mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 02:08:03 -05:00
add fastslam2 script
This commit is contained in:
@@ -45,7 +45,7 @@ class Particle:
|
||||
self.lmP = np.matrix(np.zeros((N_LM * LM_SIZE, LM_SIZE)))
|
||||
|
||||
|
||||
def fast_slam(particles, u, z):
|
||||
def fast_slam1(particles, u, z):
|
||||
|
||||
particles = predict_particles(particles, u)
|
||||
|
||||
@@ -370,7 +370,7 @@ def main():
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
particles = fast_slam(particles, ud, z)
|
||||
particles = fast_slam1(particles, ud, z)
|
||||
|
||||
xEst = calc_final_state(particles)
|
||||
|
||||
|
||||
406
SLAM/FastSLAM2/fast_slam2.py
Normal file
406
SLAM/FastSLAM2/fast_slam2.py
Normal file
@@ -0,0 +1,406 @@
|
||||
"""
|
||||
|
||||
FastSLAM 2.0 example
|
||||
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Fast SLAM covariance
|
||||
Q = np.diag([3.0, math.radians(10.0)])**2
|
||||
R = np.diag([1.0, math.radians(20.0)])**2
|
||||
|
||||
# Simulation parameter
|
||||
Qsim = np.diag([0.3, math.radians(2.0)])**2
|
||||
Rsim = np.diag([0.5, math.radians(10.0)])**2
|
||||
OFFSET_YAWRATE_NOISE = 0.01
|
||||
|
||||
DT = 0.1 # time tick [s]
|
||||
SIM_TIME = 50.0 # simulation time [s]
|
||||
MAX_RANGE = 20.0 # maximum observation range
|
||||
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
|
||||
STATE_SIZE = 3 # State size [x,y,yaw]
|
||||
LM_SIZE = 2 # LM srate size [x,y]
|
||||
N_PARTICLE = 100 # number of particle
|
||||
NTH = N_PARTICLE / 1.5 # Number of particle for re-sampling
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
class Particle:
|
||||
|
||||
def __init__(self, N_LM):
|
||||
self.w = 1.0 / N_PARTICLE
|
||||
self.x = 0.0
|
||||
self.y = 0.0
|
||||
self.yaw = 0.0
|
||||
# landmark x-y positions
|
||||
self.lm = np.matrix(np.zeros((N_LM, LM_SIZE)))
|
||||
# landmark position covariance
|
||||
self.lmP = np.matrix(np.zeros((N_LM * LM_SIZE, LM_SIZE)))
|
||||
|
||||
|
||||
def fast_slam2(particles, u, z):
|
||||
|
||||
particles = predict_particles(particles, u)
|
||||
|
||||
particles = update_with_observation(particles, z)
|
||||
|
||||
particles = resampling(particles)
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def normalize_weight(particles):
|
||||
|
||||
sumw = sum([p.w for p in particles])
|
||||
|
||||
if sumw <= 0.0000001:
|
||||
for i in range(N_PARTICLE):
|
||||
particles[i].w = 1.0 / N_PARTICLE
|
||||
|
||||
return particles
|
||||
|
||||
for i in range(N_PARTICLE):
|
||||
particles[i].w /= sumw
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def calc_final_state(particles):
|
||||
|
||||
xEst = np.zeros((STATE_SIZE, 1))
|
||||
|
||||
particles = normalize_weight(particles)
|
||||
|
||||
for i in range(N_PARTICLE):
|
||||
xEst[0, 0] += particles[i].w * particles[i].x
|
||||
xEst[1, 0] += particles[i].w * particles[i].y
|
||||
xEst[2, 0] += particles[i].w * particles[i].yaw
|
||||
|
||||
xEst[2, 0] = pi_2_pi(xEst[2, 0])
|
||||
# print(xEst)
|
||||
|
||||
return xEst
|
||||
|
||||
|
||||
def predict_particles(particles, u):
|
||||
|
||||
for i in range(N_PARTICLE):
|
||||
px = np.zeros((STATE_SIZE, 1))
|
||||
px[0, 0] = particles[i].x
|
||||
px[1, 0] = particles[i].y
|
||||
px[2, 0] = particles[i].yaw
|
||||
ud = u + (np.matrix(np.random.randn(1, 2)) * R).T # add noise
|
||||
px = motion_model(px, ud)
|
||||
particles[i].x = px[0, 0]
|
||||
particles[i].y = px[1, 0]
|
||||
particles[i].yaw = px[2, 0]
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def add_new_lm(particle, z, Q):
|
||||
|
||||
r = z[0, 0]
|
||||
b = z[0, 1]
|
||||
lm_id = int(z[0, 2])
|
||||
|
||||
s = math.sin(pi_2_pi(particle.yaw + b))
|
||||
c = math.cos(pi_2_pi(particle.yaw + b))
|
||||
|
||||
particle.lm[lm_id, 0] = particle.x + r * c
|
||||
particle.lm[lm_id, 1] = particle.y + r * s
|
||||
|
||||
# covariance
|
||||
Gz = np.matrix([[c, -r * s],
|
||||
[s, r * c]])
|
||||
|
||||
particle.lmP[2 * lm_id:2 * lm_id + 2] = Gz * Q * Gz.T
|
||||
|
||||
return particle
|
||||
|
||||
|
||||
def compute_jacobians(particle, xf, Pf, Q):
|
||||
dx = xf[0, 0] - particle.x
|
||||
dy = xf[1, 0] - particle.y
|
||||
d2 = dx**2 + dy**2
|
||||
d = math.sqrt(d2)
|
||||
|
||||
zp = np.matrix([[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]]).T
|
||||
|
||||
Hv = np.matrix([[-dx / d, -dy / d, 0.0],
|
||||
[dy / d2, -dx / d2, -1.0]])
|
||||
|
||||
Hf = np.matrix([[dx / d, dy / d],
|
||||
[-dy / d2, dx / d2]])
|
||||
|
||||
Sf = Hf * Pf * Hf.T + Q
|
||||
|
||||
return zp, Hv, Hf, Sf
|
||||
|
||||
|
||||
def update_KF_with_cholesky(xf, Pf, v, Q, Hf):
|
||||
PHt = Pf * Hf.T
|
||||
S = Hf * PHt + Q
|
||||
|
||||
S = (S + S.T) * 0.5
|
||||
SChol = np.linalg.cholesky(S).T
|
||||
SCholInv = np.linalg.inv(SChol)
|
||||
W1 = PHt * SCholInv
|
||||
W = W1 * SCholInv.T
|
||||
|
||||
x = xf + W * v
|
||||
P = Pf - W1 * W1.T
|
||||
|
||||
return x, P
|
||||
|
||||
|
||||
def update_landmark(particle, z, Q):
|
||||
|
||||
lm_id = int(z[0, 2])
|
||||
xf = np.matrix(particle.lm[lm_id, :]).T
|
||||
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
|
||||
|
||||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
|
||||
|
||||
dz = z[0, 0: 2].T - zp
|
||||
dz[1, 0] = pi_2_pi(dz[1, 0])
|
||||
|
||||
xf, Pf = update_KF_with_cholesky(xf, Pf, dz, Q, Hf)
|
||||
|
||||
particle.lm[lm_id, :] = xf.T
|
||||
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
|
||||
|
||||
return particle
|
||||
|
||||
|
||||
def compute_weight(particle, z, Q):
|
||||
|
||||
lm_id = int(z[0, 2])
|
||||
xf = np.matrix(particle.lm[lm_id, :]).T
|
||||
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2])
|
||||
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
|
||||
|
||||
dx = z[0, 0: 2].T - zp
|
||||
dx[1, 0] = pi_2_pi(dx[1, 0])
|
||||
|
||||
S = particle.lmP[2 * lm_id:2 * lm_id + 2]
|
||||
try:
|
||||
invS = np.linalg.inv(S)
|
||||
except np.linalg.linalg.LinAlgError:
|
||||
print("singuler")
|
||||
return 1.0
|
||||
|
||||
num = math.exp(-0.5 * dx.T * invS * dx)
|
||||
den = 2.0 * math.pi * math.sqrt(np.linalg.det(S))
|
||||
|
||||
w = num / den
|
||||
|
||||
return w
|
||||
|
||||
|
||||
def update_with_observation(particles, z):
|
||||
|
||||
for iz in range(len(z[:, 0])):
|
||||
|
||||
lmid = int(z[iz, 2])
|
||||
|
||||
for ip in range(N_PARTICLE):
|
||||
# new landmark
|
||||
if abs(particles[ip].lm[lmid, 0]) <= 0.01:
|
||||
particles[ip] = add_new_lm(particles[ip], z[iz, :], Q)
|
||||
# known landmark
|
||||
else:
|
||||
w = compute_weight(particles[ip], z[iz, :], Q)
|
||||
particles[ip].w *= w
|
||||
particles[ip] = update_landmark(particles[ip], z[iz, :], Q)
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def resampling(particles):
|
||||
"""
|
||||
low variance re-sampling
|
||||
"""
|
||||
|
||||
particles = normalize_weight(particles)
|
||||
|
||||
pw = []
|
||||
for i in range(N_PARTICLE):
|
||||
pw.append(particles[i].w)
|
||||
|
||||
pw = np.matrix(pw)
|
||||
|
||||
Neff = 1.0 / (pw * pw.T)[0, 0] # Effective particle number
|
||||
# print(Neff)
|
||||
|
||||
if Neff < NTH: # resampling
|
||||
wcum = np.cumsum(pw)
|
||||
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
|
||||
resampleid = base + np.random.rand(base.shape[1]) / N_PARTICLE
|
||||
|
||||
inds = []
|
||||
ind = 0
|
||||
for ip in range(N_PARTICLE):
|
||||
while ((ind < wcum.shape[1] - 1) and (resampleid[0, ip] > wcum[0, ind])):
|
||||
ind += 1
|
||||
inds.append(ind)
|
||||
|
||||
tparticles = particles[:]
|
||||
for i in range(len(inds)):
|
||||
particles[i].x = tparticles[inds[i]].x
|
||||
particles[i].y = tparticles[inds[i]].y
|
||||
particles[i].yaw = tparticles[inds[i]].yaw
|
||||
particles[i].lm = tparticles[inds[i]].lm[:, :]
|
||||
particles[i].lmP = tparticles[inds[i]].lmP[:, :]
|
||||
particles[i].w = 1.0 / N_PARTICLE
|
||||
|
||||
return particles
|
||||
|
||||
|
||||
def calc_input(time):
|
||||
|
||||
if time <= 3.0:
|
||||
v = 0.0
|
||||
yawrate = 0.0
|
||||
else:
|
||||
v = 1.0 # [m/s]
|
||||
yawrate = 0.1 # [rad/s]
|
||||
|
||||
u = np.matrix([v, yawrate]).T
|
||||
|
||||
return u
|
||||
|
||||
|
||||
def observation(xTrue, xd, u, RFID):
|
||||
|
||||
xTrue = motion_model(xTrue, u)
|
||||
|
||||
# add noise to gps x-y
|
||||
z = np.matrix(np.zeros((0, 3)))
|
||||
|
||||
for i in range(len(RFID[:, 0])):
|
||||
|
||||
dx = RFID[i, 0] - xTrue[0, 0]
|
||||
dy = RFID[i, 1] - xTrue[1, 0]
|
||||
d = math.sqrt(dx**2 + dy**2)
|
||||
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
|
||||
if d <= MAX_RANGE:
|
||||
dn = d + np.random.randn() * Qsim[0, 0] # add noise
|
||||
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
|
||||
zi = np.matrix([dn, pi_2_pi(anglen), i])
|
||||
z = np.vstack((z, zi))
|
||||
|
||||
# add noise to input
|
||||
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
|
||||
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1] + OFFSET_YAWRATE_NOISE
|
||||
ud = np.matrix([ud1, ud2]).T
|
||||
|
||||
xd = motion_model(xd, ud)
|
||||
|
||||
return xTrue, z, xd, ud
|
||||
|
||||
|
||||
def motion_model(x, u):
|
||||
|
||||
F = np.matrix([[1.0, 0, 0],
|
||||
[0, 1.0, 0],
|
||||
[0, 0, 1.0]])
|
||||
|
||||
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
|
||||
[DT * math.sin(x[2, 0]), 0],
|
||||
[0.0, DT]])
|
||||
|
||||
x = F * x + B * u
|
||||
|
||||
x[2, 0] = pi_2_pi(x[2, 0])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
while(angle > math.pi):
|
||||
angle = angle - 2.0 * math.pi
|
||||
|
||||
while(angle < -math.pi):
|
||||
angle = angle + 2.0 * math.pi
|
||||
|
||||
return angle
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
time = 0.0
|
||||
|
||||
# RFID positions [x, y]
|
||||
RFID = np.array([[10.0, -2.0],
|
||||
[15.0, 10.0],
|
||||
[15.0, 15.0],
|
||||
[10.0, 20.0],
|
||||
[3.0, 15.0],
|
||||
[-5.0, 20.0],
|
||||
[-5.0, 5.0],
|
||||
[-10.0, 15.0]
|
||||
])
|
||||
N_LM = RFID.shape[0]
|
||||
|
||||
# State Vector [x y yaw v]'
|
||||
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))
|
||||
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
|
||||
|
||||
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
|
||||
|
||||
# history
|
||||
hxEst = xEst
|
||||
hxTrue = xTrue
|
||||
hxDR = xTrue
|
||||
|
||||
particles = [Particle(N_LM) for i in range(N_PARTICLE)]
|
||||
|
||||
while SIM_TIME >= time:
|
||||
time += DT
|
||||
u = calc_input(time)
|
||||
|
||||
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
|
||||
|
||||
particles = fast_slam2(particles, ud, z)
|
||||
|
||||
xEst = calc_final_state(particles)
|
||||
|
||||
x_state = xEst[0: STATE_SIZE]
|
||||
|
||||
# store data history
|
||||
hxEst = np.hstack((hxEst, x_state))
|
||||
hxDR = np.hstack((hxDR, xDR))
|
||||
hxTrue = np.hstack((hxTrue, xTrue))
|
||||
|
||||
if show_animation:
|
||||
plt.cla()
|
||||
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
|
||||
|
||||
for i in range(N_PARTICLE):
|
||||
plt.plot(particles[i].x, particles[i].y, ".r")
|
||||
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
|
||||
|
||||
plt.plot(np.array(hxTrue[0, :]).flatten(),
|
||||
np.array(hxTrue[1, :]).flatten(), "-b")
|
||||
plt.plot(np.array(hxDR[0, :]).flatten(),
|
||||
np.array(hxDR[1, :]).flatten(), "-k")
|
||||
plt.plot(np.array(hxEst[0, :]).flatten(),
|
||||
np.array(hxEst[1, :]).flatten(), "-r")
|
||||
|
||||
plt.plot(xEst[0], xEst[1], "xk")
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.pause(0.001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user