Merge pull request #187 from Kitsunow/master

Optimize PurePursuit, use right axle
This commit is contained in:
Atsushi Sakai
2019-05-11 08:18:04 +09:00
committed by GitHub

View File

@@ -9,6 +9,8 @@ import numpy as np
import math
import matplotlib.pyplot as plt
old_nearest_point_index = None
k = 0.1 # look forward gain
Lfc = 1.0 # look-ahead distance
Kp = 1.0 # speed proportional gain
@@ -26,6 +28,8 @@ class State:
self.y = y
self.yaw = yaw
self.v = v
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
def update(state, a, delta):
@@ -34,6 +38,8 @@ def update(state, a, delta):
state.y = state.y + state.v * math.sin(state.yaw) * dt
state.yaw = state.yaw + state.v / L * math.tan(delta) * dt
state.v = state.v + a * dt
state.rear_x = state.x - ((L / 2) * math.cos(state.yaw))
state.rear_y = state.y - ((L / 2) * math.sin(state.yaw))
return state
@@ -59,7 +65,7 @@ def pure_pursuit_control(state, cx, cy, pind):
ty = cy[-1]
ind = len(cx) - 1
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw
Lf = k * state.v + Lfc
@@ -67,22 +73,43 @@ def pure_pursuit_control(state, cx, cy, pind):
return delta, ind
def calc_distance(state, point_x, point_y):
dx = state.rear_x - point_x
dy = state.rear_y - point_y
return math.sqrt(dx ** 2 + dy ** 2)
def calc_target_index(state, cx, cy):
# search nearest point index
dx = [state.x - icx for icx in cx]
dy = [state.y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
global old_nearest_point_index
if old_nearest_point_index is None:
# search nearest point index
dx = [state.rear_x - icx for icx in cx]
dy = [state.rear_y - icy for icy in cy]
d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)]
ind = d.index(min(d))
old_nearest_point_index = ind
else:
ind = old_nearest_point_index
distance_this_index = calc_distance(state, cx[ind], cy[ind])
while True:
ind = ind + 1 if (ind + 1) < len(cx) else ind
distance_next_index = calc_distance(state, cx[ind], cy[ind])
if distance_this_index < distance_next_index:
break
distance_this_index = distance_next_index
old_nearest_point_index = ind
L = 0.0
Lf = k * state.v + Lfc
# search look ahead target point index
while Lf > L and (ind + 1) < len(cx):
dx = cx[ind] - state.x
dy = cy[ind] - state.y
dx = cx[ind] - state.rear_x
dy = cy[ind] - state.rear_y
L = math.sqrt(dx ** 2 + dy ** 2)
ind += 1