This commit is contained in:
Atsushi Sakai
2018-11-15 21:14:42 +09:00
parent 274bfda8e6
commit 906681c471

View File

@@ -0,0 +1,244 @@
Model predictive speed and steering control
-------------------------------------------
.. figure:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/model_predictive_speed_and_steer_control/animation.gif?raw=true
:alt: Model predictive speed and steering control
Model predictive speed and steering control
code:
`PythonRobotics/model_predictive_speed_and_steer_control.py at master ·
AtsushiSakai/PythonRobotics <https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py>`__
This is a path tracking simulation using model predictive control (MPC).
The MPC controller controls vehicle speed and steering base on
linealized model.
This code uses cvxpy as an optimization modeling tool.
- `Welcome to CVXPY 1.0 — CVXPY 1.0.6
documentation <http://www.cvxpy.org/>`__
MPC modeling
~~~~~~~~~~~~
State vector is:
.. math:: z = [x, y, v,\phi]
\ x: x-position, y:y-position, v:velocity, φ: yaw angle
Input vector is:
.. math:: u = [a, \delta]
\ a: accellation, δ: steering angle
The MPC cotroller minimize this cost function for path tracking:
.. math:: min\ Q_f(z_{T,ref}-z_{T})^2+Q\Sigma({z_{t,ref}-z_{t}})^2+R\Sigma{u_t}^2+R_d\Sigma({u_{t+1}-u_{t}})^2
z_ref come from target path and speed.
subject to:
- Linearlied vehicle model
.. math:: z_{t+1}=Az_t+Bu+C
- Maximum steering speed
.. math:: |u_{t+1}-u_{t}|<du_{max}
- Maximum steering angle
.. math:: |u_{t}|<u_{max}
- Initial state
.. math:: z_0 = z_{0,ob}
- Maximum and minimum speed
.. math:: v_{min} < v_t < v_{max}
- Maximum and minimum input
.. math:: u_{min} < u_t < u_{max}
This is implemented at
`PythonRobotics/model_predictive_speed_and_steer_control.py at
f51a73f47cb922a12659f8ce2d544c347a2a8156 ·
AtsushiSakai/PythonRobotics <https://github.com/AtsushiSakai/PythonRobotics/blob/f51a73f47cb922a12659f8ce2d544c347a2a8156/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L247-L301>`__
Vehicle model linearization
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Vehicle model is
.. math:: \dot{x} = vcos(\phi)
.. math:: \dot{y} = vsin((\phi)
.. math:: \dot{v} = a
.. math:: \dot{\phi} = \frac{vtan(\delta)}{L}
ODE is
.. math:: \dot{z} =\frac{\partial }{\partial z} z = f(z, u) = A'z+B'u
where
.. math::
\begin{equation*}
A' =
\begin{bmatrix}
\frac{\partial }{\partial x}vcos(\phi) &
\frac{\partial }{\partial y}vcos(\phi) &
\frac{\partial }{\partial v}vcos(\phi) &
\frac{\partial }{\partial \phi}vcos(\phi)\\
\frac{\partial }{\partial x}vsin(\phi) &
\frac{\partial }{\partial y}vsin(\phi) &
\frac{\partial }{\partial v}vsin(\phi) &
\frac{\partial }{\partial \phi}vsin(\phi)\\
\frac{\partial }{\partial x}a&
\frac{\partial }{\partial y}a&
\frac{\partial }{\partial v}a&
\frac{\partial }{\partial \phi}a\\
\frac{\partial }{\partial x}\frac{vtan(\delta)}{L}&
\frac{\partial }{\partial y}\frac{vtan(\delta)}{L}&
\frac{\partial }{\partial v}\frac{vtan(\delta)}{L}&
\frac{\partial }{\partial \phi}\frac{vtan(\delta)}{L}\\
\end{bmatrix}
\\
 =
\begin{bmatrix}
0 & 0 & cos(\bar{\phi}) & -\bar{v}sin(\bar{\phi})\\
0 & 0 & sin(\bar{\phi}) & \bar{v}cos(\bar{\phi}) \\
0 & 0 & 0 & 0 \\
0 & 0 &\frac{tan(\bar{\delta})}{L} & 0 \\
\end{bmatrix}
\end{equation*}
.. math::
\begin{equation*}
B' =
\begin{bmatrix}
\frac{\partial }{\partial a}vcos(\phi) &
\frac{\partial }{\partial \delta}vcos(\phi)\\
\frac{\partial }{\partial a}vsin(\phi) &
\frac{\partial }{\partial \delta}vsin(\phi)\\
\frac{\partial }{\partial a}a &
\frac{\partial }{\partial \delta}a\\
\frac{\partial }{\partial a}\frac{vtan(\delta)}{L} &
\frac{\partial }{\partial \delta}\frac{vtan(\delta)}{L}\\
\end{bmatrix}
\\
 =
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})} \\
\end{bmatrix}
\end{equation*}
You can get a discrete-time mode with Forward Euler Discretization with
sampling time dt.
.. math:: z_{k+1}=z_k+f(z_k,u_k)dt
Using first degree Tayer expantion around zbar and ubar
.. math:: z_{k+1}=z_k+(f(\bar{z},\bar{u})+A'z_k+B'u_k-A'\bar{z}-B'\bar{u})dt
.. math:: z_{k+1}=(I + dtA')z_k+(dtB')u_k + (f(\bar{z},\bar{u})-A'\bar{z}-B'\bar{u})dt
So,
.. math:: z_{k+1}=Az_k+Bu_k +C
where,
.. math::
\begin{equation*}
A = (I + dtA')\\
=
\begin{bmatrix}
1 & 0 & cos(\bar{\phi})dt & -\bar{v}sin(\bar{\phi})dt\\
0 & 1 & sin(\bar{\phi})dt & \bar{v}cos(\bar{\phi})dt \\
0 & 0 & 1 & 0 \\
0 & 0 &\frac{tan(\bar{\delta})}{L}dt & 1 \\
\end{bmatrix}
\end{equation*}
.. math::
\begin{equation*}
B = dtB'\\
=
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
dt & 0 \\
0 & \frac{\bar{v}}{Lcos^2(\bar{\delta})}dt \\
\end{bmatrix}
\end{equation*}
.. math::
\begin{equation*}
C = (f(\bar{z},\bar{u})-A'\bar{z}-B'\bar{u})dt\\
= dt(
\begin{bmatrix}
\bar{v}cos(\bar{\phi})\\
\bar{v}sin(\bar{\phi}) \\
\bar{a}\\
\frac{\bar{v}tan(\bar{\delta})}{L}\\
\end{bmatrix}
-
\begin{bmatrix}
\bar{v}cos(\bar{\phi})-\bar{v}sin(\bar{\phi})\bar{\phi}\\
\bar{v}sin(\bar{\phi})+\bar{v}cos(\bar{\phi})\bar{\phi}\\
0\\
\frac{\bar{v}tan(\bar{\delta})}{L}\\
\end{bmatrix}
-
\begin{bmatrix}
0\\
0 \\
\bar{a}\\
\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}\\
\end{bmatrix}
)\\
=
\begin{bmatrix}
\bar{v}sin(\bar{\phi})\bar{\phi}dt\\
-\bar{v}cos(\bar{\phi})\bar{\phi}dt\\
0\\
-\frac{\bar{v}\bar{\delta}}{Lcos^2(\bar{\delta})}dt\\
\end{bmatrix}
\end{equation*}
This equation is implemented at
`PythonRobotics/model_predictive_speed_and_steer_control.py at
eb6d1cbe6fc90c7be9210bf153b3a04f177cc138 ·
AtsushiSakai/PythonRobotics <https://github.com/AtsushiSakai/PythonRobotics/blob/eb6d1cbe6fc90c7be9210bf153b3a04f177cc138/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py#L80-L102>`__
Reference
~~~~~~~~~
- `Vehicle Dynamics and Control \| Rajesh Rajamani \|
Springer <http://www.springer.com/us/book/9781461414322>`__
- `MPC Course Material - MPC Lab @
UC-Berkeley <http://www.mpc.berkeley.edu/mpc-course-material>`__