|
||||
if len(nearinds) == 0:
|
||||
return newNode
|
||||
|
||||
dlist = []
|
||||
for i in nearinds:
|
||||
tNode = self.steer(newNode, i)
|
||||
if self.CollisionCheck(tNode, obstacleList):
|
||||
dlist.append(tNode.cost)
|
||||
else:
|
||||
dlist.append(float("inf"))
|
||||
|
||||
mincost = min(dlist)
|
||||
minind = nearinds[dlist.index(mincost)]
|
||||
|
||||
if mincost == float("inf"):
|
||||
print("mincost is inf")
|
||||
return newNode
|
||||
|
||||
newNode = self.steer(newNode, minind)
|
||||
|
||||
return newNode
|
||||
|
||||
def pi_2_pi(self, angle):
|
||||
while(angle >= math.pi):
|
||||
angle = angle - 2.0 * math.pi
|
||||
|
||||
while(angle <= -math.pi):
|
||||
angle = angle + 2.0 * math.pi
|
||||
|
||||
return angle
|
||||
|
||||
def steer(self, rnd, nind):
|
||||
# print(rnd)
|
||||
curvature = 1.0
|
||||
|
||||
nearestNode = self.nodeList[nind]
|
||||
|
||||
px, py, pyaw, mode, clen = reeds_shepp_path_planning.reeds_shepp_path_planning(
|
||||
nearestNode.x, nearestNode.y, nearestNode.yaw, rnd.x, rnd.y, rnd.yaw, curvature)
|
||||
|
||||
newNode = copy.deepcopy(nearestNode)
|
||||
newNode.x = px[-1]
|
||||
newNode.y = py[-1]
|
||||
newNode.yaw = pyaw[-1]
|
||||
|
||||
newNode.path_x = px
|
||||
newNode.path_y = py
|
||||
newNode.path_yaw = pyaw
|
||||
newNode.cost += clen
|
||||
newNode.parent = nind
|
||||
|
||||
return newNode
|
||||
|
||||
def get_random_point(self):
|
||||
|
||||
if random.randint(0, 100) > self.goalSampleRate:
|
||||
rnd = [random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(-math.pi, math.pi)
|
||||
]
|
||||
else: # goal point sampling
|
||||
rnd = [self.end.x, self.end.y, self.end.yaw]
|
||||
|
||||
node = Node(rnd[0], rnd[1], rnd[2])
|
||||
|
||||
return node
|
||||
|
||||
def get_best_last_index(self):
|
||||
# print("get_best_last_index")
|
||||
|
||||
YAWTH = math.radians(3.0)
|
||||
XYTH = 0.5
|
||||
|
||||
goalinds = []
|
||||
for (i, node) in enumerate(self.nodeList):
|
||||
if self.calc_dist_to_goal(node.x, node.y) <= XYTH:
|
||||
goalinds.append(i)
|
||||
print("OK XY TH num is")
|
||||
print(len(goalinds))
|
||||
|
||||
# angle check
|
||||
fgoalinds = []
|
||||
for i in goalinds:
|
||||
if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH:
|
||||
fgoalinds.append(i)
|
||||
print("OK YAW TH num is")
|
||||
print(len(fgoalinds))
|
||||
|
||||
mincost = min([self.nodeList[i].cost for i in fgoalinds])
|
||||
for i in fgoalinds:
|
||||
if self.nodeList[i].cost == mincost:
|
||||
return i
|
||||
|
||||
return None
|
||||
|
||||
def gen_final_course(self, goalind):
|
||||
path = [[self.end.x, self.end.y]]
|
||||
while self.nodeList[goalind].parent is not None:
|
||||
node = self.nodeList[goalind]
|
||||
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
|
||||
path.append([ix, iy])
|
||||
# path.append([node.x, node.y])
|
||||
goalind = node.parent
|
||||
path.append([self.start.x, self.start.y])
|
||||
return path
|
||||
|
||||
def calc_dist_to_goal(self, x, y):
|
||||
return np.linalg.norm([x - self.end.x, y - self.end.y])
|
||||
|
||||
def find_near_nodes(self, newNode):
|
||||
nnode = len(self.nodeList)
|
||||
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
|
||||
# r = self.expandDis * 5.0
|
||||
dlist = [(node.x - newNode.x) ** 2 +
|
||||
(node.y - newNode.y) ** 2 +
|
||||
(node.yaw - newNode.yaw) ** 2
|
||||
for node in self.nodeList]
|
||||
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
|
||||
return nearinds
|
||||
|
||||
def rewire(self, newNode, nearinds):
|
||||
|
||||
nnode = len(self.nodeList)
|
||||
|
||||
for i in nearinds:
|
||||
nearNode = self.nodeList[i]
|
||||
tNode = self.steer(nearNode, nnode - 1)
|
||||
|
||||
obstacleOK = self.CollisionCheck(tNode, obstacleList)
|
||||
imporveCost = nearNode.cost > tNode.cost
|
||||
|
||||
if obstacleOK and imporveCost:
|
||||
# print("rewire")
|
||||
self.nodeList[i] = tNode
|
||||
|
||||
def DrawGraph(self, rnd=None):
|
||||
u"""
|
||||
Draw Graph
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
plt.clf()
|
||||
if rnd is not None:
|
||||
plt.plot(rnd.x, rnd.y, "^k")
|
||||
for node in self.nodeList:
|
||||
if node.parent is not None:
|
||||
plt.plot(node.path_x, node.path_y, "-g")
|
||||
# plt.plot([node.x, self.nodeList[node.parent].x], [
|
||||
# node.y, self.nodeList[node.parent].y], "-g")
|
||||
|
||||
for (ox, oy, size) in obstacleList:
|
||||
plt.plot(ox, oy, "ok", ms=30 * size)
|
||||
|
||||
reeds_shepp_path_planning.plot_arrow(
|
||||
self.start.x, self.start.y, self.start.yaw)
|
||||
reeds_shepp_path_planning.plot_arrow(
|
||||
self.end.x, self.end.y, self.end.yaw)
|
||||
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
|
||||
# plt.show()
|
||||
# input()
|
||||
|
||||
def GetNearestListIndex(self, nodeList, rnd):
|
||||
dlist = [(node.x - rnd.x) ** 2 +
|
||||
(node.y - rnd.y) ** 2 +
|
||||
(node.yaw - rnd.yaw) ** 2 for node in nodeList]
|
||||
minind = dlist.index(min(dlist))
|
||||
|
||||
return minind
|
||||
|
||||
def CollisionCheck(self, node, obstacleList):
|
||||
|
||||
for (ox, oy, size) in obstacleList:
|
||||
for (ix, iy) in zip(node.path_x, node.path_y):
|
||||
dx = ox - ix
|
||||
dy = oy - iy
|
||||
d = dx * dx + dy * dy
|
||||
if d <= size ** 2:
|
||||
return False # collision
|
||||
|
||||
return True # safe
|
||||
|
||||
|
||||
class Node():
|
||||
u"""
|
||||
RRT Node
|
||||
"""
|
||||
|
||||
def __init__(self, x, y, yaw):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.yaw = yaw
|
||||
self.path_x = []
|
||||
self.path_y = []
|
||||
self.path_yaw = []
|
||||
self.cost = 0.0
|
||||
self.parent = None
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print("Start rrt start planning")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotrecorder
|
||||
matplotrecorder.donothing = True
|
||||
|
||||
# ====Search Path with RRT====
|
||||
obstacleList = [
|
||||
(5, 5, 1),
|
||||
(3, 6, 2),
|
||||
(3, 8, 2),
|
||||
(3, 10, 2),
|
||||
(7, 5, 2),
|
||||
(9, 5, 2)
|
||||
] # [x,y,size(radius)]
|
||||
|
||||
# Set Initial parameters
|
||||
start = [0.0, 0.0, math.radians(0.0)]
|
||||
goal = [5.0, 10.0, math.radians(0.0)]
|
||||
|
||||
rrt = RRT(start, goal, randArea=[-2.0, 15.0], obstacleList=obstacleList)
|
||||
path = rrt.Planning(animation=False)
|
||||
|
||||
# Draw final path
|
||||
rrt.DrawGraph()
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.001)
|
||||
|
||||
for i in range(10):
|
||||
matplotrecorder.save_frame() # save each frame
|
||||
|
||||
plt.show()
|
||||
|
||||
matplotrecorder.save_movie("animation.gif", 0.1)
|
||||
@@ -38,6 +38,10 @@ def reeds_shepp_path_planning(start_x, start_y, start_yaw,
|
||||
ys = [q[1] for q in qs]
|
||||
yaw = [q[2] for q in qs]
|
||||
|
||||
xs.append(end_x)
|
||||
ys.append(end_y)
|
||||
yaw.append(end_yaw)
|
||||
|
||||
clen = reeds_shepp.path_length(q0, q1, curvature)
|
||||
pathtypeTuple = reeds_shepp.path_type(q0, q1, curvature)
|
||||
|
||||
@@ -57,9 +61,9 @@ if __name__ == '__main__':
|
||||
print("Reeds Shepp path planner sample start!!")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
start_x = 1.0 # [m]
|
||||
start_x = 10.0 # [m]
|
||||
start_y = 1.0 # [m]
|
||||
start_yaw = math.radians(0.0) # [rad]
|
||||
start_yaw = math.radians(180.0) # [rad]
|
||||
|
||||
end_x = -0.0 # [m]
|
||||
end_y = -3.0 # [m]
|
||||
@@ -76,8 +80,8 @@ if __name__ == '__main__':
|
||||
plot_arrow(start_x, start_y, start_yaw)
|
||||
plot_arrow(end_x, end_y, end_yaw)
|
||||
|
||||
for (ix, iy, iyaw) in zip(px, py, pyaw):
|
||||
plot_arrow(ix, iy, iyaw, fc="b")
|
||||
# for (ix, iy, iyaw) in zip(px, py, pyaw):
|
||||
# plot_arrow(ix, iy, iyaw, fc="b")
|
||||
# print(clen)
|
||||
|
||||
plt.legend()
|
||||
|
||||
Reference in New Issue
Block a user