add RRTstar_car samples

This commit is contained in:
AtsushiSakai
2017-05-22 15:56:12 -07:00
parent 028045abe0
commit d40d79864a
5 changed files with 677 additions and 0 deletions

View File

@@ -0,0 +1,313 @@
#! /usr/bin/python
# -*- coding: utf-8 -*-
"""
Dubins path planner sample code
author Atsushi Sakai(@Atsushi_twi)
License MIT
"""
import math
def mod2pi(theta):
return theta - 2.0 * math.pi * math.floor(theta / 2.0 / math.pi)
def pi_2_pi(angle):
while(angle >= math.pi):
angle = angle - 2.0 * math.pi
while(angle <= -math.pi):
angle = angle + 2.0 * math.pi
return angle
def LSL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
tmp0 = d + sa - sb
mode = ["L", "S", "L"]
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb))
if p_squared < 0:
return None, None, None, mode
tmp1 = math.atan2((cb - ca), tmp0)
t = mod2pi(-alpha + tmp1)
p = math.sqrt(p_squared)
q = mod2pi(beta - tmp1)
# print(math.degrees(t), p, math.degrees(q))
return t, p, q, mode
def RSR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
tmp0 = d - sa + sb
mode = ["R", "S", "R"]
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa))
if p_squared < 0:
return None, None, None, mode
tmp1 = math.atan2((ca - cb), tmp0)
t = mod2pi(alpha - tmp1)
p = math.sqrt(p_squared)
q = mod2pi(-beta + tmp1)
return t, p, q, mode
def LSR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb))
mode = ["L", "S", "R"]
if p_squared < 0:
return None, None, None, mode
p = math.sqrt(p_squared)
tmp2 = math.atan2((-ca - cb), (d + sa + sb)) - math.atan2(-2.0, p)
t = mod2pi(-alpha + tmp2)
q = mod2pi(-mod2pi(beta) + tmp2)
return t, p, q, mode
def RSL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb))
mode = ["R", "S", "L"]
if p_squared < 0:
return None, None, None, mode
p = math.sqrt(p_squared)
tmp2 = math.atan2((ca + cb), (d - sa - sb)) - math.atan2(2.0, p)
t = mod2pi(alpha - tmp2)
q = mod2pi(beta - tmp2)
return t, p, q, mode
def RLR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
mode = ["R", "L", "R"]
tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0
if abs(tmp_rlr) > 1.0:
return None, None, None, mode
p = mod2pi(2 * math.pi - math.acos(tmp_rlr))
t = mod2pi(alpha - math.atan2(ca - cb, d - sa + sb) + mod2pi(p / 2.0))
q = mod2pi(alpha - beta - t + mod2pi(p))
return t, p, q, mode
def LRL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
mode = ["L", "R", "L"]
tmp_lrl = (6. - d * d + 2 * c_ab + 2 * d * (- sa + sb)) / 8.
if abs(tmp_lrl) > 1:
return None, None, None, mode
p = mod2pi(2 * math.pi - math.acos(tmp_lrl))
t = mod2pi(-alpha - math.atan2(ca - cb, d + sa - sb) + p / 2.)
q = mod2pi(mod2pi(beta) - alpha - t + mod2pi(p))
return t, p, q, mode
def dubins_path_planning_from_origin(ex, ey, eyaw, c):
# nomalize
dx = ex
dy = ey
D = math.sqrt(dx ** 2.0 + dy ** 2.0)
d = D / c
# print(dx, dy, D, d)
theta = mod2pi(math.atan2(dy, dx))
alpha = mod2pi(- theta)
beta = mod2pi(eyaw - theta)
# print(theta, alpha, beta, d)
planners = [LSL, RSR, LSR, RSL, RLR, LRL]
bcost = float("inf")
bt, bp, bq, bmode = None, None, None, None
for planner in planners:
t, p, q, mode = planner(alpha, beta, d)
if t is None:
# print("".join(mode) + " cannot generate path")
continue
cost = (abs(t) + abs(p) + abs(q))
if bcost > cost:
bt, bp, bq, bmode = t, p, q, mode
bcost = cost
# print(bmode)
px, py, pyaw = generate_course([bt, bp, bq], bmode, c)
return px, py, pyaw, bmode, bcost
def dubins_path_planning(sx, sy, syaw, ex, ey, eyaw, c):
"""
Dubins path plannner
input:
sx x position of start point [m]
sy y position of start point [m]
syaw yaw angle of start point [rad]
ex x position of end point [m]
ey y position of end point [m]
eyaw yaw angle of end point [rad]
c curvature [1/m]
output:
px
py
pyaw
mode
"""
ex = ex - sx
ey = ey - sy
lex = math.cos(syaw) * ex + math.sin(syaw) * ey
ley = - math.sin(syaw) * ex + math.cos(syaw) * ey
leyaw = eyaw - syaw
lpx, lpy, lpyaw, mode, clen = dubins_path_planning_from_origin(
lex, ley, leyaw, c)
px = [math.cos(-syaw) * x + math.sin(-syaw) *
y + sx for x, y in zip(lpx, lpy)]
py = [- math.sin(-syaw) * x + math.cos(-syaw) *
y + sy for x, y in zip(lpx, lpy)]
pyaw = [pi_2_pi(iyaw + syaw) for iyaw in lpyaw]
# print(syaw)
# pyaw = lpyaw
# plt.plot(pyaw, "-r")
# plt.plot(lpyaw, "-b")
# plt.plot(eyaw, "*r")
# plt.plot(syaw, "*b")
# plt.show()
return px, py, pyaw, mode, clen
def generate_course(length, mode, c):
px = [0.0]
py = [0.0]
pyaw = [0.0]
for m, l in zip(mode, length):
pd = 0.0
if m is "S":
d = 1.0 / c
else: # turning couse
d = math.radians(3.0)
while pd < abs(l - d):
# print(pd, l)
px.append(px[-1] + d * c * math.cos(pyaw[-1]))
py.append(py[-1] + d * c * math.sin(pyaw[-1]))
if m is "L": # left turn
pyaw.append(pyaw[-1] + d)
elif m is "S": # Straight
pyaw.append(pyaw[-1])
elif m is "R": # right turn
pyaw.append(pyaw[-1] - d)
pd += d
else:
d = l - pd
px.append(px[-1] + d * c * math.cos(pyaw[-1]))
py.append(py[-1] + d * c * math.sin(pyaw[-1]))
if m is "L": # left turn
pyaw.append(pyaw[-1] + d)
elif m is "S": # Straight
pyaw.append(pyaw[-1])
elif m is "R": # right turn
pyaw.append(pyaw[-1] - d)
pd += d
return px, py, pyaw
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):
u"""
Plot arrow
"""
import matplotlib.pyplot as plt
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
if __name__ == '__main__':
print("Dubins path planner sample start!!")
import matplotlib.pyplot as plt
start_x = 1.0 # [m]
start_y = 1.0 # [m]
start_yaw = math.radians(45.0) # [rad]
end_x = -3.0 # [m]
end_y = -3.0 # [m]
end_yaw = math.radians(-45.0) # [rad]
curvature = 1.0
px, py, pyaw, mode, clen = dubins_path_planning(start_x, start_y, start_yaw,
end_x, end_y, end_yaw, curvature)
plt.plot(px, py, label="final course " + "".join(mode))
# plotting
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
# for (ix, iy, iyaw) in zip(px, py, pyaw):
# plot_arrow(ix, iy, iyaw, fc="b")
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 245 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 389 KiB

View File

@@ -0,0 +1,59 @@
"""
A simple Python module for recording matplotlib animation
This tool use convert command of ImageMagick
author: Atsushi Sakai
"""
import matplotlib.pyplot as plt
import subprocess
iframe = 0
donothing = False
def save_frame():
"""
Save a frame for movie
"""
if not donothing:
global iframe
plt.savefig("recoder" + '{0:04d}'.format(iframe) + '.png')
iframe += 1
def save_movie(fname, d_pause):
"""
Save movie as gif
"""
if not donothing:
cmd = "convert -delay " + str(int(d_pause * 100)) + \
" recoder*.png " + fname
subprocess.call(cmd, shell=True)
cmd = "rm recoder*.png"
subprocess.call(cmd, shell=True)
if __name__ == '__main__':
print("A sample recording start")
import math
time = range(50)
x1 = [math.cos(t / 10.0) for t in time]
y1 = [math.sin(t / 10.0) for t in time]
x2 = [math.cos(t / 10.0) + 2 for t in time]
y2 = [math.sin(t / 10.0) + 2 for t in time]
for ix1, iy1, ix2, iy2 in zip(x1, y1, x2, y2):
plt.plot(ix1, iy1, "xr")
plt.plot(ix2, iy2, "xb")
plt.axis("equal")
plt.pause(0.1)
save_frame() # save each frame
save_movie("animation.gif", 0.1)
# save_movie("animation.mp4", 0.1)

View File

@@ -0,0 +1,305 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
@brief: Path Planning Sample Code with RRT for car like robot.
@author: AtsushiSakai(@Atsushi_twi)
@license: MIT
"""
import random
import math
import copy
import numpy as np
import dubins_path_planning
class RRT():
u"""
Class for RRT Planning
"""
def __init__(self, start, goal, obstacleList, randArea,
goalSampleRate=10, maxIter=1000):
u"""
Setting Parameter
start:Start Position [x,y]
goal:Goal Position [x,y]
obstacleList:obstacle Positions [[x,y,size],...]
randArea:Ramdom Samping Area [min,max]
"""
self.start = Node(start[0], start[1], start[2])
self.end = Node(goal[0], goal[1], goal[2])
self.minrand = randArea[0]
self.maxrand = randArea[1]
self.goalSampleRate = goalSampleRate
self.maxIter = maxIter
def Planning(self, animation=True):
u"""
Pathplanning
animation: flag for animation on or off
"""
self.nodeList = [self.start]
for i in range(self.maxIter):
rnd = self.get_random_point()
nind = self.GetNearestListIndex(self.nodeList, rnd)
newNode = self.steer(rnd, nind)
# print(newNode.cost)
if self.CollisionCheck(newNode, obstacleList):
nearinds = self.find_near_nodes(newNode)
newNode = self.choose_parent(newNode, nearinds)
self.nodeList.append(newNode)
self.rewire(newNode, nearinds)
if animation:
self.DrawGraph(rnd=rnd)
if i % 5 == 0:
matplotrecorder.save_frame() # save each frame
# generate coruse
lastIndex = self.get_best_last_index()
# print(lastIndex)
path = self.gen_final_course(lastIndex)
return path
def choose_parent(self, newNode, nearinds):
if len(nearinds) == 0:
return newNode
dlist = []
for i in nearinds:
tNode = self.steer(newNode, i)
if self.CollisionCheck(tNode, obstacleList):
dlist.append(tNode.cost)
else:
dlist.append(float("inf"))
mincost = min(dlist)
minind = nearinds[dlist.index(mincost)]
if mincost == float("inf"):
print("mincost is inf")
return newNode
newNode = self.steer(newNode, minind)
return newNode
def pi_2_pi(self, angle):
while(angle >= math.pi):
angle = angle - 2.0 * math.pi
while(angle <= -math.pi):
angle = angle + 2.0 * math.pi
return angle
def steer(self, rnd, nind):
# print(rnd)
curvature = 1.0
nearestNode = self.nodeList[nind]
px, py, pyaw, mode, clen = dubins_path_planning.dubins_path_planning(
nearestNode.x, nearestNode.y, nearestNode.yaw, rnd.x, rnd.y, rnd.yaw, curvature)
newNode = copy.deepcopy(nearestNode)
newNode.x = px[-1]
newNode.y = py[-1]
newNode.yaw = pyaw[-1]
newNode.path_x = px
newNode.path_y = py
newNode.path_yaw = pyaw
newNode.cost += clen
newNode.parent = nind
return newNode
def get_random_point(self):
if random.randint(0, 100) > self.goalSampleRate:
rnd = [random.uniform(self.minrand, self.maxrand),
random.uniform(self.minrand, self.maxrand),
random.uniform(-math.pi, math.pi)
]
else: # goal point sampling
rnd = [self.end.x, self.end.y, self.end.yaw]
node = Node(rnd[0], rnd[1], rnd[2])
return node
def get_best_last_index(self):
# print("get_best_last_index")
YAWTH = math.radians(1.0)
XYTH = 0.5
goalinds = []
for (i, node) in enumerate(self.nodeList):
if self.calc_dist_to_goal(node.x, node.y) <= XYTH:
goalinds.append(i)
# angle check
fgoalinds = []
for i in goalinds:
if abs(self.nodeList[i].yaw - self.end.yaw) <= YAWTH:
fgoalinds.append(i)
mincost = min([self.nodeList[i].cost for i in fgoalinds])
for i in fgoalinds:
if self.nodeList[i].cost == mincost:
return i
return None
def gen_final_course(self, goalind):
path = [[self.end.x, self.end.y]]
while self.nodeList[goalind].parent is not None:
node = self.nodeList[goalind]
for (ix, iy) in zip(reversed(node.path_x), reversed(node.path_y)):
path.append([ix, iy])
# path.append([node.x, node.y])
goalind = node.parent
path.append([self.start.x, self.start.y])
return path
def calc_dist_to_goal(self, x, y):
return np.linalg.norm([x - self.end.x, y - self.end.y])
def find_near_nodes(self, newNode):
nnode = len(self.nodeList)
r = 50.0 * math.sqrt((math.log(nnode) / nnode))
# r = self.expandDis * 5.0
dlist = [(node.x - newNode.x) ** 2 +
(node.y - newNode.y) ** 2 +
(node.yaw - newNode.yaw) ** 2
for node in self.nodeList]
nearinds = [dlist.index(i) for i in dlist if i <= r ** 2]
return nearinds
def rewire(self, newNode, nearinds):
nnode = len(self.nodeList)
for i in nearinds:
nearNode = self.nodeList[i]
tNode = self.steer(nearNode, nnode - 1)
obstacleOK = self.CollisionCheck(tNode, obstacleList)
imporveCost = nearNode.cost > tNode.cost
if obstacleOK and imporveCost:
# print("rewire")
self.nodeList[i] = tNode
def DrawGraph(self, rnd=None):
u"""
Draw Graph
"""
import matplotlib.pyplot as plt
plt.clf()
if rnd is not None:
plt.plot(rnd.x, rnd.y, "^k")
for node in self.nodeList:
if node.parent is not None:
plt.plot(node.path_x, node.path_y, "-g")
# plt.plot([node.x, self.nodeList[node.parent].x], [
# node.y, self.nodeList[node.parent].y], "-g")
for (ox, oy, size) in obstacleList:
plt.plot(ox, oy, "ok", ms=30 * size)
dubins_path_planning.plot_arrow(
self.start.x, self.start.y, self.start.yaw)
dubins_path_planning.plot_arrow(
self.end.x, self.end.y, self.end.yaw)
plt.axis([-2, 15, -2, 15])
plt.grid(True)
plt.pause(0.01)
# plt.show()
# input()
def GetNearestListIndex(self, nodeList, rnd):
dlist = [(node.x - rnd.x) ** 2 +
(node.y - rnd.y) ** 2 +
(node.yaw - rnd.yaw) ** 2 for node in nodeList]
minind = dlist.index(min(dlist))
return minind
def CollisionCheck(self, node, obstacleList):
for (ox, oy, size) in obstacleList:
for (ix, iy) in zip(node.path_x, node.path_y):
dx = ox - ix
dy = oy - iy
d = dx * dx + dy * dy
if d <= size ** 2:
return False # collision
return True # safe
class Node():
u"""
RRT Node
"""
def __init__(self, x, y, yaw):
self.x = x
self.y = y
self.yaw = yaw
self.path_x = []
self.path_y = []
self.path_yaw = []
self.cost = 0.0
self.parent = None
if __name__ == '__main__':
print("Start rrt start planning")
import matplotlib.pyplot as plt
import matplotrecorder
matplotrecorder.donothing = True
# ====Search Path with RRT====
obstacleList = [
(5, 5, 1),
(3, 6, 2),
(3, 8, 2),
(3, 10, 2),
(7, 5, 2),
(9, 5, 2)
] # [x,y,size(radius)]
# Set Initial parameters
start = [0.0, 0.0, math.radians(0.0)]
goal = [10.0, 10.0, math.radians(0.0)]
rrt = RRT(start, goal, randArea=[-2.0, 15.0], obstacleList=obstacleList)
path = rrt.Planning(animation=True)
# Draw final path
rrt.DrawGraph()
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
plt.grid(True)
plt.pause(0.001)
plt.show()
for i in range(10):
matplotrecorder.save_frame() # save each frame
matplotrecorder.save_movie("animation.gif", 0.1)