mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 23:28:06 -05:00
Finish doc
This commit is contained in:
@@ -36,7 +36,10 @@ See this paper for more details:
|
||||
modules/localization
|
||||
modules/mapping
|
||||
modules/slam
|
||||
|
||||
modules/path_planning
|
||||
modules/path_tracking
|
||||
modules/arm_navigation
|
||||
modules/aerial_navigation
|
||||
|
||||
|
||||
Indices and tables
|
||||
|
||||
13
docs/modules/aerial_navigation.rst
Normal file
13
docs/modules/aerial_navigation.rst
Normal file
@@ -0,0 +1,13 @@
|
||||
.. _aerial_navigation:
|
||||
|
||||
Aerial Navigation
|
||||
=================
|
||||
|
||||
Drone 3d trajectory following
|
||||
-----------------------------
|
||||
|
||||
This is a 3d trajectory following simulation for a quadrotor.
|
||||
|
||||
|3|
|
||||
|
||||
.. |3| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/AerialNavigation/drone_3d_trajectory_following/animation.gif
|
||||
33
docs/modules/arm_navigation.rst
Normal file
33
docs/modules/arm_navigation.rst
Normal file
@@ -0,0 +1,33 @@
|
||||
.. _arm_navigation:
|
||||
|
||||
Arm Navigation
|
||||
==============
|
||||
|
||||
Two joint arm to point control
|
||||
------------------------------
|
||||
|
||||
Two joint arm to a point control simulation.
|
||||
|
||||
This is a interactive simulation.
|
||||
|
||||
You can set the goal position of the end effector with left-click on the
|
||||
ploting area.
|
||||
|
||||
|3|
|
||||
|
||||
N joint arm to point control
|
||||
----------------------------
|
||||
|
||||
N joint arm to a point control simulation.
|
||||
|
||||
This is a interactive simulation.
|
||||
|
||||
You can set the goal position of the end effector with left-click on the
|
||||
ploting area.
|
||||
|
||||
|4|
|
||||
|
||||
In this simulation N = 10, however, you can change it.
|
||||
|
||||
.. |3| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/ArmNavigation/two_joint_arm_to_point_control/animation.gif
|
||||
.. |4| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/ArmNavigation/n_joint_arm_to_point_control/animation.gif
|
||||
456
docs/modules/path_planning.rst
Normal file
456
docs/modules/path_planning.rst
Normal file
@@ -0,0 +1,456 @@
|
||||
.. _path_planning:
|
||||
|
||||
Path Planning
|
||||
=============
|
||||
|
||||
Dynamic Window Approach
|
||||
-----------------------
|
||||
|
||||
This is a 2D navigation sample code with Dynamic Window Approach.
|
||||
|
||||
- `The Dynamic Window Approach to Collision
|
||||
Avoidance <https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf>`__
|
||||
|
||||
|DWA|
|
||||
|
||||
Grid based search
|
||||
-----------------
|
||||
|
||||
Dijkstra algorithm
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This is a 2D grid based shortest path planning with Dijkstra's
|
||||
algorithm.
|
||||
|
||||
|Dijkstra|
|
||||
|
||||
In the animation, cyan points are searched nodes.
|
||||
|
||||
.. _a*-algorithm:
|
||||
|
||||
A\* algorithm
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
This is a 2D grid based shortest path planning with A star algorithm.
|
||||
|
||||
|astar|
|
||||
|
||||
In the animation, cyan points are searched nodes.
|
||||
|
||||
Its heuristic is 2D Euclid distance.
|
||||
|
||||
Potential Field algorithm
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This is a 2D grid based path planning with Potential Field algorithm.
|
||||
|
||||
|PotentialField|
|
||||
|
||||
In the animation, the blue heat map shows potential value on each grid.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Robotic Motion Planning:Potential
|
||||
Functions <https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf>`__
|
||||
|
||||
Model Predictive Trajectory Generator
|
||||
-------------------------------------
|
||||
|
||||
This is a path optimization sample on model predictive trajectory
|
||||
generator.
|
||||
|
||||
This algorithm is used for state lattice planner.
|
||||
|
||||
Path optimization sample
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|4|
|
||||
|
||||
Lookup table generation sample
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|5|
|
||||
|
||||
Ref:
|
||||
|
||||
- `Optimal rough terrain trajectory generation for wheeled mobile
|
||||
robots <http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__
|
||||
|
||||
State Lattice Planning
|
||||
----------------------
|
||||
|
||||
This script is a path planning code with state lattice planning.
|
||||
|
||||
This code uses the model predictive trajectory generator to solve
|
||||
boundary problem.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Optimal rough terrain trajectory generation for wheeled mobile
|
||||
robots <http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328>`__
|
||||
|
||||
- `State Space Sampling of Feasible Motions for High-Performance Mobile
|
||||
Robot Navigation in Complex
|
||||
Environments <http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf>`__
|
||||
|
||||
Uniform polar sampling
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|6|
|
||||
|
||||
Biased polar sampling
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|7|
|
||||
|
||||
Lane sampling
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
|8|
|
||||
|
||||
.. _probabilistic-road-map-(prm)-planning:
|
||||
|
||||
Probabilistic Road-Map (PRM) planning
|
||||
-------------------------------------
|
||||
|
||||
|PRM|
|
||||
|
||||
This PRM planner uses Dijkstra method for graph search.
|
||||
|
||||
In the animation, blue points are sampled points,
|
||||
|
||||
Cyan crosses means searched points with Dijkstra method,
|
||||
|
||||
The red line is the final path of PRM.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Probabilistic roadmap -
|
||||
Wikipedia <https://en.wikipedia.org/wiki/Probabilistic_roadmap>`__
|
||||
|
||||
|
||||
|
||||
Voronoi Road-Map planning
|
||||
-------------------------
|
||||
|
||||
|VRM|
|
||||
|
||||
This Voronoi road-map planner uses Dijkstra method for graph search.
|
||||
|
||||
In the animation, blue points are Voronoi points,
|
||||
|
||||
Cyan crosses mean searched points with Dijkstra method,
|
||||
|
||||
The red line is the final path of Vornoi Road-Map.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Robotic Motion
|
||||
Planning <https://www.cs.cmu.edu/~motionplanning/lecture/Chap5-RoadMap-Methods_howie.pdf>`__
|
||||
|
||||
.. _rapidly-exploring-random-trees-(rrt):
|
||||
|
||||
Rapidly-Exploring Random Trees (RRT)
|
||||
------------------------------------
|
||||
|
||||
Basic RRT
|
||||
~~~~~~~~~
|
||||
|
||||
|9|
|
||||
|
||||
This is a simple path planning code with Rapidly-Exploring Random Trees
|
||||
(RRT)
|
||||
|
||||
Black circles are obstacles, green line is a searched tree, red crosses
|
||||
are start and goal positions.
|
||||
|
||||
.. _rrt*:
|
||||
|
||||
RRT\*
|
||||
~~~~~
|
||||
|
||||
|10|
|
||||
|
||||
This is a path planning code with RRT\*
|
||||
|
||||
Black circles are obstacles, green line is a searched tree, red crosses
|
||||
are start and goal positions.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Incremental Sampling-based Algorithms for Optimal Motion
|
||||
Planning <https://arxiv.org/abs/1005.0416>`__
|
||||
|
||||
- `Sampling-based Algorithms for Optimal Motion
|
||||
Planning <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf>`__
|
||||
|
||||
RRT with dubins path
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|PythonRobotics|
|
||||
|
||||
Path planning for a car robot with RRT and dubins path planner.
|
||||
|
||||
.. _rrt*-with-dubins-path:
|
||||
|
||||
RRT\* with dubins path
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|AtsushiSakai/PythonRobotics|
|
||||
|
||||
Path planning for a car robot with RRT\* and dubins path planner.
|
||||
|
||||
.. _rrt*-with-reeds-sheep-path:
|
||||
|
||||
RRT\* with reeds-sheep path
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|11|
|
||||
|
||||
Path planning for a car robot with RRT\* and reeds sheep path planner.
|
||||
|
||||
.. _informed-rrt*:
|
||||
|
||||
Informed RRT\*
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
|irrt|
|
||||
|
||||
This is a path planning code with Informed RRT*.
|
||||
|
||||
The cyan ellipse is the heuristic sampling domain of Informed RRT*.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Informed RRT\*: Optimal Sampling-based Path Planning Focused via
|
||||
Direct Sampling of an Admissible Ellipsoidal
|
||||
Heuristic <https://arxiv.org/pdf/1404.2334.pdf>`__
|
||||
|
||||
.. _batch-informed-rrt*:
|
||||
|
||||
Batch Informed RRT\*
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|irrt2|
|
||||
|
||||
This is a path planning code with Batch Informed RRT*.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the
|
||||
Heuristically Guided Search of Implicit Random Geometric
|
||||
Graphs <https://arxiv.org/abs/1405.5848>`__
|
||||
|
||||
.. _closed-loop-rrt*:
|
||||
|
||||
Closed Loop RRT\*
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
A vehicle model based path planning with closed loop RRT*.
|
||||
|
||||
|CLRRT|
|
||||
|
||||
In this code, pure-pursuit algorithm is used for steering control,
|
||||
|
||||
PID is used for speed control.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Motion Planning in Complex Environments using Closed-loop
|
||||
Prediction <http://acl.mit.edu/papers/KuwataGNC08.pdf>`__
|
||||
|
||||
- `Real-time Motion Planning with Applications to Autonomous Urban
|
||||
Driving <http://acl.mit.edu/papers/KuwataTCST09.pdf>`__
|
||||
|
||||
- `[1601.06326] Sampling-based Algorithms for Optimal Motion Planning
|
||||
Using Closed-loop Prediction <https://arxiv.org/abs/1601.06326>`__
|
||||
|
||||
.. _lqr-rrt*:
|
||||
|
||||
LQR-RRT\*
|
||||
~~~~~~~~~
|
||||
|
||||
This is a path planning simulation with LQR-RRT*.
|
||||
|
||||
A double integrator motion model is used for LQR local planner.
|
||||
|
||||
|LQRRRT|
|
||||
|
||||
Ref:
|
||||
|
||||
- `LQR-RRT\*: Optimal Sampling-Based Motion Planning with Automatically
|
||||
Derived Extension
|
||||
Heuristics <http://lis.csail.mit.edu/pubs/perez-icra12.pdf>`__
|
||||
|
||||
- `MahanFathi/LQR-RRTstar: LQR-RRT\* method is used for random motion
|
||||
planning of a simple pendulum in its phase
|
||||
plot <https://github.com/MahanFathi/LQR-RRTstar>`__
|
||||
|
||||
Cubic spline planning
|
||||
---------------------
|
||||
|
||||
A sample code for cubic path planning.
|
||||
|
||||
This code generates a curvature continuous path based on x-y waypoints
|
||||
with cubic spline.
|
||||
|
||||
Heading angle of each point can be also calculated analytically.
|
||||
|
||||
|12|
|
||||
|13|
|
||||
|14|
|
||||
|
||||
B-Spline planning
|
||||
-----------------
|
||||
|
||||
|B-Spline|
|
||||
|
||||
This is a path planning with B-Spline curse.
|
||||
|
||||
If you input waypoints, it generates a smooth path with B-Spline curve.
|
||||
|
||||
The final course should be on the first and last waypoints.
|
||||
|
||||
Ref:
|
||||
|
||||
- `B-spline - Wikipedia <https://en.wikipedia.org/wiki/B-spline>`__
|
||||
|
||||
.. _eta^3-spline-path-planning:
|
||||
|
||||
Eta^3 Spline path planning
|
||||
--------------------------
|
||||
|
||||
|eta3|
|
||||
|
||||
This is a path planning with Eta^3 spline.
|
||||
|
||||
Ref:
|
||||
|
||||
- `\\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile
|
||||
Robots <https://ieeexplore.ieee.org/document/4339545/>`__
|
||||
|
||||
Bezier path planning
|
||||
--------------------
|
||||
|
||||
A sample code of Bezier path planning.
|
||||
|
||||
It is based on 4 control points Beier path.
|
||||
|
||||
|Bezier1|
|
||||
|
||||
If you change the offset distance from start and end point,
|
||||
|
||||
You can get different Beizer course:
|
||||
|
||||
|Bezier2|
|
||||
|
||||
Ref:
|
||||
|
||||
- `Continuous Curvature Path Generation Based on Bezier Curves for
|
||||
Autonomous
|
||||
Vehicles <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf>`__
|
||||
|
||||
Quintic polynomials planning
|
||||
----------------------------
|
||||
|
||||
Motion planning with quintic polynomials.
|
||||
|
||||
|2|
|
||||
|
||||
It can calculate 2D path, velocity, and acceleration profile based on
|
||||
quintic polynomials.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Local Path Planning And Motion Control For Agv In
|
||||
Positioning <http://ieeexplore.ieee.org/document/637936/>`__
|
||||
|
||||
Dubins path planning
|
||||
--------------------
|
||||
|
||||
A sample code for Dubins path planning.
|
||||
|
||||
|dubins|
|
||||
|
||||
Ref:
|
||||
|
||||
- `Dubins path -
|
||||
Wikipedia <https://en.wikipedia.org/wiki/Dubins_path>`__
|
||||
|
||||
Reeds Shepp planning
|
||||
--------------------
|
||||
|
||||
A sample code with Reeds Shepp path planning.
|
||||
|
||||
|RSPlanning|
|
||||
|
||||
Ref:
|
||||
|
||||
- `15.3.2 Reeds-Shepp
|
||||
Curves <http://planning.cs.uiuc.edu/node822.html>`__
|
||||
|
||||
- `optimal paths for a car that goes both forwards and
|
||||
backwards <https://pdfs.semanticscholar.org/932e/c495b1d0018fd59dee12a0bf74434fac7af4.pdf>`__
|
||||
|
||||
- `ghliu/pyReedsShepp: Implementation of Reeds Shepp
|
||||
curve. <https://github.com/ghliu/pyReedsShepp>`__
|
||||
|
||||
LQR based path planning
|
||||
-----------------------
|
||||
|
||||
A sample code using LQR based path planning for double integrator model.
|
||||
|
||||
|RSPlanning2|
|
||||
|
||||
Optimal Trajectory in a Frenet Frame
|
||||
------------------------------------
|
||||
|
||||
|15|
|
||||
|
||||
This is optimal trajectory generation in a Frenet Frame.
|
||||
|
||||
The cyan line is the target course and black crosses are obstacles.
|
||||
|
||||
The red line is predicted path.
|
||||
|
||||
Ref:
|
||||
|
||||
- `Optimal Trajectory Generation for Dynamic Street Scenarios in a
|
||||
Frenet
|
||||
Frame <https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf>`__
|
||||
|
||||
- `Optimal trajectory generation for dynamic street scenarios in a
|
||||
Frenet Frame <https://www.youtube.com/watch?v=Cj6tAQe7UCY>`__
|
||||
|
||||
.. |DWA| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/DynamicWindowApproach/animation.gif
|
||||
.. |Dijkstra| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/Dijkstra/animation.gif
|
||||
.. |astar| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/AStar/animation.gif
|
||||
.. |PotentialField| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/PotentialFieldPlanning/animation.gif
|
||||
.. |4| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ModelPredictiveTrajectoryGenerator/kn05animation.gif
|
||||
.. |5| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable.png?raw=True
|
||||
.. |6| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/StateLatticePlanner/UniformPolarSampling.gif
|
||||
.. |7| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/StateLatticePlanner/BiasedPolarSampling.gif
|
||||
.. |8| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/StateLatticePlanner/LaneSampling.gif
|
||||
.. |PRM| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ProbabilisticRoadMap/animation.gif
|
||||
.. |VRM| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/VoronoiRoadMap/animation.gif
|
||||
.. |9| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRT/animation.gif
|
||||
.. |10| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTstar/animation.gif
|
||||
.. |PythonRobotics| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTDubins/animation.gif
|
||||
.. |AtsushiSakai/PythonRobotics| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTStarDubins/animation.gif
|
||||
.. |11| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/RRTStarReedsShepp/animation.gif
|
||||
.. |irrt| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/InformedRRTStar/animation.gif
|
||||
.. |irrt2| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BatchInformedRRTStar/animation.gif
|
||||
.. |CLRRT| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ClosedLoopRRTStar/animation.gif
|
||||
.. |LQRRRT| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/LQRRRTStar/animation.gif
|
||||
.. |12| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_1.png?raw=True
|
||||
.. |13| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_2.png?raw=True
|
||||
.. |14| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/CubicSpline/Figure_3.png?raw=True
|
||||
.. |B-Spline| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BSplinePath/Figure_1.png?raw=True
|
||||
.. |eta3| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/Eta3SplinePath/animation.gif?raw=True
|
||||
.. |Bezier1| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BezierPath/Figure_1.png?raw=True
|
||||
.. |Bezier2| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/BezierPath/Figure_2.png?raw=True
|
||||
.. |2| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/QuinticPolynomialsPlanner/animation.gif
|
||||
.. |dubins| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/DubinsPath/animation.gif?raw=True
|
||||
.. |RSPlanning| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/ReedsSheppPath/animation.gif?raw=true
|
||||
.. |RSPlanning2| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/LQRPlanner/animation.gif?raw=true
|
||||
.. |15| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathPlanning/FrenetOptimalTrajectory/animation.gif
|
||||
112
docs/modules/path_tracking.rst
Normal file
112
docs/modules/path_tracking.rst
Normal file
@@ -0,0 +1,112 @@
|
||||
.. _path_tracking:
|
||||
|
||||
Path tracking
|
||||
=============
|
||||
|
||||
move to a pose control
|
||||
----------------------
|
||||
|
||||
This is a simulation of moving to a pose control
|
||||
|
||||
|2|
|
||||
|
||||
Ref:
|
||||
|
||||
- `P. I. Corke, "Robotics, Vision and Control" \| SpringerLink
|
||||
p102 <https://link.springer.com/book/10.1007/978-3-642-20144-8>`__
|
||||
|
||||
Pure pursuit tracking
|
||||
---------------------
|
||||
|
||||
Path tracking simulation with pure pursuit steering control and PID
|
||||
speed control.
|
||||
|
||||
|3|
|
||||
|
||||
The red line is a target course, the green cross means the target point
|
||||
for pure pursuit control, the blue line is the tracking.
|
||||
|
||||
Ref:
|
||||
|
||||
- `A Survey of Motion Planning and Control Techniques for Self-driving
|
||||
Urban Vehicles <https://arxiv.org/abs/1604.07446>`__
|
||||
|
||||
Stanley control
|
||||
---------------
|
||||
|
||||
Path tracking simulation with Stanley steering control and PID speed
|
||||
control.
|
||||
|
||||
|4|
|
||||
|
||||
Ref:
|
||||
|
||||
- `Stanley: The robot that won the DARPA grand
|
||||
challenge <http://robots.stanford.edu/papers/thrun.stanley05.pdf>`__
|
||||
|
||||
- `Automatic Steering Methods for Autonomous Automobile Path
|
||||
Tracking <https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf>`__
|
||||
|
||||
Rear wheel feedback control
|
||||
---------------------------
|
||||
|
||||
Path tracking simulation with rear wheel feedback steering control and
|
||||
PID speed control.
|
||||
|
||||
|5|
|
||||
|
||||
Ref:
|
||||
|
||||
- `A Survey of Motion Planning and Control Techniques for Self-driving
|
||||
Urban Vehicles <https://arxiv.org/abs/1604.07446>`__
|
||||
|
||||
.. _linearquadratic-regulator-(lqr)-steering-control:
|
||||
|
||||
Linear–quadratic regulator (LQR) steering control
|
||||
-------------------------------------------------
|
||||
|
||||
Path tracking simulation with LQR steering control and PID speed
|
||||
control.
|
||||
|
||||
|6|
|
||||
|
||||
Ref:
|
||||
|
||||
- `ApolloAuto/apollo: An open autonomous driving
|
||||
platform <https://github.com/ApolloAuto/apollo>`__
|
||||
|
||||
.. _linearquadratic-regulator-(lqr)-speed-and-steering-control:
|
||||
|
||||
Linear–quadratic regulator (LQR) speed and steering control
|
||||
-----------------------------------------------------------
|
||||
|
||||
Path tracking simulation with LQR speed and steering control.
|
||||
|
||||
|7|
|
||||
|
||||
Ref:
|
||||
|
||||
- `Towards fully autonomous driving: Systems and algorithms - IEEE
|
||||
Conference
|
||||
Publication <http://ieeexplore.ieee.org/document/5940562/>`__
|
||||
|
||||
Model predictive speed and steering control
|
||||
-------------------------------------------
|
||||
|
||||
Path tracking simulation with iterative linear model predictive speed
|
||||
and steering control.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<img src="https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/model_predictive_speed_and_steer_control/animation.gif" width="640">
|
||||
|
||||
Ref:
|
||||
|
||||
- `notebook <https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/model_predictive_speed_and_steer_control/notebook.ipynb>`__
|
||||
|
||||
.. |2| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/move_to_pose/animation.gif
|
||||
.. |3| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/pure_pursuit/animation.gif
|
||||
.. |4| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/stanley_controller/animation.gif
|
||||
.. |5| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/rear_wheel_feedback/animation.gif
|
||||
.. |6| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/lqr_steer_control/animation.gif
|
||||
.. |7| image:: https://github.com/AtsushiSakai/PythonRobotics/raw/master/PathTracking/lqr_speed_steer_control/animation.gif
|
||||
Reference in New Issue
Block a user