mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 21:28:33 -05:00
add rrt_star sample code
This commit is contained in:
196
scripts/PathPlanning/RRTstar/rrt_star.py
Normal file
196
scripts/PathPlanning/RRTstar/rrt_star.py
Normal file
@@ -0,0 +1,196 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
u"""
|
||||
@brief: Path Planning Sample Code with Randamized Rapidly-Exploring Random Trees (RRT)
|
||||
|
||||
@author: AtsushiSakai
|
||||
|
||||
@license: MIT
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import random
|
||||
import math
|
||||
import copy
|
||||
|
||||
|
||||
class RRT():
|
||||
u"""
|
||||
Class for RRT Planning
|
||||
"""
|
||||
|
||||
def __init__(self, start, goal, obstacleList, randArea,
|
||||
expandDis=0.5, goalSampleRate=5, maxIter=500):
|
||||
u"""
|
||||
Setting Parameter
|
||||
|
||||
start:Start Position [x,y]
|
||||
goal:Goal Position [x,y]
|
||||
obstacleList:obstacle Positions [[x,y,size],...]
|
||||
randArea:Ramdom Samping Area [min,max]
|
||||
|
||||
"""
|
||||
self.start = Node(start[0], start[1])
|
||||
self.end = Node(goal[0], goal[1])
|
||||
self.minrand = randArea[0]
|
||||
self.maxrand = randArea[1]
|
||||
self.expandDis = expandDis
|
||||
self.goalSampleRate = goalSampleRate
|
||||
self.maxIter = maxIter
|
||||
|
||||
def Planning(self, animation=True):
|
||||
u"""
|
||||
Pathplanning
|
||||
|
||||
animation: flag for animation on or off
|
||||
"""
|
||||
|
||||
self.nodeList = [self.start]
|
||||
while True:
|
||||
# Random Sampling
|
||||
if random.randint(0, 100) > self.goalSampleRate:
|
||||
rnd = [random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(self.minrand, self.maxrand)]
|
||||
else:
|
||||
rnd = [self.end.x, self.end.y]
|
||||
|
||||
# Find nearest node
|
||||
nind = self.GetNearestListIndex(self.nodeList, rnd)
|
||||
|
||||
# expand tree
|
||||
nearestNode = self.nodeList[nind]
|
||||
theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x)
|
||||
|
||||
newNode = copy.deepcopy(nearestNode)
|
||||
newNode.x += self.expandDis * math.cos(theta)
|
||||
newNode.y += self.expandDis * math.sin(theta)
|
||||
newNode.cost += self.expandDis
|
||||
newNode.parent = nind
|
||||
# print(newNode.cost)
|
||||
|
||||
if not self.__CollisionCheck(newNode, obstacleList):
|
||||
continue
|
||||
|
||||
self.nodeList.append(newNode)
|
||||
|
||||
# check goal
|
||||
dx = newNode.x - self.end.x
|
||||
dy = newNode.y - self.end.y
|
||||
d = math.sqrt(dx * dx + dy * dy)
|
||||
if d <= self.expandDis:
|
||||
print("Goal!!")
|
||||
break
|
||||
|
||||
self.rewire(newNode)
|
||||
|
||||
if animation:
|
||||
self.DrawGraph(rnd)
|
||||
|
||||
# generate coruse
|
||||
path = [[self.end.x, self.end.y]]
|
||||
lastIndex = len(self.nodeList) - 1
|
||||
while self.nodeList[lastIndex].parent is not None:
|
||||
node = self.nodeList[lastIndex]
|
||||
path.append([node.x, node.y])
|
||||
lastIndex = node.parent
|
||||
path.append([self.start.x, self.start.y])
|
||||
|
||||
return path
|
||||
|
||||
def rewire(self, newNode):
|
||||
# print("rewire")
|
||||
r = 5
|
||||
dlist = [math.sqrt((node.x - newNode.x) ** 2 +
|
||||
(node.y - newNode.y) ** 2) for node in self.nodeList]
|
||||
nearinds = [dlist.index(i) for i in dlist if i <= r]
|
||||
|
||||
for i in nearinds:
|
||||
nearNode = self.nodeList[i]
|
||||
|
||||
dx = nearNode.x - newNode.x
|
||||
dy = nearNode.y - newNode.y
|
||||
|
||||
scost = newNode.cost + math.sqrt(dx ** 2 + dy ** 2)
|
||||
|
||||
if nearNode.cost > scost:
|
||||
# print("rewire")
|
||||
nearNode.parent = len(self.nodeList) - 1
|
||||
nearNode.cost = scost
|
||||
# print(nearNode)
|
||||
|
||||
def DrawGraph(self, rnd=None):
|
||||
u"""
|
||||
Draw Graph
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
plt.clf()
|
||||
if rnd is not None:
|
||||
plt.plot(rnd[0], rnd[1], "^k")
|
||||
for node in self.nodeList:
|
||||
if node.parent is not None:
|
||||
plt.plot([node.x, self.nodeList[node.parent].x], [
|
||||
node.y, self.nodeList[node.parent].y], "-g")
|
||||
|
||||
plt.plot([ox for (ox, oy, size) in obstacleList], [
|
||||
oy for (ox, oy, size) in obstacleList], "ok", ms=20)
|
||||
plt.plot(self.start.x, self.start.y, "xr")
|
||||
plt.plot(self.end.x, self.end.y, "xr")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
|
||||
def GetNearestListIndex(self, nodeList, rnd):
|
||||
dlist = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1])
|
||||
** 2 for node in nodeList]
|
||||
minind = dlist.index(min(dlist))
|
||||
|
||||
return minind
|
||||
|
||||
def __CollisionCheck(self, node, obstacleList):
|
||||
|
||||
for (ox, oy, size) in obstacleList:
|
||||
dx = ox - node.x
|
||||
dy = oy - node.y
|
||||
d = math.sqrt(dx * dx + dy * dy)
|
||||
if d <= size:
|
||||
return False # collision
|
||||
|
||||
return True # safe
|
||||
|
||||
|
||||
class Node():
|
||||
u"""
|
||||
RRT Node
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.cost = 0.0
|
||||
self.parent = None
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import matplotlib.pyplot as plt
|
||||
# ====Search Path with RRT====
|
||||
obstacleList = [
|
||||
(5, 5, 1),
|
||||
(3, 6, 2),
|
||||
(3, 8, 2),
|
||||
(3, 10, 2),
|
||||
(7, 5, 2),
|
||||
(9, 5, 2)
|
||||
] # [x,y,size]
|
||||
|
||||
# Set Initial parameters
|
||||
rrt = RRT(start=[0, 0], goal=[5, 10],
|
||||
randArea=[-2, 15], obstacleList=obstacleList)
|
||||
path = rrt.Planning(animation=True)
|
||||
|
||||
# Draw final path
|
||||
rrt.DrawGraph()
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.01) # Need for Mac
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user