Delete pose_optimization_slam_3d.py

This commit is contained in:
Ryohei Sasaki
2019-09-07 14:34:09 +09:00
committed by GitHub
parent cc70f5c266
commit cb8af3c2e4

View File

@@ -1,541 +0,0 @@
"""
3D (x, y, z, qw, qx, qy, qz) pose optimization SLAM
author: Ryohei Sasaki(@rsasaki0109)
Ref:
- [A Compact and Portable Implementation of Graph\-based SLAM](https://www.researchgate.net/publication/321287640_A_Compact_and_Portable_Implementation_of_Graph-based_SLAM)
- [GitHub \- furo\-org/p2o: Single header 2D/3D graph\-based SLAM library](https://github.com/furo-org/p2o)
- [GitHub \- AtsushiSakai/PythonRobotics
/SLAM/PoseOptimizationSLAM](https://github.com/AtsushiSakai/PythonRobotics/blob/master/SLAM/PoseOptimizationSLAM/pose_optimization_slam.py)
"""
import sys
import time
import numpy as np
from scipy import sparse
from scipy.sparse import linalg
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
est_traj_fig = plt.figure()
ax = est_traj_fig.add_subplot(111, projection='3d')
def skew_symmetric(v):
return np.array(
[[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]]
)
def robust_coeff(squared_error, delta):
if (squared_error < 0):
return 0
sqre = np.sqrt(squared_error)
if (sqre < delta):
return 1 # no effect
return delta / sqre # linear
class Optimizer3D:
def __init__(self):
self.verbose = False
self.animation = False
self.p_lambda = 1e-7
self.init_w = 1e10
self.stop_thre = 1e-3
self.robust_delta = 1
self.dim = 6 # state dimension
def optimize_path(self, nodes, consts, max_iter, min_iter):
graph_nodes = nodes[:]
prev_cost = sys.float_info.max
est_traj_fig = plt.figure()
ax = est_traj_fig.add_subplot(111, projection='3d')
for i in range(max_iter):
start = time.time()
cost, graph_nodes = self.optimize_path_one_step(
graph_nodes, consts)
elapsed = time.time() - start
if self.verbose:
print("step ", i, " cost: ", cost, " time:", elapsed, "s")
# check convergence
if (i > min_iter) and (prev_cost - cost < self.stop_thre):
if self.verbose:
print("converged:", prev_cost
- cost, " < ", self.stop_thre)
break
prev_cost = cost
if self.animation:
plt.cla()
plot_nodes(nodes, ax, color="-b")
plot_nodes(graph_nodes, ax)
plt.pause(1.0)
return graph_nodes
def optimize_path_one_step(self, graph_nodes, constraints):
indlist = [i for i in range(self.dim)]
numnodes = len(graph_nodes)
bf = np.zeros(numnodes * self.dim)
tripletList = TripletList()
for con in constraints:
ida = con.id1
idb = con.id2
assert 0 <= ida and ida < numnodes, "ida is invalid"
assert 0 <= idb and idb < numnodes, "idb is invalid"
pa = graph_nodes[ida]
pb = graph_nodes[idb]
r, Ja, Jb = self.calc_error(
pa, pb, con.t)
info_mat = con.info_mat * robust_coeff(r.reshape(self.dim,1).T @ con.info_mat @ r.reshape(self.dim,1), self.robust_delta)
trJaInfo = Ja.transpose() @ info_mat
trJaInfoJa = trJaInfo @ Ja
trJbInfo = Jb.transpose() @ info_mat
trJbInfoJb = trJbInfo @ Jb
trJaInfoJb = trJaInfo @ Jb
for k in indlist:
for m in indlist:
tripletList.push_back(
ida * self.dim + k, ida * self.dim + m, trJaInfoJa[k, m])
tripletList.push_back(
idb * self.dim + k, idb * self.dim + m, trJbInfoJb[k, m])
tripletList.push_back(
ida * self.dim + k, idb * self.dim + m, trJaInfoJb[k, m])
tripletList.push_back(
idb * self.dim + k, ida * self.dim + m, trJaInfoJb[m, k])
bf[ida * self.dim: (ida + 1) * self.dim ] += trJaInfo @ r
bf[idb * self.dim: (idb + 1) * self.dim ] += trJbInfo @ r
for k in indlist:
tripletList.push_back(k, k, self.init_w)
for i in range(self.dim * numnodes):
tripletList.push_back(i, i, self.p_lambda)
mat = sparse.coo_matrix((tripletList.data, (tripletList.row, tripletList.col)),
shape=(numnodes * self.dim, numnodes * self.dim))
x = linalg.spsolve(mat.tocsr(), -bf)
out_nodes = []
for i in range(len(graph_nodes)):
u_i = i * self.dim
q_before = Quaternion(graph_nodes[i].qw, graph_nodes[i].qx, graph_nodes[i].qy, graph_nodes[i].qz)
rv_before = RotVec(quaternion = q_before)
rv_after = RotVec(ax = rv_before.ax + x[u_i + 3], ay = rv_before.ay + x[u_i + 4], az = rv_before.az + x[u_i + 5])
q_after = rv_after.toQuaternion()
pos = Pose3D(
graph_nodes[i].x + x[u_i],
graph_nodes[i].y + x[u_i + 1],
graph_nodes[i].z + x[u_i + 2],
q_after.qw,
q_after.qx,
q_after.qy,
q_after.qz
)
out_nodes.append(pos)
cost = self.calc_global_cost(out_nodes, constraints)
return cost, out_nodes
def calc_global_cost(self, nodes, constraints):
cost = 0.0
for c in constraints:
diff = self.error_func(nodes[c.id1], nodes[c.id2], c.t)
info_mat = c.info_mat * robust_coeff(diff.reshape(self.dim,1).T @ c.info_mat @ diff.reshape(self.dim,1), self.robust_delta)
cost += diff.transpose() @ info_mat @ diff
return cost
def error_func(self, pa, pb, t):
ba = pb.ominus(pa)
q = t.rv().toQuaternion().conjugate().quat_mult(ba.rv().toQuaternion(), out = 'Quaternion')
drv = RotVec(quaternion = q)
error = np.array([ba.x - t.x,
ba.y - t.y,
ba.z - t.z,
drv.ax[0],
drv.ay[0],
drv.az[0]])
return error
def dQuat_dRV(self, rv):
u1 = rv.ax; u2 = rv.ay; u3 = rv.az
v = np.sqrt(u1**2 + u2**2 + u3**2)
if v < 1e-6:
dqu = 0.25 * np.array(
[[ -u1, -u2, -u3],
[ 2.0, 0.0, 0.0],
[ 0.0, 2.0, 0.0],
[ 0.0, 0.0, 2.0]]
)
return dqu
vd = v*2
v2 = v**2
v3 = v**3
S = np.sin(v/2.0); C = np.cos(v/2.0)
dqu = np.array(
[[ -u1 * S/vd , -u2*S/vd , -u3*S/vd],
[ S/v + u1*u1*C/(2*v2) - u1*u1*S/v3, u1*u2*(C/(2*v2)-S/v3) , u1*u3*(C/(2*v2)-S/v3)],
[ u1*u2*(C/(2*v2)-S/v3) , S/v+u2*u2*C/(2*v2)-u2*u2*S/v3, u2*u3*(C/(2*v2)-S/v3)],
[ u1*u3*(C/(2*v2)-S/v3) , u2*u3*(C/(2*v2)-S/v3) , S/v+u3*u3*C/(2*v2)-u3*u3*S/v3]]
)
return dqu
def dR_dRV(self, rv):
q = rv.toQuaternion()
qw = q.qw;qx = q.qx; qy = q.qy;qz = q.qz
dRdqw = 2 * np.array(
[[ qw, -qz, qy],
[ qz, qw, -qx],
[-qy, qx, qw]]
)
dRdqx = 2 * np.array(
[[ qx, qy, qz],
[ qy, -qx, -qw],
[ qz, qw, -qx]]
)
dRdqy = 2 * np.array(
[[-qy, qx, qw],
[ qx, qy, qz],
[-qw, qz, -qy]]
)
dRdqz = 2 * np.array(
[[-qz, -qw, qx],
[ qw, -qz, -qy],
[ qz, qy, qz]]
)
dqdu = self.dQuat_dRV(rv)
dux = dRdqw * dqdu[0,0] + dRdqx * dqdu[1, 0] + dRdqy * dqdu[2, 0] + dRdqz * dqdu[3, 0]
duy = dRdqw * dqdu[0,1] + dRdqx * dqdu[1, 1] + dRdqy * dqdu[2, 1] + dRdqz * dqdu[3, 1]
duz = dRdqw * dqdu[0,2] + dRdqx * dqdu[1, 2] + dRdqy * dqdu[2, 2] + dRdqz * dqdu[3, 2]
return dux, duy, duz
def dRV_dQuat(self, q):
qw = q.qw[0]
qx = q.qx[0]
qy = q.qy[0]
qz = q.qz[0]
if 1 - qw**2 < 1e-7:
ret = np.array(
[[ 0.0, 2.0, 0.0, 0.0],
[ 0.0, 0.0, 2.0, 0.0],
[ 0.0, 0.0, 0.0, 2.0]]
)
return ret
c = 1/(1 - qw**2)
d = np.arccos(qw)/(np.sqrt(1-qw**2))
ret = 2.0 * np.array(
[[ c*qx*(d*qw-1), d, 0.0, 0.0],
[ c*qy*(d*qw-1), 0.0, d, 0.0],
[ c*qz*(d*qw-1), 0.0, 0.0, d]]
)
return ret
def QMat(self, q):
qw = q.qw; qx = q.qx; qy = q.qy; qz = q.qz
Q = np.array(
[[ qw, -qx, -qy, -qz],
[ qx, qw, -qz, qy],
[ qy, qz, qw, -qx],
[ qz, -qy, qx, qw]]
)
return Q
def QMatBar(self, q):
qw = q.qw; qx = q.qx; qy = q.qy; qz = q.qz
Q = np.array(
[[ qw, -qx, -qy, -qz],
[ qx, qw, qz, -qy],
[ qy, -qz, qw, qx],
[ qz, qy, -qx, qw]]
)
return Q
def calc_error(self, pa, pb, t):
e0 = self.error_func(pa, pb, t)
Ja = np.identity(6); Jb = np.identity(6)
rva_inv = pa.rv().inverted()
rotPaInv = rva_inv.toRotationMatrix()
Ja[:3,:3] = -rotPaInv
Jb[:3,:3] = rotPaInv
dRux, dRuy, dRuz = self.dR_dRV(rva_inv)
cvec = np.array([[pb.x - pa.x],[pb.y - pa.y],[pb.z - pa.z]])
Ja[0:3,3:4] = -dRux @ cvec
Ja[0:3,4:5] = -dRuy @ cvec
Ja[0:3,5:6] = -dRuz @ cvec
# rotation part: qdiff = qc-1 * qa-1 * qb
qainv = rva_inv.toQuaternion()
qcinv = t.rv().inverted().toQuaternion()
qb = pb.rv().toQuaternion()
qinvca = qcinv.quat_mult(qainv, out = 'Quaternion')
qdiff = qinvca.quat_mult(qb, out = 'Quaternion')
Ja[3:6,3:6] = -self.dRV_dQuat(qdiff) @ self.QMat(qcinv) @ self.QMatBar(qb) @ self.dQuat_dRV(rva_inv)
Jb[3:6,3:6] = self.dRV_dQuat(qdiff) @ self.QMat(qcinv) @ self.QMat(qainv) @ self.dQuat_dRV(pb.rv())
return e0, Ja, Jb
class Quaternion:
def __init__(self, qw, qx, qy, qz):
self.qw = qw; self.qx = qx; self.qy = qy; self.qz = qz
def conjugate(self):
return Quaternion(self.qw, -self.qx, -self.qy, -self.qz)
def to_numpy(self):
return np.array([self.qw, self.qx, self.qy, self.qz]).reshape(4,1)
def quat_mult(self, q, out='np'):
v = np.array([self.qx, self.qy, self.qz]).reshape(3, 1)
sum_term = np.zeros([4,4])
sum_term[0,1:] = -v[:,0]
sum_term[1:, 0] = v[:,0]
sum_term[1:, 1:] = skew_symmetric(v)
sigma = self.qw * np.eye(4) + sum_term
q_new = sigma @ q.to_numpy()
if out == 'np':
return q_new
elif out == 'Quaternion':
q_obj = Quaternion(*q_new)
return q_obj
class RotVec:
def __init__(self, ax=0., ay=0., az=0., quaternion=None):
if quaternion is None:
self.ax = ax; self.ay = ay; self.az = az
else:
x = quaternion.qx; y = quaternion.qy; z = quaternion.qz
norm_im = np.sqrt(x**2 + y**2 + z**2)
if (norm_im < 1e-7):
self.ax = 2*x; self.ay = 2*y; self.az = 2*z
else:
th = 2 * np.arctan2(norm_im, quaternion.qw)
th = self.pi2pi(th)
self.ax = x / norm_im * th
self.ay = y / norm_im * th
self.az = z / norm_im * th
def inverted(self):
return RotVec(-self.ax, -self.ay, -self.az)
def toRotationMatrix(self):
q = self.toQuaternion()
q_vec = np.array([q.qx, q.qy, q.qz]).reshape(3,1)
qw = q.qw
mat = (qw**2 - q_vec.T @ q_vec) * np.eye(3) + \
2 * q_vec @ q_vec.T - 2 * qw * skew_symmetric(q_vec.reshape(-1,))
return mat.T
def toQuaternion(self):
v = np.sqrt(self.ax**2 + self.ay**2 + self.az**2)
if (v < 1e-6):
return Quaternion(1, 0, 0, 0)
else:
return Quaternion(np.cos(v/2), np.sin(v/2)*self.ax/v,
np.sin(v/2)*self.ay/v, np.sin(v/2)*self.az/v)
def pi2pi(self, rad):
val = np.fmod(rad, 2.0 * np.pi)
if val > np.pi:
val -= 2.0 * np.pi
elif val < -np.pi:
val += 2.0 * np.pi
return val
class TripletList:
def __init__(self):
self.row = []
self.col = []
self.data = []
def push_back(self, irow, icol, idata):
self.row.append(irow)
self.col.append(icol)
self.data.append(idata)
class Pose3D:
def __init__(self, x, y, z, qw, qx, qy, qz):
self.x = x; self.y = y; self.z = z
self.qw = qw; self.qx = qx; self.qy = qy; self.qz = qz
def pos(self):
v = np.array([self.x, self.y, self.z]).reshape(3,1)
return v
def rv(self):
q = Quaternion(self.qw, self.qx, self.qy, self.qz)
return RotVec(quaternion = q)
def ominus(self, base):
t = base.rv().toRotationMatrix().T @ (self.pos() - base.pos())
q = base.rv().toQuaternion().conjugate().quat_mult(self.rv().toQuaternion(), out = 'Quaternion')
return Pose3D(t[0][0], t[1][0], t[2][0], q.qw, q.qx, q.qy, q.qz)
class Constrant3D:
def __init__(self, id1, id2, t, info_mat):
self.id1 = id1
self.id2 = id2
self.t = t
self.info_mat = info_mat
def plot_nodes(nodes, ax, color ="-r", label = ""):
x, y, z = [], [], []
for n in nodes:
x.append(n.x); y.append(n.y); z.append(n.z)
ax.plot(x, y, z, color, label=label)
def load_data(fname):
nodes, consts = [], []
for line in open(fname):
sline = line.split()
tag = sline[0]
if tag == "VERTEX_SE3:QUAT":
#data_id = int(sline[1]) # unused
x = float(sline[2])
y = float(sline[3])
z = float(sline[4])
qx = float(sline[5])
qy = float(sline[6])
qz = float(sline[7])
qw = float(sline[8])
nodes.append(Pose3D(x, y, z, qw, qx, qy, qz))
elif tag == "EDGE_SE3:QUAT":
id1 = int(sline[1])
id2 = int(sline[2])
x = float(sline[3])
y = float(sline[4])
z = float(sline[5])
qx = float(sline[6])
qy = float(sline[7])
qz = float(sline[8])
qw = float(sline[9])
c1 = float(sline[10])
c2 = float(sline[11])
c3 = float(sline[12])
c4 = float(sline[13])
c5 = float(sline[14])
c6 = float(sline[15])
c7 = float(sline[16])
c8 = float(sline[17])
c9 = float(sline[18])
c10 = float(sline[19])
c11 = float(sline[20])
c12 = float(sline[21])
c13 = float(sline[22])
c14 = float(sline[23])
c15 = float(sline[24])
c16 = float(sline[25])
c17 = float(sline[26])
c18 = float(sline[27])
c19 = float(sline[28])
c20 = float(sline[29])
c21 = float(sline[30])
t = Pose3D(x, y, z, qw, qx, qy, qz)
info_mat = np.array([[c1, c2, c3, c4, c5, c6],
[c2, c7, c8, c9, c10, c11],
[c3, c8, c12, c13, c14, c15],
[c4, c9, c13, c16, c17, c18],
[c5, c10, c14, c17, c19, c20],
[c6, c11, c15, c18, c20, c21]
])
consts.append(Constrant3D(id1, id2, t, info_mat))
print("n_nodes:", len(nodes))
print("n_consts:", len(consts))
return nodes, consts
def main():
print("start!!")
fnames = ["parking-garage.g2o"]
max_iter = 20
min_iter = 3
# parameter setting
optimizer = Optimizer3D()
optimizer.p_lambda = 1e-6
optimizer.verbose = True
optimizer.animation = True
for f in fnames:
print(f)
nodes, consts = load_data(f)
start = time.time()
final_nodes = optimizer.optimize_path(nodes, consts, max_iter, min_iter)
print("elapsed_time", time.time() - start, "sec")
# plot
plt.cla()
est_traj_fig = plt.figure()
ax = est_traj_fig.add_subplot(111, projection='3d')
plot_nodes(nodes, ax, color="-b", label="before")
plot_nodes(final_nodes, ax, label="after")
plt.show()
print("done!!")
if __name__ == '__main__':
main()