mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
add global positoon projection
This commit is contained in:
239
PathPlanning/FrenetOptimalTrajectory/cubic_spline_planner.py
Normal file
239
PathPlanning/FrenetOptimalTrajectory/cubic_spline_planner.py
Normal file
@@ -0,0 +1,239 @@
|
||||
"""
|
||||
cubic spline planner
|
||||
|
||||
Author: Atsushi Sakai
|
||||
|
||||
"""
|
||||
import math
|
||||
import numpy as np
|
||||
import bisect
|
||||
|
||||
|
||||
class Spline:
|
||||
u"""
|
||||
Cubic Spline class
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.b, self.c, self.d, self.w = [], [], [], []
|
||||
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
self.nx = len(x) # dimension of x
|
||||
h = np.diff(x)
|
||||
|
||||
# calc coefficient c
|
||||
self.a = [iy for iy in y]
|
||||
|
||||
# calc coefficient c
|
||||
A = self.__calc_A(h)
|
||||
B = self.__calc_B(h)
|
||||
self.c = np.linalg.solve(A, B)
|
||||
# print(self.c1)
|
||||
|
||||
# calc spline coefficient b and d
|
||||
for i in range(self.nx - 1):
|
||||
self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i]))
|
||||
tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \
|
||||
(self.c[i + 1] + 2.0 * self.c[i]) / 3.0
|
||||
self.b.append(tb)
|
||||
|
||||
def calc(self, t):
|
||||
u"""
|
||||
Calc position
|
||||
|
||||
if t is outside of the input x, return None
|
||||
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = self.a[i] + self.b[i] * dx + \
|
||||
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
|
||||
|
||||
return result
|
||||
|
||||
def calcd(self, t):
|
||||
u"""
|
||||
Calc first derivative
|
||||
|
||||
if t is outside of the input x, return None
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
|
||||
return result
|
||||
|
||||
def calcdd(self, t):
|
||||
u"""
|
||||
Calc second derivative
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
|
||||
return result
|
||||
|
||||
def __search_index(self, x):
|
||||
u"""
|
||||
search data segment index
|
||||
"""
|
||||
return bisect.bisect(self.x, x) - 1
|
||||
|
||||
def __calc_A(self, h):
|
||||
u"""
|
||||
calc matrix A for spline coefficient c
|
||||
"""
|
||||
A = np.zeros((self.nx, self.nx))
|
||||
A[0, 0] = 1.0
|
||||
for i in range(self.nx - 1):
|
||||
if i != (self.nx - 2):
|
||||
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
|
||||
A[i + 1, i] = h[i]
|
||||
A[i, i + 1] = h[i]
|
||||
|
||||
A[0, 1] = 0.0
|
||||
A[self.nx - 1, self.nx - 2] = 0.0
|
||||
A[self.nx - 1, self.nx - 1] = 1.0
|
||||
# print(A)
|
||||
return A
|
||||
|
||||
def __calc_B(self, h):
|
||||
u"""
|
||||
calc matrix B for spline coefficient c
|
||||
"""
|
||||
B = np.zeros(self.nx)
|
||||
for i in range(self.nx - 2):
|
||||
B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \
|
||||
h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i]
|
||||
# print(B)
|
||||
return B
|
||||
|
||||
|
||||
class Spline2D:
|
||||
u"""
|
||||
2D Cubic Spline class
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.s = self.__calc_s(x, y)
|
||||
self.sx = Spline(self.s, x)
|
||||
self.sy = Spline(self.s, y)
|
||||
|
||||
def __calc_s(self, x, y):
|
||||
dx = np.diff(x)
|
||||
dy = np.diff(y)
|
||||
self.ds = [math.sqrt(idx ** 2 + idy ** 2)
|
||||
for (idx, idy) in zip(dx, dy)]
|
||||
s = [0]
|
||||
s.extend(np.cumsum(self.ds))
|
||||
return s
|
||||
|
||||
def calc_position(self, s):
|
||||
u"""
|
||||
calc position
|
||||
"""
|
||||
x = self.sx.calc(s)
|
||||
y = self.sy.calc(s)
|
||||
|
||||
return x, y
|
||||
|
||||
def calc_curvature(self, s):
|
||||
u"""
|
||||
calc curvature
|
||||
"""
|
||||
dx = self.sx.calcd(s)
|
||||
ddx = self.sx.calcdd(s)
|
||||
dy = self.sy.calcd(s)
|
||||
ddy = self.sy.calcdd(s)
|
||||
k = (ddy * dx - ddx * dy) / (dx ** 2 + dy ** 2)
|
||||
return k
|
||||
|
||||
def calc_yaw(self, s):
|
||||
u"""
|
||||
calc yaw
|
||||
"""
|
||||
dx = self.sx.calcd(s)
|
||||
dy = self.sy.calcd(s)
|
||||
yaw = math.atan2(dy, dx)
|
||||
return yaw
|
||||
|
||||
|
||||
def calc_spline_course(x, y, ds=0.1):
|
||||
sp = Spline2D(x, y)
|
||||
s = list(np.arange(0, sp.s[-1], ds))
|
||||
|
||||
rx, ry, ryaw, rk = [], [], [], []
|
||||
for i_s in s:
|
||||
ix, iy = sp.calc_position(i_s)
|
||||
rx.append(ix)
|
||||
ry.append(iy)
|
||||
ryaw.append(sp.calc_yaw(i_s))
|
||||
rk.append(sp.calc_curvature(i_s))
|
||||
|
||||
return rx, ry, ryaw, rk, s
|
||||
|
||||
|
||||
def main():
|
||||
print("Spline 2D test")
|
||||
import matplotlib.pyplot as plt
|
||||
x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
|
||||
y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
|
||||
|
||||
sp = Spline2D(x, y)
|
||||
s = np.arange(0, sp.s[-1], 0.1)
|
||||
|
||||
rx, ry, ryaw, rk = [], [], [], []
|
||||
for i_s in s:
|
||||
ix, iy = sp.calc_position(i_s)
|
||||
rx.append(ix)
|
||||
ry.append(iy)
|
||||
ryaw.append(sp.calc_yaw(i_s))
|
||||
rk.append(sp.calc_curvature(i_s))
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(x, y, "xb", label="input")
|
||||
plt.plot(rx, ry, "-r", label="spline")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.legend()
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(s, [math.degrees(iyaw) for iyaw in ryaw], "-r", label="yaw")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("yaw angle[deg]")
|
||||
|
||||
flg, ax = plt.subplots(1)
|
||||
plt.plot(s, rk, "-r", label="curvature")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("curvature [1/m]")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -9,6 +9,7 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import copy
|
||||
import math
|
||||
import cubic_spline_planner
|
||||
|
||||
|
||||
class quinic_polynomial:
|
||||
@@ -160,12 +161,21 @@ def calc_frenet_paths(c_speed, c_d):
|
||||
return frenet_paths
|
||||
|
||||
|
||||
def calc_global_paths(fplist):
|
||||
def calc_global_paths(fplist, csp):
|
||||
|
||||
for fp in fplist:
|
||||
fp.x = fp.s
|
||||
fp.y = fp.d
|
||||
|
||||
# calc global positions
|
||||
for i in range(len(fp.s)):
|
||||
ix, iy = csp.calc_position(fp.s[i])
|
||||
iyaw = csp.calc_yaw(fp.s[i])
|
||||
di = fp.d[i]
|
||||
fx = ix + di * math.cos(iyaw + math.pi / 2.0)
|
||||
fy = iy + di * math.sin(iyaw + math.pi / 2.0)
|
||||
fp.x.append(fx)
|
||||
fp.y.append(fy)
|
||||
|
||||
# calc yaw and ds
|
||||
for i in range(len(fp.x) - 1):
|
||||
dx = fp.x[i + 1] - fp.x[i]
|
||||
dy = fp.y[i + 1] - fp.y[i]
|
||||
@@ -198,10 +208,10 @@ def check_paths(fplist):
|
||||
return [fplist[i] for i in okind]
|
||||
|
||||
|
||||
def frenet_optimal_planning(c_speed, c_d):
|
||||
def frenet_optimal_planning(csp, c_speed, c_d):
|
||||
|
||||
fplist = calc_frenet_paths(c_speed, c_d)
|
||||
fplist = calc_global_paths(fplist)
|
||||
fplist = calc_global_paths(fplist, csp)
|
||||
fplist = check_paths(fplist)
|
||||
|
||||
for fp in fplist:
|
||||
@@ -211,10 +221,26 @@ def frenet_optimal_planning(c_speed, c_d):
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
x = [0.0, 10.0, 20.5, 35.0, 70.5]
|
||||
y = [0.0, -6.0, 5.0, 6.5, 0.0]
|
||||
|
||||
csp = cubic_spline_planner.Spline2D(x, y)
|
||||
s = np.arange(0, csp.s[-1], 0.1)
|
||||
|
||||
rx, ry, ryaw, rk = [], [], [], []
|
||||
for i_s in s:
|
||||
ix, iy = csp.calc_position(i_s)
|
||||
rx.append(ix)
|
||||
ry.append(iy)
|
||||
ryaw.append(csp.calc_yaw(i_s))
|
||||
rk.append(csp.calc_curvature(i_s))
|
||||
|
||||
c_speed = 10.0 / 3.6 # m/s
|
||||
c_d = 1.0 # [m]
|
||||
|
||||
frenet_optimal_planning(c_speed, c_d)
|
||||
plt.plot(rx, ry)
|
||||
|
||||
frenet_optimal_planning(csp, c_speed, c_d)
|
||||
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
|
||||
Reference in New Issue
Block a user