mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
update README
This commit is contained in:
@@ -1,709 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright (c) 2010, Rice University
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following
|
||||
* disclaimer in the documentation and/or other materials provided
|
||||
* with the distribution.
|
||||
* * Neither the name of the Rice University nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*********************************************************************/
|
||||
|
||||
/* Author: Mark Moll */
|
||||
|
||||
#include "ompl/base/spaces/ReedsSheppStateSpace.h"
|
||||
#include "ompl/base/SpaceInformation.h"
|
||||
#include "ompl/util/Exception.h"
|
||||
#include <queue>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
|
||||
using namespace ompl::base;
|
||||
|
||||
namespace
|
||||
{
|
||||
// The comments, variable names, etc. use the nomenclature from the Reeds & Shepp paper.
|
||||
|
||||
const double pi = boost::math::constants::pi<double>();
|
||||
const double twopi = 2. * pi;
|
||||
const double RS_EPS = 1e-6;
|
||||
const double ZERO = 10 * std::numeric_limits<double>::epsilon();
|
||||
|
||||
inline double mod2pi(double x)
|
||||
{
|
||||
double v = fmod(x, twopi);
|
||||
if (v < -pi)
|
||||
v += twopi;
|
||||
else if (v > pi)
|
||||
v -= twopi;
|
||||
return v;
|
||||
}
|
||||
inline void polar(double x, double y, double &r, double &theta)
|
||||
{
|
||||
r = sqrt(x * x + y * y);
|
||||
theta = atan2(y, x);
|
||||
}
|
||||
inline void tauOmega(double u, double v, double xi, double eta, double phi, double &tau, double &omega)
|
||||
{
|
||||
double delta = mod2pi(u - v), A = sin(u) - sin(delta), B = cos(u) - cos(delta) - 1.;
|
||||
double t1 = atan2(eta * A - xi * B, xi * A + eta * B), t2 = 2. * (cos(delta) - cos(v) - cos(u)) + 3;
|
||||
tau = (t2 < 0) ? mod2pi(t1 + pi) : mod2pi(t1);
|
||||
omega = mod2pi(tau - u + v - phi);
|
||||
}
|
||||
|
||||
// formula 8.1 in Reeds-Shepp paper
|
||||
inline bool LpSpLp(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
polar(x - sin(phi), y - 1. + cos(phi), u, t);
|
||||
if (t >= -ZERO)
|
||||
{
|
||||
v = mod2pi(phi - t);
|
||||
if (v >= -ZERO)
|
||||
{
|
||||
assert(fabs(u * cos(t) + sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(u * sin(t) - cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t + v - phi)) < RS_EPS);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// formula 8.2
|
||||
inline bool LpSpRp(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double t1, u1;
|
||||
polar(x + sin(phi), y - 1. - cos(phi), u1, t1);
|
||||
u1 = u1 * u1;
|
||||
if (u1 >= 4.)
|
||||
{
|
||||
double theta;
|
||||
u = sqrt(u1 - 4.);
|
||||
theta = atan2(2., u);
|
||||
t = mod2pi(t1 + theta);
|
||||
v = mod2pi(t - phi);
|
||||
assert(fabs(2 * sin(t) + u * cos(t) - sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(-2 * cos(t) + u * sin(t) + cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && v >= -ZERO;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void CSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
|
||||
{
|
||||
double t, u, v, Lmin = path.length(), L;
|
||||
if (LpSpLp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpLp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], -t, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpLp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpLp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], -t, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], -t, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpSpRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], -t, -u, -v);
|
||||
}
|
||||
// formula 8.3 / 8.4 *** TYPO IN PAPER ***
|
||||
inline bool LpRmL(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x - sin(phi), eta = y - 1. + cos(phi), u1, theta;
|
||||
polar(xi, eta, u1, theta);
|
||||
if (u1 <= 4.)
|
||||
{
|
||||
u = -2. * asin(.25 * u1);
|
||||
t = mod2pi(theta + .5 * u + pi);
|
||||
v = mod2pi(phi - t + u);
|
||||
assert(fabs(2 * (sin(t) - sin(t - u)) + sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(2 * (-cos(t) + cos(t - u)) - cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t - u + v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && u <= ZERO;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void CCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
|
||||
{
|
||||
double t, u, v, Lmin = path.length(), L;
|
||||
if (LpRmL(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -t, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], t, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -t, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
|
||||
// backwards
|
||||
double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi);
|
||||
if (LpRmL(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], v, u, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -v, -u, -t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], v, u, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmL(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -v, -u, -t);
|
||||
}
|
||||
// formula 8.7
|
||||
inline bool LpRupLumRm(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = .25 * (2. + sqrt(xi * xi + eta * eta));
|
||||
if (rho <= 1.)
|
||||
{
|
||||
u = acos(rho);
|
||||
tauOmega(u, -u, xi, eta, phi, t, v);
|
||||
assert(fabs(2 * (sin(t) - sin(t - u) + sin(t - 2 * u)) - sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(2 * (-cos(t) + cos(t - u) - cos(t - 2 * u)) + cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t - 2 * u - v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && v <= ZERO;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// formula 8.8
|
||||
inline bool LpRumLumRp(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = (20. - xi * xi - eta * eta) / 16.;
|
||||
if (rho >= 0 && rho <= 1)
|
||||
{
|
||||
u = -acos(rho);
|
||||
if (u >= -.5 * pi)
|
||||
{
|
||||
tauOmega(u, u, xi, eta, phi, t, v);
|
||||
assert(fabs(4 * sin(t) - 2 * sin(t - u) - sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(-4 * cos(t) + 2 * cos(t - u) + cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && v >= -ZERO;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void CCCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
|
||||
{
|
||||
double t, u, v, Lmin = path.length(), L;
|
||||
if (LpRupLumRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, -u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRupLumRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRupLumRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, -u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRupLumRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
|
||||
if (LpRumLumRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRumLumRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRumLumRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRumLumRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, -u, -v);
|
||||
}
|
||||
// formula 8.9
|
||||
inline bool LpRmSmLm(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x - sin(phi), eta = y - 1. + cos(phi), rho, theta;
|
||||
polar(xi, eta, rho, theta);
|
||||
if (rho >= 2.)
|
||||
{
|
||||
double r = sqrt(rho * rho - 4.);
|
||||
u = 2. - r;
|
||||
t = mod2pi(theta + atan2(r, -2.));
|
||||
v = mod2pi(phi - .5 * pi - t);
|
||||
assert(fabs(2 * (sin(t) - cos(t)) - u * sin(t) + sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(-2 * (sin(t) + cos(t)) + u * cos(t) - cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t + pi / 2 + v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && u <= ZERO && v <= ZERO;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// formula 8.10
|
||||
inline bool LpRmSmRm(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta;
|
||||
polar(-eta, xi, rho, theta);
|
||||
if (rho >= 2.)
|
||||
{
|
||||
t = theta;
|
||||
u = 2. - rho;
|
||||
v = mod2pi(t + .5 * pi - phi);
|
||||
assert(fabs(2 * sin(t) - cos(t - v) - u * sin(t) - x) < RS_EPS);
|
||||
assert(fabs(-2 * cos(t) - sin(t - v) + u * cos(t) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t + pi / 2 - v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && u <= ZERO && v <= ZERO;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void CCSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
|
||||
{
|
||||
double t, u, v, Lmin = path.length() - .5 * pi, L;
|
||||
if (LpRmSmLm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], t, -.5 * pi, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], -t, .5 * pi, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], t, -.5 * pi, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], -t, .5 * pi, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
|
||||
if (LpRmSmRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], t, -.5 * pi, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], -t, .5 * pi, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], t, -.5 * pi, u, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], -t, .5 * pi, -u, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
|
||||
// backwards
|
||||
double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi);
|
||||
if (LpRmSmLm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], v, u, -.5 * pi, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], -v, -u, .5 * pi, -t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], v, u, -.5 * pi, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmLm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], -v, -u, .5 * pi, -t);
|
||||
Lmin = L;
|
||||
}
|
||||
|
||||
if (LpRmSmRm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], v, u, -.5 * pi, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], -v, -u, .5 * pi, -t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], v, u, -.5 * pi, t);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSmRm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
path =
|
||||
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], -v, -u, .5 * pi, -t);
|
||||
}
|
||||
// formula 8.11 *** TYPO IN PAPER ***
|
||||
inline bool LpRmSLmRp(double x, double y, double phi, double &t, double &u, double &v)
|
||||
{
|
||||
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta;
|
||||
polar(xi, eta, rho, theta);
|
||||
if (rho >= 2.)
|
||||
{
|
||||
u = 4. - sqrt(rho * rho - 4.);
|
||||
if (u <= ZERO)
|
||||
{
|
||||
t = mod2pi(atan2((4 - u) * xi - 2 * eta, -2 * xi + (u - 4) * eta));
|
||||
v = mod2pi(t - phi);
|
||||
assert(fabs(4 * sin(t) - 2 * cos(t) - u * sin(t) - sin(phi) - x) < RS_EPS);
|
||||
assert(fabs(-4 * cos(t) - 2 * sin(t) + u * cos(t) + cos(phi) + 1 - y) < RS_EPS);
|
||||
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
|
||||
return t >= -ZERO && v >= -ZERO;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void CCSCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
|
||||
{
|
||||
double t, u, v, Lmin = path.length() - pi, L;
|
||||
if (LpRmSLmRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], t, -.5 * pi, u,
|
||||
-.5 * pi, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSLmRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], -t, .5 * pi, -u,
|
||||
.5 * pi, -v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSLmRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
|
||||
{
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], t, -.5 * pi, u,
|
||||
-.5 * pi, v);
|
||||
Lmin = L;
|
||||
}
|
||||
if (LpRmSLmRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
|
||||
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], -t, .5 * pi, -u,
|
||||
.5 * pi, -v);
|
||||
}
|
||||
|
||||
ReedsSheppStateSpace::ReedsSheppPath reedsShepp(double x, double y, double phi)
|
||||
{
|
||||
ReedsSheppStateSpace::ReedsSheppPath path;
|
||||
CSC(x, y, phi, path);
|
||||
CCC(x, y, phi, path);
|
||||
CCCC(x, y, phi, path);
|
||||
CCSC(x, y, phi, path);
|
||||
CCSCC(x, y, phi, path);
|
||||
return path;
|
||||
}
|
||||
}
|
||||
|
||||
const ompl::base::ReedsSheppStateSpace::ReedsSheppPathSegmentType
|
||||
ompl::base::ReedsSheppStateSpace::reedsSheppPathType[18][5] = {
|
||||
{RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 0
|
||||
{RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP, RS_NOP}, // 1
|
||||
{RS_LEFT, RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 2
|
||||
{RS_RIGHT, RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP}, // 3
|
||||
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 4
|
||||
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 5
|
||||
{RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 6
|
||||
{RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 7
|
||||
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 8
|
||||
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 9
|
||||
{RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 10
|
||||
{RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 11
|
||||
{RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 12
|
||||
{RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 13
|
||||
{RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 14
|
||||
{RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 15
|
||||
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT}, // 16
|
||||
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT} // 17
|
||||
};
|
||||
|
||||
ompl::base::ReedsSheppStateSpace::ReedsSheppPath::ReedsSheppPath(const ReedsSheppPathSegmentType *type, double t,
|
||||
double u, double v, double w, double x)
|
||||
: type_(type)
|
||||
{
|
||||
length_[0] = t;
|
||||
length_[1] = u;
|
||||
length_[2] = v;
|
||||
length_[3] = w;
|
||||
length_[4] = x;
|
||||
totalLength_ = fabs(t) + fabs(u) + fabs(v) + fabs(w) + fabs(x);
|
||||
}
|
||||
|
||||
double ompl::base::ReedsSheppStateSpace::distance(const State *state1, const State *state2) const
|
||||
{
|
||||
return rho_ * reedsShepp(state1, state2).length();
|
||||
}
|
||||
|
||||
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t,
|
||||
State *state) const
|
||||
{
|
||||
bool firstTime = true;
|
||||
ReedsSheppPath path;
|
||||
interpolate(from, to, t, firstTime, path, state);
|
||||
}
|
||||
|
||||
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t, bool &firstTime,
|
||||
ReedsSheppPath &path, State *state) const
|
||||
{
|
||||
if (firstTime)
|
||||
{
|
||||
if (t >= 1.)
|
||||
{
|
||||
if (to != state)
|
||||
copyState(state, to);
|
||||
return;
|
||||
}
|
||||
if (t <= 0.)
|
||||
{
|
||||
if (from != state)
|
||||
copyState(state, from);
|
||||
return;
|
||||
}
|
||||
path = reedsShepp(from, to);
|
||||
firstTime = false;
|
||||
}
|
||||
interpolate(from, path, t, state);
|
||||
}
|
||||
|
||||
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const ReedsSheppPath &path, double t,
|
||||
State *state) const
|
||||
{
|
||||
auto *s = allocState()->as<StateType>();
|
||||
double seg = t * path.length(), phi, v;
|
||||
|
||||
s->setXY(0., 0.);
|
||||
s->setYaw(from->as<StateType>()->getYaw());
|
||||
for (unsigned int i = 0; i < 5 && seg > 0; ++i)
|
||||
{
|
||||
if (path.length_[i] < 0)
|
||||
{
|
||||
v = std::max(-seg, path.length_[i]);
|
||||
seg += v;
|
||||
}
|
||||
else
|
||||
{
|
||||
v = std::min(seg, path.length_[i]);
|
||||
seg -= v;
|
||||
}
|
||||
phi = s->getYaw();
|
||||
switch (path.type_[i])
|
||||
{
|
||||
case RS_LEFT:
|
||||
s->setXY(s->getX() + sin(phi + v) - sin(phi), s->getY() - cos(phi + v) + cos(phi));
|
||||
s->setYaw(phi + v);
|
||||
break;
|
||||
case RS_RIGHT:
|
||||
s->setXY(s->getX() - sin(phi - v) + sin(phi), s->getY() + cos(phi - v) - cos(phi));
|
||||
s->setYaw(phi - v);
|
||||
break;
|
||||
case RS_STRAIGHT:
|
||||
s->setXY(s->getX() + v * cos(phi), s->getY() + v * sin(phi));
|
||||
break;
|
||||
case RS_NOP:
|
||||
break;
|
||||
}
|
||||
}
|
||||
state->as<StateType>()->setX(s->getX() * rho_ + from->as<StateType>()->getX());
|
||||
state->as<StateType>()->setY(s->getY() * rho_ + from->as<StateType>()->getY());
|
||||
getSubspace(1)->enforceBounds(s->as<SO2StateSpace::StateType>(1));
|
||||
state->as<StateType>()->setYaw(s->getYaw());
|
||||
freeState(s);
|
||||
}
|
||||
|
||||
ompl::base::ReedsSheppStateSpace::ReedsSheppPath ompl::base::ReedsSheppStateSpace::reedsShepp(const State *state1,
|
||||
const State *state2) const
|
||||
{
|
||||
const auto *s1 = static_cast<const StateType *>(state1);
|
||||
const auto *s2 = static_cast<const StateType *>(state2);
|
||||
double x1 = s1->getX(), y1 = s1->getY(), th1 = s1->getYaw();
|
||||
double x2 = s2->getX(), y2 = s2->getY(), th2 = s2->getYaw();
|
||||
double dx = x2 - x1, dy = y2 - y1, c = cos(th1), s = sin(th1);
|
||||
double x = c * dx + s * dy, y = -s * dx + c * dy, phi = th2 - th1;
|
||||
return ::reedsShepp(x / rho_, y / rho_, phi);
|
||||
}
|
||||
|
||||
void ompl::base::ReedsSheppMotionValidator::defaultSettings()
|
||||
{
|
||||
stateSpace_ = dynamic_cast<ReedsSheppStateSpace *>(si_->getStateSpace().get());
|
||||
if (stateSpace_ == nullptr)
|
||||
throw Exception("No state space for motion validator");
|
||||
}
|
||||
|
||||
bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2,
|
||||
std::pair<State *, double> &lastValid) const
|
||||
{
|
||||
/* assume motion starts in a valid configuration so s1 is valid */
|
||||
|
||||
bool result = true, firstTime = true;
|
||||
ReedsSheppStateSpace::ReedsSheppPath path;
|
||||
int nd = stateSpace_->validSegmentCount(s1, s2);
|
||||
|
||||
if (nd > 1)
|
||||
{
|
||||
/* temporary storage for the checked state */
|
||||
State *test = si_->allocState();
|
||||
|
||||
for (int j = 1; j < nd; ++j)
|
||||
{
|
||||
stateSpace_->interpolate(s1, s2, (double)j / (double)nd, firstTime, path, test);
|
||||
if (!si_->isValid(test))
|
||||
{
|
||||
lastValid.second = (double)(j - 1) / (double)nd;
|
||||
if (lastValid.first != nullptr)
|
||||
stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first);
|
||||
result = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
si_->freeState(test);
|
||||
}
|
||||
|
||||
if (result)
|
||||
if (!si_->isValid(s2))
|
||||
{
|
||||
lastValid.second = (double)(nd - 1) / (double)nd;
|
||||
if (lastValid.first != nullptr)
|
||||
stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first);
|
||||
result = false;
|
||||
}
|
||||
|
||||
if (result)
|
||||
valid_++;
|
||||
else
|
||||
invalid_++;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2) const
|
||||
{
|
||||
/* assume motion starts in a valid configuration so s1 is valid */
|
||||
if (!si_->isValid(s2))
|
||||
return false;
|
||||
|
||||
bool result = true, firstTime = true;
|
||||
ReedsSheppStateSpace::ReedsSheppPath path;
|
||||
int nd = stateSpace_->validSegmentCount(s1, s2);
|
||||
|
||||
/* initialize the queue of test positions */
|
||||
std::queue<std::pair<int, int>> pos;
|
||||
if (nd >= 2)
|
||||
{
|
||||
pos.push(std::make_pair(1, nd - 1));
|
||||
|
||||
/* temporary storage for the checked state */
|
||||
State *test = si_->allocState();
|
||||
|
||||
/* repeatedly subdivide the path segment in the middle (and check the middle) */
|
||||
while (!pos.empty())
|
||||
{
|
||||
std::pair<int, int> x = pos.front();
|
||||
|
||||
int mid = (x.first + x.second) / 2;
|
||||
stateSpace_->interpolate(s1, s2, (double)mid / (double)nd, firstTime, path, test);
|
||||
|
||||
if (!si_->isValid(test))
|
||||
{
|
||||
result = false;
|
||||
break;
|
||||
}
|
||||
|
||||
pos.pop();
|
||||
|
||||
if (x.first < mid)
|
||||
pos.push(std::make_pair(x.first, mid - 1));
|
||||
if (x.second > mid)
|
||||
pos.push(std::make_pair(mid + 1, x.second));
|
||||
}
|
||||
|
||||
si_->freeState(test);
|
||||
}
|
||||
|
||||
if (result)
|
||||
valid_++;
|
||||
else
|
||||
invalid_++;
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1,151 +0,0 @@
|
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright (c) 2010, Rice University
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following
|
||||
* disclaimer in the documentation and/or other materials provided
|
||||
* with the distribution.
|
||||
* * Neither the name of the Rice University nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*********************************************************************/
|
||||
|
||||
/* Author: Mark Moll */
|
||||
|
||||
#ifndef OMPL_BASE_SPACES_REEDS_SHEPP_STATE_SPACE_
|
||||
#define OMPL_BASE_SPACES_REEDS_SHEPP_STATE_SPACE_
|
||||
|
||||
#include "ompl/base/spaces/SE2StateSpace.h"
|
||||
#include "ompl/base/MotionValidator.h"
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
|
||||
namespace ompl
|
||||
{
|
||||
namespace base
|
||||
{
|
||||
/** \brief An SE(2) state space where distance is measured by the
|
||||
length of Reeds-Shepp curves.
|
||||
|
||||
The notation and solutions are taken from:
|
||||
J.A. Reeds and L.A. Shepp, “Optimal paths for a car that goes both
|
||||
forwards and backwards,” Pacific Journal of Mathematics,
|
||||
145(2):367–393, 1990.
|
||||
|
||||
This implementation explicitly computes all 48 Reeds-Shepp curves
|
||||
and returns the shortest valid solution. This can be improved by
|
||||
using the configuration space partition described in:
|
||||
P. Souères and J.-P. Laumond, “Shortest paths synthesis for a
|
||||
car-like robot,” IEEE Trans. on Automatic Control, 41(5):672–688,
|
||||
May 1996.
|
||||
*/
|
||||
class ReedsSheppStateSpace : public SE2StateSpace
|
||||
{
|
||||
public:
|
||||
/** \brief The Reeds-Shepp path segment types */
|
||||
enum ReedsSheppPathSegmentType
|
||||
{
|
||||
RS_NOP = 0,
|
||||
RS_LEFT = 1,
|
||||
RS_STRAIGHT = 2,
|
||||
RS_RIGHT = 3
|
||||
};
|
||||
/** \brief Reeds-Shepp path types */
|
||||
static const ReedsSheppPathSegmentType reedsSheppPathType[18][5];
|
||||
/** \brief Complete description of a ReedsShepp path */
|
||||
class ReedsSheppPath
|
||||
{
|
||||
public:
|
||||
ReedsSheppPath(const ReedsSheppPathSegmentType *type = reedsSheppPathType[0],
|
||||
double t = std::numeric_limits<double>::max(), double u = 0., double v = 0.,
|
||||
double w = 0., double x = 0.);
|
||||
double length() const
|
||||
{
|
||||
return totalLength_;
|
||||
}
|
||||
|
||||
/** Path segment types */
|
||||
const ReedsSheppPathSegmentType *type_;
|
||||
/** Path segment lengths */
|
||||
double length_[5];
|
||||
/** Total length */
|
||||
double totalLength_;
|
||||
};
|
||||
|
||||
ReedsSheppStateSpace(double turningRadius = 1.0) : rho_(turningRadius)
|
||||
{
|
||||
}
|
||||
|
||||
double distance(const State *state1, const State *state2) const override;
|
||||
|
||||
void interpolate(const State *from, const State *to, double t, State *state) const override;
|
||||
virtual void interpolate(const State *from, const State *to, double t, bool &firstTime,
|
||||
ReedsSheppPath &path, State *state) const;
|
||||
|
||||
void sanityChecks() const override
|
||||
{
|
||||
double zero = std::numeric_limits<double>::epsilon();
|
||||
double eps = .1; // rarely such a large error will occur
|
||||
StateSpace::sanityChecks(zero, eps, ~STATESPACE_INTERPOLATION);
|
||||
}
|
||||
|
||||
/** \brief Return the shortest Reeds-Shepp path from SE(2) state state1 to SE(2) state state2 */
|
||||
ReedsSheppPath reedsShepp(const State *state1, const State *state2) const;
|
||||
|
||||
protected:
|
||||
virtual void interpolate(const State *from, const ReedsSheppPath &path, double t, State *state) const;
|
||||
|
||||
/** \brief Turning radius */
|
||||
double rho_;
|
||||
};
|
||||
|
||||
/** \brief A Reeds-Shepp motion validator that only uses the state validity checker.
|
||||
Motions are checked for validity at a specified resolution.
|
||||
|
||||
This motion validator is almost identical to the DiscreteMotionValidator
|
||||
except that it remembers the optimal ReedsSheppPath between different calls to
|
||||
interpolate. */
|
||||
class ReedsSheppMotionValidator : public MotionValidator
|
||||
{
|
||||
public:
|
||||
ReedsSheppMotionValidator(SpaceInformation *si) : MotionValidator(si)
|
||||
{
|
||||
defaultSettings();
|
||||
}
|
||||
ReedsSheppMotionValidator(const SpaceInformationPtr &si) : MotionValidator(si)
|
||||
{
|
||||
defaultSettings();
|
||||
}
|
||||
~ReedsSheppMotionValidator() override = default;
|
||||
bool checkMotion(const State *s1, const State *s2) const override;
|
||||
bool checkMotion(const State *s1, const State *s2, std::pair<State *, double> &lastValid) const override;
|
||||
|
||||
private:
|
||||
ReedsSheppStateSpace *stateSpace_;
|
||||
void defaultSettings();
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
Submodule PathPlanning/ReedsSheppPath/pyReedsShepp deleted from 69aebbb6ad
@@ -52,6 +52,12 @@ This code uses the model predictive trajectory generator to solve boundary probl
|
||||
|
||||

|
||||
|
||||
### Lane sampling results:
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
## RRT
|
||||
|
||||
Reference in New Issue
Block a user