remove duplicate script

This commit is contained in:
Atsushi Sakai
2019-07-19 20:39:41 +09:00
parent 8ff5df7463
commit d7c570bf97

View File

@@ -1,303 +0,0 @@
"""
Dubins path planner sample code
author Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
def mod2pi(theta):
return theta - 2.0 * math.pi * math.floor(theta / 2.0 / math.pi)
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def LSL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
tmp0 = d + sa - sb
mode = ["L", "S", "L"]
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb))
if p_squared < 0:
return None, None, None, mode
tmp1 = math.atan2((cb - ca), tmp0)
t = mod2pi(-alpha + tmp1)
p = math.sqrt(p_squared)
q = mod2pi(beta - tmp1)
# print(np.rad2deg(t), p, np.rad2deg(q))
return t, p, q, mode
def RSR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
tmp0 = d - sa + sb
mode = ["R", "S", "R"]
p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa))
if p_squared < 0:
return None, None, None, mode
tmp1 = math.atan2((ca - cb), tmp0)
t = mod2pi(alpha - tmp1)
p = math.sqrt(p_squared)
q = mod2pi(-beta + tmp1)
return t, p, q, mode
def LSR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb))
mode = ["L", "S", "R"]
if p_squared < 0:
return None, None, None, mode
p = math.sqrt(p_squared)
tmp2 = math.atan2((-ca - cb), (d + sa + sb)) - math.atan2(-2.0, p)
t = mod2pi(-alpha + tmp2)
q = mod2pi(-mod2pi(beta) + tmp2)
return t, p, q, mode
def RSL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb))
mode = ["R", "S", "L"]
if p_squared < 0:
return None, None, None, mode
p = math.sqrt(p_squared)
tmp2 = math.atan2((ca + cb), (d - sa - sb)) - math.atan2(2.0, p)
t = mod2pi(alpha - tmp2)
q = mod2pi(beta - tmp2)
return t, p, q, mode
def RLR(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
mode = ["R", "L", "R"]
tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0
if abs(tmp_rlr) > 1.0:
return None, None, None, mode
p = mod2pi(2 * math.pi - math.acos(tmp_rlr))
t = mod2pi(alpha - math.atan2(ca - cb, d - sa + sb) + mod2pi(p / 2.0))
q = mod2pi(alpha - beta - t + mod2pi(p))
return t, p, q, mode
def LRL(alpha, beta, d):
sa = math.sin(alpha)
sb = math.sin(beta)
ca = math.cos(alpha)
cb = math.cos(beta)
c_ab = math.cos(alpha - beta)
mode = ["L", "R", "L"]
tmp_lrl = (6. - d * d + 2 * c_ab + 2 * d * (- sa + sb)) / 8.
if abs(tmp_lrl) > 1:
return None, None, None, mode
p = mod2pi(2 * math.pi - math.acos(tmp_lrl))
t = mod2pi(-alpha - math.atan2(ca - cb, d + sa - sb) + p / 2.)
q = mod2pi(mod2pi(beta) - alpha - t + mod2pi(p))
return t, p, q, mode
def dubins_path_planning_from_origin(ex, ey, eyaw, c):
# nomalize
dx = ex
dy = ey
D = math.sqrt(dx ** 2.0 + dy ** 2.0)
d = D / c
# print(dx, dy, D, d)
theta = mod2pi(math.atan2(dy, dx))
alpha = mod2pi(- theta)
beta = mod2pi(eyaw - theta)
# print(theta, alpha, beta, d)
planners = [LSL, RSR, LSR, RSL, RLR, LRL]
bcost = float("inf")
bt, bp, bq, bmode = None, None, None, None
for planner in planners:
t, p, q, mode = planner(alpha, beta, d)
if t is None:
# print("".join(mode) + " cannot generate path")
continue
cost = (abs(t) + abs(p) + abs(q))
if bcost > cost:
bt, bp, bq, bmode = t, p, q, mode
bcost = cost
# print(bmode)
px, py, pyaw = generate_course([bt, bp, bq], bmode, c)
return px, py, pyaw, bmode, bcost
def dubins_path_planning(sx, sy, syaw, ex, ey, eyaw, c):
"""
Dubins path plannner
input:
sx x position of start point [m]
sy y position of start point [m]
syaw yaw angle of start point [rad]
ex x position of end point [m]
ey y position of end point [m]
eyaw yaw angle of end point [rad]
c curvature [1/m]
output:
px
py
pyaw
mode
"""
ex = ex - sx
ey = ey - sy
lex = math.cos(syaw) * ex + math.sin(syaw) * ey
ley = - math.sin(syaw) * ex + math.cos(syaw) * ey
leyaw = eyaw - syaw
lpx, lpy, lpyaw, mode, clen = dubins_path_planning_from_origin(
lex, ley, leyaw, c)
px = [math.cos(-syaw) * x + math.sin(-syaw)
* y + sx for x, y in zip(lpx, lpy)]
py = [- math.sin(-syaw) * x + math.cos(-syaw)
* y + sy for x, y in zip(lpx, lpy)]
pyaw = [pi_2_pi(iyaw + syaw) for iyaw in lpyaw]
# print(syaw)
# pyaw = lpyaw
# plt.plot(pyaw, "-r")
# plt.plot(lpyaw, "-b")
# plt.plot(eyaw, "*r")
# plt.plot(syaw, "*b")
# plt.show()
return px, py, pyaw, mode, clen
def generate_course(length, mode, c):
px = [0.0]
py = [0.0]
pyaw = [0.0]
for m, l in zip(mode, length):
pd = 0.0
if m == "S":
d = 1.0 / c
else: # turning couse
d = np.deg2rad(3.0)
while pd < abs(l - d):
# print(pd, l)
px.append(px[-1] + d * c * math.cos(pyaw[-1]))
py.append(py[-1] + d * c * math.sin(pyaw[-1]))
if m == "L": # left turn
pyaw.append(pyaw[-1] + d)
elif m == "S": # Straight
pyaw.append(pyaw[-1])
elif m == "R": # right turn
pyaw.append(pyaw[-1] - d)
pd += d
d = l - pd
px.append(px[-1] + d * c * math.cos(pyaw[-1]))
py.append(py[-1] + d * c * math.sin(pyaw[-1]))
if m == "L": # left turn
pyaw.append(pyaw[-1] + d)
elif m == "S": # Straight
pyaw.append(pyaw[-1])
elif m == "R": # right turn
pyaw.append(pyaw[-1] - d)
pd += d
return px, py, pyaw
def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): # pragma: no cover
"""
Plot arrow
"""
if not isinstance(x, float):
for (ix, iy, iyaw) in zip(x, y, yaw):
plot_arrow(ix, iy, iyaw)
else:
plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw),
fc=fc, ec=ec, head_width=width, head_length=width)
plt.plot(x, y)
if __name__ == '__main__':
print("Dubins path planner sample start!!")
start_x = 1.0 # [m]
start_y = 1.0 # [m]
start_yaw = np.deg2rad(45.0) # [rad]
end_x = -3.0 # [m]
end_y = -3.0 # [m]
end_yaw = np.deg2rad(-45.0) # [rad]
curvature = 1.0
px, py, pyaw, mode, clen = dubins_path_planning(start_x, start_y, start_yaw,
end_x, end_y, end_yaw, curvature)
plt.plot(px, py, label="final course " + "".join(mode))
# plotting
plot_arrow(start_x, start_y, start_yaw)
plot_arrow(end_x, end_y, end_yaw)
# for (ix, iy, iyaw) in zip(px, py, pyaw):
# plot_arrow(ix, iy, iyaw, fc="b")
plt.legend()
plt.grid(True)
plt.axis("equal")
plt.show()