onetime kmean is done

This commit is contained in:
Atsushi Sakai
2018-05-02 17:35:45 +09:00
parent e6cc1ca555
commit d696c7192e

View File

@@ -2,34 +2,83 @@
Object clustering with k-mean algorithm
author: Atsushi Sakai (@Atsushi_twi)
"""
import numpy as np
import math
import matplotlib.pyplot as plt
import random
class Cluster:
class Clusters:
def __init__(self):
self.x = []
self.y = []
self.cx = None
self.cy = None
def __init__(self, x, y, nlabel):
self.x = x
self.y = y
self.ndata = len(self.x)
self.nlabel = nlabel
self.labels = [random.randint(0, nlabel - 1)
for _ in range(self.ndata)]
self.cx = [0.0 for _ in range(nlabel)]
self.cy = [0.0 for _ in range(nlabel)]
def init_clusters(rx, ry, nc):
clusters = Clusters(rx, ry, nc)
return clusters
def calc_centroid(clusters):
for ic in range(clusters.nlabel):
x, y = calc_labeled_points(ic, clusters)
ndata = len(x)
clusters.cx[ic] = sum(x) / ndata
clusters.cy[ic] = sum(y) / ndata
return clusters
def update_clusters(clusters):
cost = 0.0
for ip in range(clusters.ndata):
px = clusters.x[ip]
py = clusters.y[ip]
dx = [icx - px for icx in clusters.cx]
dy = [icy - py for icy in clusters.cy]
dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)]
mind = min(dlist)
min_id = dlist.index(mind)
clusters.labels[ip] = min_id
cost += min_id
return clusters, cost
def kmean_clustering(rx, ry, nc):
minx, maxx = min(rx), max(rx)
miny, maxy = min(ry), max(ry)
clusters = init_clusters(rx, ry, nc)
clusters = calc_centroid(clusters)
clusters = [Cluster() for i in range(nc)]
MAX_LOOP = 10
DCOST_TH = 1.0
pcost = 100.0
for loop in range(MAX_LOOP):
print("Loop:", loop)
clusters, cost = update_clusters(clusters)
clusters = calc_centroid(clusters)
for c in clusters:
c.cx = random.uniform(minx, maxx)
c.cy = random.uniform(miny, maxy)
dcost = abs(cost - pcost)
if dcost < DCOST_TH:
break
pcost = cost
return clusters
@@ -40,17 +89,30 @@ def calc_raw_data():
cx = [0.0, 5.0]
cy = [0.0, 5.0]
np = 30
npoints = 30
rand_d = 3.0
for (icx, icy) in zip(cx, cy):
for _ in range(np):
for _ in range(npoints):
rx.append(icx + rand_d * (random.random() - 0.5))
ry.append(icy + rand_d * (random.random() - 0.5))
return rx, ry
def calc_labeled_points(ic, clusters):
inds = np.array([i for i in range(clusters.ndata)
if clusters.labels[i] == ic])
tx = np.array(clusters.x)
ty = np.array(clusters.y)
x = tx[inds]
y = ty[inds]
return x, y
def main():
print(__file__ + " start!!")
@@ -59,11 +121,10 @@ def main():
ncluster = 2
clusters = kmean_clustering(rx, ry, ncluster)
for c in clusters:
print(c.cx, c.cy)
plt.plot(c.cx, c.cy, "x")
plt.plot(rx, ry, ".")
for ic in range(clusters.nlabel):
x, y = calc_labeled_points(ic, clusters)
plt.plot(x, y, "x")
plt.plot(clusters.cx, clusters.cy, "o")
plt.show()