mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 02:28:03 -05:00
indent code with pep8
This commit is contained in:
@@ -9,6 +9,7 @@ import matplotlib.patches as pat
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import mpl_toolkits.mplot3d.art3d as art3d
|
||||
|
||||
|
||||
class BipedalPlanner(object):
|
||||
def __init__(self):
|
||||
self.ref_footsteps = None
|
||||
@@ -22,11 +23,11 @@ class BipedalPlanner(object):
|
||||
|
||||
for i in range(time_split):
|
||||
delta_time = time_width / time_split
|
||||
|
||||
|
||||
x_dot2 = self.g / z_c * (x - px_star)
|
||||
x += x_dot * delta_time
|
||||
x_dot += x_dot2 * delta_time
|
||||
|
||||
|
||||
y_dot2 = self.g / z_c * (y - py_star)
|
||||
y += y_dot * delta_time
|
||||
y_dot += y_dot2 * delta_time
|
||||
@@ -35,7 +36,7 @@ class BipedalPlanner(object):
|
||||
self.com_trajectory.append([x, y])
|
||||
|
||||
return x, x_dot, y, y_dot
|
||||
|
||||
|
||||
def walk(self, T_sup=0.8, z_c=0.8, a=10, b=1, plot=False):
|
||||
if self.ref_footsteps is None:
|
||||
print("No footsteps")
|
||||
@@ -46,26 +47,27 @@ class BipedalPlanner(object):
|
||||
fig = plt.figure()
|
||||
ax = Axes3D(fig)
|
||||
com_trajectory_for_plot = []
|
||||
|
||||
|
||||
self.com_trajectory = []
|
||||
self.ref_p = [] # reference footstep positions
|
||||
self.act_p = [] # actual footstep positions
|
||||
|
||||
|
||||
px, py = 0., 0. # reference footstep position
|
||||
px_star, py_star = px, py # modified footstep position
|
||||
xi, xi_dot, yi, yi_dot = 0., 0., 0.01, 0. # TODO yi should be set as +epsilon, set xi, yi as COM
|
||||
xi, xi_dot, yi, yi_dot = 0., 0., 0.01, 0. # TODO yi should be set as +epsilon, set xi, yi as COM
|
||||
time = 0.
|
||||
n = 0
|
||||
self.ref_p.append([px, py, 0])
|
||||
self.act_p.append([px, py, 0])
|
||||
for i in range(len(self.ref_footsteps)):
|
||||
# simulate x, y and those of dot of inverted pendulum
|
||||
xi, xi_dot, yi, yi_dot = self.inverted_pendulum(xi, xi_dot, px_star, yi, yi_dot, py_star, z_c, T_sup)
|
||||
|
||||
xi, xi_dot, yi, yi_dot = self.inverted_pendulum(
|
||||
xi, xi_dot, px_star, yi, yi_dot, py_star, z_c, T_sup)
|
||||
|
||||
# update time
|
||||
time += T_sup
|
||||
n += 1
|
||||
|
||||
|
||||
# calculate px, py, x_, y_, vx_, vy_
|
||||
f_x, f_y, f_theta = self.ref_footsteps[n - 1]
|
||||
rotate_mat = np.array([[math.cos(f_theta), -math.sin(f_theta)],
|
||||
@@ -74,17 +76,20 @@ class BipedalPlanner(object):
|
||||
if n == len(self.ref_footsteps):
|
||||
f_x_next, f_y_next, f_theta_next = 0., 0., 0.
|
||||
else:
|
||||
f_x_next, f_y_next, f_theta_next = self.ref_footsteps[n]
|
||||
f_x_next, f_y_next, f_theta_next = self.ref_footsteps[n]
|
||||
rotate_mat_next = np.array([[math.cos(f_theta_next), -math.sin(f_theta_next)],
|
||||
[math.sin(f_theta_next), math.cos(f_theta_next)]])
|
||||
|
||||
[math.sin(f_theta_next), math.cos(f_theta_next)]])
|
||||
|
||||
T_c = math.sqrt(z_c / self.g)
|
||||
C = math.cosh(T_sup / T_c)
|
||||
S = math.sinh(T_sup / T_c)
|
||||
|
||||
px, py = list(np.array([px, py]) + np.dot(rotate_mat, np.array([f_x, -1 * math.pow(-1, n) * f_y])))
|
||||
x_, y_ = list(np.dot(rotate_mat_next, np.array([f_x_next / 2., math.pow(-1, n) * f_y_next / 2.])))
|
||||
vx_, vy_ = list(np.dot(rotate_mat_next, np.array([(1 + C) / (T_c * S) * x_, (C - 1) / (T_c * S) * y_])))
|
||||
|
||||
px, py = list(np.array(
|
||||
[px, py]) + np.dot(rotate_mat, np.array([f_x, -1 * math.pow(-1, n) * f_y])))
|
||||
x_, y_ = list(np.dot(rotate_mat_next, np.array(
|
||||
[f_x_next / 2., math.pow(-1, n) * f_y_next / 2.])))
|
||||
vx_, vy_ = list(np.dot(rotate_mat_next, np.array(
|
||||
[(1 + C) / (T_c * S) * x_, (C - 1) / (T_c * S) * y_])))
|
||||
self.ref_p.append([px, py, f_theta])
|
||||
|
||||
# calculate reference COM
|
||||
@@ -93,8 +98,10 @@ class BipedalPlanner(object):
|
||||
|
||||
# calculate modified footsteps
|
||||
D = a * math.pow(C - 1, 2) + b * math.pow(S / T_c, 2)
|
||||
px_star = -a * (C - 1) / D * (xd - C * xi - T_c * S * xi_dot) - b * S / (T_c * D) * (xd_dot - S / T_c * xi - C * xi_dot)
|
||||
py_star = -a * (C - 1) / D * (yd - C * yi - T_c * S * yi_dot) - b * S / (T_c * D) * (yd_dot - S / T_c * yi - C * yi_dot)
|
||||
px_star = -a * (C - 1) / D * (xd - C * xi - T_c * S * xi_dot) - \
|
||||
b * S / (T_c * D) * (xd_dot - S / T_c * xi - C * xi_dot)
|
||||
py_star = -a * (C - 1) / D * (yd - C * yi - T_c * S * yi_dot) - \
|
||||
b * S / (T_c * D) * (yd_dot - S / T_c * yi - C * yi_dot)
|
||||
self.act_p.append([px_star, py_star, f_theta])
|
||||
|
||||
# plot
|
||||
@@ -104,51 +111,57 @@ class BipedalPlanner(object):
|
||||
if c > len(com_trajectory_for_plot):
|
||||
# set up plotter
|
||||
plt.cla()
|
||||
ax.set_zlim(0, z_c * 2)
|
||||
ax.set_zlim(0, z_c * 2)
|
||||
ax.set_aspect('equal', 'datalim')
|
||||
|
||||
# update com_trajectory_for_plot
|
||||
com_trajectory_for_plot.append(self.com_trajectory[c])
|
||||
|
||||
# plot com
|
||||
ax.plot([p[0] for p in com_trajectory_for_plot], [p[1] for p in com_trajectory_for_plot], [0 for p in com_trajectory_for_plot], color="red")
|
||||
ax.plot([p[0] for p in com_trajectory_for_plot], [p[1] for p in com_trajectory_for_plot], [
|
||||
0 for p in com_trajectory_for_plot], color="red")
|
||||
|
||||
# plot inverted pendulum
|
||||
ax.plot([px_star, com_trajectory_for_plot[-1][0]],
|
||||
[py_star , com_trajectory_for_plot[-1][1]],
|
||||
[py_star, com_trajectory_for_plot[-1][1]],
|
||||
[0, z_c], color="green", linewidth=3)
|
||||
ax.scatter([com_trajectory_for_plot[-1][0]],
|
||||
[com_trajectory_for_plot[-1][1]],
|
||||
[z_c], color="green", s=300)
|
||||
|
||||
[z_c], color="green", s=300)
|
||||
|
||||
# foot rectangle for self.ref_p
|
||||
foot_width = 0.06
|
||||
foot_height = 0.04
|
||||
for j in range(len(self.ref_p)):
|
||||
angle = self.ref_p[j][2] + math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy = (self.ref_p[j][0] + r * math.cos(angle), self.ref_p[j][1] + r * math.sin(angle)),
|
||||
width=foot_width, height=foot_height, angle=self.ref_p[j][2] * 180 / math.pi, color="blue", fill=False, ls=":")
|
||||
angle = self.ref_p[j][2] + \
|
||||
math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(
|
||||
math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy=(self.ref_p[j][0] + r * math.cos(angle), self.ref_p[j][1] + r * math.sin(angle)),
|
||||
width=foot_width, height=foot_height, angle=self.ref_p[j][2] * 180 / math.pi, color="blue", fill=False, ls=":")
|
||||
ax.add_patch(rec)
|
||||
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
|
||||
|
||||
# foot rectangle for self.act_p
|
||||
# foot rectangle for self.act_p
|
||||
for j in range(len(self.act_p)):
|
||||
angle = self.act_p[j][2] + math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy = (self.act_p[j][0] + r * math.cos(angle), self.act_p[j][1] + r * math.sin(angle)),
|
||||
angle = self.act_p[j][2] + \
|
||||
math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(
|
||||
math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy=(self.act_p[j][0] + r * math.cos(angle), self.act_p[j][1] + r * math.sin(angle)),
|
||||
width=foot_width, height=foot_height, angle=self.act_p[j][2] * 180 / math.pi, color="blue", fill=False)
|
||||
ax.add_patch(rec)
|
||||
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
|
||||
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
|
||||
|
||||
plt.draw()
|
||||
plt.pause(0.001)
|
||||
if plot:
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
bipedal_planner = BipedalPlanner()
|
||||
|
||||
|
||||
footsteps = [[0.0, 0.2, 0.0],
|
||||
[0.3, 0.2, 0.0],
|
||||
[0.3, 0.2, 0.2],
|
||||
|
||||
Reference in New Issue
Block a user