mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 11:38:27 -05:00
Merge pull request #163 from takayuki5168/bipedal
implemented bipedal walking
This commit is contained in:
0
Bipedal/__init__.py
Normal file
0
Bipedal/__init__.py
Normal file
BIN
Bipedal/bipedal_planner/animation.gif
Normal file
BIN
Bipedal/bipedal_planner/animation.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.1 MiB |
158
Bipedal/bipedal_planner/bipedal_planner.py
Normal file
158
Bipedal/bipedal_planner/bipedal_planner.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""
|
||||
Bipedal Walking with modifying designated footsteps
|
||||
author: Takayuki Murooka (takayuki5168)
|
||||
"""
|
||||
import numpy as np
|
||||
import math
|
||||
from matplotlib import pyplot as plt
|
||||
import matplotlib.patches as pat
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import mpl_toolkits.mplot3d.art3d as art3d
|
||||
|
||||
class BipedalPlanner(object):
|
||||
def __init__(self):
|
||||
self.ref_footsteps = None
|
||||
self.g = 9.8
|
||||
|
||||
def set_ref_footsteps(self, ref_footsteps):
|
||||
self.ref_footsteps = ref_footsteps
|
||||
|
||||
def inverted_pendulum(self, x, x_dot, px_star, y, y_dot, py_star, z_c, time_width):
|
||||
time_split = 100
|
||||
|
||||
for i in range(time_split):
|
||||
delta_time = time_width / time_split
|
||||
|
||||
x_dot2 = self.g / z_c * (x - px_star)
|
||||
x += x_dot * delta_time
|
||||
x_dot += x_dot2 * delta_time
|
||||
|
||||
y_dot2 = self.g / z_c * (y - py_star)
|
||||
y += y_dot * delta_time
|
||||
y_dot += y_dot2 * delta_time
|
||||
|
||||
if i % 10 == 0:
|
||||
self.com_trajectory.append([x, y])
|
||||
|
||||
return x, x_dot, y, y_dot
|
||||
|
||||
def walk(self, T_sup=0.8, z_c=0.8, a=10, b=1, plot=False):
|
||||
if self.ref_footsteps is None:
|
||||
print("No footsteps")
|
||||
return
|
||||
|
||||
# set up plotter
|
||||
if plot:
|
||||
fig = plt.figure()
|
||||
ax = Axes3D(fig)
|
||||
com_trajectory_for_plot = []
|
||||
|
||||
self.com_trajectory = []
|
||||
self.ref_p = [] # reference footstep positions
|
||||
self.act_p = [] # actual footstep positions
|
||||
|
||||
px, py = 0., 0. # reference footstep position
|
||||
px_star, py_star = px, py # modified footstep position
|
||||
xi, xi_dot, yi, yi_dot = 0., 0., 0.01, 0. # TODO yi should be set as +epsilon, set xi, yi as COM
|
||||
time = 0.
|
||||
n = 0
|
||||
self.ref_p.append([px, py, 0])
|
||||
self.act_p.append([px, py, 0])
|
||||
for i in range(len(self.ref_footsteps)):
|
||||
# simulate x, y and those of dot of inverted pendulum
|
||||
xi, xi_dot, yi, yi_dot = self.inverted_pendulum(xi, xi_dot, px_star, yi, yi_dot, py_star, z_c, T_sup)
|
||||
|
||||
# update time
|
||||
time += T_sup
|
||||
n += 1
|
||||
|
||||
# calculate px, py, x_, y_, vx_, vy_
|
||||
f_x, f_y, f_theta = self.ref_footsteps[n - 1]
|
||||
rotate_mat = np.array([[math.cos(f_theta), -math.sin(f_theta)],
|
||||
[math.sin(f_theta), math.cos(f_theta)]])
|
||||
|
||||
if n == len(self.ref_footsteps):
|
||||
f_x_next, f_y_next, f_theta_next = 0., 0., 0.
|
||||
else:
|
||||
f_x_next, f_y_next, f_theta_next = self.ref_footsteps[n]
|
||||
rotate_mat_next = np.array([[math.cos(f_theta_next), -math.sin(f_theta_next)],
|
||||
[math.sin(f_theta_next), math.cos(f_theta_next)]])
|
||||
|
||||
T_c = math.sqrt(z_c / self.g)
|
||||
C = math.cosh(T_sup / T_c)
|
||||
S = math.sinh(T_sup / T_c)
|
||||
|
||||
px, py = list(np.array([px, py]) + np.dot(rotate_mat, np.array([f_x, -1 * math.pow(-1, n) * f_y])))
|
||||
x_, y_ = list(np.dot(rotate_mat_next, np.array([f_x_next / 2., math.pow(-1, n) * f_y_next / 2.])))
|
||||
vx_, vy_ = list(np.dot(rotate_mat_next, np.array([(1 + C) / (T_c * S) * x_, (C - 1) / (T_c * S) * y_])))
|
||||
self.ref_p.append([px, py, f_theta])
|
||||
|
||||
# calculate reference COM
|
||||
xd, xd_dot = px + x_, vx_
|
||||
yd, yd_dot = py + y_, vy_
|
||||
|
||||
# calculate modified footsteps
|
||||
D = a * math.pow(C - 1, 2) + b * math.pow(S / T_c, 2)
|
||||
px_star = -a * (C - 1) / D * (xd - C * xi - T_c * S * xi_dot) - b * S / (T_c * D) * (xd_dot - S / T_c * xi - C * xi_dot)
|
||||
py_star = -a * (C - 1) / D * (yd - C * yi - T_c * S * yi_dot) - b * S / (T_c * D) * (yd_dot - S / T_c * yi - C * yi_dot)
|
||||
self.act_p.append([px_star, py_star, f_theta])
|
||||
|
||||
# plot
|
||||
if plot:
|
||||
# for plot trajectory, plot in for loop
|
||||
for c in range(len(self.com_trajectory)):
|
||||
if c > len(com_trajectory_for_plot):
|
||||
# set up plotter
|
||||
plt.cla()
|
||||
ax.set_zlim(0, z_c * 2)
|
||||
ax.set_aspect('equal', 'datalim')
|
||||
|
||||
# update com_trajectory_for_plot
|
||||
com_trajectory_for_plot.append(self.com_trajectory[c])
|
||||
|
||||
# plot com
|
||||
ax.plot([p[0] for p in com_trajectory_for_plot], [p[1] for p in com_trajectory_for_plot], [0 for p in com_trajectory_for_plot], color="red")
|
||||
|
||||
# plot inverted pendulum
|
||||
ax.plot([px_star, com_trajectory_for_plot[-1][0]],
|
||||
[py_star , com_trajectory_for_plot[-1][1]],
|
||||
[0, z_c], color="green", linewidth=3)
|
||||
ax.scatter([com_trajectory_for_plot[-1][0]],
|
||||
[com_trajectory_for_plot[-1][1]],
|
||||
[z_c], color="green", s=300)
|
||||
|
||||
# foot rectangle for self.ref_p
|
||||
foot_width = 0.06
|
||||
foot_height = 0.04
|
||||
for j in range(len(self.ref_p)):
|
||||
angle = self.ref_p[j][2] + math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy = (self.ref_p[j][0] + r * math.cos(angle), self.ref_p[j][1] + r * math.sin(angle)),
|
||||
width=foot_width, height=foot_height, angle=self.ref_p[j][2] * 180 / math.pi, color="blue", fill=False, ls=":")
|
||||
ax.add_patch(rec)
|
||||
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
|
||||
|
||||
# foot rectangle for self.act_p
|
||||
for j in range(len(self.act_p)):
|
||||
angle = self.act_p[j][2] + math.atan2(foot_height, foot_width) - math.pi
|
||||
r = math.sqrt(math.pow(foot_width / 3., 2) + math.pow(foot_height / 2., 2))
|
||||
rec = pat.Rectangle(xy = (self.act_p[j][0] + r * math.cos(angle), self.act_p[j][1] + r * math.sin(angle)),
|
||||
width=foot_width, height=foot_height, angle=self.act_p[j][2] * 180 / math.pi, color="blue", fill=False)
|
||||
ax.add_patch(rec)
|
||||
art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z")
|
||||
|
||||
plt.draw()
|
||||
plt.pause(0.001)
|
||||
if plot:
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
bipedal_planner = BipedalPlanner()
|
||||
|
||||
footsteps = [[0.0, 0.2, 0.0],
|
||||
[0.3, 0.2, 0.0],
|
||||
[0.3, 0.2, 0.2],
|
||||
[0.3, 0.2, 0.2],
|
||||
[0.0, 0.2, 0.2]]
|
||||
bipedal_planner.set_ref_footsteps(footsteps)
|
||||
bipedal_planner.walk(plot=True)
|
||||
12
README.md
12
README.md
@@ -58,6 +58,8 @@ Python codes for robotics algorithm.
|
||||
* [Aerial Navigation](#aerial-navigation)
|
||||
* [drone 3d trajectory following](#drone-3d-trajectory-following)
|
||||
* [rocket powered landing](#rocket-powered-landing)
|
||||
* [Bipedal](#bipedal)
|
||||
* [bipedal planner with inverted pendulum](#bipedal-planner-with-inverted-pendulum)
|
||||
* [License](#license)
|
||||
* [Use-case](#use-case)
|
||||
* [Contribution](#contribution)
|
||||
@@ -525,6 +527,16 @@ Ref:
|
||||
|
||||
- [notebook](https://github.com/AtsushiSakai/PythonRobotics/blob/master/AerialNavigation/rocket_powered_landing/rocket_powered_landing.ipynb)
|
||||
|
||||
# Bipedal
|
||||
|
||||
## bipedal planner with inverted pendulum
|
||||
|
||||
This is an bipedal planner of modifying footsteps with inverted pendulum.
|
||||
|
||||
You can set the footsteps and automatically planner will modify those.
|
||||
|
||||

|
||||
|
||||
# License
|
||||
|
||||
MIT
|
||||
|
||||
Reference in New Issue
Block a user