add fastslam2 script

This commit is contained in:
Atsushi Sakai
2018-03-20 22:40:33 -07:00
parent 14ffe6275a
commit d3e0c46d1e
2 changed files with 408 additions and 2 deletions

View File

@@ -45,7 +45,7 @@ class Particle:
self.lmP = np.matrix(np.zeros((N_LM * LM_SIZE, LM_SIZE)))
def fast_slam(particles, u, z):
def fast_slam1(particles, u, z):
particles = predict_particles(particles, u)
@@ -370,7 +370,7 @@ def main():
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam(particles, ud, z)
particles = fast_slam1(particles, ud, z)
xEst = calc_final_state(particles)

View File

@@ -0,0 +1,406 @@
"""
FastSLAM 2.0 example
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import matplotlib.pyplot as plt
# Fast SLAM covariance
Q = np.diag([3.0, math.radians(10.0)])**2
R = np.diag([1.0, math.radians(20.0)])**2
# Simulation parameter
Qsim = np.diag([0.3, math.radians(2.0)])**2
Rsim = np.diag([0.5, math.radians(10.0)])**2
OFFSET_YAWRATE_NOISE = 0.01
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
STATE_SIZE = 3 # State size [x,y,yaw]
LM_SIZE = 2 # LM srate size [x,y]
N_PARTICLE = 100 # number of particle
NTH = N_PARTICLE / 1.5 # Number of particle for re-sampling
show_animation = True
class Particle:
def __init__(self, N_LM):
self.w = 1.0 / N_PARTICLE
self.x = 0.0
self.y = 0.0
self.yaw = 0.0
# landmark x-y positions
self.lm = np.matrix(np.zeros((N_LM, LM_SIZE)))
# landmark position covariance
self.lmP = np.matrix(np.zeros((N_LM * LM_SIZE, LM_SIZE)))
def fast_slam2(particles, u, z):
particles = predict_particles(particles, u)
particles = update_with_observation(particles, z)
particles = resampling(particles)
return particles
def normalize_weight(particles):
sumw = sum([p.w for p in particles])
if sumw <= 0.0000001:
for i in range(N_PARTICLE):
particles[i].w = 1.0 / N_PARTICLE
return particles
for i in range(N_PARTICLE):
particles[i].w /= sumw
return particles
def calc_final_state(particles):
xEst = np.zeros((STATE_SIZE, 1))
particles = normalize_weight(particles)
for i in range(N_PARTICLE):
xEst[0, 0] += particles[i].w * particles[i].x
xEst[1, 0] += particles[i].w * particles[i].y
xEst[2, 0] += particles[i].w * particles[i].yaw
xEst[2, 0] = pi_2_pi(xEst[2, 0])
# print(xEst)
return xEst
def predict_particles(particles, u):
for i in range(N_PARTICLE):
px = np.zeros((STATE_SIZE, 1))
px[0, 0] = particles[i].x
px[1, 0] = particles[i].y
px[2, 0] = particles[i].yaw
ud = u + (np.matrix(np.random.randn(1, 2)) * R).T # add noise
px = motion_model(px, ud)
particles[i].x = px[0, 0]
particles[i].y = px[1, 0]
particles[i].yaw = px[2, 0]
return particles
def add_new_lm(particle, z, Q):
r = z[0, 0]
b = z[0, 1]
lm_id = int(z[0, 2])
s = math.sin(pi_2_pi(particle.yaw + b))
c = math.cos(pi_2_pi(particle.yaw + b))
particle.lm[lm_id, 0] = particle.x + r * c
particle.lm[lm_id, 1] = particle.y + r * s
# covariance
Gz = np.matrix([[c, -r * s],
[s, r * c]])
particle.lmP[2 * lm_id:2 * lm_id + 2] = Gz * Q * Gz.T
return particle
def compute_jacobians(particle, xf, Pf, Q):
dx = xf[0, 0] - particle.x
dy = xf[1, 0] - particle.y
d2 = dx**2 + dy**2
d = math.sqrt(d2)
zp = np.matrix([[d, pi_2_pi(math.atan2(dy, dx) - particle.yaw)]]).T
Hv = np.matrix([[-dx / d, -dy / d, 0.0],
[dy / d2, -dx / d2, -1.0]])
Hf = np.matrix([[dx / d, dy / d],
[-dy / d2, dx / d2]])
Sf = Hf * Pf * Hf.T + Q
return zp, Hv, Hf, Sf
def update_KF_with_cholesky(xf, Pf, v, Q, Hf):
PHt = Pf * Hf.T
S = Hf * PHt + Q
S = (S + S.T) * 0.5
SChol = np.linalg.cholesky(S).T
SCholInv = np.linalg.inv(SChol)
W1 = PHt * SCholInv
W = W1 * SCholInv.T
x = xf + W * v
P = Pf - W1 * W1.T
return x, P
def update_landmark(particle, z, Q):
lm_id = int(z[0, 2])
xf = np.matrix(particle.lm[lm_id, :]).T
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2, :])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
dz = z[0, 0: 2].T - zp
dz[1, 0] = pi_2_pi(dz[1, 0])
xf, Pf = update_KF_with_cholesky(xf, Pf, dz, Q, Hf)
particle.lm[lm_id, :] = xf.T
particle.lmP[2 * lm_id:2 * lm_id + 2, :] = Pf
return particle
def compute_weight(particle, z, Q):
lm_id = int(z[0, 2])
xf = np.matrix(particle.lm[lm_id, :]).T
Pf = np.matrix(particle.lmP[2 * lm_id:2 * lm_id + 2])
zp, Hv, Hf, Sf = compute_jacobians(particle, xf, Pf, Q)
dx = z[0, 0: 2].T - zp
dx[1, 0] = pi_2_pi(dx[1, 0])
S = particle.lmP[2 * lm_id:2 * lm_id + 2]
try:
invS = np.linalg.inv(S)
except np.linalg.linalg.LinAlgError:
print("singuler")
return 1.0
num = math.exp(-0.5 * dx.T * invS * dx)
den = 2.0 * math.pi * math.sqrt(np.linalg.det(S))
w = num / den
return w
def update_with_observation(particles, z):
for iz in range(len(z[:, 0])):
lmid = int(z[iz, 2])
for ip in range(N_PARTICLE):
# new landmark
if abs(particles[ip].lm[lmid, 0]) <= 0.01:
particles[ip] = add_new_lm(particles[ip], z[iz, :], Q)
# known landmark
else:
w = compute_weight(particles[ip], z[iz, :], Q)
particles[ip].w *= w
particles[ip] = update_landmark(particles[ip], z[iz, :], Q)
return particles
def resampling(particles):
"""
low variance re-sampling
"""
particles = normalize_weight(particles)
pw = []
for i in range(N_PARTICLE):
pw.append(particles[i].w)
pw = np.matrix(pw)
Neff = 1.0 / (pw * pw.T)[0, 0] # Effective particle number
# print(Neff)
if Neff < NTH: # resampling
wcum = np.cumsum(pw)
base = np.cumsum(pw * 0.0 + 1 / N_PARTICLE) - 1 / N_PARTICLE
resampleid = base + np.random.rand(base.shape[1]) / N_PARTICLE
inds = []
ind = 0
for ip in range(N_PARTICLE):
while ((ind < wcum.shape[1] - 1) and (resampleid[0, ip] > wcum[0, ind])):
ind += 1
inds.append(ind)
tparticles = particles[:]
for i in range(len(inds)):
particles[i].x = tparticles[inds[i]].x
particles[i].y = tparticles[inds[i]].y
particles[i].yaw = tparticles[inds[i]].yaw
particles[i].lm = tparticles[inds[i]].lm[:, :]
particles[i].lmP = tparticles[inds[i]].lmP[:, :]
particles[i].w = 1.0 / N_PARTICLE
return particles
def calc_input(time):
if time <= 3.0:
v = 0.0
yawrate = 0.0
else:
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.matrix([v, yawrate]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.matrix(np.zeros((0, 3)))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.matrix([dn, pi_2_pi(anglen), i])
z = np.vstack((z, zi))
# add noise to input
ud1 = u[0, 0] + np.random.randn() * Rsim[0, 0]
ud2 = u[1, 0] + np.random.randn() * Rsim[1, 1] + OFFSET_YAWRATE_NOISE
ud = np.matrix([ud1, ud2]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.matrix([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.matrix([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = F * x + B * u
x[2, 0] = pi_2_pi(x[2, 0])
return x
def pi_2_pi(angle):
while(angle > math.pi):
angle = angle - 2.0 * math.pi
while(angle < -math.pi):
angle = angle + 2.0 * math.pi
return angle
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[15.0, 15.0],
[10.0, 20.0],
[3.0, 15.0],
[-5.0, 20.0],
[-5.0, 5.0],
[-10.0, 15.0]
])
N_LM = RFID.shape[0]
# State Vector [x y yaw v]'
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
particles = [Particle(N_LM) for i in range(N_PARTICLE)]
while SIM_TIME >= time:
time += DT
u = calc_input(time)
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
particles = fast_slam2(particles, ud, z)
xEst = calc_final_state(particles)
x_state = xEst[0: STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation:
plt.cla()
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
for i in range(N_PARTICLE):
plt.plot(particles[i].x, particles[i].y, ".r")
plt.plot(particles[i].lm[:, 0], particles[i].lm[:, 1], "xb")
plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(hxEst[0, :]).flatten(),
np.array(hxEst[1, :]).flatten(), "-r")
plt.plot(xEst[0], xEst[1], "xk")
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main()