mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-13 16:47:55 -05:00
fix README
This commit is contained in:
18
README.md
18
README.md
@@ -86,7 +86,7 @@ This is a sensor fusion localization with Extended Kalman Filter(EKF).
|
||||
|
||||
The blue line is true trajectory, the black line is dead reckoning trajectory,
|
||||
|
||||
the gren point is positioning observation (ex. GPS), and the red line is estimated trajectory with EKF.
|
||||
the green point is positioning observation (ex. GPS), and the red line is estimated trajectory with EKF.
|
||||
|
||||
The red ellipse is estimated covariance ellipse with EKF.
|
||||
|
||||
@@ -112,7 +112,7 @@ The blue line is true trajectory, the black line is dead reckoning trajectory,
|
||||
|
||||
and the red line is estimated trajectory with PF.
|
||||
|
||||
It is assumued that the robot can measure a distance from landmarks (RFID).
|
||||
It is assumed that the robot can measure a distance from landmarks (RFID).
|
||||
|
||||
This measurements are used for PF localization.
|
||||
|
||||
@@ -126,7 +126,6 @@ This is a 2D navigation sample code with Dynamic Window Approach.
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
## Grid based search
|
||||
|
||||
@@ -161,7 +160,6 @@ Ref:
|
||||
- [Robotic Motion Planning:Potential Functions](https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf)
|
||||
|
||||
|
||||
|
||||
## Model Predictive Trajectory Generator
|
||||
|
||||
This is a path optimization sample on model predictive trajectory generator.
|
||||
@@ -180,7 +178,6 @@ Ref:
|
||||
|
||||
- [Optimal rough terrain trajectory generation for wheeled mobile robots](http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328)
|
||||
|
||||
|
||||
|
||||
## State Lattice Planning
|
||||
|
||||
@@ -259,7 +256,7 @@ Ref:
|
||||
|
||||
- [Incremental Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/abs/1005.0416)
|
||||
|
||||
- [Sampling-based Algorithms for Optimal Motion Planningj](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf)
|
||||
- [Sampling-based Algorithms for Optimal Motion Planning](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf)
|
||||
|
||||
|
||||
### RRT with dubins path
|
||||
@@ -344,10 +341,9 @@ You can get different Beizer course:
|
||||

|
||||
|
||||
|
||||
|
||||
Ref:
|
||||
|
||||
- [Continuous Curvature Path Generation Based on B ́ezier Curves for Autonomous Vehicles](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf)
|
||||
- [Continuous Curvature Path Generation Based on Bezier Curves for Autonomous Vehicles](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.6438&rep=rep1&type=pdf)
|
||||
|
||||
## Quintic polynomials planning
|
||||
|
||||
@@ -477,7 +473,7 @@ Path tracking simulation with iterative linear model predictive speed and steeri
|
||||
|
||||
<img src="https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/model_predictive_speed_and_steer_control/animation.gif" width="640">
|
||||
|
||||
This code uses cvxpy as an optimization modeling tool,
|
||||
This code uses cvxpy as an optimization modeling tool.
|
||||
|
||||
- [Welcome to CVXPY 1\.0 — CVXPY 1\.0\.0 documentation](https://cvxgrp.github.io/cvxpy/index.html)
|
||||
|
||||
@@ -491,7 +487,3 @@ MIT
|
||||
Atsushi Sakai ([@Atsushi_twi](https://twitter.com/Atsushi_twi))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user