update README

This commit is contained in:
Atsushi Sakai
2017-07-18 22:22:31 -07:00
parent e515aa2def
commit d86ba52fc9
4 changed files with 6 additions and 861 deletions

View File

@@ -1,709 +0,0 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Mark Moll */
#include "ompl/base/spaces/ReedsSheppStateSpace.h"
#include "ompl/base/SpaceInformation.h"
#include "ompl/util/Exception.h"
#include <queue>
#include <boost/math/constants/constants.hpp>
using namespace ompl::base;
namespace
{
// The comments, variable names, etc. use the nomenclature from the Reeds & Shepp paper.
const double pi = boost::math::constants::pi<double>();
const double twopi = 2. * pi;
const double RS_EPS = 1e-6;
const double ZERO = 10 * std::numeric_limits<double>::epsilon();
inline double mod2pi(double x)
{
double v = fmod(x, twopi);
if (v < -pi)
v += twopi;
else if (v > pi)
v -= twopi;
return v;
}
inline void polar(double x, double y, double &r, double &theta)
{
r = sqrt(x * x + y * y);
theta = atan2(y, x);
}
inline void tauOmega(double u, double v, double xi, double eta, double phi, double &tau, double &omega)
{
double delta = mod2pi(u - v), A = sin(u) - sin(delta), B = cos(u) - cos(delta) - 1.;
double t1 = atan2(eta * A - xi * B, xi * A + eta * B), t2 = 2. * (cos(delta) - cos(v) - cos(u)) + 3;
tau = (t2 < 0) ? mod2pi(t1 + pi) : mod2pi(t1);
omega = mod2pi(tau - u + v - phi);
}
// formula 8.1 in Reeds-Shepp paper
inline bool LpSpLp(double x, double y, double phi, double &t, double &u, double &v)
{
polar(x - sin(phi), y - 1. + cos(phi), u, t);
if (t >= -ZERO)
{
v = mod2pi(phi - t);
if (v >= -ZERO)
{
assert(fabs(u * cos(t) + sin(phi) - x) < RS_EPS);
assert(fabs(u * sin(t) - cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t + v - phi)) < RS_EPS);
return true;
}
}
return false;
}
// formula 8.2
inline bool LpSpRp(double x, double y, double phi, double &t, double &u, double &v)
{
double t1, u1;
polar(x + sin(phi), y - 1. - cos(phi), u1, t1);
u1 = u1 * u1;
if (u1 >= 4.)
{
double theta;
u = sqrt(u1 - 4.);
theta = atan2(2., u);
t = mod2pi(t1 + theta);
v = mod2pi(t - phi);
assert(fabs(2 * sin(t) + u * cos(t) - sin(phi) - x) < RS_EPS);
assert(fabs(-2 * cos(t) + u * sin(t) + cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
return t >= -ZERO && v >= -ZERO;
}
return false;
}
void CSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
{
double t, u, v, Lmin = path.length(), L;
if (LpSpLp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], t, u, v);
Lmin = L;
}
if (LpSpLp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[14], -t, -u, -v);
Lmin = L;
}
if (LpSpLp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], t, u, v);
Lmin = L;
}
if (LpSpLp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[15], -t, -u, -v);
Lmin = L;
}
if (LpSpRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], t, u, v);
Lmin = L;
}
if (LpSpRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[12], -t, -u, -v);
Lmin = L;
}
if (LpSpRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], t, u, v);
Lmin = L;
}
if (LpSpRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[13], -t, -u, -v);
}
// formula 8.3 / 8.4 *** TYPO IN PAPER ***
inline bool LpRmL(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x - sin(phi), eta = y - 1. + cos(phi), u1, theta;
polar(xi, eta, u1, theta);
if (u1 <= 4.)
{
u = -2. * asin(.25 * u1);
t = mod2pi(theta + .5 * u + pi);
v = mod2pi(phi - t + u);
assert(fabs(2 * (sin(t) - sin(t - u)) + sin(phi) - x) < RS_EPS);
assert(fabs(2 * (-cos(t) + cos(t - u)) - cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t - u + v - phi)) < RS_EPS);
return t >= -ZERO && u <= ZERO;
}
return false;
}
void CCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
{
double t, u, v, Lmin = path.length(), L;
if (LpRmL(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], t, u, v);
Lmin = L;
}
if (LpRmL(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -t, -u, -v);
Lmin = L;
}
if (LpRmL(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], t, u, v);
Lmin = L;
}
if (LpRmL(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -t, -u, -v);
Lmin = L;
}
// backwards
double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi);
if (LpRmL(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], v, u, t);
Lmin = L;
}
if (LpRmL(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[0], -v, -u, -t);
Lmin = L;
}
if (LpRmL(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], v, u, t);
Lmin = L;
}
if (LpRmL(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[1], -v, -u, -t);
}
// formula 8.7
inline bool LpRupLumRm(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = .25 * (2. + sqrt(xi * xi + eta * eta));
if (rho <= 1.)
{
u = acos(rho);
tauOmega(u, -u, xi, eta, phi, t, v);
assert(fabs(2 * (sin(t) - sin(t - u) + sin(t - 2 * u)) - sin(phi) - x) < RS_EPS);
assert(fabs(2 * (-cos(t) + cos(t - u) - cos(t - 2 * u)) + cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t - 2 * u - v - phi)) < RS_EPS);
return t >= -ZERO && v <= ZERO;
}
return false;
}
// formula 8.8
inline bool LpRumLumRp(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho = (20. - xi * xi - eta * eta) / 16.;
if (rho >= 0 && rho <= 1)
{
u = -acos(rho);
if (u >= -.5 * pi)
{
tauOmega(u, u, xi, eta, phi, t, v);
assert(fabs(4 * sin(t) - 2 * sin(t - u) - sin(phi) - x) < RS_EPS);
assert(fabs(-4 * cos(t) + 2 * cos(t - u) + cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
return t >= -ZERO && v >= -ZERO;
}
}
return false;
}
void CCCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
{
double t, u, v, Lmin = path.length(), L;
if (LpRupLumRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, -u, v);
Lmin = L;
}
if (LpRupLumRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, u, -v);
Lmin = L;
}
if (LpRupLumRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, -u, v);
Lmin = L;
}
if (LpRupLumRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, u, -v);
Lmin = L;
}
if (LpRumLumRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], t, u, u, v);
Lmin = L;
}
if (LpRumLumRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[2], -t, -u, -u, -v);
Lmin = L;
}
if (LpRumLumRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], t, u, u, v);
Lmin = L;
}
if (LpRumLumRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + 2. * fabs(u) + fabs(v))) // timeflip + reflect
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[3], -t, -u, -u, -v);
}
// formula 8.9
inline bool LpRmSmLm(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x - sin(phi), eta = y - 1. + cos(phi), rho, theta;
polar(xi, eta, rho, theta);
if (rho >= 2.)
{
double r = sqrt(rho * rho - 4.);
u = 2. - r;
t = mod2pi(theta + atan2(r, -2.));
v = mod2pi(phi - .5 * pi - t);
assert(fabs(2 * (sin(t) - cos(t)) - u * sin(t) + sin(phi) - x) < RS_EPS);
assert(fabs(-2 * (sin(t) + cos(t)) + u * cos(t) - cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t + pi / 2 + v - phi)) < RS_EPS);
return t >= -ZERO && u <= ZERO && v <= ZERO;
}
return false;
}
// formula 8.10
inline bool LpRmSmRm(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta;
polar(-eta, xi, rho, theta);
if (rho >= 2.)
{
t = theta;
u = 2. - rho;
v = mod2pi(t + .5 * pi - phi);
assert(fabs(2 * sin(t) - cos(t - v) - u * sin(t) - x) < RS_EPS);
assert(fabs(-2 * cos(t) - sin(t - v) + u * cos(t) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t + pi / 2 - v - phi)) < RS_EPS);
return t >= -ZERO && u <= ZERO && v <= ZERO;
}
return false;
}
void CCSC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
{
double t, u, v, Lmin = path.length() - .5 * pi, L;
if (LpRmSmLm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], t, -.5 * pi, u, v);
Lmin = L;
}
if (LpRmSmLm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[4], -t, .5 * pi, -u, -v);
Lmin = L;
}
if (LpRmSmLm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], t, -.5 * pi, u, v);
Lmin = L;
}
if (LpRmSmLm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[5], -t, .5 * pi, -u, -v);
Lmin = L;
}
if (LpRmSmRm(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], t, -.5 * pi, u, v);
Lmin = L;
}
if (LpRmSmRm(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[8], -t, .5 * pi, -u, -v);
Lmin = L;
}
if (LpRmSmRm(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], t, -.5 * pi, u, v);
Lmin = L;
}
if (LpRmSmRm(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[9], -t, .5 * pi, -u, -v);
Lmin = L;
}
// backwards
double xb = x * cos(phi) + y * sin(phi), yb = x * sin(phi) - y * cos(phi);
if (LpRmSmLm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], v, u, -.5 * pi, t);
Lmin = L;
}
if (LpRmSmLm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[6], -v, -u, .5 * pi, -t);
Lmin = L;
}
if (LpRmSmLm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], v, u, -.5 * pi, t);
Lmin = L;
}
if (LpRmSmLm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[7], -v, -u, .5 * pi, -t);
Lmin = L;
}
if (LpRmSmRm(xb, yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], v, u, -.5 * pi, t);
Lmin = L;
}
if (LpRmSmRm(-xb, yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[10], -v, -u, .5 * pi, -t);
Lmin = L;
}
if (LpRmSmRm(xb, -yb, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], v, u, -.5 * pi, t);
Lmin = L;
}
if (LpRmSmRm(-xb, -yb, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
path =
ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[11], -v, -u, .5 * pi, -t);
}
// formula 8.11 *** TYPO IN PAPER ***
inline bool LpRmSLmRp(double x, double y, double phi, double &t, double &u, double &v)
{
double xi = x + sin(phi), eta = y - 1. - cos(phi), rho, theta;
polar(xi, eta, rho, theta);
if (rho >= 2.)
{
u = 4. - sqrt(rho * rho - 4.);
if (u <= ZERO)
{
t = mod2pi(atan2((4 - u) * xi - 2 * eta, -2 * xi + (u - 4) * eta));
v = mod2pi(t - phi);
assert(fabs(4 * sin(t) - 2 * cos(t) - u * sin(t) - sin(phi) - x) < RS_EPS);
assert(fabs(-4 * cos(t) - 2 * sin(t) + u * cos(t) + cos(phi) + 1 - y) < RS_EPS);
assert(fabs(mod2pi(t - v - phi)) < RS_EPS);
return t >= -ZERO && v >= -ZERO;
}
}
return false;
}
void CCSCC(double x, double y, double phi, ReedsSheppStateSpace::ReedsSheppPath &path)
{
double t, u, v, Lmin = path.length() - pi, L;
if (LpRmSLmRp(x, y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v)))
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], t, -.5 * pi, u,
-.5 * pi, v);
Lmin = L;
}
if (LpRmSLmRp(-x, y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[16], -t, .5 * pi, -u,
.5 * pi, -v);
Lmin = L;
}
if (LpRmSLmRp(x, -y, -phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // reflect
{
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], t, -.5 * pi, u,
-.5 * pi, v);
Lmin = L;
}
if (LpRmSLmRp(-x, -y, phi, t, u, v) && Lmin > (L = fabs(t) + fabs(u) + fabs(v))) // timeflip + reflect
path = ReedsSheppStateSpace::ReedsSheppPath(ReedsSheppStateSpace::reedsSheppPathType[17], -t, .5 * pi, -u,
.5 * pi, -v);
}
ReedsSheppStateSpace::ReedsSheppPath reedsShepp(double x, double y, double phi)
{
ReedsSheppStateSpace::ReedsSheppPath path;
CSC(x, y, phi, path);
CCC(x, y, phi, path);
CCCC(x, y, phi, path);
CCSC(x, y, phi, path);
CCSCC(x, y, phi, path);
return path;
}
}
const ompl::base::ReedsSheppStateSpace::ReedsSheppPathSegmentType
ompl::base::ReedsSheppStateSpace::reedsSheppPathType[18][5] = {
{RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 0
{RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP, RS_NOP}, // 1
{RS_LEFT, RS_RIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 2
{RS_RIGHT, RS_LEFT, RS_RIGHT, RS_LEFT, RS_NOP}, // 3
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 4
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 5
{RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 6
{RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 7
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP}, // 8
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP}, // 9
{RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_LEFT, RS_NOP}, // 10
{RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_RIGHT, RS_NOP}, // 11
{RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 12
{RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 13
{RS_LEFT, RS_STRAIGHT, RS_LEFT, RS_NOP, RS_NOP}, // 14
{RS_RIGHT, RS_STRAIGHT, RS_RIGHT, RS_NOP, RS_NOP}, // 15
{RS_LEFT, RS_RIGHT, RS_STRAIGHT, RS_LEFT, RS_RIGHT}, // 16
{RS_RIGHT, RS_LEFT, RS_STRAIGHT, RS_RIGHT, RS_LEFT} // 17
};
ompl::base::ReedsSheppStateSpace::ReedsSheppPath::ReedsSheppPath(const ReedsSheppPathSegmentType *type, double t,
double u, double v, double w, double x)
: type_(type)
{
length_[0] = t;
length_[1] = u;
length_[2] = v;
length_[3] = w;
length_[4] = x;
totalLength_ = fabs(t) + fabs(u) + fabs(v) + fabs(w) + fabs(x);
}
double ompl::base::ReedsSheppStateSpace::distance(const State *state1, const State *state2) const
{
return rho_ * reedsShepp(state1, state2).length();
}
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t,
State *state) const
{
bool firstTime = true;
ReedsSheppPath path;
interpolate(from, to, t, firstTime, path, state);
}
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const State *to, const double t, bool &firstTime,
ReedsSheppPath &path, State *state) const
{
if (firstTime)
{
if (t >= 1.)
{
if (to != state)
copyState(state, to);
return;
}
if (t <= 0.)
{
if (from != state)
copyState(state, from);
return;
}
path = reedsShepp(from, to);
firstTime = false;
}
interpolate(from, path, t, state);
}
void ompl::base::ReedsSheppStateSpace::interpolate(const State *from, const ReedsSheppPath &path, double t,
State *state) const
{
auto *s = allocState()->as<StateType>();
double seg = t * path.length(), phi, v;
s->setXY(0., 0.);
s->setYaw(from->as<StateType>()->getYaw());
for (unsigned int i = 0; i < 5 && seg > 0; ++i)
{
if (path.length_[i] < 0)
{
v = std::max(-seg, path.length_[i]);
seg += v;
}
else
{
v = std::min(seg, path.length_[i]);
seg -= v;
}
phi = s->getYaw();
switch (path.type_[i])
{
case RS_LEFT:
s->setXY(s->getX() + sin(phi + v) - sin(phi), s->getY() - cos(phi + v) + cos(phi));
s->setYaw(phi + v);
break;
case RS_RIGHT:
s->setXY(s->getX() - sin(phi - v) + sin(phi), s->getY() + cos(phi - v) - cos(phi));
s->setYaw(phi - v);
break;
case RS_STRAIGHT:
s->setXY(s->getX() + v * cos(phi), s->getY() + v * sin(phi));
break;
case RS_NOP:
break;
}
}
state->as<StateType>()->setX(s->getX() * rho_ + from->as<StateType>()->getX());
state->as<StateType>()->setY(s->getY() * rho_ + from->as<StateType>()->getY());
getSubspace(1)->enforceBounds(s->as<SO2StateSpace::StateType>(1));
state->as<StateType>()->setYaw(s->getYaw());
freeState(s);
}
ompl::base::ReedsSheppStateSpace::ReedsSheppPath ompl::base::ReedsSheppStateSpace::reedsShepp(const State *state1,
const State *state2) const
{
const auto *s1 = static_cast<const StateType *>(state1);
const auto *s2 = static_cast<const StateType *>(state2);
double x1 = s1->getX(), y1 = s1->getY(), th1 = s1->getYaw();
double x2 = s2->getX(), y2 = s2->getY(), th2 = s2->getYaw();
double dx = x2 - x1, dy = y2 - y1, c = cos(th1), s = sin(th1);
double x = c * dx + s * dy, y = -s * dx + c * dy, phi = th2 - th1;
return ::reedsShepp(x / rho_, y / rho_, phi);
}
void ompl::base::ReedsSheppMotionValidator::defaultSettings()
{
stateSpace_ = dynamic_cast<ReedsSheppStateSpace *>(si_->getStateSpace().get());
if (stateSpace_ == nullptr)
throw Exception("No state space for motion validator");
}
bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2,
std::pair<State *, double> &lastValid) const
{
/* assume motion starts in a valid configuration so s1 is valid */
bool result = true, firstTime = true;
ReedsSheppStateSpace::ReedsSheppPath path;
int nd = stateSpace_->validSegmentCount(s1, s2);
if (nd > 1)
{
/* temporary storage for the checked state */
State *test = si_->allocState();
for (int j = 1; j < nd; ++j)
{
stateSpace_->interpolate(s1, s2, (double)j / (double)nd, firstTime, path, test);
if (!si_->isValid(test))
{
lastValid.second = (double)(j - 1) / (double)nd;
if (lastValid.first != nullptr)
stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first);
result = false;
break;
}
}
si_->freeState(test);
}
if (result)
if (!si_->isValid(s2))
{
lastValid.second = (double)(nd - 1) / (double)nd;
if (lastValid.first != nullptr)
stateSpace_->interpolate(s1, s2, lastValid.second, firstTime, path, lastValid.first);
result = false;
}
if (result)
valid_++;
else
invalid_++;
return result;
}
bool ompl::base::ReedsSheppMotionValidator::checkMotion(const State *s1, const State *s2) const
{
/* assume motion starts in a valid configuration so s1 is valid */
if (!si_->isValid(s2))
return false;
bool result = true, firstTime = true;
ReedsSheppStateSpace::ReedsSheppPath path;
int nd = stateSpace_->validSegmentCount(s1, s2);
/* initialize the queue of test positions */
std::queue<std::pair<int, int>> pos;
if (nd >= 2)
{
pos.push(std::make_pair(1, nd - 1));
/* temporary storage for the checked state */
State *test = si_->allocState();
/* repeatedly subdivide the path segment in the middle (and check the middle) */
while (!pos.empty())
{
std::pair<int, int> x = pos.front();
int mid = (x.first + x.second) / 2;
stateSpace_->interpolate(s1, s2, (double)mid / (double)nd, firstTime, path, test);
if (!si_->isValid(test))
{
result = false;
break;
}
pos.pop();
if (x.first < mid)
pos.push(std::make_pair(x.first, mid - 1));
if (x.second > mid)
pos.push(std::make_pair(mid + 1, x.second));
}
si_->freeState(test);
}
if (result)
valid_++;
else
invalid_++;
return result;
}

View File

@@ -1,151 +0,0 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Mark Moll */
#ifndef OMPL_BASE_SPACES_REEDS_SHEPP_STATE_SPACE_
#define OMPL_BASE_SPACES_REEDS_SHEPP_STATE_SPACE_
#include "ompl/base/spaces/SE2StateSpace.h"
#include "ompl/base/MotionValidator.h"
#include <boost/math/constants/constants.hpp>
namespace ompl
{
namespace base
{
/** \brief An SE(2) state space where distance is measured by the
length of Reeds-Shepp curves.
The notation and solutions are taken from:
J.A. Reeds and L.A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics,
145(2):367393, 1990.
This implementation explicitly computes all 48 Reeds-Shepp curves
and returns the shortest valid solution. This can be improved by
using the configuration space partition described in:
P. Souères and J.-P. Laumond, “Shortest paths synthesis for a
car-like robot,” IEEE Trans. on Automatic Control, 41(5):672688,
May 1996.
*/
class ReedsSheppStateSpace : public SE2StateSpace
{
public:
/** \brief The Reeds-Shepp path segment types */
enum ReedsSheppPathSegmentType
{
RS_NOP = 0,
RS_LEFT = 1,
RS_STRAIGHT = 2,
RS_RIGHT = 3
};
/** \brief Reeds-Shepp path types */
static const ReedsSheppPathSegmentType reedsSheppPathType[18][5];
/** \brief Complete description of a ReedsShepp path */
class ReedsSheppPath
{
public:
ReedsSheppPath(const ReedsSheppPathSegmentType *type = reedsSheppPathType[0],
double t = std::numeric_limits<double>::max(), double u = 0., double v = 0.,
double w = 0., double x = 0.);
double length() const
{
return totalLength_;
}
/** Path segment types */
const ReedsSheppPathSegmentType *type_;
/** Path segment lengths */
double length_[5];
/** Total length */
double totalLength_;
};
ReedsSheppStateSpace(double turningRadius = 1.0) : rho_(turningRadius)
{
}
double distance(const State *state1, const State *state2) const override;
void interpolate(const State *from, const State *to, double t, State *state) const override;
virtual void interpolate(const State *from, const State *to, double t, bool &firstTime,
ReedsSheppPath &path, State *state) const;
void sanityChecks() const override
{
double zero = std::numeric_limits<double>::epsilon();
double eps = .1; // rarely such a large error will occur
StateSpace::sanityChecks(zero, eps, ~STATESPACE_INTERPOLATION);
}
/** \brief Return the shortest Reeds-Shepp path from SE(2) state state1 to SE(2) state state2 */
ReedsSheppPath reedsShepp(const State *state1, const State *state2) const;
protected:
virtual void interpolate(const State *from, const ReedsSheppPath &path, double t, State *state) const;
/** \brief Turning radius */
double rho_;
};
/** \brief A Reeds-Shepp motion validator that only uses the state validity checker.
Motions are checked for validity at a specified resolution.
This motion validator is almost identical to the DiscreteMotionValidator
except that it remembers the optimal ReedsSheppPath between different calls to
interpolate. */
class ReedsSheppMotionValidator : public MotionValidator
{
public:
ReedsSheppMotionValidator(SpaceInformation *si) : MotionValidator(si)
{
defaultSettings();
}
ReedsSheppMotionValidator(const SpaceInformationPtr &si) : MotionValidator(si)
{
defaultSettings();
}
~ReedsSheppMotionValidator() override = default;
bool checkMotion(const State *s1, const State *s2) const override;
bool checkMotion(const State *s1, const State *s2, std::pair<State *, double> &lastValid) const override;
private:
ReedsSheppStateSpace *stateSpace_;
void defaultSettings();
};
}
}
#endif

Submodule PathPlanning/ReedsSheppPath/pyReedsShepp deleted from 69aebbb6ad

View File

@@ -52,6 +52,12 @@ This code uses the model predictive trajectory generator to solve boundary probl
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_4.png)
### Lane sampling results:
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_5.png)
![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/StateLatticePlanner/Figure_6.png)
## RRT