mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 21:08:19 -05:00
first release FASTSLAM1 but it needs code clean up
This commit is contained in:
@@ -12,10 +12,11 @@ import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# EKF state covariance
|
||||
Cx = np.matrix([[1.0, 0.01, 0.1],
|
||||
[0.01, 1.0, 0.1],
|
||||
Cx = np.matrix([[0.1, 0.0, 0.1],
|
||||
[0.0, math.radians(1.0), 0.1],
|
||||
[0.1, 0.0, math.radians(30.0)]])
|
||||
|
||||
R = np.diag([1.0, math.radians(10.0)])**2
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.0, math.radians(0.0)])**2
|
||||
@@ -42,8 +43,8 @@ class Particle:
|
||||
self.x = 0.0
|
||||
self.y = 0.0
|
||||
self.yaw = 0.0
|
||||
self.lm = np.zeros((N_LM, 2))
|
||||
self.lmP = [np.zeros((2, 2))] * N_LM
|
||||
self.lm = np.matrix(np.zeros((N_LM, 2)))
|
||||
self.lmP = np.matrix(np.zeros((N_LM * 2, 2)))
|
||||
|
||||
|
||||
def normalize_weight(particles):
|
||||
@@ -59,8 +60,6 @@ def normalize_weight(particles):
|
||||
for i in range(N_PARTICLE):
|
||||
particles[i].w /= sumw
|
||||
|
||||
# sumw = sum([p.w for p in particles])
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
@@ -74,7 +73,6 @@ def calc_final_state(particles):
|
||||
xEst[0, 0] += particles[i].w * particles[i].x
|
||||
xEst[1, 0] += particles[i].w * particles[i].y
|
||||
xEst[2, 0] += particles[i].w * particles[i].yaw
|
||||
# print(particles[i].x, particles[i].y, particles[i].yaw, particles[i].w)
|
||||
|
||||
xEst[2, 0] = pi_2_pi(xEst[2, 0])
|
||||
# print(xEst)
|
||||
@@ -104,8 +102,8 @@ def add_new_lm(particle, z):
|
||||
b = z[0, 1]
|
||||
lm_id = int(z[0, 2])
|
||||
|
||||
s = math.sin(particle.yaw + b)
|
||||
c = math.cos(particle.yaw + b)
|
||||
s = math.sin(pi_2_pi(particle.yaw + b))
|
||||
c = math.cos(pi_2_pi(particle.yaw + b))
|
||||
|
||||
particle.lm[lm_id, 0] = particle.x + r * c
|
||||
particle.lm[lm_id, 1] = particle.y + r * s
|
||||
@@ -114,23 +112,23 @@ def add_new_lm(particle, z):
|
||||
Gz = np.matrix([[c, -r * s],
|
||||
[s, r * c]])
|
||||
|
||||
particle.lmP[lm_id] = Gz * Cx[0:2, 0:2] * Gz.T
|
||||
particle.lmP[2 * lm_id:2 * lm_id + 2] = Gz * Cx[0: 2, 0: 2] * Gz.T
|
||||
|
||||
return particle
|
||||
|
||||
|
||||
def compute_jacobians(particle, xf, Pf, R):
|
||||
dx = xf[0] - particle.x
|
||||
dy = xf[1] - particle.y
|
||||
dx = xf[0, 0] - particle.x
|
||||
dy = xf[1, 0] - particle.y
|
||||
d2 = dx**2 + dy**2
|
||||
d = math.sqrt(d2)
|
||||
|
||||
zp = np.matrix([[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]])
|
||||
zp = np.matrix([[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]]).T
|
||||
|
||||
Hv = np.matrix([[-dx / d, -dy / d, 0.0],
|
||||
[dy / d2, -dx / d2, -1.0]])
|
||||
|
||||
Hf = np.matrix([[dx / d, -dy / d],
|
||||
Hf = np.matrix([[dx / d, dy / d],
|
||||
[-dy / d2, dx / d2]])
|
||||
|
||||
Sf = Hf * Pf * Hf.T + R
|
||||
@@ -138,39 +136,37 @@ def compute_jacobians(particle, xf, Pf, R):
|
||||
return zp, Hv, Hf, Sf
|
||||
|
||||
|
||||
def KF_cholesky_update(xf, Pf, v, R, Hf):
|
||||
def update_KF_with_cholesky(xf, Pf, v, R, Hf):
|
||||
PHt = Pf * Hf.T
|
||||
S = Hf * PHt + R
|
||||
|
||||
S = (S + S.T) * 0.5
|
||||
# print(S)
|
||||
SChol = np.linalg.cholesky(S).T
|
||||
|
||||
SCholInv = np.linalg.inv(SChol)
|
||||
W1 = PHt * SCholInv
|
||||
W = W1 * SCholInv.T
|
||||
|
||||
x = xf + (W * v.T).T
|
||||
x = xf + W * v
|
||||
P = Pf - W1 * W1.T
|
||||
|
||||
return x, P
|
||||
|
||||
|
||||
def feature_update(particle, z, R):
|
||||
def update_landmark(particle, z, R):
|
||||
|
||||
lm_id = int(z[0, 2])
|
||||
xf = particle.lm[lm_id, :]
|
||||
Pf = particle.lmP[lm_id]
|
||||
xf = np.matrix(particle.lm[lm_id, :]).T
|
||||
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
|
||||
|
||||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, R)
|
||||
|
||||
v = z[0, 0:2] - zp
|
||||
v[0, 1] = pi_2_pi(v[0, 1])
|
||||
dz = z[0, 0: 2].T - zp
|
||||
dz[1, 0] = pi_2_pi(dz[1, 0])
|
||||
|
||||
xf, Pf = KF_cholesky_update(xf, Pf, v, R, Hf)
|
||||
xf, Pf = update_KF_with_cholesky(xf, Pf, dz, R, Hf)
|
||||
|
||||
particle.lm[lm_id, :] = xf
|
||||
particle.lmP[lm_id] = Pf
|
||||
particle.lm[lm_id, :] = xf.T
|
||||
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
|
||||
|
||||
return particle
|
||||
|
||||
@@ -178,21 +174,23 @@ def feature_update(particle, z, R):
|
||||
def compute_weight(particle, z, R):
|
||||
|
||||
lm_id = int(z[0, 2])
|
||||
xf = particle.lm[lm_id, :]
|
||||
Pf = particle.lmP[lm_id]
|
||||
xf = np.matrix(particle.lm[lm_id, :]).T
|
||||
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2])
|
||||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, R)
|
||||
|
||||
dx = z[0, 0:2] - zp
|
||||
dx[0, 1] = pi_2_pi(dx[0, 1])
|
||||
dx = dx.T
|
||||
dx = z[0, 0: 2].T - zp
|
||||
dx[1, 0] = pi_2_pi(dx[1, 0])
|
||||
|
||||
S = particle.lmP[lm_id]
|
||||
S = particle.lmP[2 * lm_id:2 * lm_id + 2]
|
||||
try:
|
||||
invS = np.linalg.inv(S)
|
||||
except np.linalg.linalg.LinAlgError:
|
||||
return 1.0
|
||||
|
||||
num = math.exp(-0.5 * dx.T * np.linalg.inv(S) * dx)
|
||||
num = math.exp(-0.5 * dx.T * invS * dx)
|
||||
den = 2.0 * math.pi * math.sqrt(np.linalg.det(S))
|
||||
|
||||
w = num / den
|
||||
# print(w)
|
||||
|
||||
return w
|
||||
|
||||
@@ -205,15 +203,14 @@ def update_with_observation(particles, z):
|
||||
|
||||
for ip in range(N_PARTICLE):
|
||||
# new landmark
|
||||
if abs(particles[ip].lm[lmid, 0]) <= 0.1:
|
||||
if abs(particles[ip].lm[lmid, 0]) <= 0.01:
|
||||
particles[ip] = add_new_lm(particles[ip], z[iz, :])
|
||||
# known landmark
|
||||
else:
|
||||
# w = p(z_k | x_k)
|
||||
w = compute_weight(particles[ip], z[iz, :], Cx[0:2, 0:2])
|
||||
w = compute_weight(particles[ip], z[iz, :], Cx[0: 2, 0: 2])
|
||||
particles[ip].w = particles[ip].w * w
|
||||
# particles[ip] = feature_update(
|
||||
# particles[ip], z[iz, :], Cx[0:2, 0:2])
|
||||
particles[ip] = update_landmark(particles[ip], z[iz, :], R)
|
||||
|
||||
return particles
|
||||
|
||||
@@ -229,14 +226,12 @@ def resampling(particles):
|
||||
for i in range(N_PARTICLE):
|
||||
pw.append(particles[i].w)
|
||||
|
||||
# print("sumpw", sum(pw))
|
||||
|
||||
pw = np.matrix(pw)
|
||||
|
||||
Neff = 1.0 / (pw * pw.T)[0, 0] # Effective particle number
|
||||
|
||||
if Neff < NTH: # resampling
|
||||
print("resamping")
|
||||
# print("resamping")
|
||||
wcum = np.cumsum(pw)
|
||||
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
|
||||
resampleid = base + np.random.rand(base.shape[1]) / N_PARTICLE
|
||||
@@ -254,7 +249,7 @@ def resampling(particles):
|
||||
particles[i].y = tparticles[inds[i]].y
|
||||
particles[i].yaw = tparticles[inds[i]].yaw
|
||||
particles[i].lm = tparticles[inds[i]].lm[:, :]
|
||||
particles[i].lmP = tparticles[inds[i]].lmP[:]
|
||||
particles[i].lmP = tparticles[inds[i]].lmP[:, :]
|
||||
particles[i].w = 1.0 / N_PARTICLE
|
||||
|
||||
return particles
|
||||
@@ -296,11 +291,11 @@ def observation(xTrue, xd, u, RFID):
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
angle = pi_2_pi(math.atan2(dy, dx))
|
||||
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||||
zi = np.matrix([dn, anglen, i])
|
||||
zi = np.matrix([dn, pi_2_pi(anglen), i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
@@ -396,7 +391,7 @@ def main():
|
||||
|
||||
xEst, PEst, particles = fast_slam(particles, PEst, ud, z)
|
||||
|
||||
x_state = xEst[0:STATE_SIZE]
|
||||
x_state = xEst[0: STATE_SIZE]
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, x_state))
|
||||
|
||||
Reference in New Issue
Block a user