can generate shorest path

This commit is contained in:
Atsushi Sakai
2017-12-23 09:27:43 -08:00
parent 67aec5551f
commit cd876c0001

View File

@@ -0,0 +1,244 @@
"""
Probablistic Road Map (PRM) Planner
author: Atsushi Sakai (@Atsushi_twi)
"""
import random
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotrecorder import matplotrecorder
from pyfastnns import pyfastnns
matplotrecorder.donothing = True
# parameter
N_SAMPLE = 500
N_KNN = 10
MAX_EDGE_LEN = 30.0 # [m] Maximum edge length
class Node:
def __init__(self, x, y, cost, pind):
self.x = x
self.y = y
self.cost = cost
self.pind = pind
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)
def PRM_planning(sx, sy, gx, gy, ox, oy, rr):
sample_x, sample_y = sample_points(sx, sy, gx, gy, rr, ox, oy)
plt.plot(sample_x, sample_y, ".r")
road_map = generate_roadmap(sample_x, sample_y, rr)
rx, ry = dijkstra_planning(
sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y)
return rx, ry
def generate_roadmap(sample_x, sample_y, rr):
road_map = []
nsample = len(sample_x)
skdtree = pyfastnns.NNS(np.vstack((sample_x, sample_y)).T)
for (i, ix, iy) in zip(range(nsample), sample_x, sample_y):
index = skdtree.search(
np.matrix([ix, iy]).T, k=nsample)
edge_id = []
for ii in range(1, len(index[0][0][0])):
# nx = sample_x[index[i]]
# ny = sample_y[index[i]]
# if !is_collision(ix, iy, nx, ny, rr, okdtree)
edge_id.append(index[0][0][0][ii])
if len(edge_id) >= N_KNN:
break
road_map.append(edge_id)
# plot_road_map(road_map, sample_x, sample_y)
return road_map
def dijkstra_planning(sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y):
"""
gx: goal x position [m]
gx: goal x position [m]
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
reso: grid resolution [m]
rr: robot radius[m]
"""
nstart = Node(sx, sy, 0.0, -1)
ngoal = Node(gx, gy, 0.0, -1)
openset, closedset = dict(), dict()
openset[len(road_map) - 2] = nstart
while True:
if len(openset) == 0:
print("Cannot find path")
break
print(len(openset), len(closedset))
c_id = min(openset, key=lambda o: openset[o].cost)
current = openset[c_id]
print("current", current, c_id)
# input()
# show graph
plt.plot(current.x, current.y, "xc")
if len(closedset.keys()) % 10 == 0:
plt.pause(0.001)
matplotrecorder.save_frame()
if c_id == (len(road_map) - 1):
print("Find goal")
ngoal.pind = current.pind
ngoal.cost = current.cost
break
# Remove the item from the open set
del openset[c_id]
# Add it to the closed set
closedset[c_id] = current
# expand search grid based on motion model
for i in range(len(road_map[c_id])):
n_id = road_map[c_id][i]
print(i, n_id)
dx = sample_x[n_id] - current.x
dy = sample_y[n_id] - current.y
d = math.sqrt(dx**2 + dy**2)
node = Node(sample_x[n_id], sample_y[n_id],
current.cost + d, c_id)
# if not verify_node(node, obmap, minx, miny, maxx, maxy):
# continue
if n_id in closedset:
continue
# Otherwise if it is already in the open set
if n_id in openset:
if openset[n_id].cost > node.cost:
openset[n_id].cost = node.cost
openset[n_id].pind = c_id
else:
openset[n_id] = node
# generate final course
rx, ry = [ngoal.x], [ngoal.y]
pind = ngoal.pind
while pind != -1:
n = closedset[pind]
rx.append(n.x)
ry.append(n.y)
pind = n.pind
return rx, ry
def plot_road_map(road_map, sample_x, sample_y):
for i in range(len(road_map)):
for ii in range(len(road_map[i])):
ind = road_map[i][ii]
plt.plot([sample_x[i], sample_x[ind]],
[sample_y[i], sample_y[ind]], "-k")
def sample_points(sx, sy, gx, gy, rr, ox, oy):
maxx = max(ox)
maxy = max(oy)
minx = min(ox)
miny = min(oy)
sample_x, sample_y = [], []
nns = pyfastnns.NNS(np.vstack((ox, oy)).T)
while len(sample_x) <= N_SAMPLE:
tx = (random.random() - minx) * (maxx - minx)
ty = (random.random() - miny) * (maxy - miny)
index, dist = nns.search(np.matrix([tx, ty]).T)
if dist[0] >= rr:
sample_x.append(tx)
sample_y.append(ty)
sample_x.append(sx)
sample_y.append(sy)
sample_x.append(gx)
sample_y.append(gy)
return sample_x, sample_y
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
robot_size = 5.0 # [m]
ox = []
oy = []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "xr")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
rx, ry = PRM_planning(sx, sy, gx, gy, ox, oy, robot_size)
plt.plot(rx, ry, "-r")
for i in range(20):
matplotrecorder.save_frame()
plt.show()
matplotrecorder.save_movie("animation.gif", 0.1)
if __name__ == '__main__':
main()