frist release mix_integer_opt_path_planning and gif movie

This commit is contained in:
Atsushi Sakai
2017-12-13 13:46:59 -08:00
parent 97ea4149dc
commit c259d529be
4 changed files with 4 additions and 119 deletions

3
.gitmodules vendored
View File

@@ -16,3 +16,6 @@
[submodule "PathPlanning/AStar/matplotrecorder"]
path = PathPlanning/AStar/matplotrecorder
url = https://github.com/AtsushiSakai/matplotrecorder
[submodule "PathPlanning/MixIntegerPathPlanning/matplotrecorder"]
path = PathPlanning/MixIntegerPathPlanning/matplotrecorder
url = https://github.com/AtsushiSakai/matplotrecorder

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@@ -1,119 +0,0 @@
"""
Mix Integer Optimization based path planner
author: Atsushi Sakai
"""
import cvxpy
import math
import numpy as np
import matplotlib.pyplot as plt
# parameter
A = np.matrix([[1.0, 0.0],
[0.0, 1.0]])
B = np.matrix([[1.0, 1.0],
[0.0, 1.0]])
q = np.matrix([[1.0],
[1.0]])
r = np.matrix([[0.1],
[0.1]])
u_max = 0.1
T = 30
M = 10000.0
def plot_obstacle(ob):
for i in range(len(ob)):
x = [ob[i, 0], ob[i, 1], ob[i, 1], ob[i, 0], ob[i, 0]]
y = [ob[i, 2], ob[i, 2], ob[i, 3], ob[i, 3], ob[i, 2]]
plt.plot(x, y, "-g")
def control(s1, gs, ob):
w = cvxpy.Variable(2, T)
v = cvxpy.Variable(2, T)
s = cvxpy.Variable(2, T)
u = cvxpy.Variable(2, T)
nob = len(ob)
o = cvxpy.Bool(4 * nob, T)
constraints = [cvxpy.abs(u) <= u_max]
constraints.append(s[:, 0] == s1)
obj = []
for t in range(T):
constraints.append(s[:, t] - gs <= w[:, t])
constraints.append(-s[:, t] + gs <= w[:, t])
constraints.append(u[:, t] <= v[:, t])
constraints.append(-u[:, t] <= v[:, t])
obj.append(t * q.T * w[:, t] + r.T * v[:, t])
# obstable avoidanse
for io in range(nob):
ind = io * 4
constraints.append(sum(o[ind:ind + 4, t]) <= 3)
constraints.append(s[0, t] <= ob[io, 0] + M * o[ind + 0, t])
constraints.append(-s[0, t] <= -ob[io, 1] + M * o[ind + 1, t])
constraints.append(s[1, t] <= ob[io, 2] + M * o[ind + 2, t])
constraints.append(-s[1, t] <= -ob[io, 3] + M * o[ind + 3, t])
for t in range(T - 1):
constraints.append(s[:, t + 1] == A * s[:, t] + B * u[:, t])
objective = cvxpy.Minimize(sum(obj))
prob = cvxpy.Problem(objective, constraints)
prob.solve(solver=cvxpy.GUROBI)
s_p = s.value
u_p = u.value
print("status:" + prob.status)
return s_p, u_p
def main():
print(__file__ + " start!!")
s = np.matrix([10.0, 5.0]).T # init state
gs = np.matrix([5.0, 7.0]).T # goal state
ob = np.matrix([[7.0, 8.0, 3.0, 8.0],
[5.5, 6.0, 6.0, 10.0]]) # [xmin xmax ymin ymax]
# ob = np.matrix([[7.0, 8.0, 3.0, 8.0]])
h_sx = []
h_sy = []
for i in range(10000):
print("time:", i)
s_p, u_p = control(s, gs, ob)
s = A * s + B * u_p[:, 0] # simulation
if(math.sqrt((gs[0] - s[0]) ** 2 + (gs[1] - s[1]) ** 2) <= 0.1):
print("Goal!!!")
break
h_sx.append(s[0, 0])
h_sy.append(s[1, 0])
plt.cla()
plt.plot(gs[0], gs[1], "*r")
plot_obstacle(ob)
plt.plot(s_p[0, :], s_p[1, :], "xb")
plt.plot(h_sx, h_sy, "-b")
plt.plot(s[0], s[1], "or")
plt.axis("equal")
plt.grid(True)
plt.pause(0.0001)
if __name__ == '__main__':
main()