mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
first release histogram filter
This commit is contained in:
@@ -19,15 +19,25 @@ from scipy.stats import norm
|
||||
from scipy.ndimage import gaussian_filter
|
||||
|
||||
# Parameters
|
||||
NOISE_RANGE = 2.0 # [m] 1σ range noise parameter
|
||||
NOISE_SPEED = 0.5 # [m/s] 1σ speed noise parameter
|
||||
|
||||
EXTEND_AREA = 10.0 # [m] grid map extention length
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
DT = 0.1 # time tick [s]
|
||||
MAX_RANGE = 10.0 # maximum observation range
|
||||
MOTION_STD = 1.0
|
||||
RANGE_STD = 3.0 # standard diviation for gaussian distribution
|
||||
MOTION_STD = 1.0 # standard deviation for motion gaussian distribution
|
||||
RANGE_STD = 3.0 # standard deviation for observation gaussian distribution
|
||||
|
||||
# grid map param
|
||||
XY_RESO = 0.5 # xy grid resolution
|
||||
MINX = -15.0
|
||||
MINY = -5.0
|
||||
MAXX = 15.0
|
||||
MAXY = 25.0
|
||||
|
||||
|
||||
# simulation paramters
|
||||
NOISE_RANGE = 2.0 # [m] 1σ range noise parameter
|
||||
NOISE_SPEED = 0.5 # [m/s] 1σ speed noise parameter
|
||||
|
||||
|
||||
show_animation = True
|
||||
|
||||
@@ -41,34 +51,41 @@ class grid_map():
|
||||
self.miny = None
|
||||
self.maxx = None
|
||||
self.maxx = None
|
||||
self.xw = None
|
||||
self.yw = None
|
||||
self.dx = 0.0 # movement distance
|
||||
self.dy = 0.0 # movement distance
|
||||
|
||||
|
||||
def histogram_filter_localization(gmap, u, z, yaw, dx, dy):
|
||||
def histogram_filter_localization(gmap, u, z, yaw):
|
||||
|
||||
gmap, dx, dy = motion_update(gmap, u, yaw, dx, dy)
|
||||
gmap = motion_update(gmap, u, yaw)
|
||||
|
||||
gmap = observation_update(gmap, z, RANGE_STD)
|
||||
|
||||
return gmap.data, dx, dy
|
||||
return gmap
|
||||
|
||||
|
||||
def calc_gaussian_observation_pdf(gmap, z, iz, ix, iy, std):
|
||||
|
||||
# predicted range
|
||||
x = ix * gmap.xyreso + gmap.minx
|
||||
y = iy * gmap.xyreso + gmap.miny
|
||||
d = math.sqrt((x - z[iz, 1])**2 + (y - z[iz, 2])**2)
|
||||
|
||||
# likelihood
|
||||
pdf = (1.0 - norm.cdf(abs(d - z[iz, 0]), 0.0, std))
|
||||
|
||||
return pdf
|
||||
|
||||
|
||||
def observation_update(gmap, z, std):
|
||||
|
||||
for iz in range(z.shape[0]):
|
||||
for ix in range(len(gmap.data)):
|
||||
for iy in range(len(gmap.data[ix])):
|
||||
|
||||
# observation range
|
||||
zr = z[iz, 0]
|
||||
|
||||
# predicted range
|
||||
x = ix * gmap.xyreso + gmap.minx
|
||||
y = iy * gmap.xyreso + gmap.miny
|
||||
d = math.sqrt((x - z[iz, 1])**2 + (y - z[iz, 2])**2)
|
||||
|
||||
# likelihood
|
||||
pdf = (1.0 - norm.cdf(abs(d - zr), 0.0, std))
|
||||
gmap.data[ix][iy] *= pdf
|
||||
for ix in range(gmap.xw):
|
||||
for iy in range(gmap.yw):
|
||||
gmap.data[ix][iy] *= calc_gaussian_observation_pdf(
|
||||
gmap, z, iz, ix, iy, std)
|
||||
|
||||
gmap = normalize_probability(gmap)
|
||||
|
||||
@@ -133,22 +150,22 @@ def normalize_probability(gmap):
|
||||
|
||||
sump = sum([sum(igmap) for igmap in gmap.data])
|
||||
|
||||
for i in range(len(gmap.data)):
|
||||
for ii in range(len(gmap.data[i])):
|
||||
gmap.data[i][ii] /= sump
|
||||
for ix in range(gmap.xw):
|
||||
for iy in range(gmap.yw):
|
||||
gmap.data[ix][iy] /= sump
|
||||
|
||||
return gmap
|
||||
|
||||
|
||||
def init_gmap(xyreso):
|
||||
def init_gmap(xyreso, minx, miny, maxx, maxy):
|
||||
|
||||
gmap = grid_map()
|
||||
|
||||
gmap.xyreso = xyreso
|
||||
gmap.minx = -15.0
|
||||
gmap.miny = -5.0
|
||||
gmap.maxx = 15.0
|
||||
gmap.maxy = 25.0
|
||||
gmap.minx = minx
|
||||
gmap.miny = miny
|
||||
gmap.maxx = maxx
|
||||
gmap.maxy = maxy
|
||||
gmap.xw = int(round((gmap.maxx - gmap.minx) / gmap.xyreso))
|
||||
gmap.yw = int(round((gmap.maxy - gmap.miny) / gmap.xyreso))
|
||||
|
||||
@@ -162,43 +179,45 @@ def map_shift(gmap, xshift, yshift):
|
||||
|
||||
tgmap = copy.deepcopy(gmap.data)
|
||||
|
||||
lenx = len(gmap.data)
|
||||
leny = len(gmap.data[0])
|
||||
|
||||
for ix in range(lenx):
|
||||
for iy in range(leny):
|
||||
for ix in range(gmap.xw):
|
||||
for iy in range(gmap.yw):
|
||||
nix = ix + xshift
|
||||
niy = iy + yshift
|
||||
|
||||
if nix >= 0 and nix < lenx and niy >= 0 and niy < leny:
|
||||
if nix >= 0 and nix < gmap.xw and niy >= 0 and niy < gmap.yw:
|
||||
gmap.data[ix + xshift][iy + yshift] = tgmap[ix][iy]
|
||||
|
||||
return gmap
|
||||
|
||||
|
||||
def motion_update(gmap, u, yaw, dx, dy):
|
||||
def motion_update(gmap, u, yaw):
|
||||
|
||||
dx += DT * math.cos(yaw) * u[0]
|
||||
dy += DT * math.sin(yaw) * u[0]
|
||||
gmap.dx += DT * math.cos(yaw) * u[0]
|
||||
gmap.dy += DT * math.sin(yaw) * u[0]
|
||||
|
||||
xshift = dx // gmap.xyreso
|
||||
yshift = dy // gmap.xyreso
|
||||
xshift = gmap.dx // gmap.xyreso
|
||||
yshift = gmap.dy // gmap.xyreso
|
||||
|
||||
if abs(xshift) >= 1.0 or abs(yshift) >= 1.0:
|
||||
if abs(xshift) >= 1.0 or abs(yshift) >= 1.0: # map should be shifted
|
||||
gmap = map_shift(gmap, int(xshift), int(yshift))
|
||||
dx -= xshift * gmap.xyreso
|
||||
dy -= yshift * gmap.xyreso
|
||||
gmap.dx -= xshift * gmap.xyreso
|
||||
gmap.dy -= yshift * gmap.xyreso
|
||||
|
||||
gmap.data = gaussian_filter(gmap.data, sigma=MOTION_STD)
|
||||
|
||||
return gmap, dx, dy
|
||||
return gmap
|
||||
|
||||
|
||||
def calc_grid_index(gmap):
|
||||
mx, my = np.mgrid[slice(gmap.minx - gmap.xyreso / 2.0, gmap.maxx + gmap.xyreso / 2.0, gmap.xyreso),
|
||||
slice(gmap.miny - gmap.xyreso / 2.0, gmap.maxy + gmap.xyreso / 2.0, gmap.xyreso)]
|
||||
|
||||
return mx, my
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
xyreso = 0.5 # xy grid resolution
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, 0.0],
|
||||
[10.0, 10.0],
|
||||
@@ -208,25 +227,18 @@ def main():
|
||||
time = 0.0
|
||||
|
||||
xTrue = np.matrix(np.zeros((4, 1)))
|
||||
|
||||
gmap = init_gmap(xyreso)
|
||||
|
||||
dx, dy = 0.0, 0.0
|
||||
|
||||
mx, my = np.mgrid[slice(gmap.minx - gmap.xyreso / 2.0, gmap.maxx + gmap.xyreso / 2.0, gmap.xyreso),
|
||||
slice(gmap.miny - gmap.xyreso / 2.0, gmap.maxy + gmap.xyreso / 2.0, gmap.xyreso)]
|
||||
gmap = init_gmap(XY_RESO, MINX, MINY, MAXX, MAXY)
|
||||
mx, my = calc_grid_index(gmap) # for grid map visualization
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
|
||||
u = calc_input()
|
||||
|
||||
# Orientation is known in this simulation
|
||||
yaw = xTrue[2, 0]
|
||||
yaw = xTrue[2, 0] # Orientation is known
|
||||
xTrue, z, ud = observation(xTrue, u, RFID)
|
||||
|
||||
gmap.data, dx, dy = histogram_filter_localization(
|
||||
gmap, u, z, yaw, dx, dy)
|
||||
gmap = histogram_filter_localization(gmap, u, z, yaw)
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
|
||||
Reference in New Issue
Block a user