mirror of
https://github.com/AtsushiSakai/PythonRobotics.git
synced 2026-01-14 09:08:01 -05:00
582
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
Normal file
582
PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py
Normal file
@@ -0,0 +1,582 @@
|
||||
"""
|
||||
Batch Informed Trees based path planning:
|
||||
Uses a heuristic to efficiently search increasingly dense
|
||||
RGGs while reusing previous information. Provides faster
|
||||
convergence that RRT*, Informed RRT* and other sampling based
|
||||
methods.
|
||||
|
||||
Uses lazy connecting by combining sampling based methods and A*
|
||||
like incremental graph search algorithms.
|
||||
|
||||
author: Karan Chawla(@karanchawla)
|
||||
|
||||
Reference: https://arxiv.org/abs/1405.5848
|
||||
"""
|
||||
|
||||
import random
|
||||
import numpy as np
|
||||
import copy
|
||||
import operator
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
show_animation = True
|
||||
|
||||
# Class to represent the explicit tree created
|
||||
# while sampling through the state space
|
||||
|
||||
|
||||
class RTree(object):
|
||||
|
||||
def __init__(self, start=[0, 0], lowerLimit=[0, 0], upperLimit=[10, 10], resolution=1):
|
||||
|
||||
self.vertices = dict()
|
||||
self.edges = []
|
||||
self.start = start
|
||||
self.lowerLimit = lowerLimit
|
||||
self.upperLimit = upperLimit
|
||||
self.dimension = len(lowerLimit)
|
||||
self.num_cells = [0] * self.dimension
|
||||
self.resolution = resolution
|
||||
# compute the number of grid cells based on the limits and
|
||||
# resolution given
|
||||
for idx in range(self.dimension):
|
||||
self.num_cells[idx] = np.ceil(
|
||||
(upperLimit[idx] - lowerLimit[idx]) / resolution)
|
||||
|
||||
vertex_id = self.realWorldToNodeId(start)
|
||||
self.vertices[vertex_id] = []
|
||||
|
||||
def getRootId(self):
|
||||
# return the id of the root of the tree
|
||||
return 0
|
||||
|
||||
def addVertex(self, vertex):
|
||||
# add a vertex to the tree
|
||||
vertex_id = self.realWorldToNodeId(vertex)
|
||||
self.vertices[vertex_id] = []
|
||||
return vertex_id
|
||||
|
||||
def addEdge(self, v, x):
|
||||
# create an edge between v and x vertices
|
||||
if (v, x) not in self.edges:
|
||||
self.edges.append((v, x))
|
||||
# since the tree is undirected
|
||||
self.vertices[v].append(x)
|
||||
self.vertices[x].append(v)
|
||||
|
||||
def realCoordsToGridCoord(self, real_coord):
|
||||
# convert real world coordinates to grid space
|
||||
# depends on the resolution of the grid
|
||||
# the output is the same as real world coords if the resolution
|
||||
# is set to 1
|
||||
coord = [0] * self.dimension
|
||||
for i in range(len(coord)):
|
||||
start = self.lowerLimit[i] # start of the grid space
|
||||
coord[i] = np.around((real_coord[i] - start) / self.resolution)
|
||||
return coord
|
||||
|
||||
def gridCoordinateToNodeId(self, coord):
|
||||
# This function maps a grid coordinate to a unique
|
||||
# node id
|
||||
nodeId = 0
|
||||
for i in range(len(coord) - 1, -1, -1):
|
||||
product = 1
|
||||
for j in range(0, i):
|
||||
product = product * self.num_cells[j]
|
||||
nodeId = nodeId + coord[i] * product
|
||||
return nodeId
|
||||
|
||||
def realWorldToNodeId(self, real_coord):
|
||||
# first convert the given coordinates to grid space and then
|
||||
# convert the grid space coordinates to a unique node id
|
||||
return self.gridCoordinateToNodeId(self.realCoordsToGridCoord(real_coord))
|
||||
|
||||
def gridCoordToRealWorldCoord(self, coord):
|
||||
# This function smaps a grid coordinate in discrete space
|
||||
# to a configuration in the full configuration space
|
||||
config = [0] * self.dimension
|
||||
for i in range(0, len(coord)):
|
||||
# start of the real world / configuration space
|
||||
start = self.lowerLimit[i]
|
||||
# step from the coordinate in the grid
|
||||
grid_step = self.resolution * coord[i]
|
||||
half_step = self.resolution / 2 # To get to middle of the grid
|
||||
config[i] = start + grid_step # + half_step
|
||||
return config
|
||||
|
||||
def nodeIdToGridCoord(self, node_id):
|
||||
# This function maps a node id to the associated
|
||||
# grid coordinate
|
||||
coord = [0] * len(self.lowerLimit)
|
||||
for i in range(len(coord) - 1, -1, -1):
|
||||
# Get the product of the grid space maximums
|
||||
prod = 1
|
||||
for j in range(0, i):
|
||||
prod = prod * self.num_cells[j]
|
||||
coord[i] = np.floor(node_id / prod)
|
||||
node_id = node_id - (coord[i] * prod)
|
||||
return coord
|
||||
|
||||
def nodeIdToRealWorldCoord(self, nid):
|
||||
# This function maps a node in discrete space to a configuraiton
|
||||
# in the full configuration space
|
||||
return self.gridCoordToRealWorldCoord(self.nodeIdToGridCoord(nid))
|
||||
|
||||
# Uses Batch Informed Trees to find a path from start to goal
|
||||
|
||||
|
||||
class BITStar(object):
|
||||
|
||||
def __init__(self, start, goal,
|
||||
obstacleList, randArea, eta=2.0,
|
||||
maxIter=80):
|
||||
self.start = start
|
||||
self.goal = goal
|
||||
|
||||
self.minrand = randArea[0]
|
||||
self.maxrand = randArea[1]
|
||||
self.maxIter = maxIter
|
||||
self.obstacleList = obstacleList
|
||||
|
||||
self.vertex_queue = []
|
||||
self.edge_queue = []
|
||||
self.samples = dict()
|
||||
self.g_scores = dict()
|
||||
self.f_scores = dict()
|
||||
self.nodes = dict()
|
||||
self.r = float('inf')
|
||||
self.eta = eta # tunable parameter
|
||||
self.unit_ball_measure = 1
|
||||
self.old_vertices = []
|
||||
|
||||
# initialize tree
|
||||
lowerLimit = [randArea[0], randArea[0]]
|
||||
upperLimit = [randArea[1], randArea[1]]
|
||||
self.tree = RTree(start=start, lowerLimit=lowerLimit,
|
||||
upperLimit=upperLimit, resolution=0.01)
|
||||
|
||||
def plan(self, animation=True):
|
||||
|
||||
self.startId = self.tree.realWorldToNodeId(self.start)
|
||||
self.goalId = self.tree.realWorldToNodeId(self.goal)
|
||||
|
||||
# add goal to the samples
|
||||
self.samples[self.goalId] = self.goal
|
||||
self.g_scores[self.goalId] = float('inf')
|
||||
self.f_scores[self.goalId] = 0
|
||||
|
||||
# add the start id to the tree
|
||||
self.tree.addVertex(self.start)
|
||||
self.g_scores[self.startId] = 0
|
||||
self.f_scores[self.startId] = self.computeHeuristicCost(
|
||||
self.startId, self.goalId)
|
||||
|
||||
iterations = 0
|
||||
# max length we expect to find in our 'informed' sample space, starts as infinite
|
||||
cBest = self.g_scores[self.goalId]
|
||||
pathLen = float('inf')
|
||||
solutionSet = set()
|
||||
plan = []
|
||||
|
||||
# Computing the sampling space
|
||||
cMin = math.sqrt(pow(self.start[0] - self.goal[1], 2) +
|
||||
pow(self.start[0] - self.goal[1], 2)) / 1.5
|
||||
xCenter = np.matrix([[(self.start[0] + self.goal[0]) / 2.0],
|
||||
[(self.goal[1] - self.start[1]) / 2.0], [0]])
|
||||
a1 = np.matrix([[(self.goal[0] - self.start[0]) / cMin],
|
||||
[(self.goal[1] - self.start[1]) / cMin], [0]])
|
||||
etheta = math.atan2(a1[1], a1[0])
|
||||
# first column of idenity matrix transposed
|
||||
id1_t = np.matrix([1.0, 0.0, 0.0])
|
||||
M = np.dot(a1, id1_t)
|
||||
U, S, Vh = np.linalg.svd(M, 1, 1)
|
||||
C = np.dot(np.dot(U, np.diag(
|
||||
[1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh)
|
||||
|
||||
self.samples.update(self.informedSample(
|
||||
200, cBest, cMin, xCenter, C))
|
||||
foundGoal = False
|
||||
# run until done
|
||||
while (iterations < self.maxIter):
|
||||
if len(self.vertex_queue) == 0 and len(self.edge_queue) == 0:
|
||||
print("Batch: ", iterations)
|
||||
# Using informed rrt star way of computing the samples
|
||||
self.r = 2.0
|
||||
if iterations != 0:
|
||||
if foundGoal:
|
||||
# a better way to do this would be to make number of samples
|
||||
# a function of cMin
|
||||
m = 200
|
||||
self.samples = dict()
|
||||
self.samples[self.goalId] = self.goal
|
||||
else:
|
||||
m = 100
|
||||
cBest = self.g_scores[self.goalId]
|
||||
self.samples.update(self.informedSample(
|
||||
m, cBest, cMin, xCenter, C))
|
||||
|
||||
# make the old vertices the new vertices
|
||||
self.old_vertices += self.tree.vertices.keys()
|
||||
# add the vertices to the vertex queue
|
||||
for nid in self.tree.vertices.keys():
|
||||
if nid not in self.vertex_queue:
|
||||
self.vertex_queue.append(nid)
|
||||
# expand the best vertices until an edge is better than the vertex
|
||||
# this is done because the vertex cost represents the lower bound
|
||||
# on the edge cost
|
||||
while(self.bestVertexQueueValue() <= self.bestEdgeQueueValue()):
|
||||
self.expandVertex(self.bestInVertexQueue())
|
||||
|
||||
# add the best edge to the tree
|
||||
bestEdge = self.bestInEdgeQueue()
|
||||
self.edge_queue.remove(bestEdge)
|
||||
|
||||
# Check if this can improve the current solution
|
||||
estimatedCostOfVertex = self.g_scores[bestEdge[0]] + self.computeDistanceCost(
|
||||
bestEdge[0], bestEdge[1]) + self.computeHeuristicCost(bestEdge[1], self.goalId)
|
||||
estimatedCostOfEdge = self.computeDistanceCost(self.startId, bestEdge[0]) + self.computeHeuristicCost(
|
||||
bestEdge[0], bestEdge[1]) + self.computeHeuristicCost(bestEdge[1], self.goalId)
|
||||
actualCostOfEdge = self.g_scores[bestEdge[0]] + \
|
||||
self.computeDistanceCost(bestEdge[0], bestEdge[1])
|
||||
|
||||
if(estimatedCostOfVertex < self.g_scores[self.goalId]):
|
||||
if(estimatedCostOfEdge < self.g_scores[self.goalId]):
|
||||
if(actualCostOfEdge < self.g_scores[self.goalId]):
|
||||
# connect this edge
|
||||
firstCoord = self.tree.nodeIdToRealWorldCoord(
|
||||
bestEdge[0])
|
||||
secondCoord = self.tree.nodeIdToRealWorldCoord(
|
||||
bestEdge[1])
|
||||
path = self.connect(firstCoord, secondCoord)
|
||||
lastEdge = self.tree.realWorldToNodeId(secondCoord)
|
||||
if path is None or len(path) == 0:
|
||||
continue
|
||||
nextCoord = path[len(path) - 1, :]
|
||||
nextCoordPathId = self.tree.realWorldToNodeId(
|
||||
nextCoord)
|
||||
bestEdge = (bestEdge[0], nextCoordPathId)
|
||||
if(bestEdge[1] in self.tree.vertices.keys()):
|
||||
continue
|
||||
else:
|
||||
try:
|
||||
del self.samples[bestEdge[1]]
|
||||
except(KeyError):
|
||||
pass
|
||||
eid = self.tree.addVertex(nextCoord)
|
||||
self.vertex_queue.append(eid)
|
||||
if eid == self.goalId or bestEdge[0] == self.goalId or bestEdge[1] == self.goalId:
|
||||
print("Goal found")
|
||||
foundGoal = True
|
||||
|
||||
self.tree.addEdge(bestEdge[0], bestEdge[1])
|
||||
|
||||
g_score = self.computeDistanceCost(
|
||||
bestEdge[0], bestEdge[1])
|
||||
self.g_scores[bestEdge[1]] = g_score + \
|
||||
self.g_scores[bestEdge[0]]
|
||||
self.f_scores[bestEdge[1]] = g_score + \
|
||||
self.computeHeuristicCost(bestEdge[1], self.goalId)
|
||||
self.updateGraph()
|
||||
|
||||
# visualize new edge
|
||||
if animation:
|
||||
self.drawGraph(xCenter=xCenter, cBest=cBest,
|
||||
cMin=cMin, etheta=etheta, samples=self.samples.values(),
|
||||
start=firstCoord, end=secondCoord, tree=self.tree.edges)
|
||||
|
||||
for edge in self.edge_queue:
|
||||
if(edge[0] == bestEdge[1]):
|
||||
if self.g_scores[edge[0]] + self.computeDistanceCost(edge[0], bestEdge[1]) >= self.g_scores[self.goalId]:
|
||||
if(edge[0], best_edge[1]) in self.edge_queue:
|
||||
self.edge_queue.remove(
|
||||
(edge[0], bestEdge[1]))
|
||||
if(edge[1] == bestEdge[1]):
|
||||
if self.g_scores[edge[1]] + self.computeDistanceCost(edge[1], bestEdge[1]) >= self.g_scores[self.goalId]:
|
||||
if(lastEdge, bestEdge[1]) in self.edge_queue:
|
||||
self.edge_queue.remove(
|
||||
(lastEdge, bestEdge[1]))
|
||||
else:
|
||||
print("Nothing good")
|
||||
self.edge_queue = []
|
||||
self.vertex_queue = []
|
||||
iterations += 1
|
||||
|
||||
print("Finding the path")
|
||||
plan.append(self.goal)
|
||||
currId = self.goalId
|
||||
while (currId != self.startId):
|
||||
plan.append(self.tree.nodeIdToRealWorldCoord(currId))
|
||||
currId = self.nodes[currId]
|
||||
|
||||
plan.append(self.start)
|
||||
plan = plan[::-1] # reverse the plan
|
||||
return plan
|
||||
|
||||
def connect(self, start, end):
|
||||
# A function which attempts to extend from a start coordinates
|
||||
# to goal coordinates
|
||||
steps = self.computeDistanceCost(self.tree.realWorldToNodeId(
|
||||
start), self.tree.realWorldToNodeId(end)) * 10
|
||||
x = np.linspace(start[0], end[0], num=steps)
|
||||
y = np.linspace(start[1], end[1], num=steps)
|
||||
for i in range(len(x)):
|
||||
if(self._collisionCheck(x[i], y[i])):
|
||||
if(i == 0):
|
||||
return None
|
||||
# if collision, send path until collision
|
||||
return np.vstack((x[0:i], y[0:i])).transpose()
|
||||
|
||||
return np.vstack((x, y)).transpose()
|
||||
|
||||
def _collisionCheck(self, x, y):
|
||||
for (ox, oy, size) in self.obstacleList:
|
||||
dx = ox - x
|
||||
dy = oy - y
|
||||
d = dx * dx + dy * dy
|
||||
if d <= size ** 2:
|
||||
return True # collision
|
||||
return False
|
||||
|
||||
# def prune(self, c):
|
||||
|
||||
def computeHeuristicCost(self, start_id, goal_id):
|
||||
# Using Manhattan distance as heuristic
|
||||
start = np.array(self.tree.nodeIdToRealWorldCoord(start_id))
|
||||
goal = np.array(self.tree.nodeIdToRealWorldCoord(goal_id))
|
||||
|
||||
return np.linalg.norm(start - goal, 2)
|
||||
|
||||
def computeDistanceCost(self, vid, xid):
|
||||
# L2 norm distance
|
||||
start = np.array(self.tree.nodeIdToRealWorldCoord(vid))
|
||||
stop = np.array(self.tree.nodeIdToRealWorldCoord(xid))
|
||||
|
||||
return np.linalg.norm(stop - start, 2)
|
||||
|
||||
# Sample free space confined in the radius of ball R
|
||||
def informedSample(self, m, cMax, cMin, xCenter, C):
|
||||
samples = dict()
|
||||
print("g_Score goal id: ", self.g_scores[self.goalId])
|
||||
for i in range(m + 1):
|
||||
if cMax < float('inf'):
|
||||
r = [cMax / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0,
|
||||
math.sqrt(cMax**2 - cMin**2) / 2.0]
|
||||
L = np.diag(r)
|
||||
xBall = self.sampleUnitBall()
|
||||
rnd = np.dot(np.dot(C, L), xBall) + xCenter
|
||||
rnd = [rnd[(0, 0)], rnd[(1, 0)]]
|
||||
random_id = self.tree.realWorldToNodeId(rnd)
|
||||
samples[random_id] = rnd
|
||||
else:
|
||||
rnd = self.sampleFreeSpace()
|
||||
random_id = self.tree.realWorldToNodeId(rnd)
|
||||
samples[random_id] = rnd
|
||||
return samples
|
||||
|
||||
# Sample point in a unit ball
|
||||
def sampleUnitBall(self):
|
||||
a = random.random()
|
||||
b = random.random()
|
||||
|
||||
if b < a:
|
||||
a, b = b, a
|
||||
|
||||
sample = (b * math.cos(2 * math.pi * a / b),
|
||||
b * math.sin(2 * math.pi * a / b))
|
||||
return np.array([[sample[0]], [sample[1]], [0]])
|
||||
|
||||
def sampleFreeSpace(self):
|
||||
rnd = [random.uniform(self.minrand, self.maxrand),
|
||||
random.uniform(self.minrand, self.maxrand)]
|
||||
|
||||
return rnd
|
||||
|
||||
def bestVertexQueueValue(self):
|
||||
if(len(self.vertex_queue) == 0):
|
||||
return float('inf')
|
||||
values = [self.g_scores[v] +
|
||||
self.computeHeuristicCost(v, self.goalId) for v in self.vertex_queue]
|
||||
values.sort()
|
||||
return values[0]
|
||||
|
||||
def bestEdgeQueueValue(self):
|
||||
if(len(self.edge_queue) == 0):
|
||||
return float('inf')
|
||||
# return the best value in the queue by score g_tau[v] + c(v,x) + h(x)
|
||||
values = [self.g_scores[e[0]] + self.computeDistanceCost(e[0], e[1]) +
|
||||
self.computeHeuristicCost(e[1], self.goalId) for e in self.edge_queue]
|
||||
values.sort(reverse=True)
|
||||
return values[0]
|
||||
|
||||
def bestInVertexQueue(self):
|
||||
# return the best value in the vertex queue
|
||||
v_plus_vals = [(v, self.g_scores[v] + self.computeHeuristicCost(v, self.goalId))
|
||||
for v in self.vertex_queue]
|
||||
v_plus_vals = sorted(v_plus_vals, key=lambda x: x[1])
|
||||
# print(v_plus_vals)
|
||||
return v_plus_vals[0][0]
|
||||
|
||||
def bestInEdgeQueue(self):
|
||||
e_and_values = [(e[0], e[1], self.g_scores[e[0]] + self.computeDistanceCost(
|
||||
e[0], e[1]) + self.computeHeuristicCost(e[1], self.goalId)) for e in self.edge_queue]
|
||||
e_and_values = sorted(e_and_values, key=lambda x: x[2])
|
||||
|
||||
return (e_and_values[0][0], e_and_values[0][1])
|
||||
|
||||
def expandVertex(self, vid):
|
||||
self.vertex_queue.remove(vid)
|
||||
|
||||
# get the coordinates for given vid
|
||||
currCoord = np.array(self.tree.nodeIdToRealWorldCoord(vid))
|
||||
|
||||
# get the nearest value in vertex for every one in samples where difference is
|
||||
# less than the radius
|
||||
neigbors = []
|
||||
for sid, scoord in self.samples.items():
|
||||
scoord = np.array(scoord)
|
||||
if(np.linalg.norm(scoord - currCoord, 2) <= self.r and sid != vid):
|
||||
neigbors.append((sid, scoord))
|
||||
|
||||
# add an edge to the edge queue is the path might improve the solution
|
||||
for neighbor in neigbors:
|
||||
sid = neighbor[0]
|
||||
scoord = neighbor[1]
|
||||
estimated_f_score = self.computeDistanceCost(
|
||||
self.startId, vid) + self.computeHeuristicCost(sid, self.goalId) + self.computeDistanceCost(vid, sid)
|
||||
if estimated_f_score < self.g_scores[self.goalId]:
|
||||
self.edge_queue.append((vid, sid))
|
||||
|
||||
# add the vertex to the edge queue
|
||||
if vid not in self.old_vertices:
|
||||
neigbors = []
|
||||
for v, edges in self.tree.vertices.items():
|
||||
if v != vid and (v, vid) not in self.edge_queue and (vid, v) not in self.edge_queue:
|
||||
vcoord = self.tree.nodeIdToRealWorldCoord(v)
|
||||
if(np.linalg.norm(vcoord - currCoord, 2) <= self.r and v != vid):
|
||||
neigbors.append((vid, vcoord))
|
||||
|
||||
for neighbor in neigbors:
|
||||
sid = neighbor[0]
|
||||
scoord = neighbor[1]
|
||||
estimated_f_score = self.computeDistanceCost(self.startId, vid) + \
|
||||
self.computeDistanceCost(
|
||||
vid, sid) + self.computeHeuristicCost(sid, self.goalId)
|
||||
if estimated_f_score < self.g_scores[self.goalId] and (self.g_scores[vid] + self.computeDistanceCost(vid, sid)) < self.g_scores[sid]:
|
||||
self.edge_queue.append((vid, sid))
|
||||
|
||||
def updateGraph(self):
|
||||
closedSet = []
|
||||
openSet = []
|
||||
currId = self.startId
|
||||
openSet.append(currId)
|
||||
|
||||
foundGoal = False
|
||||
|
||||
while len(openSet) != 0:
|
||||
# get the element with lowest f_score
|
||||
currId = min(openSet, key=lambda x: self.f_scores[x])
|
||||
|
||||
# remove element from open set
|
||||
openSet.remove(currId)
|
||||
|
||||
# Check if we're at the goal
|
||||
if(currId == self.goalId):
|
||||
self.nodes[self.goalId]
|
||||
foundGoal = True
|
||||
break
|
||||
|
||||
if(currId not in closedSet):
|
||||
closedSet.append(currId)
|
||||
|
||||
# find a non visited successor to the current node
|
||||
successors = self.tree.vertices[currId]
|
||||
for succesor in successors:
|
||||
if(succesor in closedSet):
|
||||
continue
|
||||
else:
|
||||
# claculate tentative g score
|
||||
succesorCoord = self.tree.nodeIdToRealWorldCoord(succesor)
|
||||
g_score = self.g_scores[currId] + \
|
||||
self.computeDistanceCost(currId, succesor)
|
||||
if succesor not in openSet:
|
||||
# add the successor to open set
|
||||
openSet.append(succesor)
|
||||
elif g_score >= self.g_scores[succesor]:
|
||||
continue
|
||||
|
||||
# update g and f scores
|
||||
self.g_scores[succesor] = g_score
|
||||
self.f_scores[succesor] = g_score + \
|
||||
self.computeHeuristicCost(succesor, self.goalId)
|
||||
|
||||
# store the parent and child
|
||||
self.nodes[succesor] = currId
|
||||
|
||||
def drawGraph(self, xCenter=None, cBest=None, cMin=None, etheta=None,
|
||||
samples=None, start=None, end=None, tree=None):
|
||||
print("Plotting Graph")
|
||||
plt.clf()
|
||||
for rnd in samples:
|
||||
if rnd is not None:
|
||||
plt.plot(rnd[0], rnd[1], "^k")
|
||||
if cBest != float('inf'):
|
||||
self.plot_ellipse(xCenter, cBest, cMin, etheta)
|
||||
|
||||
if start is not None and end is not None:
|
||||
plt.plot([start[0], start[1]], [end[0], end[1]], "-g")
|
||||
|
||||
for (ox, oy, size) in self.obstacleList:
|
||||
plt.plot(ox, oy, "ok", ms=30 * size)
|
||||
|
||||
plt.plot(self.start[0], self.start[1], "xr")
|
||||
plt.plot(self.goal[0], self.goal[1], "xr")
|
||||
plt.axis([-2, 15, -2, 15])
|
||||
plt.grid(True)
|
||||
plt.pause(0.01)
|
||||
|
||||
def plot_ellipse(self, xCenter, cBest, cMin, etheta):
|
||||
|
||||
a = math.sqrt(cBest**2 - cMin**2) / 2.0
|
||||
b = cBest / 2.0
|
||||
angle = math.pi / 2.0 - etheta
|
||||
cx = xCenter[0]
|
||||
cy = xCenter[1]
|
||||
|
||||
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
|
||||
x = [a * math.cos(it) for it in t]
|
||||
y = [b * math.sin(it) for it in t]
|
||||
R = np.matrix([[math.cos(angle), math.sin(angle)],
|
||||
[-math.sin(angle), math.cos(angle)]])
|
||||
fx = R * np.matrix([x, y])
|
||||
px = np.array(fx[0, :] + cx).flatten()
|
||||
py = np.array(fx[1, :] + cy).flatten()
|
||||
plt.plot(cx, cy, "xc")
|
||||
plt.plot(px, py, "--c")
|
||||
|
||||
|
||||
def main():
|
||||
print("Starting Batch Informed Trees Star planning")
|
||||
obstacleList = [
|
||||
(5, 5, 0.5),
|
||||
(9, 6, 1),
|
||||
(7, 5, 1),
|
||||
(1, 5, 1),
|
||||
(3, 6, 1),
|
||||
(7, 9, 1)
|
||||
]
|
||||
|
||||
bitStar = BITStar(start=[-1, 0], goal=[3, 8], obstacleList=obstacleList,
|
||||
randArea=[-2, 15])
|
||||
path = bitStar.plan(animation=show_animation)
|
||||
print(path)
|
||||
if show_animation:
|
||||
plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r')
|
||||
plt.grid(True)
|
||||
plt.pause(0.05)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
BIN
PathPlanning/BatchInformedRRTStar/bit_star.png
Normal file
BIN
PathPlanning/BatchInformedRRTStar/bit_star.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 31 KiB |
Reference in New Issue
Block a user